思维训练:还原问题(附答案)

合集下载

五年级趣味数学思维拓展题50道及答案

五年级趣味数学思维拓展题50道及答案

五年级趣味数学思维拓展题50道及答案(1) 【巧填幻方】用11,13,15,17,19,21,23,25,27编制成一个三阶幻方.(2) 【图形面积】如下图所示,在一个正方形上先截去宽11分米的长方形,再截去宽7分米的长方形,所得图形的面积比原正方形减少301平方分米.原正方形的边长是______分米.(3) 【不定方程】甲,乙,丙三个人玩三张牌,这三张牌分别写着不同的自然数,洗牌后发给每人一张,按每人所拿的自然数得分,重复玩了3次后,甲共得19分,乙和丙各得13分,那么这三张牌上写的数是哪三个数?(4) 【新定义】将6个灯泡排成一行,用○和●表示灯亮和灯不亮,下图是这一行灯的五种情况,分别表示五个数字:1,2,3,4,5.那么●○○●○●表示的数是_____.11(5) 【还原问题】假设有一种计算器,它由A,B,C,D 四种装置组成,将一个数输入一种装置后会自动输出另一个数.各装置的运算程序如下:装置A :将输入的数加上6之后输出;装置B :将输入的数除以2之后输出;装置C :将输入的数减去5之后输出;装置D :将输入的数乘以3之后输出.这些装置可以连接,如在装置A 后连接装置B,就记作:A→B.例如:输人1后,经过A→B,输出3.5.(1)若经过A→B→C→D,输出120,则输入的数是多少?(2)若经过B→D→A→C,输出13,则输入的数是多少?(6) 【统筹规划】理发室里有甲,乙两位理发师,同时来了五位顾客,根据他们所要理的发型,分别需要10,12,15,20和24分钟,怎样安排他们理发的顺序,才能使这五人理发和等候所用时间的总和最少.最少时间为__________.(7) 【图形分割】已知左下图是由同样大小的5个正方形组成的.试将图形分割成4块形状,大小都一样的图形.54321●○○○●○○●○○●●●●●●●●●●●●●●●●●●●●(8)【图形拼接】如何把一个长20厘米,宽12厘米的长方形切成两块,拼成一个长16厘米,宽15厘米的新长方形.(9)【不定方程】五年级一班共有36人,每人参加一个兴趣小组,共有A,B,C,D,E 五个小组.若参加A组的有15人,参加B组的人数仅次于A组,参加C组,D组的人数相同,参加E组的人数最少,只有4人.那么,参加B组的有_______人.(10)【逻辑推理】A,B,C三个人回答同样的七道判断题,按规定,若认为结论是正确的,就打一个“√”,若认为结论是错误的,就打一个“×”.结果A,B,C三人的答题的情况如下表所示,已知A,B,C三个人都只答对5题,答错2题.请问:这七道判断题的正确答案是什么?(11)【行程问题】猎狗追野兔.在相等的时间里,猎狗跳6次,野兔跳7次;而猎狗跳4次的距离等于野兔跳5次的距离.当猎狗发现野兔时,野兔已跳出离猎狗10步远的距离.问猎狗跳出多少次以后才能追上野兔?(12)【排列组合】4个人进行篮球训练,互相传球接球,要求每个人接球后马上传给别人,开始由甲发球,并作为第一次传球,第五次传球后,球又回到甲手中,问有_________种传球方法.(13) 【整除问题】村里种了新瓜,男女老少品尝它.小伙每人吃一个,姑娘两人分一瓜;老人一瓜三人吃,四个小孩吃一瓜.男女老少四个组,一共吃了五十瓜,各组人数都相等,每组多少人品尝瓜?(14) 【一笔画】一条小虫沿长6分米,宽4分米,高5分米的长方体的棱爬行.如果它只能进不能退,并且同一条棱不能爬两次,那么它最多能爬多少分米?(15) 【行程问题】有5位探险家计划横穿沙漠.他们每人驾驶一辆吉普车,每辆车最多能携带可供一辆车行驶312千米的汽油.显然,5个人不可能共同穿越500千米以上的沙漠.于是,他们计划在保证其余车完全返回出发点的前提下,让一辆车穿越沙漠,当然实现这一计划需要几辆车相互借用汽油.问:穿越沙漠的那辆车最多能穿越多宽的沙漠?(16) 【行程问题】如图,迷宫的两个入口处各有一个正方形(甲)机器人和一个圆形机器人(乙),甲的边长和乙的直径都等于迷宫入口的宽度.甲和乙的速度相同,同时出发,则首先到达迷宫中心(☆)处的是.AG B FC HDE 乙甲(17) 【等差数列】一群小猴上山摘野果,第一只小猴摘了一个野果,第二只小猴摘了2个野果,第三只小猴摘了3个野果,依次类推,后面的小猴都比它前面的小猴多摘一个野果.最后,每只小猴分得8个野果.这群小猴一共有_________只.(18) 【行程问题】龟兔赛跑,全程6千米,兔子每小时跑15千米,乌龟每小时跑3千米,乌龟不停的跑,但兔子边跑边玩,它先跑1分钟后玩20分钟,又跑2分钟后玩20分钟,再跑3分钟后玩20分钟……问它们谁胜利了?胜利者到终点时,另一个距离终点还有多远?(19) 【游戏与策略】一只电动老鼠从右图的A 点出发,沿格线奔跑,并且每到一个格点不是向左转就是向右转.当这只电动老鼠又回到A 点时,甲说它共转了81次弯,乙说它共转了82次弯.如果甲,乙二人有一人说对了,那么谁正确?(20) 【统筹规划】在一条公路上,每隔10千米有一座仓库(如图),共有五座,图中数字表示各仓库库存货物的重量.现在要把所有的货物集中存放在一个仓库里,如果每吨货物运输1千米需要运费0.9元,那么集中到哪个仓库运费最少是__________元.(21) 【平均数问题】某养鸽协会正在讨论是否批准某养鸽人加入养鸽协会的问题,6010吨20吨30吨10吨已知该养鸽人的年龄恰好等于他所养的鸽子数.如果批准他加入,那么养鸽协会成员的平均年龄将从50岁升高到51岁,并且养鸽协会成员的平均养鸽数目将从114只降到111只.那么该养鸽协会原有成员多少人?(22) 【方案设计】今有9盆花要在平地上摆成10行,每行都通过3盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.(23) 【统筹规划】有七个村庄1A ,2A ,,7A 分布在公路两侧(见右图),由一些小路与公路相连,要在公路上设一个汽车站,要使汽车站到各村庄的距离和最小,车站应设在哪里.(24) 【行程问题】猎犬发现在离它9步远的前方有一只奔跑的兔子,立刻追赶,猎犬步子大.它跑5步的路程,兔子跑9步,但兔子动作快,猎犬跑2步的时间,兔子跑3步,猎犬至少跑多少步才能追上兔子?(25) 【还原问题】李白提壶去买洒,遇店加一倍,见花喝一斗.三遇店和花,喝光壶中酒.壶中原有___________斗酒.(26) 【行程问题】一只野兔逃出80步后猎狗才追它,野兔跑8步的路程猎狗只需公路A 6A 5A 7A 4A 3A 2A 1F E D BC跑3步,猎狗跑4步的时间兔子能跑9步.猎狗至少要跑多少步才能追上野兔?(27)【和差问题】一群小神仙玩扔沙袋游戏,他们分为甲,乙两个组,共有140只沙袋.如果甲组先给乙组5只,乙组又给甲组8只,这时两组沙袋数相等.两个组原来各有沙袋多少只(28)【分数应用题】刚打完篮球,冬冬觉得非常渴,就拿起一大瓶矿泉水狂喝.他第一口就喝了整瓶水的一半,第二口又喝了剩下的13,第三口则喝了剩下的14,第四口再喝剩下的15,第五口喝了剩下的16.此时瓶子里还剩0.5升矿泉水,那么最开始瓶子里有___________升矿泉水.(29)【排列组合】一楼梯共10级,规定每步只能跨上一级或两级,要登上第10级,共有_________种不同走法.(30)【倍数问题】3个探险家结伴去原始森林探险,路上觉得十分乏味就聚在一起玩牌.第一局,甲输给了乙和丙,使他们每人的钱数都翻了一番.第二局,甲和乙一起赢了,这样他们俩钱袋里面的钱也都翻了倍.第三局,甲和丙又赢了,这样他们俩钱袋里的钱都翻了一倍.结果,这3位探险家每人都赢了两局而输掉了一局,最后3人手中的钱是完全一样的.细心的甲数了数他钱袋里的钱发现他自己输掉了100元.你能推算出来甲,乙,丙3人刚开始各有多少钱吗?(31)【统筹规划】北京,上海分别有10台和6台完全相同的机器,准备给武汉11台,西安5台,每台机器的运费如右表,如何调运能使总运费最省.(32) 【和差问题】有60名学生,男生,女生各30名,他们手拉手围成一个圆圈.如果让原本牵着手的男生和女生放开手,可以分成18个小组.那么,如果原本牵着手的男生和男生放开手时,分成了___________个小组.(33) 【行程问题】一只猎狗正在追赶前方20米处的兔子,已知狗一跳前进3米,兔子一跳前进2.1米,狗跳3次的时间兔子可以跳4次.问:兔子跑出多远将被猎狗追上?(34) 【统筹规划】星期天妈妈要做好多事情.擦玻璃要20分钟,收拾厨房要15分钟,洗脏衣服的领子,袖口要10分钟,打开全自动洗衣机洗衣服要40分钟,晾衣服要10分钟.妈妈干完所有这些事情最少用____分钟.(35) 【图形面积】如图,矩形ABCD 被分割成9个小矩形.其中有5个小矩形的面积如图所示.矩形ABCD 的面积为.到站运费/元发站武汉西安北京上海5007006001000164221C B D A(36)【倍数问题】三个容器各放一些水,第一次从第一个容器倒一些水到另两个容器,使得它们的水分别增加到原来的2倍与3倍,第二次从第二个容器倒一些水到第一个与第三个容器中,使它们的水分别增加到3倍与2倍,第三次从第三个容器中倒一些水到第一个与第二个容器中,使它们的水都增加到2倍,这时三个容器中的水都为96毫升,原来三个容器中各有多少毫升水?(37)【差倍问题】一群小朋友去春游,男孩戴小黄帽,女孩戴小红帽.在每个男孩看来,黄帽子比红帽子多5顶;在每个女孩看来,黄帽子是红帽子的2倍.问:男孩,女孩各有多少人?(38)【行程问题】猎狗追赶前方15米处的野兔.猎狗跑3步的时间野兔跑5步,猎狗跑4步的距离野兔要跑7步.猎狗至少跑出多少米才能追上野兔?(39)【统筹规划】如图,在街道上有A,B,C,D,E,F六栋居民楼,现在设立一个公交站,要想使居民到达车站的距离之和最短,车站应该设在何处.(40)【最值问题】用10尺长的竹竿做原材料,来截取3尺,4尺长的甲,乙两种短竹竿各100根,至少要用去原材料__________根.怎么截法最合算.(41)【行程问题】甲,乙两人要到沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可携带一个人24天的食物和水.☆如果不准将部分食物存放在途中,问其中一人最远可以深人沙漠多少千米(当然要求二人最后返回出发点)?☆如果可以将部分食物存放于途中以备返回时取用,情况又怎样呢?(42)【行程问题】一座石台的下底面是边长为10米的正方形,它的一个顶点A处有一个虫子巢穴,虫甲每分爬6厘米,虫乙每分爬10厘米,甲沿正方形的边由A→B→C→D→A不停的爬行,甲先爬行2厘米后,乙沿甲爬行过的路线追赶甲,当乙遇到甲后,乙就立即沿原路返回巢穴,然后乙再沿甲爬行过的路线追赶甲……在甲爬行的一圈内,乙最后一次追上甲时,乙爬行了多长时间?(43)【最值问题】一个工厂有7个车间,分散在一条环形铁路上,三列火车循环运输产品.每个车间装卸货物所需工人数为25,18,27,10,20,15,30.若改为部分工人跟车,部分工人固定在车间,那么安排__________名装卸工,所用总人数最合理.(44)【排列组合】如下图,一只蜜蜂从A处出发,回到家里B处,每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行,共有_________种回家的方法.(45)【行程问题】一个旅游者于是10时15分从旅游基地乘小艇出发,务必在不迟于当日13时返回.已知河水速度为1.4千米/小时,小艇在静水中的速度为3千米/小时,如果旅游者每过30分钟就休息15分钟,不靠岸,只能在某次休息后才返回,那么他从旅游基地出发乘艇走过的最大距离是____千米.(46)【统筹规划】有一家五口人要在夜晚过一座独木桥.他们家里的老爷爷行动非常不便,过桥需要12分钟;孩子们的父亲贪吃且不爱运动,体重严重超标,过河需要时间也较长,8分钟;母亲则一直坚持劳作,动作还算敏捷,过桥要6分钟;两个孩子中姐姐需要3分钟,弟弟只要1分钟.当时正是初一夜晚又是阴天,不要说月亮,连一点星光都没有,真所谓伸手不见五指.所幸的是他们有一盏油灯,同时可以有两个人借助灯光过桥.但要命的灯油将尽,这盏灯只能再维持30分钟了!他们焦急万分,该怎样过桥呢.(47)【一笔画】邮递员叔叔向11个地点送信一次信,不走重复路,怎样走最合适?(48)【还原问题】在电脑里先输入一个数,它会按给定的指令进行如下运算:如果输入的数是偶数,就把它除以2;如果输入的数是奇数,就把它加上3.同样的运算这样进行了3次,得出结果为27.原来输入的数可能是____________.(49)【余数问题】一本书,如果每天读50页,那么5天读不完,6天又有余;如果每天读70页,那么3天读不完,4天又有余;如果每天读n页,恰可用n天读完(n是自然数).这本书的页数是______.(50)【公约数公倍数】有甲,乙,丙三个网站,甲网站每3天更新一次,乙网站每五5天更新一次,丙网站每7天更新一次.2024年元旦三个网站同时更新,下一次同时更新是在____月____日?五年级趣味数学思维拓展题50道答案(1)(2) 21(3) 三张牌从大到小写的数依次是7,5,3(4) 26(5) (1)84;(2)8(6) 128分(7)(8)(9) 参加B 组的有7人(10) √×√××√√(11) 120次(12) 601117231319251521274343433443434343(14)48分米(15)520千米(16)乙先到达(17)15只猴子(18)1千米(19)甲正确(20)1530元(21)养鸽协会原有成员15人(22)(23)D点(24)54步(25)7斗8(26)192步(27)甲67,乙73(28)3升(30)刚开始时甲有260元,乙有80元,丙有140元.(31)北京调往西安5台,其余5台调往武汉,上海6台全部调往武汉(32)21个小组(33)280米(34)16分钟(35)42(36)三个容器原来分别有水168毫升,88毫升,32毫升(37)男孩有14人,女孩有8人(38)315米(39)CD之间及点C,D均可(40)75根(41)360千米(42)213分(43)82人(44)296(45)4.8千米(46)首先姐姐跟弟弟一起过,用时3分钟,姐姐再回去送油灯,用时3分钟,老爷爷跟爸爸一起过河,用时12分钟,弟弟将灯送回去,用时1分钟,弟弟和母亲一起过,用时6分钟,弟弟送灯过河,用时1分钟,最后与姐姐一起过河,用时3分钟.一共用时:3312161329++++++=(分钟).最后能够安全全部过河(47)4-1-2-5-8-9-6-10-11-7-4-3(48)216或105或102,答案不唯一(49)256页(50)4月14日。

三年级数学思维拓展常考题集锦附答案

三年级数学思维拓展常考题集锦附答案

三年级数学思维拓展常考题集锦,附答案!还原问题1.工程问题绿化队4天种树200棵,还要种400棵,照这样的工作效率,完成任务共需多少天?解答:200÷4=50 (棵)(200+400)÷50=12(天)【小结】归一思想.先求出一天种多少棵树,再求共需几天完成任务.单一数:200÷4=50 (棵),总共的天数是:(200+400)÷50=12 (天).2.还原问题3个笼子里共养了78只鹦鹉,如果从第1个笼子里取出8只放到第2个笼子里,再从第2个笼子里取出6只放到第3个笼子里,那么3个笼子里的鹦鹉一样多.求3个笼子里原来各养了多少只鹦鹉?解答:78÷3=26(只)第1个笼子:26+8=34(只)第2个笼子:26-8+6=24(只)第3个笼子:26-6=20(只)楼梯问题1.上楼梯问题某人要到一座高层楼的第8层办事,不巧停电,电梯停开,如从1层走到4层需要48秒,请问以同样的速度走到八层,还需要多少秒?解答:上一层楼梯需要:48÷(4-1)=16(秒)从4楼走到8楼共走:8-4=4(层)楼梯还需要的时间:16×4=64(秒)答:还需要64秒才能到达8层。

2.楼梯问题晶晶上楼,从1楼走到3楼需要走36级台阶,如果各层楼之间的台阶数相同,那么晶晶从第1层走到第6层需要走多少级台阶?解:每一层楼梯有:36÷(3-1)=18(级台阶)晶晶从1层走到6层需要走:18×(6-1)=90(级)台阶。

答:晶晶从第1层走到第6层需要走90级台阶。

平均年龄1.平均年龄有2个班,每班的学生数相等。

其中一个班平均每人9岁,另一个班平均每人11岁。

那么这两个班的学生平均每人几岁?分析 '两个班的学生平均'年龄按理应把每个人的年龄加起来,这样才可算出总和。

但是人数根本不知道,怎么办呢?所以要有新思路才能解此问题。

不妨假设每班有30人,则总岁数为9×30+11×30=600(岁),总人数为30+30=60(人),平均年龄为600÷60=10(岁)。

3年思维训练全部

3年思维训练全部

第一讲乘法简算例1. 25×26×4 125×7×2×8解题思路:观察两题可以发现:25×4=100 125×8=1000 这样可以简算25×26×4 125×7×2×8=25×4×26 =(125×8)×7×2=100×26 =1000×14=2600 =14000例2. 125×(10+8)=125×10+125×8=2250练习题1.18×25×4 125×13×3×8 125×25×4×8 25×39×82.125×16×25 25×2825×88 125×323.25×(4+20) 25×(40+8)125×(8+20) 125×(40-8)4.125×88 25×44第二讲乘法简算例1. 65×202 35×99解题思路:利用拆项法把一个数拆成一个整百数,利用乘法分配率进行简算。

65×202 35×99=65×(200+2) =35×(100-1)=13000+130 =3500-35=13130 =3465练习题1.101×45 102×36203×32 305×222.99×45 199×36198×25 396×253. 11×11 12×1113×11 14×1115×11 16×1117×11 18×114. 195×81+19×195 54×13+87×54 268×101-268 79×21-79×11 99×54+54 76×101-76第三讲小数的认识例1.2008年北京奥运会上,男子100米决赛前三名成绩如下:汤普森:9.89秒,迪克斯:9.91秒,博尔特:9.69秒。

三年级还原法解题的三种方法

三年级还原法解题的三种方法

三年级还原法解题的三种方法
摘要:
一、还原问题概述
二、方法一:逐步还原
三、方法二:倒推法
四、方法三:图表还原
五、总结与应用
正文:
在三年级数学学习中,还原问题是一种常见的思维训练题型。

这类问题要求学生根据题目给出的条件,通过逐步还原的过程,找出问题的原始状态。

解决这类问题的关键在于培养学生的逆向思维和逻辑推理能力。

一、还原问题概述
还原问题是一种需要逆向思考的题目。

通常会给出一个变化过程,要求我们从结果推导出原始状态。

这类问题不仅能锻炼学生的思维能力,还能培养他们的观察力和推理能力。

二、方法一:逐步还原
当我们遇到一个还原问题时,可以先从结果入手,逐步向前推导。

例如,题目给出一个数加上3,乘以3,再减去3,最后除以3,结果是3。

我们可以从最后一步开始,逆向计算:3乘以3等于9,9减去3等于6,6除以3等于2。

所以,原始的数是2。

三、方法二:倒推法
倒推法也就是还原法,特点是必须从问题的结果入手,反向使用题目中的条件,最后求出原有的数量。

在解决还原问题时,我们可以尝试从结果倒推回去,找出问题的原始状态。

四、方法三:图表还原
有些还原问题可以通过绘制图表来解决。

例如,题目描述了一个物体在不同时间的变化过程,我们可以通过图表来表示物体的数量变化,从而找出问题的原始状态。

图表还原法可以帮助我们更直观地理解问题,提高解决问题的效率。

五、总结与应用
掌握逐步还原、倒推法和图表还原这三种方法,对于解决三年级还原问题非常有帮助。

在实际应用中,我们可以根据问题的特点,灵活选择合适的方法。

小学数学思维训练竞赛应用题(含答案解析)

小学数学思维训练竞赛应用题(含答案解析)

小学数学思维训练竞赛应用题(含答案解析)1.有两块地共90公亩,第一块地的和第二块地的种茄子,两块地余下的共45公亩种西红柿。

求第一块地有多少公亩?2.瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100克和400克的A、B两种酒精溶液,瓶中的浓度变成了14%.已知A种酒精溶液浓度是B种酒精溶液浓度的2倍,那么A种酒精溶液的浓度是百分之几?3.从前有座山,山里有个庙,庙里有许多小和尚,两个小和尚用一根扁担一个桶抬水,一个小和尚用一根扁担两个桶挑水,共用了38根扁担和58个桶,那么有多少个小和尚抬水?多少个挑水?4.购买3斤苹果,2斤桔子需要6.90元;购买8斤苹果,9斤桔子需要22.80元,那么苹果、桔子各买1斤需要多少元?5.有一牧场长满牧草,牧草每天匀速生长,这个牧场可供17头牛吃30天,可供19头牛吃24天,现在有若干头牛在吃草,6天后,4头牛死亡,余下的牛吃了2天将草吃完,问原来有牛多少头?6.某小贩出售一筐苹果,第一天卖掉了全部的一半多2千克,第二天卖掉了余下的一半少2千克,这时筐内还剩下20千克苹果.问:这筐苹果原有多少千克?7.学而思学校买来白粉笔比彩色粉笔多15箱,白粉笔的箱数比彩色笔的4倍少3箱,学而思学校买来白粉笔和彩色粉笔各多少箱?8.小云比小雨少20本书,后来小云丢了5本书,小雨新买了11本书,这时小雨的书比小云的书多2倍。

问:原来两人各有多少本书?9.如图,一把密码锁上有25个按钮,必须将所有的按钮都按一遍才能将锁打开;而当我们按一个按钮后,只能按照这个按钮上的提示按下一个按钮。

比如,当我们按第一行的第二个按钮“下2”后,按照提示“下2”,向下2格,只能按第三行的第二个按钮“左1”,接着只能按第三行的第一个按钮“下l”…为了打开这个密码锁,请你选择第一个按钮,并将这个按钮涂上阴影。

10.刘老师准备把一些课外书分发给某班的同学们。

若发给每位同学3本,还余11本;发给每位同学5本,还差3本,问王老师一共有多少本课外书?该班有多少位同学?11.一块草地,10头牛20天可以把草吃完,15头牛10天可以把草吃完.问多少头牛5天可以把草吃完?12.解放军战士排成一个每边12人的中空方阵,共四层,求总人数?13.40名学生参加义务植树活动,任务是:挖树坑,运树苗。

四升五还原问题教案

四升五还原问题教案

第14讲按章办事——复原问题【教学内容】"佳一数学思维训练教程"暑期版,四升五年级第14讲"按章办事——复原问题〞。

【教学目标】知识技能让学生在解决简单实际问题的过程中,初步体会用复原的方法整理相关信息的作用,学会运用从条件想起或从所求问题想起的策略分析数量关系,寻找解决问题的有效方法。

数学思考能回忆倒推的过程,初步判断结果的合理性。

问题解决让学生进一步积累解决问题的经历,增强解决问题的策略意识,获得解决问题的成功体验。

情感态度提高学好数学的信心。

【教学重难点】让学生在解决简单实际问题的过程中,初步体会用复原的方法整理相关信息的作用,学会运用从条件想起或从所求问题想起的策略分析数量关系,寻找解决问题的有效方法。

【教学准备】动画多媒体语言课件第一课时教学过程:在卖鸡蛋,她好奇地问:"老奶奶,您这一篮鸡蛋有多少个?〞〕老奶奶说:〔泡泡语〕我第一次卖出全部的一半多2个,第二次卖出余下的一半少2个,现在篮子里还剩下12个。

〔泡泡语〕你知道这一篮鸡蛋有多少个吗?小红一会儿就算出来正确的个数,同学们,你们知道小红是怎么计算的吗?2、师:你打算用什么方法来解决这个问题?3、同桌讨论交流,把你的思路说给同桌听听。

4、师:我们遇到整体和局部的关系时,可以将复杂的条件通过线段图的形式简单明了的表示出来,则谁愿意将线段图画在黑板上?5、从图上你可以获得哪些信息?6、学生尝试解答,教师巡视指导。

7、请几名学生汇报讲解其解题思路和过程,其他同学进展评析。

8师:同学们,大家有没有发现用复原法解决问题时,一半多几、少几与算式有什么关系?解析:分3步〔第一次卖出的、第二次卖出的、剩下的〕画出教材线段图。

答案:第一次卖出后剩下的:〔12-2〕×2=20〔个〕总共的:〔20+2〕×2=44〔个〕答:这一篮鸡蛋有44个。

9、教师引导学生小结。

10、教师拓展:〔本问题课件不出示,教师根据实际情况选择补充讲解〕师:老奶奶见小红这么顺利就算出她这一篮鸡蛋的总个数。

三年级数学思维训练专题完整版

三年级数学思维训练专题完整版

三年级数学思维训练专题HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】三年级数学思维训练专题4学会倒着想学会倒着想例1:一条毛毛虫由幼虫长到成虫,每天长一倍,16天能长到16厘米。

问长到4厘米时要用多少天分析与解答:由题中条件可知:每天毛毛虫的长度都是前一天的2倍,倒着想,就是前一天的长度是后一天的一半。

我们就从第16天长到16厘米一天一天往前推算:(1)第15天长到多少厘米(2)第14天长到多少厘米答:长到4厘米时要用天。

试一试1:一条小青虫由幼虫长到成虫,每天长一倍,20天能长到20厘米。

问长到5厘米时要用多少天例2:一个数减16加上240,再除以7得40,求这个数是多少分析与解答:我们先理清题中的顺序:如下:用倒着想的方法思考,就是从原来运算的逆运算一步一步地推想。

最后是除以7得40,如果不除以7,那应该是40×7=280;如果不加上240,那应该是280-240=40;如果不减去16,那应该是16+40=56。

答:这个数是。

试一试2:一个数如果加上5,乘5,减去5,再除以5,结果还是5。

这个数是多少例3:小丽在做一道加法时,由于粗心,把个位上的4看作7,十位上的8看作2,结果和是306。

正确的答案应该是多少分析与解答:要求正确的答案,就要知道两个正确的加数。

看错的加数是27,因此得到错误的和是306。

我们倒着想,根据逆运算可以得到一个没有看错的加数是306-27=279。

题中已知一个正确的加数是84,所以,正确的和应该是:(1)(2)答:正确的答案应该是。

试一试3:小明在做一道加法时,将个位上的5看作9,把十位上的8看作3,结果所得的和是123,正确的答案应该是多少例4:一根铁丝剪去一半,再减去余下的一半,还剩14分米,这根铁丝原来长多少分米分析与解答:根据题意,画出线段图:从上面的线段图可以看出,剩下的14分米和余下的一半同样多。

数学思维训练导引 (四年级)

数学思维训练导引   (四年级)

第1讲 整数计算综合内容概述熟练运用已学的各种方法解决复杂的整数四则运算问题;学会利用加减抵消、分组计算方法处理各种数列的计算问题。

学会处理“定义新运算”的问题,初步体会用字母表示数。

典型问题兴趣篇1. 计算:(1) 121×32÷8; (2) 4×(250÷8) (3) 25×83×32×1252. 计算:(1) 56×22+56×33+56×44 (2) 222×33+889×66.3. 计算:(1) 37×47+36×53 (2) 123×76-124×75。

4. 计算:100-99+98-97+96-95+…+12-11+10.5. 计算:50+49-48-47+46+45-44-43+…-4-3+2+1.6. 计算:(1+3+5+7+…+199+201) -(2+4+6+8+…+198+200).7. 计算:1+2+3+4+…+48+49+50+49+48+…+4+3+2+1.8. 下面是一个叫做“七上八下”的数字游戏。

游戏规则是:对一个给定的数,按照由若干个7和8组成的口令进行一连串的变换。

口令“7”是指在这个数中插入一个数字,使得新生成的数尽量大;口令“8”是指将这个数中的一个数字去掉,也要使新生成的数尽量大。

例如:给出的数是1995,口令是“8→7,”在第一个口令“8”发出后变成995,在第二个口令“7”发出后变成9995。

如果给出数“6595”以及口令“8→7→8→7→8→8”,问:变换后依次得到的6个数的和是多少?9. 规定运算“∇”为:a ∇b= (a+1) ×(b -1), 请计算:(1)8∇10; (2) 10∇8.10. 规定运算“☺”为:a ☺b=a ×b -(a+b), 请计算:(1) 5☺8; (2) 8☺5; (3) (6☺5)4; (4)6☺ (54)拓展篇1. 计算:(1)72×27×88÷(9×11×12); (2) 31×121-88×125÷(1000÷121).2. 计算:(1) 555×445-556×444; (2) 42×137-80÷15+58×138-70÷15.3. 计算:20092009×2009-20092008×2008-20092008.4. 计算:1+2-3+4+5-6+7+8-9+……+97+98-99.5. 计算:100×99-99×98-98×97-97×96-96×95-95×94+…+4×3-3×2-2×1.6. 在不大于1000的自然数中,A 为所有个位数字为8的数之和,B 为所有个位数字为3的数之和. A 与B的差是多少?7. 求图1-1中所有数的和.8. 已知平方差公式:22()()a b a b a b -=+⨯-,计算: 2222222220191817161521-+-+-++-9. 计算:951×949-52×48.10. 规定运算“Θ”为:a Θb=a+2b -2, 计算:(1) (8Θ7) Θ6;(2) 8Θ(7Θ6)11. 规定运算“ ”为:a b=(a+1) ×(b -2). 如果6 ( 5)=91, 那么方格内应该填入什么数?12. 规定:符号“∆”为选择两数中较大的数的运算,“∇”为选择两数中较小的数的运算,例如:3∆5=5,3∇5=3请计算:1∆2∆3∇4∆5∆6∇7∆…∇100.(运算的顺序是从左至右)超越篇1. 观察下面算式的规律:2000+1991-1988-1982+1976+1970-1964-1958+1952+1946-1940-1934+……一直这样写下去,那么最后4个自然数分别是哪4个?符号分别是加还是减?算式最终的结果为多少?2. 从1, 2, ……, 9, 10 中任意选取一个奇数和一个偶数,并将两数相乘,可以得到一个乘积,把所有这样的乘积全部加起来,总和是多少?3. 计算:1-3+6-10+15-21+28- (4950)4. 已知平方差公式:22()()a b a b a b -=+⨯-, 计算: 222222222222100999897969594934321+--++--+++--5. a Θb 表示从a 开始依次增加的b 个连续自然数的和,例如:4Θ3=4+5+6=15, 5Θ4=5+6+7+8=26, 请计算:(1) 4Θ15 (2) 在算式( Θ7)Θ11=1056中,方框里的数应该是多少?6. 定义两种运算:a Ωb=a -b+1, a ∀b=a ×b+1, 用“Ω”、“∀”和括号填入下面的式子,使得等式成立(不能用别的计算符号):7 3 4 5=27.现定义四种操作的规则如下:①“一分为二”:如果一个自然数是偶数,就把它除以2;如果是奇数,就先加上1,然后除以2. 例如从16可以得到8,从27可以得到14.②“丢三落四”:如果一个自然数中包含数字“3”或“4”,就将其划掉,例如从5304可以得到50,从408可以得到8. (不含数字3和4的自然数不能进行“丢三落四”操作)③“七上八下”:如果一个自然数中包含数字“7”,就将所有“7”移到最左边;如果一个自然数中包含数字“8”,就将所有“8”移到最右边。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思维训练:还原问题(附答案)
还原问题是指已知一个数经过若干步运算后所得的结果,求原来这个数的应用题。

解这类问题,可按题目所叙述的运算顺序,利用加与减、乘与除的逆运算关系,从已知的最后结果出发,逐步逆推,直至求得原数。

这类问题的特点是:先提出某个未知量,经过一系列的已知的变化,最后给出另一已知数量,而求出原来的未知数量。

解答这类问题的要点在于“还原”。

从最后一个已知数出发,逐步逆推回去。

原来加的,运算时用减;原来减的,运算时用加;原来乘的,运算时用除;原来除的,运算时用乘。

列综合算式计算时要注意运算顺序,并且要正确使用括号。

1. 一个数加上3,乘3,再减去3,最后
除以3,结果还是3,这个数是几?
2. 一个数减24加上15,再乘8得432,
求这个数
3. 一个数的4倍加上6减去10,再乘2得88,求这个数。

4. 一个数缩小2倍,再缩小2倍得80,求这个数。

5. 一段布,第一次剪去一半,第二次又剪去余下的一半,还剩8米。

这段布原来长多少米?
6. 某水果店卖西瓜,第一次卖掉总数的一半,第二次卖掉剩下的一半,这时还剩10只西瓜。

原有西瓜多少个?
7. 某人乘船从甲地到乙地,行了全程的一半时开始睡觉,当他睡醒时发现船又行了睡前剩下的一半,这时离乙地还有40千米。

甲、乙两地相距多少千米?
8. 甲、乙、丙三人各有一些连环画,甲给乙3本,乙给丙5本后,三人的本数同样多。

乙原来比丙多多少本?
9. 小松、小明、小航各有玻璃球若干个,如果小松给小明10个,小明给小航6个后,三人的个数同样多。

小明原来比小松多几个?
10. 李奶奶卖鸡蛋,她上午卖出总数的一半多10个,下午又卖出剩下的一半多10
个,最后还剩65个鸡蛋没有卖出。

李奶奶原来有多少个鸡蛋?
11. 王叔叔拿工资若干元,从工资中拿出一半多10元存入银行,又拿出余下的一半多5元买米、米,剩下80元买菜。

王叔叔拿工资多少元?
12. 竹篮内有若干个李子,取它的一半又1枚给第一人,再取余下的一半又2枚给第二人,还剩6枚。

竹篮内原有李子多少枚?
13. 小红、小青、小宁都喜爱画片,如果小红给小青11张画片,小青给小宁20张画片,小宁给小红5张画片,那么他们三人的画片张数同样多。

已知他们共有画片150张,他们三人原来各有画片多少张?
14. 三筐苹果共放90千克,如果从甲筐取出15千克放入乙筐,从乙筐取出20千克放入丙筐,从丙筐取出17千克放入甲筐,这时三筐苹果就同样重。

甲、乙、丙筐原来各有苹果多少千克?
15. 三年级三个班共有学生156人,若从一班调5人到二班,从二班调8人到三班,从三班调4人到一班,这时每个班的
人数正好相同。

三个班原来各有学生多少人?
参考答案:
1. (3×3+3)÷3-3=1.
2. 我们可以从最后的结果432出发倒着推想。

最后是乘8得432,如果不乘8,那应该是432÷8=54;如果不加上15,应该是54-15=39;如果不减去24,那应该是39+24=63。

因此,这个数是63。

3. (88÷2+10—6)÷4=12
4. 80×2×2=360
5.8×2×2=32(米)
6. 10×2×2=40(个)
7. 40×2×2=160(千米)
8. 因为乙给丙5本后,两人同样多,可知乙比丙多5×2=10本,而这10本中又有3本是甲给的,所以原来乙比丙多10-3=7本。

9. 因为小明给小航6个后,两人同样多,可知小明比小航多6×2=12本,而这12本中又有10本是小松给的,所以原来小明比小松多12-10=2本。

10. 【(65+10)×2+10】×2=320(个)
答:李奶奶一共有320个鸡蛋。

11. 【(80+5)×2+10】×2=360(元)
答:王叔叔拿工资360元。

12. 【(6+2)×2+1】×2=34(枚)
答:竹篮内有34个李子,
13. 三人画片进行交换,其总张数是不会改变的。

交换以后三人张数相等,那每人应有:150÷3=50张。

小红:50+11=61张;小青:50-11+20=59张;小宁:50-20+5=35张。

14. 三筐苹果共放90千克,90÷3=30(千克),甲:30—17+15=28(千克);乙:30+20—15=35(千克);丙:30+17—20=27(千克)
15. 三年级三个班共有学生156人,156÷3=52(人),一班:52+5-4=53(人);二班:52+8—5=55(人);三班:52+4—8=48(人)。

相关文档
最新文档