三年级应用题还原问题教师版

合集下载

三年级下册思维拓展《还原问题》全国通用

三年级下册思维拓展《还原问题》全国通用

原题用“-”,还原用“+”;
这个商场原来有洗衣机多少台?
A、 127
B、128
A、 127
B、128
原题用“÷”,还原用“×”。
原来加的,倒推时用减,原来是乘的,倒推时用除法。
这个商场原来有洗衣机多少台?
原题用“÷”,还原用“×”。
1、小梅吃樱桃,第一次吃了一盘的一半,第二次吃了剩下的一半少5个,这时盘中剩下17个樱桃。
原题用“-”,还原用“+”; 原题用“×”,还原用“÷”; 原题用“÷”,还原用“×”。
例1 一个数加上6,乘以6,减去6,除以6,最 后结果还是6,请问这个数是多少?
我们从问题入手, 往前一步一步倒推
{(□+6)×6-6}÷6=6
1
+6 7
×6
-6 42
36
-6
÷6
+6 ×6 ÷66Biblioteka □+38-52=48 C、29
2、李奶奶卖鸡蛋,第一次卖了全部的一半,第二次卖了剩下的一半还多7个,这时篮子中剩下25个鸡蛋。
(□+50)÷20×4=80
+50
÷20
×4
350
400
20
80
-50
×20
÷4
还原问题 还原问题是指知道最终的结果,求最初的数量或状态的问题。 1. 解题思路:解决还原问题要进行逆向思考,也就是倒推,从结 果出发,逐步倒推回去,直到回到最初状态。原来加的,倒推时 用减,原来是乘的,倒推时用除法。 2. 解题方法:为方便解题,我们还可以应用几种方法:列表法、 线段图法和图示法来帮助我们理解。 3. 解题技巧:原题用“+”,还原用“-”;
原题用“÷”,还原用“×”。

【第04讲】三年级应用题还原问题教师版

【第04讲】三年级应用题还原问题教师版

知识要点从前,有一位樵夫,整天幻想着遇见神仙,求得一种不花气力就能发财的窍门.一天,有一位老人突然来到樵夫面前,对他说:“你不是想见到神仙吗?”樵夫苦苦哀求:“我在山里砍了三天柴,累的要死要活,才卖的这么几个钱.您老人家神通广大,恳求您指点,使我可以不费力气就能得到钱吧!”老人指着东边的一座石头桥说:“好吧!从现在开始,你只要从那座桥上每走一个来回,口袋里的钱都会增长一倍,但是每次回来都要付给我24个钱作为报酬.”樵夫高兴的在桥上走了一个来回,他数一数口袋里的钱,果然增长了一倍.他拿出24个钱交给神仙,然后又向桥上走去,等到他第三次回来,把24个钱交给神仙后,摸一摸口袋,里面竟然一个钱都没有了.正当他焦急不安的时候,神仙按原数把钱留下飘然而去,并留下一句话:“年轻人,不劳而获可不行啊!”故事读完了,小朋友们,你能不能算出,樵夫原来有多少钱呢?一、还原问题已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题.还原问题又叫做逆推运算问题.解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算.在计算过程中采用相反的运算,逐步逆推.二、解还原问题的方法在解题过程中注意两个相反:一是运算次序与原来相反;二是运算方法与原来相反. 方法:倒推法。

口诀:加减互逆,乘除互逆,要求原数,逆推新数.关键:从最后结果出发,逐步向前一步一步推理,每一步运算都是原来运算的逆运算,即变加为减,变减为加,变乘为除,变除为乘.列式时还要注意运算顺序,正确使用括号还原问题【分析】樵夫每次在桥上走一个来回,口袋里面的钱会增长1倍,樵夫第三次回来,交付24个钱给神仙后,他的口袋里就一无所有了.问樵夫原来有多少钱?我们可以倒着想,最后樵夫从桥上回来后,口袋里面只有24个钱,第二次交给神仙后有24212÷=个钱,从桥上回来后有:122436+=个钱,也就是第一次交给神仙后还剩:36218÷=个钱,第一次从桥上回来后有:182442+=个钱,所以樵夫一开始有:42221÷=个钱.方框箭头法【例 1】 小淘气进入一座高楼的电梯,他乘电梯上升3层,下降5层又上升7层,下降9层,这时他位于第23层,他是在第几层进入电梯的?【分析】 23975327+-+-=层【例 2】 学学做了这样一道题:一个数加上3,减去5,乘4,除以6得16,求这个数.小朋友,你知道答案吗?【分析】 根据题意,一个数,经过加法、减法、乘法、除法的变化,得到结果16,应用逆推法,由结果10,根据加、减法与乘、除法的互逆运算,倒着往前计算.16×6=96,96÷4=24,24+5=29,29-3=26 综合算式为:16×6÷4+5-3=96÷4+5-3=24+5-3=29-3=26 所以这个数为26.【例 3】 一个数减16加上24,再除以7得36,求这个数.你知道这个数是几吗? 【分析】 36×7-24+16=244.【例 4】 某数先加上3,再乘以3,然后除以2,最后减去2,结果是10,问:原数是多少? 【考点】计算中的还原问题 【难度】1星 【题型】解答 【关键词】可逆思想方法 【分析】综合算式()1022335+⨯÷-=,原数是5.【例 5】 (2008年“陈省身杯”国际青少年数学邀请赛)有一个数,如果用它加上6,然后乘以6,再减去6,最后除以6,所得的商还是6,那么这个数是 。

15三年级奥数班第十五讲——“还原”解题

15三年级奥数班第十五讲——“还原”解题

15三年级奥数班第十五讲——“还原”解题预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制远辉教育春季奥数班数学学案主讲人:杨老师学生:三年级电话:第十五讲——“还原”解题专题简析:“一个数加上3,乘3,再减去3,最后除以3,结果还是3,这个数是几?”像这样已知一个数的变化过程和最后的结果,求原来的数,我们通常把它叫做“还原问题”。

解答还原问题,一般采用倒推法,简单说,就是倒过来想。

解答还原问题,我们可以根据题意,从结果出发,按它变化的相反方向一步步倒着推想,直到问题解决。

同时,可利用线段图表格帮助理解题意。

例题简析:【例题1】小芳问爷爷现在多大年纪。

爷爷说:“把我的年龄加上25再除以4,减去15后乘10,正好是100岁。

”问爷爷现在多少岁?举一反三:1. 小明问爷爷今年多大年纪。

爷爷说:“把我的年纪加上18,除以4,再减去20,然后用3乘,恰好是27岁。

”问爷爷现在多少岁?2. 牧童正在草地上放羊,一位旅行者问牧童:“你这群羊有多少只?”牧童回答:“把我的羊的只数除以6,乘以3,加上2,再乘2,正好等于100.请你算算我有多少只羊?”3. 四年级的小红与小英正在玩扑克牌游戏。

小红手中的牌“J”代表11、“Q”代表12、“K”代表13,小红叫小英任意抽一张牌,把代表这张牌的数字先减去6,再加上9,然后除以3,最后乘2,小英依次算好后告诉小红最后的得数是10,请问小英抽到的是哪张牌?【例题2】甲、乙、丙三人各有一些连环画,甲给乙3本,乙给丙5本后,三人的本数同样多。

乙原来比丙多多少本?举一反三:1. 小松、小明、小航各有玻璃球若干个,如果小松给小明10个,小明给小航6个后,三人的个数同样多。

2. 2,甲、乙、丙三个组各有一些图书,如果甲组借给乙组13本后,乙组又送给丙组6本,这时三个组的图书本数同样多。

原来乙组和丙组哪组的图书多,多几本?3. 3,甲、乙、丙三个小朋友各有年历卡若干张,如果甲给乙13张,乙给丙23张,丙给甲3张,那么他们每人各有30张。

小学数学还原问题,18道例题方法解析,可以收藏的好资料

小学数学还原问题,18道例题方法解析,可以收藏的好资料

小学数学还原问题,18道例题方法解析,可以收藏的好资料已知一个数,经过某些运算之后,得到一个新数,求原来的数是多少的应用题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题。

还原问题又叫做逆推运算问题,解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算,在计算过程中采用相反的运算,逐步逆推。

在解题过程中注意两个相反:一是运算次序与原来相反;二是运算方法与原来相反。

例题1. 一个数,加上2,再除以4,最后乘8,结果为16.这个数是()A. 2B. 3C. 4D. 62. 红红在计算□﹣40÷4时,先算减法,后算除法,结果得到20,正确的结果是()A. 80B. 110C. 1203. 解放军某部阻击敌人,因情况发生变化,需要从一营抽调一半的人去支援二营,抽调54人去支援三营,抽调剩下的一半去支援四营.后来团部将4名通讯员调进了一营,这时一营有38人,一营原来有()人.A. 244B. 260C. 280D. 4404. 一个数加上7,乘以3,减去15,得到最大的三位数.则这个数是()A. 133B. 213C. 331D. 3125. 甲在加工一批零件,第一天加工了这堆零件的一半又10个,第二天又加工了剩下的一半又10个,还剩下25个没有加工.问:这批零件有多少个?()A. 160B. 130C. 97D. 2006. 甲、乙、丙三个组共有图书90本,如果乙组向甲组借3本后,又送给丙组5本,那么三个组所有图书的本数刚好相等,乙组原有图书()本.A. 28B. 30C. 327. 有砖30块,兄弟二人争着去挑.弟弟抢在前面,刚摆好砖,哥哥赶到了.哥哥看弟弟挑的太多,就抢过一半.弟弟不肯,又从哥哥那儿抢走一半.哥哥不服,弟弟只好给哥哥6块,这时哥哥比弟弟多挑2块.则最初弟弟准备挑________ 块砖.8. 陈小明买一支钢笔用去所带钱的一半,买一本笔记本又用去2元,这时还剩18元,陈小明原来带了________ 元.9. 小马在计算600﹣□÷5时不小心先算了减法再算除法,算出的结果是60,实际的正确结果应该是________ .10. 篮子里有一些梨,笑笑取走总数的一半多一个,小明取走了笑笑取走后剩下的一半多一个,这时篮子里还剩3个梨,一共有多少个梨?11. 一辆公共汽车从起点站开出时车上有一些乘客.到了第二站,先下车5人,又上车8人,这时车上共有乘客26人.这辆车从起点站开出时车上有多少人?12. 一盒糖果,第一次取出全部的一半多2个,第二次取出剩下的一半,最后盒子中还剩下10个,这盒糖果原来有多少颗?13. 小芳到商场买了一个福娃流线型书包用去所带钱的一半,买一个福娃文具盒用去36元,这时还剩92元.小芳原来带了多少钱?14. 王老太上集市上卖鸡蛋,第一个人买走了篮子里鸡蛋的一半又一个,第二个人买走了剩下鸡蛋的一半又一个,这时篮子里还剩10个鸡蛋,请问王老太篮子里一共有多少个鸡蛋?15. 一桶油,每次倒掉油的一半,倒了三次后连桶重8千克,已知桶重3千克,原来桶里有油多少千克?16. 有一个数,乘8除以2,再乘5得400,这个数是多少?17. 一个数加上6,再乘以6,然后减去6,再除以6,最后结果为71,求这个数.18.一个数加上8,乘8,减去8,除以8,结果还是8.你知道这个数是多少吗?答案解析1.【答案】 D【解析】【解答】解:16÷8×4﹣2=2×4﹣2=8﹣2=6 答:这个数是6.故选:D.【分析】因为结果是16,往回推算:除以8,是2,再乘4,是8,最后减去2,即可得出原数.2.【答案】B【解析】【解答】解:□﹣40÷4时,先算减法,后算除法,是(□﹣40)÷4=20;那么□﹣40=4×20=80□=40 80=120正确的结果就是:120﹣40÷4=120﹣10=110答:正确的结果是110.故选:B.【分析】□﹣40÷4时,先算减法,后算除法,算式应是(□﹣40)÷4=20,根据乘除法的互逆关系,用4乘上20即可求出□﹣40的值,再根据加减法的互逆关系,求出□的值,再代入□﹣40÷4中,按照先算除法,再算减法的顺序求出正确的结果.3.【答案】A【解析】【解答】解:[(38﹣4)×2 54]×2=(34×254)×2=(68 54)×2=122×2=244(人)答:一营原来有244人.故选:A.【分析】由“后来团部将4名通讯员调进了一营,这时一营有38人”可知在没调进4名通讯员之前是38﹣4=34(人),由“抽调54人去支援三营,抽调剩下的一半去支援四营”以及此时剩下34人,可知在没抽调54人之前是34×2 54=122(人),最后由“需要从一营抽调一半的人去支援二营”,此时剩下122人,可知一营原来有122×2=244(人).4.【答案】C【解析】【解答】解:(999 15)÷3﹣7=1014÷3﹣7=338﹣7=331.答:这个数是331.故选:C.【分析】此题从后向前推算,最大的三位数是999,减去15是999,在没减15之前是999 15=1014;乘以3是1014,在没乘3之前是1014÷3=338;加上7是338,在没加7之前是338﹣7=331.据此解答.5.【答案】A【解析】【解答】解:[(25 10)×2 10]×2,=(35×2 10)×2,=(70 10)×2,=80×2,=160(个);答:这批零件有160个.故选:A.【分析】第二天又加工了剩下的一半又10个,还剩下25个没有加工,也就是25 10=35(个),正好是第一天加工后剩下的一半,那么第一天加工后剩下35×2=70(个);第一天加工了这堆零件的一半又10个,剩下70个,那么70 10=80(个)是这堆零件的一半,那么这堆零件共有80×2=160(个).6.【答案】C【解析】【解答】解:后来各有:90÷3=30(本),乙组原有:30﹣3 5=32(本)答:乙组原有32本.故选:C.【分析】因为三个组现在的图书本数正好相等,所以每个组是90÷3=30本,因为乙组向甲组借来3本后,又送给丙组5本,所以甲组原有30 3=33本,那么乙组就是30﹣3 5=32本,丙的就是30﹣5=25本,据此即可解答问题.7.【答案】20【解析】【解答】解:哥哥最后挑的块数:(30 2)÷2=16(块),弟弟:30﹣16=14(块);哥哥还给弟弟6块,哥哥:16﹣6=10(块),弟弟:14 6=20(块);弟弟把抢走的一半还给哥哥,哥哥:10 10=20(块),弟弟:20﹣10=10(块);哥哥把抢走的一半还给弟弟,弟弟原来是:10 10=20(块).答:最初弟弟准备挑20块砖.故答案为:20.【分析】先看最后兄弟俩各挑几块,哥哥比弟弟多挑2块,这是一个和差问题,哥哥挑的块数:(30 2)÷2=16(块),弟弟:30﹣16=14(块);然后再还原,哥哥还给弟弟6块,哥哥:16﹣6=10(块),弟弟:14 6=20(块);弟弟把抢走的一半还给哥哥,哥哥:10 10=20(块),弟弟:20﹣10=10(块);哥哥把抢走的一半还给弟弟,弟弟原来是10 10=20(块).据此解答.8.【答案】40【解析】【解答】解:(18 2)×2=20×2=40(元);答:陈小明原来带了40元.故答案为:40.【分析】陈小明用自己所带钱的一半买一支钢笔,则剩下的一半即是一本笔记本2元加上最后剩下的18元,所以陈小明原来带的钱数为(18 2)×2=40元.9.【答案】540【解析】【解答】解:□里面的数值应是:600﹣60×5=600﹣300=300正确的结果是:600﹣300÷5=600﹣60=540答:实际的正确结果应该是 540.故答案为:540.【分析】600﹣□÷5先算减法,再算除法,就变成(600﹣□)÷5,先用60乘上5求出600﹣□的结果,再用用600减去求出的积,求出□的值,再按照先算除法,再算减法的计算方法求解.10.【答案】解:小明取时有:(3 1)×2=4×2=8(个)一共有:(8 1)×2=9×2=18(个)答:一共有18个梨.【解析】【分析】从后向前推,小明取走了笑笑取走后剩下的一半多一个,这时篮子里还剩3个梨,那就是说小明在取之前篮子里有8个梨.笑笑取走总数的一半多一个,那就是说8 1=9,就是笑笑取时一半的数量了,所以总共有9×2=18个梨,据此解答.11.【答案】解:26﹣8 5=18 5=23(人)答:这辆车从起点站开出时车上有23人.【解析】【分析】用最后的车上的人数减去又上车的人数,是下车之后的人数,再加先下车的人数,就是这辆车从起点开出时车上的人数.据此解答.12.【答案】解:(10×2 2)×2=(20 2)×2=22×2=44(个)答:这盒糖果原来有44个.【解析】【分析】从最后剩下的10个糖果入手,向前推,再第二次取之前盒中的糖果应是10×2=20个,第一次出全部的一半多2个,则全部的一半就是20 2=22个,据此解答.13.【答案】解:(92 36)×2=128×2=256(元)答:小芳原来带了256元.【解析】【分析】根据小红买一个福娃流线型书包用去所带钱的一半,买一个福娃文具盒又用去36元,这时还剩下92元,所以92 36=128元,128元是所带钱的一半,求原来带了多少钱,用128×2=256元即可.14.【答案】解:第一个人买完后鸡蛋有:(10 1)×2=11×2=22(个)篮子里原来有鸡蛋:(22 1)×2=23×2=46(个)答:王老太篮子里一共有46个鸡蛋.【解析】【分析】运用逆推的方法,用(10 1)可求得第一个人买完后剩下鸡蛋的一半,再乘2就是第一个人买完后剩下鸡蛋的个数,用它加上1就是篮子里鸡蛋的一半,再乘2就是篮子里原来一共有鸡蛋的个数;据此解答.15.【答案】解:(8﹣3)×2×2×2,=5×2×2×2,=40(千克),答:原来桶里有油40千克.【解析】【分析】由题意,倒了三次后连桶重8千克,已知桶重3千克,则油重(8﹣3)千克,每次倒掉油的一半,则第三次没倒前油重(8﹣3)×2,同理第二次没倒前油重(8﹣3)×2×2,第一次没倒前油重(8﹣3)×2×2×2;由此解答即可.16.【答案】解:400÷5=8080×2=160160÷8=20答:这个数是20。

小学奥数-还原问题(教师版)

小学奥数-还原问题(教师版)

还原问题还原问题是逆解应用题,还原问题先提出一个未知量,经过一系列的运算,最后给出另一个已知量,要求求出原来的未知数量。

解题时,从最后一个已知量出发,逐步进行逆推性运算,即原来是加的,运算时就减;原来是减的,运算时就加;原来是乘的,运算时就除;原来是除的,运算时就乘。

列综合算式时,要特别注意运算顺序,为此要正确使用括号。

如小莉要把一个包装精美的盒子打开。

她先拆开最外层的彩纸;接着打开纸盒,纸盒里有一个绒布盒;再打开绒布盒一看,里面是两支“派克”金笔。

妈妈说,这礼物是送给大学老师的,要小莉把它重新包装起来。

小莉是按这样的顺序做的:先把两支笔放入绒布盒→盖上绒布盒,并把它放进纸盒→盖上纸盒,并用彩纸封好。

小莉重新包装的步骤(顺序)恰好与她打开这盒礼物的顺序相反。

这是生活中常会遇到的“还原问题”。

在数学中,还原问题也很多。

【例1】★小刚的奶奶今年年龄减去7后,缩小9倍,再加上2之后,扩大10倍,恰好是100岁。

小刚的奶奶今年多少岁?【解析】从最后一个条件恰好是100岁向前推算,扩大10倍后是100岁,没有扩大10倍之前应是100÷10=10岁;加上2之后是10岁,没有加2之前应是10-2=8岁;没有缩小9倍之前应是8×9=72岁;减去7之后是72岁,没有减去7前应是72+7=79岁。

所以,小刚的奶奶今年是79岁。

【小试牛刀】某商场出售洗衣机,上午售出总数的一半多10台,下午售出剩下的一半多20台,还剩95台。

这个商场原来有洗衣机多少台?【解析】从“下午售出剩下的一半还多20台”和“还剩95台”向前倒推,从图中可以看出,剩下的95台和下午多卖的20台合起来,即95+20=115台正好是上午售后剩下的一半,那么115×2=230台就是上午售出后剩下的台数。

而230台和10台合起来,即230+10=240台又正好是总数的一半。

那么,240×2=480台就是原有洗衣机的台数。

小学奥数还原问题应用题及答案【三篇】

小学奥数还原问题应用题及答案【三篇】

小学奥数还原问题应用题及答案【三篇】【篇一】【篇二】【篇三】【练习题一】1、三个容器内都有水,如果甲容器的1/3水倒入乙容器,再把乙容器的1/4倒入丙容器,最后再把丙容器的1/10倒入甲容器,那么各容器的水都是9升,每个容器里原来有水多少升?2、去年年终甲、乙、丙三人领取了数额不同的奖金,如果甲把自己的一部分奖金分给乙、丙两人,使乙、丙的奖金数额增加一倍;然后乙又拿出奖金的一部分分给甲、丙二人,使甲、丙的奖金额增加一倍;最后丙也拿出一部分奖金分给甲、乙二人,使甲、乙二人的奖金数额增加一倍,这样三人的奖金都是96元,则原来甲的奖金应是多少元?3、某男孩付一角钱进入一家商店,他在商店里花了剩余的钱的一半,走出商店时,又付了一角钱,之后,他又付一角钱进入第二家商店,在这里他花了剩余的钱的一半,走出商店时又付了一角钱。

接着他又用同样的方式进出第三家和第四家商店,当他离开第四家商店后,这时他身上只剩下一角钱,问:他进入第一家商店之前身上有多少钱?4、甲、乙、丙三堆零件,第一次从甲堆中拿出零件放到乙、丙中去,使乙、丙分别增加1/3,第二次从乙堆中拿到甲、丙中去,使甲、丙分别增加1/3。

第三次再从丙堆中拿到甲、乙中去,也使甲、乙分别增加1/3,这样三堆零件都是320个。

甲堆原有零件多少个?5、兄弟俩各有若干元钱,在哥哥拿出1/5给弟弟后,弟弟拿出1/4给哥哥,这时两人各有180元。

原来哥哥有多少元?弟弟有多少元?【练习题二】1、妈妈买来一批桔子,小明第一天吃了这些桔子的一半多一个,第二天吃了剩下的一半多1个,第三天又吃了剩下的一半多1个,第四天小明吃掉剩下的最后一个桔子。

妈妈买的桔子共多少个?2、山顶有棵桔子树,一只猴子偷吃桔子。

第一天偷吃了1/10,以后八天分别偷吃了当天剩下桔子的1/9、1/8、1/7、……、1/3、1/2,偷吃了九天,树上还留下10只桔子,问树上原有多少只桔子?3、一堆西瓜,第一次卖出总个数的1/4又4个,第二次卖出余下的1/2又2个,第三次卖出余下的1/2又2个,还剩下2个,这堆西瓜共有多少个?4、一瓶酒精,第一次倒出1/3,然后倒回瓶中40克;第二次倒出瓶中剩下酒精的5/9,第三次倒出180克,瓶中还剩下60克,原来瓶中有酒精多少克?5、甲、乙两人各有钱若干元,甲拿出1/6给乙后,乙又拿出1/5给甲,这时他们各有240元,两人原来各有多少元?。

三年级还原问题的例题

三年级还原问题的例题

三年级还原问题的例题示例文章篇一:《数学世界里的“还原大冒险”》嘿,同学们!你们知道吗?在数学的世界里,有一种超级有趣的问题,叫做还原问题。

今天我就来给大家讲讲三年级会遇到的那些还原问题的例题,保证让你们大开眼界!先来说说第一道例题。

小明有一些糖果,他给了小红 5 颗后,自己还剩下8 颗。

那小明原来有几颗糖果呀?这是不是有点像一个小谜团等我们解开呢?我们可以这样想呀,如果小明没给小红5 颗,那他现在的8 颗加上给出去的5 颗,不就是他原来有的糖果数吗?这不就像是你有一堆玩具,送给了小伙伴几个,想要知道原来有多少,就得把送出去的再拿回来一样嘛!原来小明有13 颗糖果,是不是很简单?再看这一道。

妈妈买了一些苹果,吃了一半还多2 个,还剩下5 个。

妈妈一开始买了多少个苹果呢?这就像一个神秘的宝藏,等着我们去挖掘!咱们可以反过来想想,剩下的5 个加上多吃的2 个,不就是妈妈买的苹果的一半吗?那再乘以2 ,不就知道原来买了多少个啦?原来妈妈买了14 个苹果呢!还有这道题。

书架上有一些书,第一层拿走10 本放到第二层,第二层就比第一层多4 本。

原来第一层比第二层多几本?哎呀,这可有点难搞哦!但是别怕,咱们来好好琢磨琢磨。

第一层拿走10 本给第二层,这时候第二层比第一层多4 本,那如果把这10 本拿回来,第一层不就又比第二层多了吗?原来第一层比第二层多16 本哟!这就好像两个人分蛋糕,一个人给了另一个人一些,情况就变啦!怎么样,同学们,这些还原问题是不是很有意思呀?它们就像一个个小小的谜题,等着我们用聪明的小脑袋去解开。

通过这些例题,我们发现,解决还原问题就像是在走迷宫,只要我们找对方向,一步一步地倒回去想,就能找到出口,找到答案!我觉得呀,数学的世界真是太奇妙啦!虽然有时候会遇到难题,但是只要我们不放弃,多思考,就一定能战胜它们,你们说对不对?示例文章篇二:《神奇的数学还原问题》嘿,同学们!你们知道吗?数学世界里有好多好玩的问题,今天我就想和大家说一说三年级会碰到的还原问题。

三年级应用题还原问题

三年级应用题还原问题

还原问题知识结构一、还原问题已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题.还原问题又叫做逆推运算问题.解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算.在计算过程中采用相反的运算,逐步逆推.二、解还原问题的方法在解题过程中注意两个相反:一是运算次序与原来相反;二是运算方法与原来相反.方法:倒推法。

口诀:加减互逆,乘除互逆,要求原数,逆推新数.关键:从最后结果出发,逐步向前一步一步推理,每一步运算都是原来运算的逆运算,即变加为减,变减为加,变乘为除,变除为乘.列式时还要注意运算顺序,正确使用括号.重难点(1)还原法的知识点(2)画图在解题过程中的应用例题精讲【例1 】从前,有一位樵夫,整天幻想着遇见神仙,求得一种不花气力就能发财的窍门.一天,有一位老人突然来到樵夫面前,对他说:“你不是想见到神仙吗?”樵夫苦苦哀求:“我在山里砍了三天柴,累的要死要活,才卖的这么几个钱.您老人家神通广大,恳求您指点,使我可以不费力气就能得到钱吧!”老人指着东边的一座石头桥说:“好吧!从现在开始,你只要从那座桥上每走一个来回,口袋里的钱都会增长一倍,但是每次回来都要付给我24 个钱作为报酬.”樵夫高兴的在桥上走了一个来回,他数一数口袋里的钱,果然增长了一倍.他拿出24 个钱交给神仙,然后又向桥上走去,等到他第三次回来,把24 个钱交给神仙后,摸一摸口袋,里面竟然一个钱都没有了.正当他焦急不安的时候,神仙按原数把钱留下飘然而去,并留下一句话:“年轻人,不劳而获可不行啊!”故事读完了,小朋友们,你能不能算出,樵夫原来有多少钱呢?【考点】单个变量的还原问题【难度】3 星【题型】解答【关键词】可逆思想方法【解析】这个故事里包含的算题是:樵夫每次在桥上走一个来回,口袋里面的钱会增长1 倍,樵夫第三次Page 1 of 16回来,交付24 个钱给神仙后,他的口袋里就一无所有了.问樵夫原来有多少钱?我们可以倒着想,最后樵夫从桥上回来后,口袋里面只有24 个钱,第二次交给神仙后有24 2 12 (个)钱,从桥上回来后有:12 24 36 (个)钱,也就是第一次交给神仙后还剩:36 2 18 (个)钱,第一次从桥上回来后有:18 24 42 (个)钱,所以樵夫一开始有:42 2 21(个)钱.答案】21个巩固】有一个财迷总想使自己的钱成倍增长,一天他在一座桥上碰见一个老人,老人对他说:“你只要走过这座桥再回来,你身上的钱就会增加一倍,但作为报酬,你每走一个来回要给我32 个铜板.” 财迷算了算挺合算,就同意了.他走过桥去又走回来,身上的钱果然增加了一倍,他很高兴地给了老人32 个铜板.这样走完第五个来回,身上的最后32 个铜板都给了老人,一个铜板也没剩下.问:财迷身上原有多少个铜板?考点】单个变量的还原问题【难度】3 星【题型】解答关键词】可逆思想方法解析】第五次回来时有32 个铜板,表明第五次走时有16 个铜板(因为走到桥对面钱数要增加一倍),又表明第四次回来时有48 个铜板(因为要给老人32 个铜板)⋯⋯依次类推即可.推算过程可列表如下:所以原来有31 个铜板.答案】31 个例2】货场原有煤若干吨。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

还原问题一、还原问题已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题.还原问题又叫做逆推运算问题.解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算.在计算过程中采用相反的运算,逐步逆推.二、解还原问题的方法在解题过程中注意两个相反:一是运算次序与原来相反;二是运算方法与原来相反.方法:倒推法。

口诀:加减互逆,乘除互逆,要求原数,逆推新数.关键:从最后结果出发,逐步向前一步一步推理,每一步运算都是原来运算的逆运算,即变加为减,变减为加,变乘为除,变除为乘.列式时还要注意运算顺序,正确使用括号方框箭头法【例 1】小淘气进入一座高楼的电梯,他乘电梯上升3层,下降5层又上升7层,下降9层,这时他位于第23层,他是在第几层进入电梯的?+-+-=层【分析】23975327【例 2】学学做了这样一道题:一个数加上3,减去5,乘4,除以6得16,求这个数.小朋友,你知道答案吗?【分析】根据题意,一个数,经过加法、减法、乘法、除法的变化,得到结果16,应用逆推法,由结果10,根据加、减法与乘、除法的互逆运算,倒着往前计算.16×6=96,96÷4=24,24+5=29,29-3=26综合算式为:16×6÷4+5-3=96÷4+5-3=24+5-3=29-3=26所以这个数为26.【例 3】 一个数减16加上24,再除以7得36,求这个数.你知道这个数是几吗?【分析】36×7-24+16=244.【例 4】 某数先加上3,再乘以3,然后除以2,最后减去2,结果是10,问:原数是多少?【分析】综合算式()1022335+⨯÷-=,原数是5.【例 5】 有一个数,如果用它加上6,然后乘以6,再减去6,最后除以6,所得的商还是6,那么这个数是 。

【分析】将最终结果进行逆推,得: 666661()⨯+÷-=【例 6】 一个数减16加上24,再除以7得36,求这个数.你知道这个数是几吗?【分析】3672416244⨯-+=.【例 7】 学学和思思在游玩时,遇到一位小神仙,他们问这位神仙:“你一定不到100岁吧!”谁知这位神仙摇摇头说:“你们算算吧!把我的年龄加上75,再除以5,然后减去15,再乘以10,恰好是2000岁.”小朋友,你知道这位神仙现在有多少岁吗?【分析】 根据题意,一个数,经过加法、除法、减法、乘法的变化,得到结果2000,应用逆推法,由结果2000,根据加、减法与乘、除法的互逆运算,倒着往前计算.=200010-15÷5+75200010200÷=,20015215+=,21551075⨯=,1075751000-=。

综合算式为:(20001015)5751000÷+⨯-=这位神仙现在的年龄是1000岁。

【例 8】 科学课上,老师说:“土星直径比地球直径的9倍多4800千米,土星直径除以24等于水星直径,水星直径加上2000千米是火星直径,火星直径除以2减去500千米等于月亮的直径,月亮直径是3000千米.”请你算一算,地球的直径是多少?【分析】 先求土星直径:〔(3000+500)×2-2000〕×24=120000(千米)再求地球直径:(120000—4800)÷9=12800(千米),即:地球的直径是12800千米.【例 9】 一个数的四分之一减去5,结果等于5,则这个数等于_____。

【分析】 方法一:倒推计算知道,一个数的四分之一是10,所以这个数是104=40⨯。

方法二:令这个数为x ,则1554-=x ,所以40=x 。

【例 10】 假设有一种计算器,它由A 、B 、C 、D 四种装置组成,将一个数输入一种装置后会自动输出另一个数。

各装置的运算程序如下: 装置A :将输入的数加上6之后输出;装置B :将输入的数除以2之后输出;装置C :将输入的数减去5之后输出;装置D :将输入的数乘以3之后输出。

这些装置可以连接,如在装置A 后连接装置B ,就记作:A →B 。

例如:输人1后,经过A →B ,输出3.5。

(1)若经过A →B →C →D ,输出120,则输入的数是多少?(2)若经过B →D →A →C ,输出13,则输入的数是多少?【分析】 方法一:逆向考虑。

(1)输入到D 的数为120÷3=40,输入到C 的数为40+5=45,输入到B 的数为45×2=90,所以输入到A 的数是90-6=84。

(2)输入到C 的数是13+5=18,输入到A 的数是18-6=12,输入到D 的数是12÷3=4,所以输入到B 的数是4×2=8。

方法二:(1)设输入的数是x ,则(653=1202x +⎛⎫-⨯ ⎪⎝⎭解得,x =84。

(2)设输入的数是y ,则365=132y ⨯+-,解得y =8线段图法【例 11】一根电线剪了3次,每次都剪去剩下的一半多1米,最后剩下5米。

这根电线原来有多长? 【分析】还原思想:(51)212+⨯=米 (121)226+⨯=米 (261)254+⨯=米【例 12】小明吃糖,第一次吃了4颗糖,第二次吃了余下糖的一半少1颗,这时还剩下5颗糖没吃.问:原来共有多少颗糖?【分析】根据题意如下图所示:第一次吃后余下(51)28+=(颗).-⨯=(颗),所以共有8412【例 13】一条绳子,第一次剪去全长的一半多1米,第二次剪去余下的一半少1米,这时还剩下3米,问:这条绳子原来长多少米?根据题意如下图所示:所以这条绳子的原长是[(31)21]210-⨯+⨯=(米)【例 14】一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩下6米。

这捆电线原来有多少米?310156【分析】根据题意如下图所示:+-⨯=米还原思想:(61510)222+⨯=米(223)250【例 15】一群蚂蚁搬家,原存一堆食物.第一天运出总数的一半少12克.第二天运出剩下的一半少12克,结果窝里还剩下43克.问蚂蚁家原有食物多少克?【分析】(倒推法)如果第二天再多运出12克,就是剩下的一半,所以第一天运出后,剩下的一半重量是43-12=3l(克);第一天运出后剩下的重31×2=62(克).那么,一半的重量是62-12=50(克),原有食物50×2=100(克).即[(43-12)×2-12]×2=100(克).【例 16】学学看到太上老君正在用一根绳子拴宝葫芦,第一次用去全长的一半还多2米,第二次用去余下的一半少10米,第三次用去15米,最后还剩9米,那么这根绳子原来有多少米呢?【分析】根据题意,画图倒推分析:15+9=24(米)(24-10)×2=28(米)(28+2)×2=60(米)所以,这根绳子全长60米【例 17】一根金丝用于制作工艺品,第一次用去2米,又用去余下的一半;第二次用去2米,又用去余下的一半.最后还剩2米,求金丝原有多少米?【分析】第二次中没用余下的一半时,有金丝224⨯=(米)第二次中没用2米时,有金丝426+=(米)第一次中没用余下一半时,有金丝6212⨯=(米)第一次中没用2米时,即原有金丝12214+=(米)【例 18】一筐苹果,第一次卖出这筐苹果总个数的四分之一又6个(假如苹果有36个,它的四分之一是9个,它的三分之一就是12个),第二次又卖出余下的三分之一又4个,第三次卖出余下的二分之一又3个,最后剩下4个,这筐苹果原来有多少个?【分析】由后往前逆推,第三次有:(43)214+⨯=个,第二次有:(144)2327+÷⨯=个,原来有:+÷⨯=个。

(276)3444【例 19】有一堆棋子,把它四等分后剩下一枚,取走三份又一枚;剩下的再四等分又剩一枚,再取走三份又一枚;剩下的再四等分又剩一枚.问:原来至少有多少枚棋子?【分析】棋子最少的情况是最后一次四等分时每份为1枚.由此逆推,得到第三次分之前有1415⨯+=(枚),第二次分之前有54+121⨯(枚).所以原来至少有85枚棋子.⨯=(枚),第一次分之前有214+1=85【例 20】一群小猴分桃子,第一只猴子拿走其中的一半又半个,第二只小猴又拿走余下的一半又半个,第三只小猴拿走最后剩下的一半又半个,正好全部拿完。

小猴一共分掉了个桃子。

【分析】由后往前逆推,最后一个猴子拿走剩下的一半又半个,恰好分完,所以最后一个猴子拿走的应该是一个桃子,即第二个猴子拿过之后,剩下1个桃子,所以第二个猴子应该拿了2个桃子,即第一个猴子取后应该剩下3个桃子,所以第一个猴子应该拿了4个桃子,所以一共分掉了++=(个)桃子。

1247【例 21】一只猴吃63只桃,第一天吃了一半加半只,以后每天吃前一天剩下的一半再加半只,则_________ 天后桃子被吃完。

【分析】通过画表格的方式,可知答案是6.【例 22】乒乓球从高空落下,到达地面后弹起的高度是落下高度的一半,如果乒乓球从8米的高度落下,那么弹起后再落下,则弹起第_______次时它的弹起高度不足1米。

【分析】弹起第一次时变为4米,弹起第二次时变为2米,弹起第三次时变化为1米,第4次弹起时不足1米,所以弹起第4次时不足1米。

【例 23】 盒子里有若干个球。

小明每次拿出盒中的一半再放回一个球。

这样共操作了7次,袋中还有3个球。

袋中原有( )个球。

【分析】 倒退法:如,第7次操作前,还剩()3124-⨯=个球。

10066341810643第1次第2次第3次第4次第5次第6次第7次【例 24】 有一个培养某种微生物的容器,这个容器的特点是:往里面放入微生物,再把容器封住,每过一个夜晚,容器里的微生物就会增加一倍,但是,若在白天揭开盖子,容器内的微生物就会正好减少16个。

小丽在实验的当天往容器里放入一些微生物,心急的她在第二、三、四天斗开封看了看,到第五天,当她又启封查看时,惊讶地发现微生物都没了。

请问:小丽开始往容器里放了 个微生物?【分析】 还原倒推:0←16←8←24←12←28←14←30←15所以原来容器内放了15个微生物.【例 25】 货场原有煤若干吨。

第一次运出原有煤的一半,第二次运进450吨,第三次又运出现有煤的一半又50吨,结果剩余煤的2倍是1200吨。

货场原有煤多少吨?【分析】 这道题由于原有煤的总吨数是未知的,所以要想顺解是很不容易的,我们先看图4,然后再分析。

结合上面的线段图,用倒推法进行分析:(1)剩余煤的吨数是:12002600÷=(吨)(2)现有煤的一半是:60050650+=(吨)(3)现有煤的吨数是:65021300⨯=(吨)(4)原有煤的一半是:1300450850-=(吨)(5)原有煤的吨数是:85021700⨯=(吨) 答:货场原来有煤1700吨。

相关文档
最新文档