原核生物的基因表达和调控机制

合集下载

原核生物和真核生物基因表达调控复制、转录、翻译特点的比较

原核生物和真核生物基因表达调控复制、转录、翻译特点的比较

原核生物和真核生物基因表达调控、复制、转录、翻译特点的比较1.相同点:转录起始是基因表达调控的关键环节①结构基因均有调控序列;②表达过程都具有复杂性,表现为多环节;③表达的时空性,表现为不同发育阶段和不同组织器官上的表达的复杂性;2.不同点:①原核基因的表达调控主要包括转录和翻译水平。

真核基因的表达调控主要包括染色质活化、转录、转录后加工、翻译、翻译后加工多个层次。

②原核基因表达调控主要为负调控,真核主要为正调控。

③原核转录不需要转录因子,RNA聚合酶直接结合启动子,由sita因子决定基因表的的特异性,真核基因转录起始需要基础特异两类转录因子,依赖DNA-蛋白质、蛋白质-蛋白质相互作用调控转录激活。

④原核基因表达调控主要采用操纵子模型,转录出多顺反子RNA,实现协调调节;真核基因转录产物为单顺反子RNA,功能相关蛋白的协调表达机制更为复杂。

⑤真核生物基因表达调控的环节主要在转录水平,其次是翻译水平。

原核生物基因以操纵子的形式存在。

转录水平调控涉及到启动子、sita因子与RNA聚合酶结合、阻遏蛋白、负调控、正调控蛋白、倒位蛋白、RNA聚合酶抑制物、衰减子等。

翻译水平的调控涉及SD序列、mRNA的稳定性不稳定(5’端和3’端的发夹结构可保护不被酶水解mRNA的5’端与核糖体结合可明显提高稳定性)、翻译产物及小分子RNA的调控作用。

真核生物基因表达的调控环节较多:在DNA水平上可以通过染色体丢失、基因扩增、基因重排、DNA甲基化、染色体结构改变影响基因表达。

在转录水平主要通过反式作用因子调控转录因子与TATA盒的结合、RNA聚合酶与转录因子-DNA复合物的结合及转录起始复合物的形成。

在转录后水平主要通过RNA修饰、剪接及mRNA运输的控制来影响基因表达。

在翻译水平有影响起始翻译的阻遏蛋白、5’AUG、5’端非编码区长度、mRNA的稳定性调节及小分子RNA。

真核基因调控中最重要的环节是基因转录,真核生物基因表达需要转录因子、启动子、沉默子和增强子。

基因表达与调控

基因表达与调控

假设某一基因的表达受一种调控蛋白质(regulator protein)控制,只有在调控蛋白质与该基因的启动子位点结合时,这个基因才能表达。如果这个基因的启动子位点发生突变,调控蛋白不能识别这个位点,也就不能转录形成RNA,基因就不能表达(图8-3)。 如基因的启动子发生突变,使得调控蛋白不能识别启动子结构,该基因就不能表达;只影响基因本身的表达, 而不影响其它等位基因的调控突变。 调控蛋白发生突变,不能与某基因的启动子结合, 还会影响到与该调控蛋白结合有关的所有等位基因位点 表达。
3. 激活子: 激活子(transcription activator):是一种与强化子结合的蛋白质,属于一种转录因子。 正激活子包括: 真激活子:与转录复合体接触激活转录; 抗阻遏物激活子:改变染色质结构(染色质重建) 与转录因子结合来提高转录效率。 负激活子:抑制转录的因子。
一些基因在所有细胞中都呈现活跃状态,为组成型表达,称为看家基因(house keeping gene)。 另一些基因则在不同细胞或组织中呈现高度表达,受到一定的调控,称为特异表达基因。
启动子和转录因子: 启动子(promoter): 转录因子和RNA聚合酶的结合位点,位于基因上游某一固定位置,紧接转录起始点,是基因一个组成部分。 转录因子(transcription factor,TF) :激活真核生物基因转录的一系列蛋白质。
一、原核生物的基因调控:
、转录水平的调控: 负调控:细胞中阻遏物阻止基因转录过程的调控机制。 阻遏物与DNA分子结合阻碍RNA聚合酶转录使基因处于 关闭状态; 正调控:细胞中激活子激活基因转录过程的调控机制。 诱导物通常与蛋白质 结合 形成一种激活子 复合物 与基因启动子 DNA 序列结合 激活基 因起始转录 使基因处 于表达的状态。

第七章原核生物的基因调控

第七章原核生物的基因调控

第七讲原核生物的基因调控科学家把这个从DNA到蛋白质的过程称为基因表达(gene expression),对这个过程的调节就称为基因表达调控(gene regulation或gene control)。

要了解动、植物发展发育的规律、形态布局特征和生物学功能,就必需弄清楚基因表达调控的时间和空间概念,掌握了基因表达调控的奥秘,我们手中就有了一把揭示生物学微妙的金钥匙。

基因表达调控主要暗示在以下几个方面:①转录程度上的调控(transcriptional regulation);②mRNA加工成熟程度上的调控(differential processing of RNAtranscript);③翻译程度上的调控(differential translation of mRNA).原核生物中,营养状况(nutritionalstatus)和环境因素(environmental factor)对基因表达起着举足轻重的影响。

在真核生物尤其是高等真核生物中,激素程度(hormone level)和发育阶段(developmental stage)是基因表达调控的最主要手段,营养和环境因素的影响力大为下降。

二、基因表达调控的底子道理〔一〕基因表达的多级调控基因的布局活化、转录起始、转录后加工及转运、mRNA降解、翻译及翻译后加工及蛋白质降解等均为基因表达调控的控制点。

可见,基因表达调控是在多级程度长进行的复杂事件。

此中转录起始是基因表达的底子控制点。

四个底子的调控点:〔1〕基因布局的活化。

DNA表露碱基后RNA聚合酶才能有效结合。

活化状态的基因暗示为:1.对核酸酶敏感;2.结合有非组蛋白及修饰的组蛋白;3.低甲基化。

〔2〕转录起始。

最有效的调节环节,通过DNA元件与调控蛋白彼此作用来调控基因表达。

〔3〕转录后加工及转运。

RNA编纂、剪接、转运。

〔4〕翻译及翻译后加工。

翻译程度可通过特异的蛋白因子阻断mRNA 翻译翻译后对蛋白的加工、修饰也是底子调控环节。

分子生物学课件 第9章 原核生物基因调控

分子生物学课件 第9章 原核生物基因调控
C蛋白与Ara结合成C-Ara复合物是Ci型诱导蛋白,
结合araI时,araI作为正控制的元件,促进araBAD 基 因的表达 。
34
9.7 翻译水平的调控
9.7.1反义RNA的调控
聂理
35
反义RNA
反义RNA有多种符号 = antisense RNA = -RNA = stRNA(small temporal RNA) = micRNA( mRNA-interfering complementary RNA) 即 干扰和抑制mRNA翻译的互补RNA片段
为诱导物开启lac操纵子结构基因……。
17
9.4.2乳糖操纵子正控制机理
CRP:cyclic AMP receptor protein, =“cAMP受体蛋白”, =“降解物基因活化蛋白(CAP)” ①当环境中有葡糖时: 抑制cAMP 产生,纯CAP是失活态蛋白。 ②当环境中无葡糖时: 有利于 cAMP 产生和cAMP-CAP形成。
22
9.5.2 衰减子
衰减子也叫弱化子
attenuator
聂理
23
9.5.2.1衰减子组成
trp操纵子前导区L,转录出RNA前导序列161nt。
1~26nt翻译的 SD序列区
27~71nt含14个氨基酸 密码的前导肽区
115~159nt衰减子区
具有终止子 结构特征
24
9.5.2.2衰减子调控机制
41
9.7.3 核开关 riboswitch
核开关也叫核糖开关。 是mRNA所形成的调节基因表达的结构。 在mRNA的非翻译区(5’-UTR,3’-UTR), 与小分子效应物可逆结合而改变其结构, 根据构象特征信号来影响mRNA的表达, (如影响转录、翻译等) 从而达到调控基因开关的目的。

第六章 原核生物表达调控

第六章 原核生物表达调控

第一节概述围绕基因表达过程中发生的各种各样的调节方式都通称为基因表达调控(gene regulation或gene control)。

几个基本概念1、顺式作用元件和反式作用因子:基因活性的调控主要通过反式作用因子(通常是蛋白质)与顺式作用元件(通常在DNA 上)相互作用而实现。

顺式作用元件是指对基因表达有调节活性的DNA序列,其活性只影响与其自身同处在一个DNA分子上的基因;同时,这种DNA序列通常不编码蛋白质,多位于基因旁侧或内含子中,如启动子和终止子,都是典型的顺式作用元件。

反式作用因子是能调节与它们接触的基因的表达的各种扩散分子(通常是蛋白质),如RNA聚合酶、转录因子。

2、结构基因和调节基因:结构基因(structural gene)是编码蛋白质或RNA的基因。

细菌的结构基因一般成簇排列,多个结构基因受单一启动子共同控制,使整套基因或都表达或都不表达。

调节基因(regulator gene)是编码合成那些参与其他基因表达调控的RNA或蛋白质的特异DNA 序列。

调节基因编码的调节物质通过与DNA上的特定位点结合控制转录是调控的关键。

比如:它能使结构基因在需要某种酶时就合成某种酶,不需要时,则停止合成,它对不同染色体上的结构基因有调节作用。

调节物与DNA特定位点的相互作用能以正调控的方式(启动或增强基因表达活性)调节靶基因,也能以负调控的方式(关闭或降低基因表达活性)调节靶基因。

DNA位点通常位于受调节基因的上游,但也有例外.3、操纵基因和阻遏蛋白操纵基因(operator)是操纵子中的控制基因,在操纵子上一般与启动子相邻,通常处于开放状态,使RNA聚合酶能够通过并作用于启动子启动转录。

但当它与调节基因所编码的阻遏蛋白结合时,就从开放状态逐渐转变为关闭状态,使转录过程不能发生。

阻遏蛋白(aporepressor)是负调控系统中由调节基因编码的调节蛋白,它本身或与辅阻遏物(corepressor)一起结合于操纵基因,阻遏操纵子结构基因的转录。

基因表达和调控的机制和影响

基因表达和调控的机制和影响

基因表达和调控的机制和影响基因表达是指基因信息从DNA序列转化为蛋白质或RNA分子的过程。

这个过程涉及到许多复杂的分子机制和调控因素。

基因表达的调控对于生物体的正常发育和生理功能至关重要。

本文将详细介绍基因表达和调控的机制及其影响。

1. 基因表达的机制1.1 转录转录是指DNA模板上的信息被复制成RNA分子的过程。

在真核生物中,转录过程包括以下几个步骤:1)启动:RNA聚合酶II与启动子区域结合,形成转录起始复合物。

2)延伸:RNA聚合酶II沿着DNA模板移动,合成RNA链。

3)终止:RNA聚合酶II到达终止子区域,释放RNA链。

1.2 剪接剪接是指在RNA分子中去除内含子,保留外显子的过程。

剪接由剪接酶负责,通过特定的剪接位点识别和切割RNA分子,然后将外显子连接起来形成成熟的mRNA。

1.3 翻译翻译是指mRNA上的信息被翻译成蛋白质的过程。

在真核生物中,翻译过程包括以下几个步骤:1)核糖体与mRNA结合,识别起始密码子。

2)tRNA携带氨基酸,与mRNA上的密码子配对。

3)核糖体沿着mRNA移动,合成多肽链。

4)多肽链经过折叠和修饰,形成具有生物活性的蛋白质。

2. 基因表达的调控基因表达的调控主要发生在转录和剪接阶段。

调控因素包括转录因子、染色质重塑、非编码RNA等。

2.1 转录因子的调控转录因子是一类能够结合到DNA特定序列上,从而调控基因表达的蛋白质。

转录因子的调控作用包括:1)激活:某些转录因子可以增强基因的转录活性。

2)抑制:另一些转录因子可以抑制基因的转录活性。

3)协同作用:多种转录因子可以协同作用,共同调控基因表达。

2.2 染色质重塑染色质重塑是指染色质结构发生改变,从而影响基因表达的过程。

染色质重塑包括:1)核小体重塑:核小体的组装和解聚。

2)染色质纤维重塑:染色质纤维的紧密和松散。

3)染色质 looping:染色质片段之间的相互连接。

2.3 非编码RNA的调控非编码RNA是一类不编码蛋白质的RNA分子,包括miRNA、siRNA、lncRNA 等。

原核生物基因表达调控概述

原核生物基因表达调控概述

原核生物基因表达调控概述基因表达调控是生物体内基因表达调节控制机制,使细胞中基因表达的过程在时间,空间上处于有序状态,并对环境条件的变化做出适当的反应复杂过程。

1.基因表达调控意义在生命活动中并不是所有的基因都同时表达,代谢过程中所需各种酶和蛋白质基因以及构成细胞化学成分的各种编码基因,正常情况下是经常表达的,而与生物发育过程有关的基因则需在特定的时空才表达,还有许多基因被暂时的或永久的关闭而不来表达。

2.原核基因表达调控特点原核生物基因表达调控存在于转录和翻译的起始、延伸和终止的每一步骤中。

这种调控多以操纵子为单位进行,将功能相关的基因组织在一起,同时开启或关闭基因表达即经济又有效,保证其生命活动的需要。

调控主要发生在转录水平,有正、负调控两种机制在转录水平上对基因表达的调控决定于DNA的结构,RNA 聚合酶的功能、蛋白质因子及其他小分子配基的相互作用。

细菌的转录和翻译过程几乎在同一时间内相互偶联。

细胞要控制各种蛋白质在不同时期的表达水平,有两条途径:(1)细胞控制从其DNA模板上转录其特异的mRNA的速度,这是一条经济的途径,可减少从mRNA合成蛋白质的小分子物质消耗,这是生物长期进化过程中自然选择的结果,这种控制称为转录水平调控。

(2)在mRNA合成后,控制从mRNA翻译肽链速度,包括一些与翻译有关的酶及其复合体分子缔合的装配速度等过程。

这种蛋白质合成及其基因表达的控制称为翻译水平的调控。

二.原核生物表达调控的概念(1)细菌细胞对营养的适应细菌必须能够广泛适应变化的环境条件。

这些条件包括营养、水分、溶液浓度、温度,pH等。

而这些条件须通过细胞内的各种生化反应途径,为细胞生长的繁荣提供能量和构建细胞组分所需的小分子化合物。

(2)顺式作用元件和反式作用元件基因活性的调节主要通过反式作用因子与顺式作用元件的相互作用而实现。

反式作用因子的编码基因与其识别或结合的靶核苷酸序列在同一个DNA分子上。

RNA聚合酶是典型的反式作用因子。

分子生物学-13-原核基因表达调控-1-概念分类

分子生物学-13-原核基因表达调控-1-概念分类

突触囊泡 召集
nd run
外吐
内吞
a: kiss and stay b: kiss and run c: clathrin-coated
Kiss and run
• Synaptotagmin-1 interacts with phospholipids in a calcium-dependent manner, as well as with syntaxin-1 and SNAREs, and Südhof established a role for synaptotagmin-1 as a calcium sensor for rapid synaptic fusion
基因转录激活调节“三要素”
1、特异DNA序列 原核生物的操纵子 真核生物的顺式作用元件
2、调节蛋白 是调节基因转录的蛋白因子,如原核生物的阻遏 蛋白和CAP蛋白(降解物基因活化蛋白)、 真核生物的基本转录因子和特异转录因子等即反 式作用因子。
3、 RNA聚合酶
真核和原核细胞中的顺式作用元件
• 在原核生物中,大多数基因表达通过操 纵子模型进行调控,其顺式作用元件主 要由启动子、操纵子和调节基因组成。
7.0 基因表达调控相关的概念或观点
物种
遗传信息
DNA分子
生长
发育
分化 细胞
组织
规律
时空顺序
受精卵 关闭
基因表达 开启
活化状态
调控
功能基因组学
关闭状态
调控机制
• 人类基因组DNA中约含3.5万个基因,但 在某一特定时期,只有少数的基因处于 转录激活状态,其余大多数基因则处于 静息状态。
• 在大部分情况下,处于转录激活状态的 基因仅占5%。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原核生物的基因表达和调控机制
原核生物是指不含细胞核和其他复杂的细胞器官的生物,包括细菌和蓝藻等。

这些生物虽然简单,但仍具有复杂的基因表达和调控机制,通过调控基因的转录和翻译来响应环境变化和完成生物学功能。

本文将探讨原核生物的基因表达和调控机制。

基因表达和调控的基本概念
基因是指DNA分子上编码一个蛋白质的序列,是生物体内传递遗传信息的基
本单位。

基因表达指的是将基因的信息转化为蛋白质的过程,包括转录和翻译两个步骤。

其中,转录是指将DNA序列转化为mRNA(信使RNA)的过程,而翻译
是指将mRNA上的三联体密码子翻译为相应的氨基酸序列的过程。

基因表达的过
程涉及到基因启动子、转录因子、RNA聚合酶等多个分子的相互作用,需要经过
复杂的调控机制来保证在特定的时空条件下进行。

原核生物中基因的表达和调控
原核生物虽然没有细胞核和其他复杂的细胞器官,但其基因的表达和调控机制
同样有其特殊性。

以下将从基因的结构、转录、RNA的修饰和翻译等方面探讨原
核生物中基因的表达和调控。

基因结构
原核生物中,基因通常呈现为一条连续的DNA链,其中编码区域与非编码区
域相互交错,没有剪切和剪接等后加工处理。

编码区通常以ATG作为起始密码子,以TAG、TAA或TGA作为终止密码子。

在非编码区,存在启动子、转录因子结
合位点、RNA剪切位点和终止符等辅助元素,有助于调控基因的表达。

相比于真
核生物中复杂的基因结构,原核生物中基因的紧凑结构为调控提供了更多的可能性。

转录的调控
在原核生物中,转录的调控可以通过多种方式实现,包括转录起始的选择、负
向调控和正向调控等。

转录起始的选择:在原核生物中,转录的起始位点可以在基因内或外,不同的
起始位点可以产生不同长度的转录产物,从而产生不同的蛋白质或非编码RNA。

此外,在一些条件下,同一基因的多个启动子甚至可以同时被使用,进一步增加了基因表达的多样性。

负向调控和正向调控:在原核生物中,负向调控指的是一些转录抑制因子的作用,可以通过抑制转录因子的结合来阻止基因的转录。

而正向调控则是一些转录激活因子的作用,它们能够与DNA结合,增强基因的转录活性。

这些因子可以通过
与启动子或其他转录因子结合,影响RNA聚合酶的进程,从而实现对基因的调控。

RNA质量的调控
与真核生物不同,原核生物的mRNA通常不需要经过剪接等辅助处理,因此
其序列和长度基本固定。

但是,通过RNA的修饰和降解,原核生物仍能够调控基
因的表达。

RNA的修饰:原核生物中,mRNA的5'端和3'端往往会被加上甲基和磷酸,
或者在特定氨基酸位置上发生甲基化、酰化等修饰。

这些修饰能够影响RNA的转载、稳定性和翻译效率等方面,从而对基因表达产生影响。

RNA的降解:原核生物中,mRNA的降解通常是一个快速的过程,其速度受
到环境因子、RNA酶的种类和RNA序列的影响。

此外,喇叭口小体和RNA聚合
酶等分子的作用也可能对RNA的降解产生影响,进一步调控基因的表达。

翻译的调控
原核生物中的翻译调控可以通过多个途径实现,包括调控起始位点、调控蛋白
质的稳定性和对抗RNA的负面影响等。

起始位点的调控:在原核生物中,翻译的起始位置通常为AUG,但也存在延
迟识别和非AUG位点等。

翻译调控可以通过与起始RNA结合的其他分子来实现,包括启动因子、蛋白酶和RNA聚合酶等。

蛋白质稳定性的调控:在原核生物中,翻译结束后的蛋白质通常不需要经过进
一步的后加工处理,直接作用于细胞代谢。

但某些蛋白质可能需要在不同的时期内表达,这就需要通过对蛋白质的稳定性和降解进行调控。

对抗RNA负面影响的调控:RNA具有非常强的单链互补配对特性,一些
RNA能够与翻译需要的mRNA相互作用,从而影响翻译效率。

原核生物可以通过RNA结构和核酸片段的相互作用来对抗RNA的负面影响,从而实现对基因表达的
调控。

结语
总体而言,原核生物的基因表达和调控机制虽然相对简单,但同样具有其独特
的特性。

这些机制可以通过多种方式实现,包括起始位置的选择、转录调控和
RNA修饰等。

由于原核生物的基因表达和调控机制具有广泛的适应性,因此对于
开发抗生素和其他疾病治疗方法等具有广泛的应用前景。

相关文档
最新文档