全国卷13-17高考真题分类汇编:函数、导数及其应用

全国卷13-17高考真题分类汇编:函数、导数及其应用
全国卷13-17高考真题分类汇编:函数、导数及其应用

全国卷13-17高考真题分类汇编:函数、导数及其应用

一.选择题

1.(2015.Ⅱ理5)设函数21

1log (2),1,()2,1,

x x x f x x -+-

≥?,2(2)(log 12)f f -+=( )

A .3

B .6

C .9

D .12

【解析】选C 由已知得2(2)1log 43f -=+=,又2log 121>,所以22log 121log 62(log 12)226f -===,故2(2)(log 12)9f f -+=,故选C .

2.【2017.Ⅰ理5】函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是( ) A .[2,2]-

B .[1,1]-

C .[0,4]

D .[1,3]

【答案】D

【考点】函数的奇偶性、单调性

【名师点睛】奇偶性与单调性的综合问题,要重视利用奇、偶函数与单调性解决不等式和比较大小问题,若()f x 在R 上为单调递增的奇函数,且12()()0f x f x +>,则120x x +>,反之亦成立. 3. (2014·Ⅱ理8)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a= ( ) A.0 B.1 C.2 D.3

【解题提示】将函数y=ax-ln (x+1)求导,将x=0代入,利用导数的几何意义求得a. 【解析】选D.因为f(x)=ax-ln(x+1),所以f'(x)=a-

1

1

x +.所以f(0)=0,且f'(0)=2.联立解得a=3.故选D. 4.(2013·Ⅰ文)已知函数f (x )=?

????

-x 2+2x ,x ≤0,

ln (x +1),x >0.若|f (x )|≥ax ,则a 的取值范围是 ( )

A .(-∞,0]

B .(-∞,1]

C .[-2,1]

D .[-2,0]

【解析】选D 本题主要考查数形结合思想、函数与方程思想,利用导数研究函数间关系,对分析能力有较高要求.y =|f (x )|的图像如图所示,y =ax 为过原点的一条直线,当a >0时,与y =|f (x )|在y 轴右侧总有交点,不合题意.当a =0时成立.当a <0时,有k ≤a <0,其中k 是y =|-x 2+2x |在原点处的切线斜率,显然k =-2,于是-2≤a <0.综上,a ∈[-2,0].

5.(2013·大纲卷理)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.????-1,-12 C .(-1,0) D .???

?1

2,1 【解析】选B 本题考查函数定义域问题.由-1<2x +1<0,解得-1

2

,故函数f (2x +1)的定义域为

?

???-1,-12.

6.(2016.III.理6)已知43

2a =,25

4b =,13

25c =,则( )

(A )b a c << (B )a b c << (C )b c a << (D )c a b << 【答案】A

7、(2016.I 理8)若101a b c >><<,,则( )

A .c c a b <

B .c c ab ba <

C .log log b a a c b c <

D .log log a b c c

<

【答案】C

8.【2017.Ⅰ理11】设x 、y 、z 为正数,且235x y z ==,则( )

A .2x <3y <5z

B .5z <2x <3y

C .3y <5z <2x

D .3y <2x <5z

【答案】D 【解析】试题分析:令235(1)x y z

k k ===>,则2log x k =,3log y k =,5log z k =

22lg lg 3lg 913lg 23lg lg8

x k y k =?=>,则23x y >, 22lg lg5lg 2515lg 25lg lg32

x k z k =?=<,则25x z <,故选D.

9.(2013·大纲理)若函数f (x )=x 2+ax +1x 在????1

2,+∞是增函数,则a 的取值范围是 ( ) A .[-1,0] B .[-1,+∞) C .[0,3] D .[3,+∞)

【解析】选D 本题考查函数的单调性等知识.f ′(x )=2x +a -1x 2,因为函数在????12,+∞是增函数,所以f ′(x )≥0在????12,+∞上恒成立,即a ≥1x 2-2x 在????12,+∞上恒成立,设g (x )=1x 2-2x ,g ′(x )=-2

x 3-2,令g ′(x )=-2

x

3-2=0,得x =-1,当

6、(2016.I 理8)若101a b c >><<,,则( )

(A )c c a b <(B )c c ab ba <(C )log log b a a c b c <(D )log log a b c c < 【答案】C

10. (2014·Ⅱ文11)若函数f (x )=kx-lnx 在区间(1,+∞)单调递增,则k 的取值范围是( ) A. (,2]-∞- B. (,1]-∞- C. [2,)+∞ D. [1,)+∞

【解题提示】利用函数f(x)在区间(1,+∞)上单调递增,可得其导函数f(x)≥0恒成立,分离参数,求得k 的取值范围.

【解析】选D.因为f(x)在(1,+∞)上递增,所以f'(x)≥0恒成立,因为f(x)=kx-lnx,所以f'(x)=k-1x ≥0.即k ≥1>1

x

.所以k ∈[1,+∞),选D

11、(2016.I 理7)函数y =2x 2–e |x |在[–2,2]的图像大致为( )

(A )(B )(C )

(D )

【答案】D 【解析】

()22288 2.80f e =->->,排除A ,()22288 2.71f e =-<-<,排除B

0x >时,()22x f x x e =-

()4x f x x e '=-,当10,4x ??

∈ ???时,()01404f x e '

因此()f x 在10,4??

???

单调递减,排除C

故选D .

(D)

(C)

(B)(A)

y

4

2

4

π

π

4

2

4

y

y

4

2

4

π

π

4

2

4

y

12.(2015.Ⅱ理10)如图,长方形

ABCD 的边2AB =,1BC =,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=.将动P 到A 、B 两点距离之和表示为x 的函数()f x ,则(

)y f x =的图像

大致为( )

【解析】选B 由已知得,当点P 在BC 边上运动时,即04

x π

≤≤

时,tan PA PB

x +=

+;

当点P 在CD 边上运动时,即3,4

42

x x π

ππ

≤≤

≠时,PA PB +=,当2

x π

=

时,PA PB +=;当点P 在AD 边上运动时,即

34

x π

π≤≤时,tan PA PB x +=,从点P 的运动过程可以看出,轨迹关于直线2

x π

=

对称,且

()()42

f f ππ

>,且轨迹非线型,故选B . 13.(2015.Ⅰ文12)设函数()y f x =的图像与2x a

y +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,

则a =( )

(A ) 1- (B )1 (C )2 (D )4

【解析】选C 设(,)x y 是函数()y f x =的图像上任意一点,它关于直线y x =-对称为(,y x --),由已知知(,y x --)在函数2

x a

y +=的图像上,∴2y a x -+-=,解得2log ()y x a =--+,即

2()log ()f x x a =--+,∴22(2)(4)log 2log 41f f a a -+-=-+-+=,解得2a =,故选C.

【解析】由0.6x

y =在区间(0,)+∞是单调减函数可知, 1.50.600.60.61<<<,又0.61.51>,故选C . 14.(2016.II.理12)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1

x y x

+=

与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ???则

1

()m

i

i

i x y =+=∑( )

(A )0 (B )m (C )2m (D )4m 【答案】B

D

P

C

B O

A x

15.【2017.II 理11】若2x =-是函数21

()(1)x f x x ax e

-=+-的极值点,则()f x 的极小值为( )

A.1-

B.32e --

C.35e -

D.1 【答案】A 【解析】

【考点】 函数的极值;函数的单调性

【名师点睛】(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同。

(2)若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内绝不是单调函数,即在某区间上单调增或减的函数没有极值。

16.(2014二理12)设函数函数3sin x

m

π.若存在f(x)的极值点x 0满足2

0x +()2

0f x ????

,则m 的取值范围是( )

A. ()(),66,-∞-+∞U

B. (),4-∞-∪()4,+∞ B. (),2-∞-∪()2,+∞ D. (),1-∞-∪()4,+∞ 【解题提示】利用函数3x

m

π的性质,求得x 0和f(x 0)代入不等式,解不等式,得m 的取值范围.

【解析】选C.因为3sin

x

m

π3即[f(x 0)]2=3,|x 0|≤

2

m ,

所以2

x +[f(x 0

)]2≥

234m +,所以2

4

m +32.故选C. 17.【2017.Ⅲ理11】已知函数2

1

1()2()x x f x x x a e

e --+=-++有唯一零点,则a =( )

A .12

-

B .

13

C .

12

D .1

【答案】C 【解析】

试题分析:函数的零点满足()

2112x x x x a e e --+-=-+, 设()1

1x x g x e

e

--+=+,则()()211

1

1

1

1

11x x x x x x e g x e

e

e

e e ---+----'=-=-

=,

当()0g x '=时,1x =,当1x <时,()0g x '<,函数()g x 单调递减, 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数取得最小值()12g =,

设()2

2h x x x =- ,当1x =时,函数取得最小值1- ,

【考点】 函数的零点;导函数研究函数的单调性,分类讨论的数学思想

【名师点睛】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用. 学科@网

18.(2015.Ⅱ理12)设函数'

()f x 是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,

'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( )

A .(,1)(0,1)-∞-U

B .(1,0)(1,)-+∞U

C .(,1)(1,0)-∞--U

D .(0,1)(1,)+∞U

【答案】A

19.(2015.Ⅰ理12)设函数()f x =(21)x

e x ax a --+,其中a 1,若存在唯一的整数0x ,使得0()

f x 0,

则a 的取值范围是( )

(A)[-

32e ,1) (B)[-32e ,34) (C)[32e ,34) (D)[32e

,1)

【解析】设()g x =(21)x

e x -,y ax a =-,由题知存在唯一的整数0x ,使得0()g x 在直线y ax a =-的下方.因为()(21)x g x e x '=+,所以当12x <-

时,()g x '<0,当12x >-时,()g x '>0,所以当12

x =-时,max [()]g x =1

2

-2e

-,当0x =时,(0)g =-1,(1)30g e =>,直线y ax a =-恒过(1,0)斜率且a ,故

(0)1a g ->=-,且1(1)3g e a a --=-≥--,解得

3

2e

≤a <1,故选D.

【答案】D

二、 填空题

20.(2015.Ⅰ文14)已知函数()3

1f x ax x =++的图像在点()()

1,1f 的处的切线过点()2,7,则

a = .

【解析】

试题分析:∵2

()31f x ax '=+,∴(1)31f a '=+,即切线斜率31k a =+,

又∵(1)2f a =+,∴切点为(1,2a +),∵切线过(2,7),∴27

3112

a a +-=+-,解得a =1.

【答案】1

21.(2015.Ⅰ理13)若函数f (x )=2

ln()x x a x ++为偶函数,则a =

【答案】1

22.(2013·Ⅰ理)若函数f (x )=(1-x 2)(x 2+ax +b )的图象关于直线x =-2对称,则f (x )的最大值为________. 【解析】本题考查函数图象的对称性、函数图象的平移、偶函数及函数的极值与最值等知识,意在考查考生综合运用函数知识解答问题的能力、考查考生的运算能力;由函数图象的对称性得相应函数的奇偶性,利用图象平移知识确定函数解析式,再通过求导,研究函数的极值与最值.因为函数f (x )图象关于直线x =-2对称,所以函数f (x -2)为偶函数,因为f (x )=(1-x 2)(x 2+ax +b ),所以f (x -2)=[1-(x -2)2][(x -2)2+a (x -2)+b ]=-x 4+(8-a )x 3+(6a -b -23)x 2+(-11a +4b +28)x +(6a -3b -12)为偶函数,所以

????? 8-a =0,-11a +4b +28=0,所以?????

a =8,

b =15,

f (x )=(1-x 2)(x 2+8x +15),所以f ′(x )=-2x (x 2+8x +15)+(1-x 2)·(2x +8)=-4x 3-24x 2-28x +8=-4(x 3+6x 2+7x -2)=-4(x +2)(x 2+4x -1).令f ′(x )=0,得x =-2或x =-2-5或x =-2+5,且当x <-2-5时,f ′(x )>0;当-2-5<x <-2时,f ′(x )<0;当-2<x <-2+5时,f ′(x )>0;当x >-2+5时,f ′(x )<0,所以当x =-2-5时,f (x )极大值=16;当x =-2+5时,f (x )极大值=16.所以函数f (x )的最大值为16. 【答案】16

23.(2013·大纲卷文)设f (x )是以2为周期的函数,且当x ∈[1,3)时,f (x )=x -2,则f (-1)=________. 【解析】本题主要考查抽象函数的求值与周期性.因为f (x )是以2为周期的函数,所以f (-1)=f (-1+2)=f (1)=1-2=-1. 【答案】-1

24.【2017.Ⅲ理15】设函数10()20x x x f x x +≤?=?>?,,,,

则满足1()()12f x f x +->的x 的取值范围是_________.

【答案】1,4??

-

+∞ ???

写成分段函数的形式:()(

))

1

32,021112,0222112,2x x x x g x f x f x x x x -?

+≤????

?=+-=++<≤? ??

???>??

函数()g x 在区间(]11,0,0,,,22????-∞+∞ ??????

三段区间内均单调递增,

且:)

01111,201,12142g -??-

=++>?> ?

??

据此x 的取值范围是:1,4??-

+∞ ???

. 25.(2016.II 理16)若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则

b = .

【答案】1ln2-

25.(2016.III 理15)已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)

-处的切线方程是_______________。 【答案】21y x =-- 三、 解答题

26.(2015.Ⅰ文21)(本小题满分12分)设函数()2ln x

f x e a x =-.

(I )讨论()f x 的导函数()f x '的零点的个数; (II )证明:当0a >时()2

2ln f x a a a

≥+. 【解析】

试题解析:(I )()f x 的定义域为()0+∞,

,()2()=20x a

f x e x x

'->. 当0a ≤时,()0f x '>,()f x '没有零点; 当0a >时,因为2x e 单调递增,a

x

-

单调递增,所以()f x '在()0+∞,

单调递增.又()0f a '>,当b 满足04a b <<

且1

4

b <时,(b)0f '<,故当0a >时,()f x '存在唯一零点. (II )由(I ),可设()f x '在()0+∞,

的唯一零点为0x ,当()00x x ∈,时,()0f x '<; 当()0+x x ∈∞,

时,()0f x '>.

故()f x 在()

00x ,单调递减,在()0+x ∞,单调递增,所以当0x x =时,()f x 取得最小值,最小值为0()f x .

由于0

202=0x a e

x -

,所以00022

()=2ln 2ln 2a f x ax a a a x a a

++?. 故当0a >时,2

()2ln

f x a a a

≥+. 27.(2013·Ⅰ文)已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4. (1)求a ,b 的值;

(2)讨论f (x )的单调性,并求f (x )的极大值.

解:本题主要考查导数的基本知识,利用导数判断函数单调性、求极值. (1)f ′(x )=e x (ax +a +b )-2x -4.

由已知得f (0)=4,f ′(0)=4.故b =4,a +b =8. 从而a =4,b =4.

(2)由(1)知,f (x )=4e x (x +1)-x 2-4x , f ′(x )=4e x (x +2)-2x -4=4(x +2)????e x -12. 令f ′(x )=0得,x =-ln 2或x =-2.

从而当x ∈(-∞,-2)∪(-ln 2,+∞)时,f ′(x )>0;当x ∈(-2,-ln 2)时,f ′(x )<0. 故f (x )在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减. 当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -

2). 由k <x 1<0知x 1>3

4k 显然成立, ∴f (-k )>f (x 1). 再证f (k )<f (x 2).

同理f (x 2)=-x 32+x 22,有f (k )-f (x 2)=k --x 32+x 22=1

2(k -x 2)+12(k +x 32)<0, ∴f (k )<f (x 2).

综上所述,M =f (-k )=-2k 3-k ,m =f (k )=k . 28.【2017.Ⅲ理21】已知函数()1ln f x x a x =-- . (1)若()0f x ≥ ,求a 的值;

(2)设m 为整数,且对于任意正整数n 2111111222n m ?

???

?

?+++< ??? ???????

L ,求m 的最小值. 【答案】(1)1a = ; (2)3

【解析】

试题分析:(1)由原函数与导函数的关系可得x =a 是()f x 在()0,+x ∈∞的唯一最小值点,列方程解得

1a = ;

(2)利用题意结合(1)的结论对不等式进行放缩,求得2111111222n e ?

???

??+

++< ??? ???????

L ,结合231111112222???

???+++> ???????????

可知实数m 的最小值为3

【考点】 导数研究函数的单调性;导数研究函数的最值;利用导数证明不等式

【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出 ,本专题在高考中的命题方向及命题角度 从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.学科@网 29(2015.Ⅱ理21)设函数2()mx

f x e

x mx =+-.

(Ⅰ)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;

(Ⅱ)若对于任意x 1,,x 2∈[-1,1],都有|f (x 1)- f (x 2)|≤e -1,求m 的取值范围. 【答案】(Ⅰ)详见解析;(Ⅱ)[1,1]-. 【解析】

试题分析:(Ⅰ)先求导函数'()(1)2mx f x m e x =-+,根据m 的范围讨论导函数在(,0)-∞和(0,)+∞的符号即可;(Ⅱ)12()()1f x f x e -≤-恒成立,等价于12max ()()1f x f x e -≤-.由12,x x 是两个独立的变量,故可求研究()f x 的值域,由(Ⅰ)可得最小值为(0)1f =,最大值可能是(1)f -或(1)f ,故只需

(1)(0)1,

(1)(0)1,f f e f f e -≤-??

--≤-?

,从而得关于m 的不等式,因不易解出,故利用导数研究其单调性和符号,从而得解.

30.(2013·Ⅰ理)设函数f (x )=x 2+ax +b ,g (x )=e x (cx +d ),若曲线

y =f (x )和曲线y =g (x )都过点P (0,2),

且在点P 处有相同的切线y =4x +2. (1)求a ,b ,c ,d 的值;

(2)若x ≥-2时,f (x )≤kg (x ),求k 的取值范围.

解:本题主要考查利用导数求解曲线的切线,利用函数的导数研究函数的最值,进而解答不等式恒成立问题,意在考查考生综合运用导数这一重要工具解答函数与不等式问题的综合能力. (1)由已知得f (0)=2,g (0)=2,f ′(0)=4,g ′(0)=4.

而f ′(x )=2x +a ,g ′(x )=e x (cx +d +c ),故b =2,d =2,a =4,d +c =4. 从而a =4,b =2,c =2,d =2.

(2)由(1)知,f (x )=x 2+4x +2,g (x )=2e x (x +1).

设函数F (x )=kg (x )-f (x )=2k e x (x +1)-x 2-4x -2, 则F ′(x )=2k e x (x +2)-2x -4=2(x +2)(k e x -1). 由题设可得F (0)≥0,即k ≥1. 令F ′(x )=0得x 1=-ln k ,x 2=-2.

(ⅰ)若1≤k <e 2,则-2<x 1≤0,从而当x ∈(-2,x 1)时,F ′(x )<0;当x ∈(x 1,+∞)时,F ′(x )>0,即F (x )在(-2,x 1)上单调递减,在(x 1,+∞)上单调递增,故F (x )在[-2,+∞)的最小值为F (x 1).而F (x 1)=

2x 1+2-x 21-4x 1-2=-x 1(x 1

+2)≥0. 故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立.

(ⅱ)若k =e 2,则F ′(x )=2e 2(x +2)(e x -e -

2).从而当x >-2时,F ′(x )>0,即F (x )在(-2,+∞)上单调递增.而F (-2)=0,故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立.

(ⅲ)若k >e 2,则F (-2)=-2k e -

2+2=-2e -2(k -e 2)<0.从而当x ≥-2时,f (x )≤kg (x )不可能恒成立. 综上,k 的取值范围是[1,e 2].

31、(2016.III.)设函数()cos 2(1)(cos 1)f x a x a x =+-+,其中0a >,记|()|f x 的最大值为A .

(Ⅰ)求()f x '; (Ⅱ)求A ;

(Ⅲ)证明|()|2f x A '≤.

解析:(Ⅰ)'

()2sin 2(1)sin f x a x a x =---. (Ⅱ)当1a ≥时,

'|()||sin 2(1)(cos 1)|f x a x a x =+-+2(1)a a ≤+-32a =-(0)f =

因此,32A a =-. ………4分

当01a <<时,将()f x 变形为2

()2cos (1)cos 1f x a x a x =+--.

令2

()2(1)1g t at a t =+--,则A 是|()|g t 在[1,1]-上的最大值,(1)g a -=,(1)32g a =-,

且当14a

t a

-=时,()g t 取得极小值,极小值为221(1)61

()1488a a a a g a a a

--++=--=-. 令1114a a --<

<,解得13a <-(舍去)

,15

a >.

32、(2016.II.理21)(Ⅰ)讨论函数x

x 2f (x)x 2

-=

+e 的单调性,并证明当0x >时,(2)20x x e x -++>; (Ⅱ)证明:当[0,1)a ∈时,函数2

x =(0)x e ax a g x x

-->()有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域. 【解析】⑴证明:()2e 2

x

x f x x -=

+ ()()()22224e e 222x

x

x x f x x x x ??-' ?=+= ?+++??

∵当x ∈()()22,-∞--+∞U ,时,()0f x '> ∴()f x 在()()22,-∞--+∞,和上单调递增 ∴0x >时,

()2e 0=12

x

x f x ->-+ ∴()2e 20x x x -++>

⑵ ()

()()

24

e 2e x

x a x x ax a g x x ----'=

()

4

e 2e 2x x x x ax a x -++=

()3

22e 2x x x a x x -??

+?+

?+??=

[)01a ∈,

由(1)知,当0x >时,()2e 2

x

x f x x -=?+的值域为()1-+∞,,只有一解. 使得

2e 2

t

t a t -?=-+,(]02t ∈, 当(0,)x t ∈时()0g x '<,()g x 单调减;当(,)x t ∈+∞时()0g x '>,()g x 单调增

()()

()

2

22e 1e

e 1e 22

t t

t

t t t a t t h a t t t -++?-++=

=

=

+ 记()e 2t

k t t =+,在(]0,2t ∈时,()()()2

e 102t t k t t +'=>+,∴()k t 单调递增 ∴()()21e 24h a k t ??

=∈ ???

,.

33.【2017.Ⅰ理21】已知函数2()(2)x

x f x ae a e x =+--.

(1)讨论()f x 的单调性;

(2)若()f x 有两个零点,求a 的取值范围. 【解析】

试题分析:(1)讨论()f x 单调性,首先进行求导,发现式子特点后要及时进行因式分解,在对a 按0a ≤,0a >进行讨论,

写出单调区间;(2)根据第(1)题,若0a ≤,()f x 至多有一个零点.若0a >,当ln x a =-时,()f x 取得最小值,求出最小值1

(ln )1ln f a a a

-=-+,根据1a =,(1,)a ∈+∞,(0,1)a ∈进行讨论,可知当(0,1)a ∈有2个零点,设正整数0n 满足03

ln(1)n a >-,则

00000000()e (e 2)e 20n n n n f n a a n n n =+-->->->.由于3

ln(1)ln a a

->-,因此()f x 在(ln ,)

a -+∞有一个零点.所以a 的取值范围为(0,1).

【考点】含参函数的单调性,利用函数零点求参数取值范围.

【名师点睛】研究函数零点问题常常与研究对应方程的实根问题相互转化.已知函数()

f x有2个零点求参数取值范围,第一种方法是分离参数,构造不含参数的函数,研究其单调性、极值、最值,判断y a

与其交点的个数,从而求出a的范围;第二种方法是直接对含参函数进行研究,研究其单调性、极值、最值,注意点是若()

f x有2个零点,且函数先减后增,则只需其最小值小于0,且后面还需验证有最小值两边存在大于0的点.学科@网

34.(2013·II理)已知函数f(x)=e x-ln(x+m).

(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;

(2)当m≤2时,证明f(x)>0.

解:考查利用导数研究函数的单调性以及运用导数方法证明不等式等知识.意在考查考生综合运用知识的能力以及化归与转化的思想.

(1)f′(x)=e x-

1

x+m

.

由x=0是f(x)的极值点得f′(0)=0,所以m=1.

于是f (x )=e x -ln(x +1),定义域为(-1,+∞), f ′(x )=e x -

1x +1

. 函数f ′(x )=e x -

1

x +1

在(-1,+∞),上单调递增且f ′(0)=0,因此当x ∈(-1,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0.

所以f (x )在(-1,0)上单调递减,在(0,+∞)上单调递增. (2) 证明:当m ≤2,x ∈(-m ,+∞)时,ln(x +m )≤ln(x +2), 故只需证明当m =2时,f (x )>0.

当m =2时,函数f ′(x )=e x -1

x +2在(-2,+∞)上单调递增,又f ′(-1)<0,f ′(0)>0,故f ′(x )=0在(-

2,+∞)上有唯一实根x 0,且x 0∈(-1,0).

当x ∈(-2,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0,从而当x =x 0时,f (x )取得最小值. 由f ′(x 0)=0得e x 0=1

x 0+2,ln(x 0+2)=-x 0,

故f (x )≥f (x 0)=1

x 0+2+x 0=(x 0+1)2x 0+2>0.

综上,当m ≤2时,f (x )>0.

35.【2017.II 理】已知函数()2

ln f x ax ax x x =--,且()0f x ≥。

(1)求a ;

(2)证明:()f x 存在唯一的极大值点0x ,且()2

202e f x --<<。

【答案】(1)1a =; (2)证明略。 【解析】

(2)由(1)知 ()2

ln f x x x x x =--,()'22ln f x x x =--。

设()22ln h x x x =--,则()1'2h x x

=-。 当10,

2x ??∈ ??? 时,()'0h x < ;当1,2x ??

∈+∞ ???

时,()'0h x > ,

所以()h x 在10,2?

? ???

单调递减,在1,2??

+∞

???

单调递增。

【考点】 利用导数研究函数的单调性;利用导数研究函数的极值

【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出 ,本专题在高考中的命题方向及命题角度 从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系。 (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数。 (3)利用导数求函数的最值(极值),解决生活中的优化问题。 (4)考查数形结合思想的应用。学科@网 36.(2016.I 理21)已知函数

有两个零点.

(I )求a 的取值范围; (II )设x 1,x 2是

的两个零点,证明:+x 2<2.

解:⑴ 由已知得:()()()()()

'12112x x f x x e a x x e a =-+-=-+

① 若0a =,那么()()0202x f x x e x =?-=?=,()f x 只有唯一的零点2x =,不合题意; ② 若0a >,那么20x x e a e +>>,

所以当1x >时,()'0f x >,()f x 单调递增 当1x <时,()'0f x <,()f x 单调递减 即:

故()f x 在()1,+∞上至多一个零点,在(),1-∞上至多一个零点 由于()20f a =>,()10f e =-<,则()()210f f <, 根据零点存在性定理,()f x 在()1,2上有且仅有一个零点. 而当1x <时,x e e <,210x -<-<,

故()()()()()()()2

2

2

212111x f x x e a x e x a x a x e x e =-+->-+-=-+--

则()0f x =的两根11t =+,21t =+, 12t t <,因为0a >,故当1

x t <或2x t >时,()()2

110a x e x e -+--> 因此,当1x <且1x t <时,()0f x >

又()10f e =-<,根据零点存在性定理,()f x 在(),1-∞有且只有一个零点. 此时,()f x 在R 上有且只有两个零点,满足题意.

③ 若02

e

a -<<,则()ln 2ln 1a e -<=,

当()ln 2x a <-时,()1ln 210x a -<--<,()

ln 2220a x e a e a -+<+=,

即()()()

'120x f x x e a =-+>,()f x 单调递增; 当()ln 21a x -<<时,10x -<,()

ln 2220a x e a e a -+>+=,即()()()'120x f x x e a =-+<,()f x 单

调递减;

当1x >时,10x ->,()

ln 2220a x e a e a -+>+=,即()'0f x >,()f x 单调递增.

即:

而极大值

函数与导数历年高考真题

函数与导数高考真题 1.2log 510+log 50.25= A 、0 B 、1 C 、2 D 、4 2.2 2 (1cos )x dx π π-+?等于( ) A.π B.2 C.π-2 D.π+2 3.设f(x)为定义在R 上的奇函数,当x ≥0时,f(x)=2x +2x+b(b 为常数),则f(-1)= (A) 3 (B) 1 (C)-1 (D)-3 4.设定义在R 上的函数()f x 满足()()213f x f x ?+=,若()12f =,则()99f =( ) (A)13 (B)2 (C) 132 (D)213 75.已知函数3()2x f x +=,1()f x -是()f x 的反函数,若16mn =(m n ∈+R ,),则11()()f m f n --+的值为( ) A .2- B .1 C .4 D .10 6.设正数a,b 满足4)(22lim =-+→b ax x x , 则=++--+∞ →n n n n n b a ab a 211 1lim ( ) A .0 B . 41 C .21 D .1 7.已知函数y =13x x -++的最大值为M ,最小值为m ,则m M 的值为 (A)14 (B)12 (C)22 (D)32 8.已知函数y =x 2-3x+c 的图像与x 恰有两个公共点,则c = (A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1 9.已知以4T =为周期的函数21,(1,1]()12,(1,3] m x x f x x x ?-∈-?=?--∈??,其中0m >。若方程 3()f x x =恰有5个实数解,则m 的取值范围为( ) A .158(,)33 B .15(,7)3 C .48(,)33 D .4(,7)3 10.已知函数2()22(4)1f x mx m x =--+,()g x mx =,若对于任一实数x ,()f x 与 ()g x 至少有一个为正数,则实数m 的取值范围是 A . (0,2) B .(0,8) C .(2,8) D . (,0)-∞

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编 函数与导数 一. 选择题: 1.(全国一1 )函数y =的定义域为( C ) A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥ D .{}|01x x ≤≤ 2.(全国一2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( A ) 3.(全国一6)若函数(1)y f x =- 的图像与函数ln 1y =的图像关于直线y x =对称,则()f x =( B ) A .21x e - B .2x e C .21x e + D .22x e + 4.(全国一7)设曲线11x y x += -在点(32),处的切线与直线10ax y ++=垂直,则a =( D ) A .2 B .12 C .12- D .2- 5.(全国一9)设奇函数()f x 在(0)+∞, 上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为( D ) A .(10)(1)-+∞,, B .(1)(01)-∞-, , C .(1)(1)-∞-+∞, , D .(10)(01)-,, 6.(全国二3)函数1()f x x x = -的图像关于( C ) A .y 轴对称 B . 直线x y -=对称 A B C D

C . 坐标原点对称 D . 直线x y =对称 8.(全国二4)若13(1)ln 2ln ln x e a x b x c x -∈===,, ,,,则( C ) A .a > B .b a c >> C .c a b >> D .b c a >> 10.(北京卷3)“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( B ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 11.(四川卷10)设()()sin f x x ω?=+,其中0ω>,则()f x 是偶函数的充要条件是( D ) (A)()01f = (B)()00f = (C)()'01f = (D)()'00f = 12.(四川卷11)设定义在R 上的函数()f x 满足()()213f x f x ?+=,若()12f =,则()99f =( C ) (A)13 (B)2 (C)132 (D)213 13.(天津卷3)函数1y =04x ≤≤)的反函数是A (A )2(1)y x =-(13x ≤≤) (B )2(1)y x =-(04x ≤≤) (C )21y x =-(13x ≤≤) (D )21y x =-(04x ≤≤) 14.(天津卷10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a 的取值集合为B (A )2{|1}a a <≤ (B ){|}2a a ≥ (C )3|}2{a a ≤≤ (D ){2,3} 15.(安徽卷7)0a <是方程2210ax x ++=至少有一个负数根的( B ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 16.(安徽卷9)在同一平面直角坐标系中,函数()y g x =的图象与x y e =的图象关于直线y x =对称。而函数()y f x =的图象与()y g x =的图象关于y 轴对称,若()1f m =-,

2009至2018年北京高考真题分类汇编之导数大题

2009至2018年北京高考真题分类汇编之导数大题精心校对版题号一总分得分△注意事项:1.本系列试题包含2009年-2018年北京高考真题的分类汇编。2.本系列文档有相关的试题分类汇编,具体见封面。3.本系列文档为北京双高教育精心校对版本4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科一、解答题(本大题共10小题,共0分)1.(2013年北京高考真题数学(文))已知函数2()sin cos f x x x x x (1)若曲线()y f x 在点(,())a f a 处与直线y b 相切,求a 与b 的值。(2)若曲线()y f x 与直线y b 有两个不同的交点,求b 的取值范围。2.(2012年北京高考真题数学(文))已知函数2()1(0)f x ax a ,3()g x x bx .(Ⅰ)若曲线()y f x 与曲线()y g x 在它们的交点(1,)c 处具有公共切线,求,a b 的值;(Ⅱ)当3a ,9b 时,若函数()()f x g x 在区间[,2]k 上的最大值为28,求k 的取值范围.3.(2011年北京高考真题数学(文))已知函数()()x f x x k e . (Ⅰ)求()f x 的单调区间;(Ⅱ)求()f x 在区间[0,1]上的最小值. 4.(2009年北京高考真题数学(文))姓名:__________班级:__________考号:__________●-------------------------密--------------封- -------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●

全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案) (2015年-2018年共11套) 函数与导数小题(共23小题) 一、函数奇偶性与周期性 1.(2015年1卷13)若函数f (x ) =ln(x x +为偶函数,则a= 【解析】由题知ln(y x = 是奇函数,所以ln(ln(x x ++- =22ln()ln 0a x x a +-==,解得a =1.考点:函数的奇偶性 2.(2018年2卷11)已知是定义域为的奇函数,满足 .若 , 则 A. B. 0 C. 2 D. 50 解:因为是定义域为 的奇函数,且 , 所以, 因此, 因为 ,所以, ,从而 ,选C. 3.(2016年2卷12)已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1 x y x += 与()y f x =图像的交点为()11x y ,,()22x y ,,?,()m m x y ,,则()1 m i i i x y =+=∑( ) (A )0 (B )m (C )2m (D )4m 【解析】由()()2f x f x =-得()f x 关于()01, 对称,而11 1x y x x +==+也关于()01,对称, ∴对于每一组对称点'0i i x x += '=2i i y y +,∴()1 1 1 022 m m m i i i i i i i m x y x y m ===+=+=+? =∑∑∑,故选B . 二、函数、方程与不等式 4.(2015年2卷5)设函数211log (2),1, ()2,1,x x x f x x -+-

2017至2018年北京高三模拟分类汇编之导数大题

2017至2018年北京高三模拟分类汇编之导数大题,20创新题 精心校对版 △注意事项: 1.本系列试题包含2017年-2018年北京高考一模和二模真题的分类汇编。 2.本系列文档有相关的试题分类汇编,具体见封面。 3.本系列文档为北京双高教育精心校对版本 4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科 一 、解答题(本大题共22小题,共0分) 1.(2017北京东城区高三一模数学(文))设函数ax x x x f +-=232131)(,R a ∈. (Ⅰ)若2=x 是)(x f 的极值点,求a 的值,并讨论)(x f 的单调性; (Ⅱ)已知函数3221)()(2+-=ax x f x g ,若)(x g 在区间)1,0(内有零点,求a 的取值范围; (Ⅲ)设)(x f 有两个极值点1x ,2x ,试讨论过两点))(,(11x f x ,))(,(22x f x 的直线能否过点)1,1(,若能,求a 的值;若不能,说明理由. 2.(2017北京丰台区高三一模数学(文)) 已知函数1()e x x f x +=,A 1()x m ,,B 2()x m ,是曲线()y f x =上两个不同的点. (Ⅰ)求()f x 的单调区间,并写出实数m 的取值范围; (Ⅱ)证明:120x x +>. 3.(2017北京丰台区高三二模数学(文)) 已知函数ln ()x f x ax =(0)a >. (Ⅰ)当1a =时,求曲线()y f x =在点(1(1)),f 处的切线方程; 姓名:__________班级:__________考号:__________ ●-------------------------密--------------封------------ --线------ --------内------ ------- -请------- -------不-------------- 要--------------答--------------题-------------------------●

高考数学真题汇编——函数与导数

高考数学真题汇编——函数与导数 1.【2018年浙江卷】函数y=sin2x的图象可能是 A. B. C. D. 【答案】D 点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复. 2.【2018年理天津卷】已知,,,则a,b,c的大小关系为A. B. C. D. 【答案】D

【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:,, , 据此可得:.本题选择D选项. 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 3.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 【答案】C 详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.

点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果. 4.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为 A. B. C. D. 【答案】D 点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果. 5.【2018年全国卷Ⅲ理】设,,则

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编 函数与导数 一. 选择题: 1.(全国一1 )函数y = C ) A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥ D .{}|01x x ≤≤ 2.(全国一2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( A ) 3.(全国一6)若函数(1)y f x =- 的图像与函数1y =的图像关于直线y x =对称,则()f x =( B ) A .21x e - B .2x e C .21x e + D .22x e + 4.(全国一7)设曲线11x y x += -在点(32),处的切线与直线10ax y ++=垂直,则a =( D ) A .2 B .12 C .12- D .2- 5.(全国一9)设奇函数()f x 在(0)+∞, 上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为( D ) A .(10)(1)-+∞ ,, B .(1)(01)-∞- , , C .(1)(1)-∞-+∞ ,, D .(10)(01)- , , 6.(全国二3)函数1()f x x x = -的图像关于( C ) A .y 轴对称 B . 直线x y -=对称 A . B . C . D .

C . 坐标原点对称 D . 直线x y =对称 8.(全国二4)若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( C ) A .a > B .b a c >> C .c a b >> D .b c a >> 10.(北京卷3)“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( B ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 11.(四川卷10)设()()sin f x x ω?=+,其中0ω>,则()f x 是偶函数的充要条件是( D ) (A)()01f = (B)()00f = (C)()'01f = (D)()'00f = 12.(四川卷11)设定义在R 上的函数()f x 满足()()213f x f x ?+=,若()12f =,则()99f =( C ) (A)13 (B)2 (C)132 (D)213 13.(天津卷3)函数1y =04x ≤≤)的反函数是A (A )2(1)y x =-(13x ≤≤) (B )2(1)y x =-(04x ≤≤) (C )21y x =-(13x ≤≤) (D )21y x =-(04x ≤≤) 14.(天津卷10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时 a 的取值集合为B (A )2{|1}a a <≤ (B ){|}2a a ≥ (C )3|}2{a a ≤≤ (D ){2,3} 15.(安徽卷7)0a <是方程2210ax x ++=至少有一个负数根的( B ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 16.(安徽卷9)在同一平面直角坐标系中,函数()y g x =的图象与x y e =的图象关于直线y x =对称。而函数()y f x =的图象与()y g x =的图象关于y 轴对称,若()1f m =-,

高考真题导数第一问分类汇总

切线问题 1 已知函数31()4 f x x ax =++,()ln g x x =-.当a 为何值时,x 轴为曲线()y f x =的切线; 2 设函数1 (0ln x x be f x ae x x -=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. 3已知函数ln ()1a x b f x x x = ++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.求a 、b 的值; 4 设函数()()23x x ax f x a R e +=∈若()f x 在0x =处取得极值,确定a 的值,并求此时曲线()y f x =在点()()1,1f 处的切线方程; 5已知函数f(x)=e x -ax(a 为常数)的图像与y 轴交于点A ,曲线y =f(x)在点A 处的切线斜率为-1. 求a 的值及函数f(x)的极值; 6设函数,曲线在点处的切线方程为, 7已知函数.求曲线在点处的切线方程; 8设函数f (x )=x 2+ax +b ,g (x )=e x (cx +d ).若曲线y =f (x )和曲线y =g (x )都过点P (0,2),且在点P 处有相同的切线y =4x +2.求a ,b ,c ,d 的值; ()a x f x xe bx -=+()y f x =(2,(2))f (1)4y e x =-+()e cos x f x x x =-()y f x =(0,(0))f

单调性问题 1已知函数)(x f 满足212 1)0()1(')(x x f e f x f x +-=-.求)(x f 的解析式及单调区间; 2 讨论函数2()2 x x f x e x -=+ 的单调性,并证明当x >0时,(2)20x x e x -++>; 3已知函数()2x x f x e e x -=--. 讨论()f x 的单调性; 4 设1a >,函数a e x x f x -+=)1()(2.求)(x f 的单调区间 ; 5已知函数f (x )=a e 2x -b e -2x -cx (a ,b ,c ∈R )的导函数f ′(x )为偶函数,且曲线y =f (x )在点(0,f (0))处的 切线的斜率为4-c . (1)确定a ,b 的值; (2)若c =3,判断f (x )的单调性; 6设,已知定义在R 上的函数在区间内有一个零点,为的导函数.求的单调区间; 7已知函数()ln()x f x e x m =-+. 设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; a ∈Z 432 ()2336f x x x x x a =+--+(1,2)0x ()g x ()f x ()g x

(完整版)函数与导数专题(含高考试题)

函数与导数专题1.在解题中常用的有关结论(需要熟记):

考点一:导数几何意义: 角度一 求切线方程 1.(2014·洛阳统考)已知函数f (x )=3x +cos 2x +sin 2x ,a =f ′? ?? ?? π4,f ′(x )是f (x ) 的导函数,则过曲线y =x 3上一点P (a ,b )的切线方程为( ) A .3x -y -2=0 B .4x -3y +1=0 C .3x -y -2=0或3x -4y +1=0 D .3x -y -2=0或4x -3y +1=0 解析:选A 由f (x )=3x +cos 2x +sin 2x 得f ′(x )=3-2sin 2x +2cos 2x ,则a = f ′? ?? ??π4=3-2sin π2+2cos π2=1.由y =x 3得y ′=3x 2,过曲线y =x 3上一点P (a ,b )的切线的斜率k =3a 2=3×12=3.又b =a 3,则b =1,所以切点P 的坐标为(1,1),故过曲线y =x 3上的点P 的切线方程为y -1=3(x -1),即3x -y -2=0. 角度二 求切点坐标 2.(2013·辽宁五校第二次联考)曲线y =3ln x +x +2在点P 0处的切线方程为4x -y -1=0,则点P 0的坐标是( ) A .(0,1) B .(1,-1) C .(1,3) D .(1,0) 解析:选C 由题意知y ′=3 x +1=4,解得x =1,此时4×1-y -1=0,解得y =3,∴点P 0的坐标是(1,3). 角度三 求参数的值 3.已知f (x )=ln x ,g (x )=12x 2+mx +7 2(m <0),直线l 与函数f (x ),g (x )的图像都相切,且与f (x )图像的切点为(1,f (1)),则m 等于( )

(完整word版)北京高考导数大题分类.doc

导数大题分类 一、含参数单调区间的求解步骤: ① 确定定义域(易错点) ②求导函数 f ' (x) ③对 f ' ( x) 进行整理,能十字交叉的十字交叉分解,若含分式项,则进行通分整理 . ④ f ' ( x) 中 x 的最高次系数是否为 0,为 0 时求出单调区间 . 例 1: f ( x) a x 3 a 1 x 2 x ,则 f ' ( x) (ax 1)( x 1) 要首先讨论 a 0 情况 3 2 ⑤ f ' ( ) 最高次系数不为 0,讨论参数取某范围的值时, 若 f ' (x) 0 ,则 f ( x) 在定义域内单调递增; x 若 f ' (x) 0 ,则 f ( x) 在定义域内单调递减 . 例 2: f (x) a x 2 ln x ,则 f ' ( x) = ax 2 1 , ( x 0) ,显然 a 0时 f ' ( x) 0 ,此时 f (x) 的 2 x 单调区间为 (0, ) . ⑥ f ' ( ) 最高次系数不为 0,且参数取某范围的值时,不会出现 f ' (x) 0 或者 f ' ( x) 0 的情况 x 求出 f ' ( x) =0 的根,(一般为两个) x 1 , x 2 ,判断两个根是否都在定义域内 . 如果只有一根在定义域 内,那么单调区间只有两段 . 若两根都在定义域内且一根为常数,一根含参数 . 则通过比较两根大小分三种情况讨论单调区间, 即 x 1 x 2 , x 1 x 2 , x 1 x 2 . 例 3: 若 f ( x) a x 2 (a 1)x ln x, (a 0) ,则 f ' ( x) ( ax 1)( x 1) , (x 0) 解方程 f ' ( x) 2 1 x 0 得 x 1 1, x 2 a a 0时,只有 x 1 1 在定义域内 . a 0 时 , 比较两根要分三种情况: a 1,0 a 1, a 1 用所得的根将定义域分成几个不同的子区间,讨论 f ' ( x) 在每个子区间内的正负,求得 f (x) 的单调区间。

高考导数大题30道(2020年整理).doc

导数大题 1 .已知函数()b ax x x f ++=2 3的图象在点P (1,0)处的切线与直线03=+y x 平行? (1)求常数a 、b 的值; (2)求函数()x f 在区间[]t ,0上的最小值和最大值(0>t )? 2 .已知函数R a ax x x f ∈+-=,)( 3 (1)若)(x f 在),1[+∞上为单调减函数,求实数a 取值范围; (2)若,12=a 求)(x f 在[-3,0]上的最大值和最小值? 3 .设函数x e x x f 22 1)(=. (1)求函数)(x f 的单调区间; (2)若当]2,2[-∈x 时,不等式m x f <)(恒成立,求实数m 的取值范围. 4 .已知函数.),2,1()(3)(3 l P P x f y x x x f 作直线过点上一点及-=-= (1)求使直线)(x f y l =和相切且以P 为切点的直线方程; (2)求使直线)(x f y l =和相切且切点异于P 的直线方程)(x g y =?

()I 求()f x 的单调区间; ()II 若()f x 在1x =-处取得极大值,直线y=m 与()y f x =的图象有三个不同的交点,求m 的取值范围? 7 .已知函数2 ()ln f x a x bx =-图象上一点(2,(2))P f 处的切线方程为22ln 23++-=x y . (Ⅰ)求b a ,的值; (Ⅱ)若方程()f x m +=m 的取值范围(其中e 为自然对数的底数); 8 .已知函数21 2 ()()ln f x a x x =-+.(R a ∈) (1)当a =1时,求()f x 在区间[1,e ]上的最大值和最小值; (2)若在区间(1,+∞)上,函数()f x 的图象恒在直线2y ax =下方,求a 的取值范围。 10.已知函数2 ()sin 2(),()()2f x x b x b R F x f x =+-∈=+,且对于任意实数x ,恒有(5)(5)F x F x -=-? ⑴求函数)(x f 的解析式; ⑵已知函数()()2(1)ln g x f x x a x =+++在区间(0,1)上单调,求实数a 的取值范围; ⑶讨论函数21()ln(1)()2 h x x f x k =+- -零点的个数?

(完整版)专题05导数与函数的极值、最值—三年高考(2015-2017)数学(文)真题汇编.doc

1. 【 2016 高考四川文科】已知函数的极小值点,则=( ) (A)-4 (B) -2 (C)4 (D)2 【答案】 D 考点:函数导数与极值. 【名师点睛】本题考查函数的极值.在可导函数中函数的极值点是方程但是极大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在 的解,附近,如 果时,,时,则是极小值点,如果时,,时,,则是极大值点, 2. 【 2015 高考福建,文A.充分而不必要条 件12】“对任意 B.必要而不充分条件 ,”是“ C .充分必要条件 D ”的() .既不充分也不必 要条件 【答案】 B 【解析】当时,,构造函数,则 .故在单调递增,故,则;当时,不等式等价于,构造函数 ,则,故在递增,故 ”是“,则.综上 ”的必要不充分条件,选 所述,“ 对任 意B. ,

【考点定位】导数的应用. 【名师点睛】 本题以充分条件和必要条件为载体考查三角函数和导数在单调性上的应用, 根 据已知条件构造函数,进而研究其图象与性质,是函数思想的体现,属于难题. 3. (2014 课标全国Ⅰ,文 12) 已知函数 f ( x ) = ax 3 - 3 2 + 1,若 f ( ) 存在唯一的零点 x 0 ,且 x x x 0>0,则 a 的取值范围是 ( ) . A . (2 ,+∞ ) B . (1 ,+∞) C . ( -∞,- 2) D .( -∞,- 1) 答案: C 解析:当 a = 0 时, f ( x ) =- 3x 2+ 1 存在两个零点,不合题意; 当 a >0 时, f ′(x ) = 3ax 2- 6x = , 令 ′( ) = 0,得 x 1 = 0, , fx 所以 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一的零点,需 ,但这时零点 x 0 一定小于 0,不合题意; 当 a <0 时, f ′(x ) = 3ax 2- 6x = , 令 f ′(x ) = 0,得 x 1=0, ,这时 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一零点,应满足 ,解得 a <- 2( a > 2 舍去 ) ,且这时 零点 x 0 一定大于 0,满足题意,故 a 的取值范围是 ( -∞,- 2) . 名师点睛:本题考查导数法求函数的单调性与极值,函数的零点,考查分析转化能力,分类讨论思想, 较难题 . 注意区别函数的零点与极值点 . 4. 【 2014 辽宁文 12】当 时,不等式 恒成立,则实数 a 的取 值范围是()

高考真题汇编(函数与导数)

函数与导数 1.【2018年浙江卷】函数y=sin2x的图象可能是 A. B. C. D. 【答案】D 点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复. 2.【2018年理天津卷】已知,,,则a,b,c的大小关系为 A. B. C. D. 【答案】D 【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:,,,据此可得:.本题选择D选项.

点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 3.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 【答案】C 详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C. 点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果. 4.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为 A. B. C. D.

近五年高考试题分类汇编-导数部分(附答案解析)

2018年全国高考试题分类汇编-导数部分(含解析) 1.(2018·全国卷I 高考理科·T5)同(2018·全国卷I 高考文科·T6)设函数f (x )=x3+(a -1)x2+ax.若f (x )为奇函数,则曲线y=f (x )在点(0,0)处的切线方程为( ) A.y=-2x B.y=-x C.y=2x D.y=x 2.(2018·全国卷II 高考理科·T13)曲线y=2ln(x+1)在点(0,0)处的切线方程为 3.(2018·全国卷II 高考文科·T13)曲线y=2lnx 在点(1,0)处的切线方程为 4.(2018·全国Ⅲ高考理科·T14)曲线y=(ax +1)ex 在点(0,1)处的切线的斜率为-2,则a= . 5.(2018·天津高考文科·T10)已知函数f(x)=exlnx,f ′(x)为f(x)的导函数,则f ′(1)的值为 . 6.(2018·全国卷I 高考理科·T16)已知函数f (x )=2sinx+sin2x,则f (x )的最小值是 . 7.(2017·全国乙卷文科·T14)曲线y=x 2 + 1 x 在点(1,2)处的切线方程为 . 8.(2017·全国甲卷理科·T11)若x=-2是函数f (x )=(2x +ax-1)1x e -的极值点,则f (x )的极小值为 ( ) A.-1 B.-23e - C.53e - D.1 9.(2017 10.(2017递增,则称f (x )A.f (x )=2-x 11.(2017数a 12.(2017则称f (x )具有M ①f (x )=2-x ;②f (x

13.(2017·全国乙卷理科·T16)如图,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O.D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3 )的最大值为 . 14.(2017·天津高考文科·T10)已知a ∈R ,设函数f (x )=ax-lnx 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为 . 15.(2016·全国卷Ⅰ高考文科·T12)若函数f (x )=x-1 3 sin2x+asinx 在(-∞,+∞)上单调递增,则a 的取值范围是( ) A.[-1,1] B.11,3 ? ? -?? ?? C.11,33??- ???? D.11,3? ? --???? 16.(2016·四川高考理科·T9)设直线l 1,l 2分别是函数f (x )=lnx,0x 1,lnx,x 1, ?-<?图象上点P 1,P 2处的 切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是( ) A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞) 17.(2016·四川高考文科·T6)已知a 为函数f (x )=x 3 -12x 的极小值点,则a=( ) A.-4 B.-2 C.4 D.2 18.(2016·四川高考文科·T10)设直线l 1,l 2分别是函数f (x )=lnx,0x 1,lnx,x 1, ?-<?图象上点P 1,P 2处的切线,l 1 与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 ( ) A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞) 19.(2016·山东高考文科·T10)同(2016·山东高考理科·T10) 若函数y=f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f (x )具有T 性质.下列函数中具有T 性质的是 ( ) A.y=sinx B.y=lnx C.y=e x D.y=x 3 20.(2016·全国卷Ⅱ理科·T16)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b= .

2019年高考文科数学导数及其应用分类汇编

导数及其应用 1.【2019年高考全国Ⅱ卷文数】曲线y =2sin x +cos x 在点(π,-1)处的切线方程为 A .10x y --π-= B .2210x y --π-= C .2210x y +-π+= D .10x y +-π+= 【答案】C 【解析】2cos sin ,y x x '=-π2cos πsin π2,x y =∴=-=-' 则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=. 故选C . 2.【2019年高考全国Ⅲ卷文数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==, D .1e a -=,1b =- 【答案】D 【解析】∵e ln 1,x y a x '=++ ∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D . 3.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),03 2x x f x x a x ax x 0 C .a >–1,b <0 D .a >–1,b >0 【答案】C 【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x , 则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣b x 3 (a +1)x 2+ax ﹣ax ﹣b x 3 (a +1)x 2﹣b ,

高考文科数学专题复习导数训练题(汇编)

高考文科数学专题复习导数训练题(文) 一、考点回顾和基础知识 1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容.考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义. 2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题.选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用. 3.应用导数解决实际问题,关键是建立适当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极值,而此时不用和端点值进行比较,也可以得知这就是最值. 2.导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即 )(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注:①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 3.求导数的四则运算法则: ''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=?+++=? ''''''')()(cv cv v c cv u v vu uv =+=?+=(c 为常数)

2015高考复习专题五 函数与导数 含近年高考试题

2015专题五:函数与导数 在解题中常用的有关结论(需要熟记): (1)曲线()y f x =在0x x =处的切线的斜率等于0()f x ',切线方程为000()()()y f x x x f x '=-+ (2)若可导函数()y f x =在0x x =处取得极值,则0()0f x '=。反之,不成立。 (3)对于可导函数()f x ,不等式()f x '0>0<()的解集决定函数()f x 的递增(减)区间。 (4)函数()f x 在区间I 上递增(减)的充要条件是:x I ?∈()f x '0≥(0)≤恒成立 (5)函数()f x 在区间I 上不单调等价于()f x 在区间I 上有极值,则可等价转化为方程 ()0f x '=在区间I 上有实根且为非二重根。 (若()f x '为二次函数且I=R ,则有0?>)。 (6)()f x 在区间I 上无极值等价于()f x 在区间在上是单调函数,进而得到()f x '0≥或 ()f x '0≤在I 上恒成立 (7)若x I ?∈,()f x 0>恒成立,则min ()f x 0>; 若x I ?∈,()f x 0<恒成立,则max ()f x 0< (8)若0x I ?∈,使得0()f x 0>,则max ()f x 0>;若0x I ?∈,使得0()f x 0<,则min ()f x 0<. (9)设()f x 与()g x 的定义域的交集为D 若x ?∈D ()()f x g x >恒成立则有[]min ()()0f x g x -> (10)若对11x I ?∈、22x I ∈,12()()f x g x >恒成立,则min max ()()f x g x >. 若对11x I ?∈,22x I ?∈,使得12()()f x g x >,则min min ()()f x g x >. 若对11x I ?∈,22x I ?∈,使得12()()f x g x <,则max max ()()f x g x <. (11)已知()f x 在区间1I 上的值域为A,,()g x 在区间2I 上值域为B , 若对11x I ?∈,22x I ?∈,使得1()f x =2()g x 成立,则A B ?。 (12)若三次函数f(x)有三个零点,则方程()0f x '=有两个不等实根12x x 、,且极大值大 于0,极小值小于0. (13)证题中常用的不等式: ① ln 1(0)x x x ≤->② ln +1(1)x x x ≤>-()③ 1x e x ≥+ ④ 1x e x -≥-⑤ ln 1 (1)12 x x x x -<>+⑥ 22 ln 11(0)22x x x x <->

相关文档
最新文档