2020年高考试题分类汇编(函数与导数)
函数与导数例高考题汇编(含答案)

函数与导数高考题1.(安徽理3)设f(x)是定义在R 上的奇函数,当x≤0时,f(x)=2x'-x,则f()=(A)-3 (B)- 1 (C)1 (D)3【答案】A【命题意图】本题考查函数的奇偶性,考查函数值的求法 .属容易题.【解析】f()= - f( - 1)= - 42( - 1)²- ( - 1)]= - 3 .故选A.2 . (安徽理10)函数f (x )=ax ”g 1- x )“在区 间〔0,1〕上的图像如图所示,则m ,n 的值可 能 是(A)m=1,n=1(B) m=1,n=2(C) m=2,n=1(D) m=3,n=1【答案】B 【命题意图】本题考查导数在研究 函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【 解 析 】 代 入 验 证 , 当m = 1 , n = 2 , f ( x ) = a x g ( 1 - x ) ² = n ( x ³ - 2 x ² + x ) ,则f ' ( x ) = a ( 3 x ² - 4 x + 1 ) , 由 ,结合图像可知函数应在递增,在 递减,即在, 知 a 存 在 . 故 选 B .3.(安徽文5)若点(a,b)在y=lgx 图像上,a≠1,则下列点也在此图像上的是(A)(,b) (B)(10a,1 b) (C)(,b+1) (D)(a2,2b)【答案】D 【命题意图】本题考查对数函数的基本运算,考查对数函数的图像与对应点的关系 .【 解 析 】 由 题 意b = 1 g a , 2 b = 2 1 l g a = 1 g a ² , 即( a ² , 2 b )也 在 函 数 y = l g x 图 像 上 .4 . (安徽文10) 函数f(x )=ax ”g (1 - . x )² 在区间(0,1)上的 图像如图所示,则n 可能是 (A)1 (B) 2取得最大值,由f'(x)=a(3x²-4x+1)=0可知,(C) 3 (D)4【答案】A【命题意图】本题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【解析】代入验证,当7=1时,f(x)=axg(1-x)²=a(x³-2x²+x),则f(x)=a(3r²-4x+1)由f ( x ) = a ( 3 x ² 4 x + 1 ) = 0 可知,,结合图像可知函数应在递增,在递减,即在取得最大值,由, 知a 存在. 故选A .7 . (福建理5) 等于A.1B.e- 1C. CD.e+1【答案】C8 . (福建理9 )对于函数f ( x ) = a s i n x + b x + c (其中,a , b ∈R , c ∈Z ) ,选取a , b , C 的一组值计算f ( )和f ( - 1 )所得出的正确结果一定不可能是A . 4和6B . 3和1C . 2和4D . 1和2【答案】D9 . ( 福建理1 0 ) 已知函数f ( x ) = e⁴+ x , 对于曲线y = f ( x ) 上横坐标成等差数列的三个点A , B , c , 给出以下判断:①△ABC 一定是钝角三角形②△ABC可能是直角三角形③△ABC可能是等腰三角形④△ABC不可能是等腰三角形其中,正确的判断是A.①③B.①④C.②③D.②④【答案】B10.(福建文6)若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m的取值范围是A.(- 1,1)B.(-2,2)C.(-o,-2)U(2,+o)D.(-o,- 1)U(1,+c)【答案】C11. (福建文8)已知函数 ,若f(a)+f(1)=0,则实数a的值等于A. 3B. 1C. 1D. 3【答案】A12.(福建文10)若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于A.2B.3C. 6D. 9【答案】D13.(广东理4)设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是A . f(x)+1g(x)是偶函数B . f(x) - 1g(x)是奇函数c.if(x)\+g(x)是偶函数 D . i f ( x ) - g ( x )是奇函数【答案】A【解析】因为g(x)是R 上的奇函数,所以lg(x)是R 上的偶函数,从而f(x)+1g(x)是偶函数,故选A.14 . (广东文4)函 的定义域是 ( )A.(-~,- 1)B.(1,+~) c.(- 1,1)U(1,+oo) D.(-0,+oo)【答案】C16.(湖北理6)已知定义在R 上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a¹-a ⁴+2(a>0,且a≠1),若g(2)=a,则f(2)=A.2B.C.D. a² 【答案】B【解析】由条件f(2)+g(2)=a²-a²+2,f(-2)+g(-2)=a²-a²+2, 即-f(2)+g(2)=a²-a²+2, 由此解得g(2)=2,f(2)=a²-a-所 以 a = 2 ,, 所 以 选 B18 . (湖南文7)曲线主点处的切线的斜率为( )A. B. 2 C. D. 【答案】B【解析】19.(湖南文8)已知函数f(x)=e¹-1,g(x)=-x²+4x -3.若有f(a)=g(b),则b 的取值范围为A.[2-√2,2+√2]B.(2-√2.2+√2)c.[1,3] p.(1,3)【答案】B【解析】由题可知f(x)=e ⁴- 1>- 1,g(x)=-x²+4x-3=-(x-2)²+1≤1,若有f(a)=g(b),则g(b) ∈(- 1,1), 即-b²+4b-3>- 1,解得2-√Z<b<2+√2., 所 以,y=020 . (湖南理6)由直线 与曲线y=COSX 所围成的封闭图形的面积为( )A.2B.1C.D.√3 【答案】D【解析】由定积分知识可得, 故 选 D 。
高考数学压轴专题2020-2021备战高考《函数与导数》真题汇编含答案

数学《函数与导数》高考知识点一、选择题1.函数()2log ,0,2,0,x x x f x x ⎧>=⎨≤⎩则函数()()()2384g x f x f x =-+的零点个数是( )A .5B .4C .3D .6【答案】A 【解析】 【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数. 【详解】 函数()()()2384g x f x f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0xx x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x f x f x =-+有5个零点,故选:A. 【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.2.给出下列说法: ①“tan 1x =”是“4x π=”的充分不必要条件;②定义在[],a b 上的偶函数2()(5)f x x a x b =+++的最大值为30; ③命题“0001,2x x x ∃∈+≥R ”的否定形式是“1,2x x x∀∈+>R ”.其中错误说法的个数为( ) A .0 B .1C .2D .3【答案】C 【解析】 【分析】利用充分条件与必要条件的定义判断①;利用函数奇偶性的性质以及二次函数的性质判断②;利用特称命题的否定判断③,进而可得结果. 【详解】 对于①,当4x π=时,一定有tan 1x =,但是当tan 1x =时,,4x k k ππ=+∈Z ,所以“tan 1x =”是“4x π=”的必要不充分条件,所以①不正确;对于②,因为()f x 为偶函数,所以5a =-.因为定义域[],a b 关于原点对称,所以5b =,所以函数2()5,[5,5]f x x x =+∈-的最大值为()()5530f f -==,所以②正确;对于③,命题“0001,2x x x ∃∈+≥R ”的否定形式是“1,2x x x∀∈+<R ”,所以③不正确; 故错误说法的个数为2. 故选:C. 【点睛】本题考查了特称命题的否定、充分条件与必要条件,考查了函数奇偶性的性质,同时考查了二次函数的性质,属于中档题..3.已知全集U =R ,函数()ln 1y x =-的定义域为M ,集合{}2|0?N x x x =-<,则下列结论正确的是 A .M N N =I B .()U M N =∅I ð C .M N U =U D .()U M N ⊆ð【答案】A 【解析】 【分析】求函数定义域得集合M ,N 后,再判断. 【详解】由题意{|1}M x x =<,{|01}N x x =<<,∴M N N =I . 故选A . 【点睛】本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代4.已知函数()32f x x x x a =--+,若曲线()y f x =与x 轴有三个不同交点,则实数a的取值范围为( ) A .11,27⎛⎫-∞- ⎪⎝⎭B .()1,+?C .5,127⎛⎫-⎪⎝⎭D .11,127⎛⎫-⎪⎝⎭【答案】C 【解析】 【分析】根据曲线()y f x =与x 轴有三个不同交点,可转化为函数()32g x x x x =-++与y a =的图象有三个不同的交点,即可求出实数a 的取值范围. 【详解】Q 函数()32f x x x x a =--+与x 轴有三个不同交点,可转化为函数()32g x x x x =-++与y a =的图象有三个不同的交点.又()2321(31)(1)g x x x x x '=-++=-+-Q ,∴在1,,(1,)3⎛⎫-∞-+∞ ⎪⎝⎭上,()0g x '<;在1,13⎛⎫- ⎪⎝⎭上,()0g x '>.∴()15327g x g ⎛⎫=-=- ⎪⎝⎭极小值,()()11g x g ==极大值,5127a ∴-<<. 故选:C 【点睛】本题考查函数的零点及导数与极值的应用,考查了转化思想和数形结合思想,属于中档题.5.在二项式26()2a x x+的展开式中,其常数项是15.如下图所示,阴影部分是由曲线2y x =和圆22x y a +=及x 轴围成的封闭图形,则封闭图形的面积为( )A .146π+B .146π- C .4π D .16【解析】 【分析】用二项式定理得到中间项系数,解得a ,然后利用定积分求阴影部分的面积. 【详解】(x 2+a 2x )6展开式中,由通项公式可得122r 162rr r ra T C x x --+⎛⎫= ⎪⎝⎭, 令12﹣3r =0,可得r =4,即常数项为4462a C ⎛⎫ ⎪⎝⎭,可得4462a C ⎛⎫ ⎪⎝⎭=15,解得a =2.曲线y =x 2和圆x 2+y 2=2的在第一象限的交点为(1,1)所以阴影部分的面积为()1223100111-x-x |442346dx x x πππ⎛⎫=--=- ⎪⎝⎭⎰. 故选:B 【点睛】本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.6.已知函数f (x )=(k +4k )lnx +24x x-,k ∈[4,+∞),曲线y =f (x )上总存在两点M (x 1,y 1),N (x 2,y 2),使曲线y =f (x )在M ,N 两点处的切线互相平行,则x 1+x 2的取值范围为A .(85,+∞) B .(165,+∞) C .[85,+∞) D .[165,+∞) 【答案】B 【解析】 【分析】利用过M 、N 点处的切线互相平行,建立方程,结合基本不等式,再求最值,即可求x 1+x 2的取值范围. 【详解】 由题得f′(x )=4k k x +﹣24x ﹣1=﹣2244x k x k x ⎛⎫-++ ⎪⎝⎭=﹣()24x k x k x ⎛⎫-- ⎪⎝⎭,(x >0,k >0)由题意,可得f′(x 1)=f′(x 2)(x 1,x 2>0,且x 1≠x 2),即21144k k x x +-﹣1=24k k x +﹣224x ﹣1,化简得4(x 1+x 2)=(k+4k)x 1x 2,而x 1x 2<212()2x x +, 4(x 1+x 2)<(k+4k )212()2x x +, 即x 1+x 2>164k k+对k ∈[4,+∞)恒成立, 令g (k )=k+4k, 则g′(k )=1﹣24k =()()222k k k+->0对k ∈[4,+∞)恒成立, ∴g (k )≥g (4)=5, ∴164k k+≤165, ∴x 1+x 2>165, 故x 1+x 2的取值范围为(165,+∞). 故答案为B 【点睛】本题运用导数可以解决曲线的切线问题,函数的单调性、极值与最值,正确求导是我们解题的关键,属于中档题.7.曲线2y x =与直线y x =所围成的封闭图形的面积为( ) A .16B .13C .12D .56【答案】A 【解析】曲线2y x =与直线y x =的交点坐标为()()0,0,1,1 ,由定积分的几何意义可得曲线2y x=与直线y x =所围成的封闭图形的面积为()1223100111|236x x dx x x ⎛⎫-=-= ⎪⎝⎭⎰ ,故选A.8.已知函数()2f x x x =+,且()1231lnlog 223a f b f c f -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,,,则a b c ,,的大小关系为( ) A .a c b << B .b c a <<C .c a b <<D .b a c <<【答案】A 【解析】 【分析】由函数()2f x x x =+,可得()()f x f x -=,得到函数()f x 为偶函数,图象关于y 轴对称,又由由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数()f x 在(,0)-∞上为单调递减函数,再根据对数函数的性质,结合图象,即可求解.【详解】由题意,函数()2f x x x =+,满足()()22()f x x x x x f x -=-+-=+=,所以函数()f x 为定义域上的偶函数,图象关于y 轴对称,又当0x ≥时,()2f x x x =+,由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数()f x 在(,0)-∞上为单调递减函数,又由31ln 22<=,113222log log 1<=-,1122-=,根据对称性,可得11323(ln )(2)(log )2f f f -<<,即a c b <<,故选A .【点睛】本题主要考查了函数的奇偶性和单调性的应用,其中解答中得到函数的单调性与奇偶性,以及熟练应用对数函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.9.已知函数f (x )(x ∈R )满足f (x )=f (2−x ),若函数 y=|x 2−2x−3|与y=f (x )图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑A .0B .mC .2mD .4m【答案】B 【解析】试题分析:因为2(),23y f x y x x ==--的图像都关于1x =对称,所以它们图像的交点也关于1x =对称,当m 为偶数时,其和为22mm ⨯=;当m 为奇数时,其和为1212m m -⨯+=,因此选B. 【考点】 函数图像的对称性 【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+.10.设奇函数()f x 在[]11-,上为增函数,且()11f =,若[]11x ∃∈-,,使[]11a ∀∈-,,不等式()221f x t at ≤--成立,则t 的取值范围是( )A .22t -≤≤B .1122t -≤≤ C .2t ≥或2t ≤-或0t = D .12t ≥或12t ≤-或0t =【答案】C 【解析】 【分析】()f x 在[]11x ∈-,上为增函数,[]11x ∃∈-,,使[]11a ∀∈-,,不等式()221f x t at ≤--成立,只需对于[]11a ∀∈-,,()2121f t at -≤--即可.【详解】∵奇函数()f x 在[]11x ∈-,上为增函数,且()11f =, ∴函数在[]11x ∈-,上的最小值为()()111f f -=-=-,又∵[]11x ∃∈-,,使[]11a ∀∈-,,不等式()221f x t at ≤--成立,∴()22111t at f --≥-=-,即220t at -≥, ①0t =时,不等式成立;②0t >时,()2220t at t t a -=-≥恒成立,从而2t a ≥,解得2t ≥;③0t <时,()2220t at t t a -=-≥恒成立,从而2t a ≤,解得2t ≤-故选:C. 【点睛】本题考查了含参数不等式恒成立问题,需要将不等式问题转化为函数最值问题,考查了理解辨析能力、运算求解能力和分类讨论思想,是中档题.11.若函数321()1232b f x x x bx ⎛⎫=-++ ⎪⎝⎭在区间[3,1]-上不是单调函数,则函数()f x 在R 上的极小值为( ).A .423b -B .3223b - C .0D .2316b b -【答案】A 【解析】 【分析】求出函数的导数,根据函数的单调性,求出b 的范围,从而求出函数的单调区间,得到(2)f 是函数的极小值即可.【详解】解:2()(2)2()(2)f x x b x b x b x '=-++=--, ∵函数()f x 在区间[3,1]-上不是单调函数,31b ∴-<<,由()0f x '>,解得:2x >或x b <, 由()0f x '<,解得:2b x <<,()f x ∴的极小值为()84(2)424233f b b b =-++=-,故选:A.【点睛】本题考查了函数的单调性、极值问题,考查导数的应用,是一道中档题.12.三个数0.377,0.3,ln 0.3a b c ===大小的顺序是( ) A .a c b >> B .a b c >>C .b a c >>D .c a b >>【答案】B 【解析】试题分析:根据指数函数和对数函数的单调性知:0.30771a =>=,即1a >;7000.30.31b <=<=,即01b <<;ln0.3ln10c =<=,即0c <;所以a b c >>,故正确答案为选项B .考点:指数函数和对数函数的单调性;间接比较法.13.已知函数()f x 的导函数为()f x '且满足()()21ln f x x f x '=⋅+,则1f e ⎛⎫'= ⎪⎝⎭( ) A .12e- B .2e - C .1-D .e【答案】B 【解析】 【分析】对函数求导得到导函数,代入1x =可求得()11f '=-,从而得到()f x ',代入1x e=求得结果. 【详解】由题意得:()()121f x f x''=+令1x =得:()()1211f f ''=+,解得:()11f '=-()12f x x '∴=-+12f e e ⎛⎫'∴=- ⎪⎝⎭本题正确选项:B 【点睛】本题考查导数值的求解,关键是能够通过赋值的方式求得()1f ',易错点是忽略()1f '为常数,导致求导错误.14.已知定义在R 上的奇函数()y f x =满足()()80f x f x ++=,且()55f =,则()()20192024f f +=( )A .-5B .5C .0D .4043【答案】B 【解析】 【分析】根据(8)()0f x f x ++=得函数的周期为16,结合()55f =,(0)0f =即可求解. 【详解】由(8)()0f x f x ++=,得(8)()f x f x +=-,所以(16)(8)()f x f x f x +=-+=.故函数()y f x =是以16为周期的周期函数. 又在(8)()0f x f x ++=中,令0x =,得(8)(0)0f f +=, 且奇函数()y f x =是定义在R 上的函数,所以(0)0f =.故(8)0f =.故(2024)(161268)(8)0f f f =⨯+==. 又在(8)()0f x f x ++=中,令3x =-,得(5)(3)0f f +-=.得(5)(3)(3)5f f f =--==,则(2019)(161263)(3)5f f f =⨯+==. 所以(2019)(2024)5f f +=. 故选:B. 【点睛】此题考查根据函数的周期性求抽象函数的函数值,关键在于根据函数关系准确得出函数周期,结合定义在R 上的奇函数的特征求值.15.已知函数()2cos f x x x =-,若15log 3a f ⎛⎫= ⎪⎝⎭,31log 5b f ⎛⎫= ⎪⎝⎭,315c f ⎛⎫⎛⎫ ⎪ ⎪ ⎝⎭⎝⎭=⎪,则( ) A .a b c >> B .b a c >>C .c b a >>D .c a b >>【答案】B 【解析】【分析】判断()f x 为偶函数,利用导数得出()f x 在()0,π上单调递增,由对数函数的性质,结合函数()f x 的单调性和奇偶性,即可得出答案. 【详解】()()()()22cos cos f x x x x x f x -=---=-=,故()f x 为偶函数故只需考虑()0,x ∈+∞的单调性即可.()'2sin f x x x =+,当()0,x π∈时,易得()'0f x >故()f x 在()0,π上单调递增,()155log 3log 3a f f ⎛⎫== ⎪⎝⎭,()331log log 55b f f ⎛⎫== ⎪⎝⎭,由函数单调性可知()()3531log 3log 55f f f ⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭,即c a b << 故选:B 【点睛】本题主要考查了利用函数的奇偶性以及单调性比较大小,属于中档题.16.若定义在R 上的偶函数()f x 满足()()20f x f x +-=.当[]0,1x ∈,()21f x x =-,则( )A .()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭B .()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭ C .()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪⎪⎝⎭⎝⎭D .()2135log 3log 22f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭【答案】A 【解析】 【分析】推导出函数()y f x =的周期为4,根据题意计算出51022f f ⎛⎫⎛⎫=-< ⎪ ⎪⎝⎭⎝⎭,()224log 3log 03f f ⎛⎫=-< ⎪⎝⎭,()133log 2log 20f f ⎛⎫=> ⎪⎝⎭,再利用函数()y f x =在区间[]0,1上的单调性可得出结论. 【详解】因为定义在R 上的偶函数()y f x =满足()()20f x f x +-=,即()()20f x f x +-=,即()()2f x f x =--,()()()24f x f x f x ∴=--=-,所以,函数()y f x =的周期为4,因为当[]0,1x ∈时,()21f x x =-单调递减, 因为5110222f f f ⎛⎫⎛⎫⎛⎫=--=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()224log 3log 03f f ⎛⎫=-< ⎪⎝⎭, ()()1333log 2log 2log 20f f f ⎛⎫=-=> ⎪⎝⎭, 因为2410log 132<<<,所以241log 32f f ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭, 所以,12314log 2log 23f f f ⎛⎫⎛⎫⎛⎫>->- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭, 故选:A .【点睛】本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键,属于中等题.17.下列求导运算正确的是( )A .()cos sin x x '=B .()1ln 2x x '=C .()333log x x e '=D .()22x x x e xe '= 【答案】B【解析】分析:利用基本初等函数的导数公式、导数的运算法则对给出的四种运算逐一验证,即可得到正确答案.详解:()'cos sin x x =-,A 不正确;()'11ln222x x x =⨯= ,B 正确;()'33ln3x x =,C 不正确;()'222x x x x e xe x e =+,D 不正确,故选B.点睛:本题主要考查基本初等函数的导数公式、导数的运算法以及简单的复合函数求导法则,属于基础题.18.已知函数f (x )=2x -1,()2cos 2,0?2,0a x x g x x a x +≥⎧=⎨+<⎩(a ∈R ),若对任意x 1∈[1,+∞),总存在x 2∈R ,使f (x 1)=g (x 2),则实数a 的取值范围是() A .1,2⎛⎫-∞ ⎪⎝⎭ B .2,3⎛⎫+∞ ⎪⎝⎭ C .[]1,1,22⎛⎫-∞ ⎪⎝⎭U D .371,,224⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦U 【答案】C【解析】【分析】对a 分a=0,a <0和a >0讨论,a >0时分两种情况讨论,比较两个函数的值域的关系,即得实数a 的取值范围.【详解】当a =0时,函数f (x )=2x -1的值域为[1,+∞),函数()g x 的值域为[0,++∞),满足题意. 当a <0时,y =22(0)x a x +<的值域为(2a ,+∞), y =()cos 20a x x +≥的值域为[a +2,-a +2], 因为a +2-2a =2-a >0,所以a +2>2a ,所以此时函数g (x )的值域为(2a ,+∞),由题得2a <1,即a <12,即a <0. 当a >0时,y =22(0)x a x +<的值域为(2a ,+∞),y =()cos 20a x x +≥的值域为[-a +2,a +2],当a ≥23时,-a +2≤2a ,由题得21,1222a a a a-+≤⎧∴≤≤⎨+≥⎩. 当0<a <23时,-a +2>2a ,由题得2a <1,所以a <12.所以0<a <12. 综合得a 的范围为a <12或1≤a ≤2, 故选C .【点睛】本题主要考查函数的图象和性质,考查指数函数和三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.设123log 2,ln 2,5a b c -===则A .a b c <<B .b c a <<C .c a b <<D .c b a << 【答案】C【解析】【分析】由ln 2ln 2ln 3a b =<=及311log ,22a c >==<=可比较大小. 【详解】∵2031a ln ln =>,>,∴ln 2ln 2ln 3a b =<=,即a b <.又3311log 2log ,22a c =>==<=.∴a c >.综上可知:c a b << 故选C.【点睛】本题主要考查了指数与对数的运算性质及对数函数的单调性比较大小,属于中档题.20.函数2ln x xy x =的图象大致是( )A .B .C .D .【答案】D【解析】【分析】根据函数为偶函数排除B ,当0x >时,利用导数得()f x 在1(0,)e 上递减,在1(,)e+∞上递增,根据单调性分析,A C 不正确,故只能选D .【详解】 令2ln ||()||x x f x x =,则2()ln ||()()||x x f x f x x ---==-, 所以函数()f x 为偶函数,其图像关于y 轴对称,故B 不正确,当0x >时,2ln ()ln x x f x x x x==,()1ln f x x '=+, 由()0f x '>,得1x e >,由()0f x '<,得10x e<<, 所以()f x 在1(0,)e上递减,在1(,)e +∞上递增,结合图像分析,,A C 不正确.故选:D【点睛】 本题考查了利用函数的奇偶性判断函数的图象,考查了利用导数研究函数的单调性,利用单调性判断函数的图象,属于中档题.。
2020年高考数学 大题专项练习 导数与函数 二(15题含答案解析)

2020年高考数学 大题专项练习导数与函数 二1.已知函数f(x)=e x-12x 2-ax 有两个极值点x 1,x 2(e 为自然对数的底数).(1)求实数a 的取值范围; (2)求证:f(x 1)+f(x 2)>2.2.设函数f(x)=lnx-0.5ax 2-bx.(1)当a=b=0.5时,求f(x)的最大值; (2)令,其图像上任意一点P(x 0,y 0)处切线的斜率k ≤0.5恒成立,求实数a 的取值范围.3.已知函数f(x)=e x-(x+a)ln(x+a)+x,(x ∈R).(1)当a=1时,求函数f(x)的图像在x=0处的切线方程; (2)若函数f(x)在定义域上为单调递增函数, ①求a 的最大整数;②证明:4.已知函数f(x)=kx3+3(k﹣1)x2﹣k2+1在x=0,x=4处取得极值.(1)求常数k的值;(2)求函数f(x)的单调区间与极值;(3)设g(x)=f(x)+c,且∀x∈[﹣1,2],g(x)≥2c+1恒成立,求c的取值范围.5. (1)已知函数f(x)=x3+bx2+cx+d的单调减区间为[-1,2],求b,c的值.(2)设f(x)=ax3+x恰好有三个单调区间,求实数a的取值范围.6.已知函数f (x )=+x 在x=1处的切线方程为2x ﹣y+b=0.(Ⅰ)求实数a ,b 的值;(Ⅱ)设函数g (x )=f (x )+x 2﹣kx ,且g (x )在其定义域上存在单调递减区间(即g /(x )<0在其定义域上有解),求实数k 的取值范围.7.已知f(x)=12x 2-a 2ln x ,a>0.(1)若f(x)≥0,求a 的取值范围;(2)若f(x 1)=f(x 2),且x 1≠x 2,证明:x 1+x 2>2a.8.若函数f(x)+g(x)和f(x)·g(x)同时在x=t 处取得极小值,则称f(x)和g(x)为一对“P(t)函数”.(1)试判断f(x)=x 与g(x)=x 2+ax+b 是否是一对“P(1)函数”; (2)若f(x)=e x 与g(x)=x 2+ax+1是一对“P(t)函数”. ①求a 和t 的值;②若a <0,若对于任意x ∈ [1,+∞),恒有f(x)+g(x)<m ·f(x)g(x),求实数m 的取值范围.9.已知函数f(x)=ae x-ln x -1.(1)设x=2是f(x)的极值点,求a ,并求f(x)的单调区间;(2)证明:当a≥1e时,f (x)≥0.10.已知函数f(x)=x-1-alnx(其中a 为参数).(1) 求函数f(x)的单调区间;(2) 若对任意x ∈(0,+∞)都有f(x)≥0成立,求实数a 的取值集合;(3) 证明:⎝⎛⎭⎫1+1n n <e<⎝⎛⎭⎫1+1n n +1(其中n ∈N *,e 为自然对数的底数).11.已知函数.(1)若a=e ,求函数f(x)的极值;(2)若函数f(x)有两个零点,求实数a 的取值范围.12.设函数f(x)=e 2x-aln x.(1)讨论f(x)的导函数f′(x)零点的个数;(2)证明:当a>0时,f (x)≥2a+aln 2a.13.已知函数在处的切线与轴平行,()(1)试讨论在上的单调性;(2)①设,求的最小值;②证明:.14.已知函数①若函数f(x)在定义域内单调递增,求的取值范围; ②若且关于x 的方程在[1,4]上恰有两个不相等的实数根,求实数b取值范围;③设各项为正的数列满足:求证:.15.设函数f(x)=x2e x-1+ax3+bx2,已知x=-2和x=1为f(x)的极值点.(1)求a和b的值.(2)设试比较f(x)与g(x)的大小.答案解析1.解:(1)∵f(x)=e x -12x 2-ax ,∴f′(x)=e x-x -a .设g(x)=e x -x -a ,则g′(x)=e x-1.令g′(x)=e x-1=0,解得x=0.∴当x ∈(-∞,0)时,g′(x)<0,函数g(x)单调递减; 当x ∈(0,+∞)时,g′(x)>0,函数g(x)单调递增. ∴g(x)min =g(0)=1-a .当a≤1时,f′(x)=g(x)≥0,函数f(x)单调递增,无极值点; 当a>1时,g(0)=1-a<0,且当x→+∞时,g(x)→+∞; 当x→-∞时,g(x)→+∞.∴当a>1时,f′(x)=g(x)=e x-x -a 有两个零点x 1,x 2. 不妨设x 1<x 2,则x 1<0<x 2.∴函数f(x)有两个极值点时,实数a 的取值范围是(1,+∞). (2)证明:由(1)知,x 1,x 2为g(x)=0的两个实数根, x 1<0<x 2,且g(x)在(-∞,0)上单调递减. 下面先证x 1<-x 2<0,只需证g(-x 2)<0. ∵g(x 2)=ex2-x 2-a=0,得a=ex2-x 2,∴g(-x 2)=e -x2+x 2-a=e -x2-ex2+2x 2.设h(x)=e -x -e x +2x(x>0),则h′(x)=-1ex -e x+2<0,∴h(x)在(0,+∞)上单调递减,∴h(x)<h(0)=0,∴g(-x 2)<0,即x 1<-x 2<0.∵函数f(x)在(x 1,0)上单调递减,∴f(x 1)>f(-x 2),∴要证f(x 1)+f(x 2)>2,只需证f(-x 2)+f(x 2)>2,即证ex2+e -x2-x 22-2>0.设函数k(x)=e x +e -x -x 2-2(x>0),则k′(x)=e x -e -x-2x .设φ(x)=k′(x)=e x -e -x -2x ,φ′(x)=e x +e -x-2>0,∴φ(x)在(0,+∞)上单调递增,∴φ(x)>φ(0)=0,即k′(x)>0, ∴k(x)在(0,+∞)上单调递增,k(x)>k(0)=0,∴当x ∈(0,+∞)时,e x +e -x -x 2-2>0,则ex2+e -x 2-x 22-2>0,∴f(-x 2)+f(x 2)>2,∴f(x 1)+f(x 2)>2.2.解:3.解:4.解:5.解:(1)∵函数f(x)的导函数f′(x)=3x2+2bx+c,由题设知-1<x<2是不等式3x2+2bx+c<0的解集.∴-1,2是方程3x2+2bx+c=0的两个实根,∴-1+2=-23b,(-1)×2=c3,即b=-1.5,c=-6.(2)∵f′(x)=3ax2+1,且f(x)有三个单调区间,∴方程f′(x)=3ax2+1=0有两个不等的实根,∴Δ=02-4×1×3a>0,∴a<0.∴a的取值范围为(-∞,0).6.7.解:(1)f′(x)=x-a 2x =x +a x -ax(x>0).当x ∈(0,a)时,f′(x)<0,f(x)单调递减; 当x ∈(a ,+∞)时,f′(x)>0,f(x)单调递增.当x=a 时,f(x)取最小值f(a)=12a 2-a 2ln a.令12a 2-a 2ln a≥0,解得0<a< e. 故a 的取值范围是(0,e].(2)证明:由(1)知,f(x)在(0,a)上单调递减,在(a ,+∞)上单调递增, 不失一般性,设0<x 1<a<x 2<2a ,则2a-x 2<a.要证x 1+x 2>2a ,即x 1>2a-x 2,则只需证f(x 1)<f(2a-x 2). 因为f(x 1)=f(x 2),则只需证f(x 2)<f(2a-x 2). 设g(x)=f(x)-f(2a-x),a≤x≤2a.则g′(x)=x-a 2x +2a-x-a 22a -x =-2a a -x2x 2a -x≤0,所以g(x)在[a,2a)上单调递减,从而g(x)≤g(a)=0. 又a<x 2<2a ,于是g(x 2)=f(x 2)-f(2a-x 2)<0, 即f(x 2)<f(2a-x 2). 因此x 1+x 2>2a.8.解:9.解:(1)f(x)的定义域为(0,+∞),f ′(x)=ae x-1x.由题设知,f ′(2)=0,所以a=12e2.从而f(x)=12e 2e x -ln x -1,f ′(x)=12e 2e x -1x.当0<x <2时,f ′(x)<0;当x >2时,f ′(x)>0. 所以f(x)在(0,2)单调递减,在(2,+∞)单调递增.(2)证明:当a≥1e 时,f (x)≥exe -ln x -1.设g(x)=e x e -ln x -1,则g′(x)=e x e -1x.当0<x <1时,g ′(x)<0;当x >1时,g ′(x)>0.所以x=1是g(x)的最小值点. 故当x >0时,g (x)≥g(1)=0.因此,当a≥1e时,f (x)≥0.10.解:(1) f ′(x)=1-a x =x -ax(x>0),当a ≤0时,f ′(x)=1-a x =x -ax>0,所以f(x)在(0,+∞)上是增函数;当a>0时,所以f(x)的增区间是(a ,+∞),减区间是(0,a).综上所述, 当a ≤0时,f(x)的单调递增区间是(0,+∞);当a>0时,f(x)的单调递增区间是(a ,+∞),单调递减区间是(0,a). (2) 由题意得f(x)min ≥0.当a ≤0时,由(1)知f(x)在(0,+∞)上是增函数, 当x →0时,f(x)→-∞,故不合题意;(6分)当a>0时,由(1)知f(x)min =f(a)=a-1-alna ≥0.令g(a)=a-1-alna , 则由g ′(a)=-lna=0,得a=1,所以g(a)=a-1-alna ≤0,又f(x)min =f(a)=a-1-alna ≥0,所以a-1-alna=0, 所以a=1,即实数a 的取值集合是{1}.(10分)(3) 要证不等式1+1n n <e<1+1nn +1,两边取对数后,只要证nln1+1n <1<(n +1)ln1+1n ,即只要证1n +1<ln1+1n <1n,令x=1+1n ,则只要证1-1x<lnx<x-1(1<x ≤2).由(1)知当a=1时,f(x)=x-1-lnx 在(1,2]上递增, 因此f(x)>f(1),即x-1-lnx>0,所以lnx<x-1(1<x ≤2)令φ(x)=lnx +1x -1(1<x ≤2),则φ′(x)=x -1x2>0,所以φ(x)在(1,2]上递增,故φ(x)>φ(1),即lnx +1x -1>0,所以1-1x<lnx(1<x ≤2).综上,原命题得证.11.解:12.解:(1)f(x)的定义域为(0,+∞),f′(x)=2e 2x-a x(x >0).当a≤0时,f ′(x)>0,f ′(x)没有零点;当a >0时,设u(x)=e 2x,v(x)=-a x,因为u(x)=e 2x在(0,+∞)上单调递增,v(x)=-a x在(0,+∞)上单调递增,所以f′(x)在(0,+∞)上单调递增.又f′(a)>0,当b 满足0<b <a 4且b <14时,f ′(b)<0,故当a >0时,f ′(x)存在唯一零点.(2)证明:由(1)可设f′(x)在(0,+∞)上的唯一零点为x 0, 当x∈(0,x 0)时,f ′(x)<0;当x∈(x 0,+∞)时,f ′(x)>0. 故f(x)在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, 所以当x=x 0时,f(x)取得最小值,最小值为f(x 0).由于2e2x 0-a x 0=0,所以f(x 0)=a 2x 0+2ax 0+aln 2a ≥2a +aln 2a.故当a >0时,f (x)≥2a+aln 2a.13.14.解:15.解:。
2020年全国各地高考数学试题分类汇编2 函数 文

2020年全国各地高考文科数学试题分类汇编2:函数一、选择题1 .(2020年高考重庆卷(文))函数21log (2)y x =-的定义域为( )A .(,2)-∞B .(2,)+∞C .(2,3)(3,)+∞UD .(2,4)(4,)+∞U【答案】C2 .(2020年高考重庆卷(文))已知函数3()sin 4(,)f x ax b x a b R =++∈,2(lg(log 10))5f =,则(lg(lg 2))f =( )A .5-B .1-C .3D .4【答案】C3 .(2020年高考大纲卷(文))函数()()()-121log 10=f x x f x x ⎛⎫=+> ⎪⎝⎭的反函数 ( )A .()1021x x >- B .()1021xx ≠- C .()21x x R -∈ D .()210x x -> 【答案】A4 .(2020年高考辽宁卷(文))已知函数())()21ln1931,.lg 2lg 2f x x x f f ⎛⎫=+++=⎪⎝⎭则( )A .1-B .0C .1D .2【答案】D5 .(2020年高考天津卷(文))设函数22,()ln )3(x x g x x x x f e +-=+-=. 若实数a , b 满足()0,()0f a g b ==,则( )A .()0()g a f b <<B .()0()f b g a <<C .0()()g a f b <<D .()()0f b g a <<【答案】A6 .(2020年高考陕西卷(文))设全集为R , 函数()1f x x =-M , 则C M R 为 ( )A .(-∞,1)B .(1, + ∞)C .(,1]-∞D .[1,)+∞【答案】B7 .(2020年上海高考数学试题(文科))函数()()211f x x x =-≥的反函数为()1fx -,则()12f -的值是( )A 3B .3C .12D .12-【答案】A 8 .(2020年高考湖北卷(文))x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为( )A .奇函数B .偶函数C .增函数D .周期函数【答案】D9 .(2020年高考四川卷(文))设函数()x f x e x a =+-(a R ∈,e 为自然对数的底数).若存在[0,1]b ∈使(())f f b b =成立,则a 的取值范围是( )A .[1,]eB .[1,1]e +C .[,1]e e +D .[0,1]【答案】A10.(2020年高考辽宁卷(文))已知函数()()()()222222,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则A B -=( )A .2216a a --B .2216a a +-C .16-D .16【答案】C 11.(2020年高考北京卷(文))下列函数中,既是偶函数又在区间(0,+ ∞)上单调递减的是 ( )A .1y x=B .x y e-=C .21y x =-+D .lg ||y x =【答案】C12.(2020年高考福建卷(文))函数)1ln()(2+=x x f 的图象大致是( )A .B .C .D .【答案】A13.(2020年高考浙江卷(文))已知a.b.c ∈R,函数f(x)=ax 2+bx+c .若f(0)=f(4)>f(1),则 ( )A .a>0,4a+b=0B .a<0,4a+b=0C .a>0,2a+b=0D .a<0,2a+b=0【答案】A 14.(2020年高考山东卷(文))已知函数)(x f 为奇函数,且当0>x 时,xx x f 1)(2+=,则=-)1(f( )A .2B .1C .0D .-2【答案】D15.(2020年高考广东卷(文))函数lg(1)()1x f x x +=-的定义域是( )A .(1,)-+∞B .[1,)-+∞C .(1,1)(1,)-+∞UD .[1,1)(1,)-+∞U【答案】C 16.(2020年高考陕西卷(文))设a , b , c 均为不等于1的正实数, 则下列等式中恒成立的是 ( )A .·log log log a c c b a b =B .·log lo log g a a a b a b =C .()log ?l g o lo g a a a b c bc =D .()log g og o l l a a a b b c c +=+【答案】B17.(2020年高考山东卷(文))函数1()123xf x x =-++的定义域为 ( )A .(-3,0]B .(-3,1]C .(,3)(3,0]-∞--UD .(,3)(3,1]-∞--U【答案】A 18.(2020年高考天津卷(文))已知函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞单调递增. 若实数a满足212(log )(log )2(1)f a f f a ≤+, 则a 的取值范围是( )A .[1,2]B .10,2⎛⎤⎥⎝⎦C .1,22⎡⎤⎢⎥⎣⎦D .(0,2]【答案】C19.(2020年高考湖南(文))函数f(x)=㏑x 的图像与函数g(x)=x 2-4x+4的图像的交点个数为______( ) A .0 B .1 C .2 D .3 【答案】C20.(2020年高考课标Ⅰ卷(文))已知函数22,0,()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-【答案】D;21.(2020年高考陕西卷(文))设[x ]表示不大于x 的最大整数, 则对任意实数x , y , 有 ( )A .[-x ] = -[x ]B .[x + 12] = [x ] C .[2x ] = 2[x ]D .1[][][2]2x x x ++=【答案】D22.(2020年高考安徽(文))函数()y f x =的图像如图所示,在区间[],a b 上可找到(2)n n ≥个不同的数12,,,n x x x L ,使得1212()()()n nf x f x f x x x x ===L ,则n 的取值范围为 ( )A .{}2,3B .{}2,3,4C .{}3,4D .{}3,4,5【答案】B 23.(2020年高考湖北卷(文))小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶. 与以上事件吻合得最好的图象是【答案】C 24.(2020年高考湖南(文))已知f(x)是奇函数,g(x)是偶函数,且f(-1)+g(1)=2,f(1)+g(-1)=4,则g(1)等于____ ( ) A .4 B .3 C .2 D .1 【答案】B 二、填空题25.(2020年高考安徽(文))定义在R 上的函数()f x 满足(1)2()f x f x +=.若当01x ≤≤时.()(1)f x x x =-,则当10x -≤≤时,()f x =________________.距学校的距离距学校的距离距学校的距离时间时间时间时间OOOO距学校的距离【答案】(1)()2x x f x +=-26.(2020年高考大纲卷(文))设()[)()21,3=f x x f x ∈是以为周期的函数,且当时,____________.【答案】-127.(2020年高考北京卷(文))函数f(x)=12log ,12,1x x x x ≥⎧⎪⎨⎪<⎩的值域为_________.【答案】(-∞,2)28.(2020年高考安徽(文))函数21ln(1)1y x x=++-的定义域为_____________.【答案】(]0,129.(2020年高考浙江卷(文))已知函数f(x)=x-1 若f(a)=3,则实数a= ____________.【答案】1030.(2020年高考福建卷(文))已知函数⎪⎩⎪⎨⎧<≤-<=20,tan 0,2)(3πx x x x x f ,则=))4((πf f ________ 【答案】2- .31.(2020年高考四川卷(文))lg 5lg 20+的值是___________.【答案】132.(2020年上海高考数学试题(文科))方程91331xx+=-的实数解为_______. 【答案】3log 4 三、解答题33.(2020年高考江西卷(文))设函数1,0()1(1),11x x a af x x a x a⎧≤≤⎪⎪=⎨⎪-<≤⎪-⎩ a 为 常数且a ∈(0,1).(1) 当a=12时,求f(f(13)); (2) 若x 0满足f(f(x 0))= x 0,但f(x 0)≠x 0,则称x 0为f(x)的二阶周期点,证明函数()f x 有且仅有两个二阶周期点,并求二阶周期点x 1,x 2;(3) 对于(2)中x 1,x 2,设A(x 1,f(f(x 1))),B(x 2,f(f(x 2))),C(a 2,0),记△ABC 的面积为s(a),求s(a)在区间[13,12]上的最大值和最小值. 【答案】解:(1)当12a=时,121222(),(())()2(1)333333f f f f ==-==(2222221,01(),(1)2)(())1(),1(1)1(1),11(1)x x a a a x a x a a a f f x x a a x a a a x a a x a a ⎧≤≤⎪⎪⎪-<≤⎪-⎪=⎨⎪-<<-+-⎪⎪⎪--+≤≤⎪-⎩当20x a ≤≤时,由21x x a=解得x=0,由于f(0)=0,故x=0不是f(x)的二阶周期点; 当2a x a <≤时由1()(1)a x x a a -=-解得21ax a a =-++2(,),a a ∈ 因222211()1111a a af a a a a a a a a a =•=≠-++-++-++-++ 故21ax a a =-++是f(x)的二阶周期点; 当21a x a a <<-+时,由21()(1)x a x a -=-解得12x a=-2(,1)a a a ∈-+ 因1111()(1)2122f a a a a =•-=----故12x a=-不是f(x)的二阶周期点; 当211a a x -+≤≤时,1(1)(1)x x a a -=-解得211x a a =-++ 2(1,1)a a ∈-+因22221111()(1)11111a f a a a a a a a a a =•-=≠-++--++-++-++ 故211x a a =-++是f(x)的二阶周期点.因此,函数()f x 有且仅有两个二阶周期点,121a x a a =-++,2211x a a =-++. (3)由(2)得222211(,),(,)1111a a A B a a a a a a a a -++-++-++-++则2322221(1)1(222)(),()212(1)a a a a a a s a s a a a a a ---+'=•=•-++-++ 因为a 在[13,12]内,故()0s a '>,则11()[]32s a 在区间,上单调递增, 故111111()[]32333220s a 在区间,上最小值为s()=,最大值为s()=34.(2020年高考安徽(文))设函数22()(1)f x ax a x =-+,其中0a >,区间{}|()0I x f x =>.(Ⅰ)求I 的长度(注:区间(,)αβ的长度定义为βα-;(Ⅱ)给定常数()0,1k ∈,当11k a k -≤≤+时,求I 长度的最小值.【答案】解:(1)令2()-10f x x a a x ⎡⎤=+=⎣⎦()解得 10x = 221ax a =+ 2|01a I x x a ⎧⎫∴=<<⎨⎬+⎩⎭ I ∴的长度212-1a x x a=+ (2) ()0,1k ∈ 则0112k a k <-≤≤+< 由 (1)21aI a =+ 2221'0(1)a I a -=>+,则01a << 故I 关于a 在(1,1)k -上单调递增,在(1,1)k +上单调递减.()1221-1-2211-k kI k kk ==+++ 22111kI k +=++()min21-22kI k k =++。
高考数学压轴专题2020-2021备战高考《函数与导数》分类汇编及答案

【最新】高考数学《函数与导数》专题解析一、选择题1.已知定义在R 上的函数()f x 满足(2)(2)f x f x +=-,且当2x >时,()()2()x f x f x f x ''⋅+>,若(1)1f =.则不等式1()2f x x <-的解集是( ) A .(2,3) B .(,1)-∞C .()(1,2)2,3⋃D .()(,1)3,-∞⋃+∞【答案】C 【解析】 【分析】令()|2|()F x x f x =-,当2x >时,则()(2)()F x x f x =-,利用导数可得当2x >时,()F x 单调递增,根据题意可得()F x 的图象关于2x =对称,不等式1()|2|f x x <-等价于|2|()1(2)x f x x -<≠,从而()(1)F x F <,利用对称性可得|2||12|x -<-,解不等式即可. 【详解】当2x >时,()()2()x f x f x f x ''⋅+>,∴(2)()()0x f x f x '-+>, 令()|2|()F x x f x =-.当2x >时,则()(2)()F x x f x =-,()(2)()()0F x x f x f x ''=-+>, 即当2x >时,()F x 单调递增. 函数()f x 满足(2)(2)f x f x +=-,所以(2)(2)F x F x +=-,即()F x 的图象关于2x =对称, 不等式1()|2|f x x <-等价于|2|()1(2)x f x x -<≠, (1)|12|(1)(1)1F f f =-==,即()(1)F x F <,所以|2||12|x -<-,解得13x <<且2x ≠,解集为(1,2)(2,3)U . 故选:C 【点睛】本题考查了导数在解不等式中的应用、函数的对称性的应用以及绝对值不等式的解法,属于中档题.2.设复数z a bi =+(i 为虚数单位,,a b ∈R ),若,a b 满足关系式2a b t =-,且z 在复平面上的轨迹经过三个象限,则t 的取值范围是( ) A .[0,1] B .[1,1]-C .(0,1)(1,)⋃+∞D .(1,)-+∞【答案】C 【解析】 【分析】首先根据复数的几何意义得到z 的轨迹方程2x y t =-,再根据指数函数的图象,得到关于t 的不等式,求解.【详解】由复数的几何意义可知,设复数对应的复平面内的点为(),x y ,2ax a y b t=⎧⎨==-⎩ ,即2xy t =- , 因为z 在复平面上的轨迹经过三个象限, 则当0x =时,11t -< 且10t -≠ , 解得0t >且1t ≠ ,即t 的取值范围是()()0,11,+∞U . 故选:C 【点睛】本题考查复数的几何意义,以及轨迹方程,函数图象,重点考查数形结合分析问题的能力,属于基础题型.3.36ax ⎛⎫- ⎪ ⎪⎝⎭的展开式中,第三项的系数为1,则11a dx x =⎰( ) A .2ln 2 B .ln 2 C .2 D .1【答案】A 【解析】 【分析】首先根据二项式定理求出a ,把a 的值带入11adx x⎰即可求出结果. 【详解】解题分析根据二项式36ax ⎛- ⎝⎭的展开式的通项公式得221213()4aT C ax x +⎛== ⎝⎭. Q 第三项的系数为1,1,44aa ∴=∴=,则4411111d d ln 2ln 2a x x x x x ===⎰⎰.故选:A 【点睛】本题考查二项式定理及定积分. 需要记住二项式定理展开公式:1C k n k kk n T a b -+=.属于中等题.4.给出下列说法:①“tan 1x =”是“4x π=”的充分不必要条件;②定义在[],a b 上的偶函数2()(5)f x x a x b =+++的最大值为30; ③命题“0001,2x x x ∃∈+≥R ”的否定形式是“1,2x x x ∀∈+>R ”. 其中错误说法的个数为( ) A .0 B .1C .2D .3【答案】C 【解析】 【分析】利用充分条件与必要条件的定义判断①;利用函数奇偶性的性质以及二次函数的性质判断②;利用特称命题的否定判断③,进而可得结果. 【详解】 对于①,当4x π=时,一定有tan 1x =,但是当tan 1x =时,,4x k k ππ=+∈Z ,所以“tan 1x =”是“4x π=”的必要不充分条件,所以①不正确;对于②,因为()f x 为偶函数,所以5a =-.因为定义域[],a b 关于原点对称,所以5b =,所以函数2()5,[5,5]f x x x =+∈-的最大值为()()5530f f -==,所以②正确;对于③,命题“0001,2x x x ∃∈+≥R ”的否定形式是“1,2x x x∀∈+<R ”,所以③不正确; 故错误说法的个数为2. 故选:C. 【点睛】本题考查了特称命题的否定、充分条件与必要条件,考查了函数奇偶性的性质,同时考查了二次函数的性质,属于中档题..5.设定义在(0,)+∞的函数()f x 的导函数为()f x ',且满足()()3f x f x x'->,则关于x 的不等式31(3)(3)03x f x f ⎛⎫---< ⎪⎝⎭的解集为( )A .()3,6B .()0,3C .()0,6D .()6,+∞【答案】A 【解析】 【分析】根据条件,构造函数3()()g x x f x =,利用函数的单调性和导数之间的关系即可判断出该函数在(,0)-∞上为增函数,然后将所求不等式转化为对应函数值的关系,根据单调性得出自变量值的关系从而解出不等式即可. 【详解】解:Q 3(1)(3)(3)03x f x f ---<,3(3)(3)27x f x f ∴---(3)0<, 3(3)(3)27x f x f ∴--<(3),Q 定义在(0,)+∞的函数()f x ,3x ∴<,令3()()g x x f x =,∴不等式3(3)(3)27x f x f --<(3),即为(3)g x g -<(3),323()(())3()()g x x f x x f x x f x '='=+',Q()()3f x f x x'->, ()3()xf x f x ∴'>-, ()3()0xf x f x ∴'+>,32()3()0x f x x f x ∴+>,()0g x ∴'>, ()g x ∴单调递增,又因为由上可知(3)g x g -<(3), 33x ∴-<,3x <Q , 36x ∴<<.故选:A . 【点睛】本题主要考查不等式的解法:利用条件构造函数,利用函数单调性和导数之间的关系判断函数的单调性,属于中档题.6.已知函数()32f x x x x a =--+,若曲线()y f x =与x 轴有三个不同交点,则实数a的取值范围为( ) A .11,27⎛⎫-∞- ⎪⎝⎭B .()1,+?C .5,127⎛⎫-⎪⎝⎭D .11,127⎛⎫-⎪⎝⎭【答案】C 【解析】 【分析】根据曲线()y f x =与x 轴有三个不同交点,可转化为函数()32g x x x x =-++与y a =的图象有三个不同的交点,即可求出实数a 的取值范围. 【详解】Q 函数()32f x x x x a =--+与x 轴有三个不同交点,可转化为函数()32g x x x x =-++与y a =的图象有三个不同的交点.又()2321(31)(1)g x x x x x '=-++=-+-Q ,∴在1,,(1,)3⎛⎫-∞-+∞ ⎪⎝⎭上,()0g x '<;在1,13⎛⎫- ⎪⎝⎭上,()0g x '>.∴()15327g x g ⎛⎫=-=- ⎪⎝⎭极小值,()()11g x g ==极大值,5127a ∴-<<. 故选:C 【点睛】本题考查函数的零点及导数与极值的应用,考查了转化思想和数形结合思想,属于中档题.7.已知21()cos 4f x x x =+,'()f x 为()f x 的导函数,则'()f x 的图像是( ) A . B .C .D .【答案】A 【解析】Q ()21f cos 4x x x =+,()()1'sin ,'2f x x x y f x ∴=-=为奇函数,∴图象关于原点对称,排除,B D ,又()'10f <Q ,可排除C ,故选A.【方法点晴】本题通过对多个图象的选择主要考查考查函数的图象与性质,属于中档题. 这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.8.函数()xe f x x=的图象大致为( )A .B .C .D .【答案】B 【解析】函数()xe f x x=的定义域为(,0)(0,)-∞+∞U ,排除选项A ;当0x >时,()0f x >,且()2(1)'xx e f x x-= ,故当()0,1x ∈时,函数单调递减,当()1,x ∈+∞时,函数单调递增,排除选项C ;当0x <时,函数()0xe f x x=<,排除选项D ,选项B 正确.选B .点睛:函数图象的识别可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的周期性,判断图象的循环往复; (5)从函数的特征点,排除不合要求的图象.9.已知函数()lg f x x =,0a b >>,()()f a f b =,则22a b a b+-的最小值等于( ).A 5B .3C .23D .22【答案】D试题分析:因为函数()lg f x x =,0a b >>,()()f a f b = 所以lg lg a b =- 所以1a b=,即1ab =,0a b >>22a ba b+-22()2()22()a b ab a b a b a b a b a b -+-+===-+---≥=当且仅当2a b a b-=-,即a b -=时等号成立所以22a b a b +-的最下值为故答案选D考点:基本不等式.10.已知函数f (x )(x ∈R )满足f (x )=f (2−x ),若函数 y=|x 2−2x−3|与y=f (x )图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑A .0B .mC .2mD .4m【答案】B 【解析】试题分析:因为2(),23y f x y x x ==--的图像都关于1x =对称,所以它们图像的交点也关于1x =对称,当m 为偶数时,其和为22mm ⨯=;当m 为奇数时,其和为1212m m -⨯+=,因此选B. 【考点】 函数图像的对称性 【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+.11.已知函数()2f x x x =+,且()1231ln log 223a f b f c f -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,,,则a b c ,,的大小关系为( )A .a c b <<B .b c a <<C .c a b <<D .b a c <<【解析】 【分析】由函数()2f x x x =+,可得()()f x f x -=,得到函数()f x 为偶函数,图象关于y 轴对称,又由由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数()f x 在(,0)-∞上为单调递减函数,再根据对数函数的性质,结合图象,即可求解.【详解】由题意,函数()2f x x x =+,满足()()22()f x x x x x f x -=-+-=+=,所以函数()f x 为定义域上的偶函数,图象关于y 轴对称,又当0x ≥时,()2f x x x =+,由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数()f x 在(,0)-∞上为单调递减函数,又由31ln 22<=,113222log log 1<=-,1122-=,根据对称性,可得11323(ln )(2)(log )2f f f -<<,即a c b <<,故选A .【点睛】本题主要考查了函数的奇偶性和单调性的应用,其中解答中得到函数的单调性与奇偶性,以及熟练应用对数函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.12.在平面直角坐标系中,若P ,Q 满足条件:(1)P ,Q 都在函数f (x )的图象上;(2)P ,Q 两点关于直线y=x 对称,则称点对{P ,Q}是函数f(x)的一对“可交换点对”.({P ,Q}与{Q,P}看作同一“可交换点”.试问函数2232(0)(){log (0)x x x f x x x ++≤=>的“可交换点对有( )A .0对B .1对C .2对D .3对【答案】C 【解析】试题分析:设p (x ,y )是满足条件的“可交换点”,则对应的关于直线y=x 的对称点Q 是(y ,x ),所以232x x ++=2x ,由于函数y=232x x ++和y=2x 的图象由两个交点,因此满足条件的“可交换点对”有两个,故选C. 考点:函数的性质13.函数()||()af x x a R x=-∈的图象不可能是( )A .B .C .D .【答案】C 【解析】 【分析】变成分段函数后分段求导,通过对a 分类讨论,得到函数的单调性,根据单调性结合四个选项可得答案. 【详解】,0(),0a x x xf x a x x x ⎧->⎪⎪=⎨⎪--<⎪⎩,∴221,0()1,0a x x f x a x x ⎧+>⎪⎪=⎨⎪-+<⎩'⎪.(1)当0a =时,,0(),0x x f x x x >⎧=⎨-<⎩,图象为A;(2)当0a >时,210ax+>,∴()f x 在(0,)+∞上单调递增, 令210ax -+=得x a = ∴当x a <,210ax -+<,当0a x <<时,210ax-+>,∴()f x 在(,a -∞上单调递减,在(,0)a 上单调递增,图象为D; (3)当0a <时,210ax-+<,∴()f x 在(,0)-∞上单调递减, 令210ax +=得x a =- ∴当x a >-时,210ax +>,当0x a <<-,210ax+<,∴()f x 在(0,)a -上单调递减,在(,)a -+∞上单调递增,图象为B; 故选:C. 【点睛】本题考查了分段函数的图像的识别,考查了分类讨论思想,考查了利用导数研究函数的单调性,属于中档题.14.已知函数()ln xf x x=,则使ln ()()()f x g x a f x =-有2个零点的a 的取值范围( ) A .(0,1) B .10,e ⎛⎫ ⎪⎝⎭C .1,1e ⎛⎫ ⎪⎝⎭D .1,e ⎛⎫-∞ ⎪⎝⎭【答案】B 【解析】 【分析】 令()ln xt f x x==,利用导数研究其图象和值域,再将ln ()()()f x g x a f x =-有2个零点,转化为ln ta t=在[),e +∞上只有一解求解. 【详解】 令()ln x t f x x ==,当01x <<时,()0ln xt f x x==<, 当1x >时,()2ln 1()ln x t f x x -''==,当1x e <<时,0t '<,当x e >时,0t '>, 所以当x e =时,t 取得最小值e ,所以t e ≥, 如图所示:所以ln ()()()f x g x a f x =-有2个零点,转化为ln ta t=在[),e +∞上只有一解, 令ln t m t =,21ln 0t m t -'=≤,所以ln tm t=在[),e +∞上递减,所以10m e <≤, 所以10a e <≤,当1a e =时,x e =,只有一个零点,不合题意, 所以10a e<<故选:B【点睛】 本题主要考查导数与函数的零点,还考查了数形结合的思想和运算求解的能力,属于中档题.15.三个数0.377,0.3,ln 0.3a b c ===大小的顺序是( )A .a c b >>B .a b c >>C .b a c >>D .c a b >> 【答案】B【解析】试题分析:根据指数函数和对数函数的单调性知:0.30771a =>=,即1a >;7000.30.31b <=<=,即01b <<;ln0.3ln10c =<=,即0c <;所以a b c >>,故正确答案为选项B .考点:指数函数和对数函数的单调性;间接比较法.16.已知ln 3ln 4ln ,,34a b e c e===(e 是自然对数的底数),则,,a b c 的大小关系是( )A .c a b <<B .a c b <<C .b a c <<D .c b a << 【答案】C【解析】【分析】 根据ln 3ln 4ln ,,34a b e c e===的结构特点,令()ln x f x x =,求导()21ln x f x x -'=,可得()f x 在()0,e 上递增,在(),+e ∞上递减,再利用单调性求解. 【详解】令()ln x f x x=, 所以()21ln x f x x -'=, 当0x e <<时, ()0f x '>,当x e >时,()0f x '<,所以()f x 在()0,e 上递增,在(),+e ∞上递减.因为34e <<,所以 ()()()34>>f e f f ,即b a c <<.故选:C【点睛】本题主要考查导数与函数的单调性比较大小,还考查了推理论证的能力,属于中档题.17.已知函数()f x 为偶函数,当x <0时,2()ln()f x x x =--,则曲线()y f x =在x =1处的切线方程为( )A .x -y =0B .x -y -2=0C .x +y -2=0D .3x -y -2=0【答案】A【解析】【分析】先求出当0x >时,()f x 的解析式,再利用导数的几何意义计算即可得到答案.【详解】当0x >时,0x -<,2()ln f x x x -=-,又函数()f x 为偶函数,所以2()ln f x x x =-,(1)1f =,所以'1()2f x x x=-,'(1)1f =,故切线方程为11y x -=-,即y x =. 故选:A .【点睛】本题考查导数的几何意义,涉及到函数的奇偶性求对称区间的解析式,考查学生的数学运算能力,是一道中档题.18.若函数()f x 的定义域为R ,其导函数为()f x '.若()3f x '<恒成立,()20f -=,则()36f x x <+ 解集为( )A .(),2-∞-B .()2,2-C .(),2-∞D .()2,-+∞【答案】D【解析】【分析】设()()36g x f x x =--,求导后可得()g x 在R 上单调递减,再结合()20g -=即可得解.【详解】设()()36g x f x x =--, Q ()3f x '<,∴()()30g x f x ''=-<,∴()g x 在R 上单调递减,又()()22660g f -=-+-=,不等式()36f x x <+即()0g x <,∴2x >-,∴不等式()36f x x <+的解集为()2,-+∞.故选:D.【点睛】本题考查了导数的应用,关键是由题意构造出新函数,属于中档题.19.函数2ln x xy x =的图象大致是( )A .B .C .D .【答案】D【解析】【分析】根据函数为偶函数排除B ,当0x >时,利用导数得()f x 在1(0,)e上递减,在1(,)e +∞上递增,根据单调性分析,A C 不正确,故只能选D .【详解】令2ln ||()||x x f x x =,则2()ln ||()()||x x f x f x x ---==-, 所以函数()f x 为偶函数,其图像关于y 轴对称,故B 不正确,当0x >时,2ln ()ln x x f x x x x==,()1ln f x x '=+, 由()0f x '>,得1x e >,由()0f x '<,得10x e<<, 所以()f x 在1(0,)e上递减,在1(,)e +∞上递增, 结合图像分析,,A C 不正确.故选:D【点睛】本题考查了利用函数的奇偶性判断函数的图象,考查了利用导数研究函数的单调性,利用单调性判断函数的图象,属于中档题.20.设113000,,a b xdx c x dx ===⎰⎰,则,,a b c 的大小关系为( ) A .b c a >>B .b a c >>C .a c b >>D .a b c >>【答案】D【解析】根据微积分定理,3120022|33a x ⎛⎫=== ⎪⎝⎭,1210011|22b xdx x ⎛⎫=== ⎪⎝⎭⎰,13410011|44c x dx x ⎛⎫=== ⎪⎝⎭⎰,所以a b c >>,故选择D 。
2015-2020年新课标高考数学试卷分类汇编(6年真题)--导数(含解析)

2015-2020年新课标数学试卷分类汇编--导数一.选择题1.(2020•新课标Ⅰ)函数f(x)=x4﹣2x3的图象在点(1,f(1))处的切线方程为()A.y=﹣2x﹣1B.y=﹣2x+1C.y=2x﹣3D.y=2x+12.(2020•新课标Ⅲ)若直线l与曲线y=和圆x2+y2=都相切,则l的方程为()A.y=2x+1B.y=2x+C.y=x+1D.y=x+3.(2019•新课标Ⅱ)曲线y=2sin x+cos x在点(π,﹣1)处的切线方程为()A.x﹣y﹣π﹣1=0B.2x﹣y﹣2π﹣1=0C.2x+y﹣2π+1=0D.x+y﹣π+1=04.(2019•新课标Ⅲ)已知曲线y=ae x+xlnx在点(1,ae)处的切线方程为y=2x+b,则()A.a=e,b=﹣1B.a=e,b=1C.a=e﹣1,b=1D.a=e﹣1,b=﹣15.(2018•新课标Ⅰ)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f (x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(2017•新课标Ⅱ)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1B.﹣2e﹣3C.5e﹣3D.17.(2016•新课标Ⅰ)若函数f(x)=x﹣sin2x+a sin x在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]8.(2015•新课标Ⅰ)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)9.(2015•新课标Ⅱ)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x >0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)二.填空题1.(2020•新课标Ⅰ)曲线y=lnx+x+1的一条切线的斜率为2,则该切线的方程为.2.(2020•新课标Ⅲ)设函数f(x)=,若f′(1)=,则a=.3.(2019•新课标Ⅰ)曲线y=3(x2+x)e x在点(0,0)处的切线方程为.4.(2018•新课标Ⅱ)曲线y=2lnx在点(1,0)处的切线方程为.5.(2018•新课标Ⅰ)已知函数f(x)=2sin x+sin2x,则f(x)的最小值是.6.(2018•新课标Ⅲ)曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,则a=.7.(2018•新课标Ⅱ)曲线y=2ln(x+1)在点(0,0)处的切线方程为.8.(2017•新课标Ⅰ)曲线y=x2+在点(1,2)处的切线方程为.9.(2016•新课标Ⅲ)已知f(x)为偶函数,当x<0时,f(x)=ln(﹣x)+3x,则曲线y =f(x)在点(1,﹣3)处的切线方程是.10.(2016•新课标Ⅲ)已知f(x)为偶函数,当x≤0时,f(x)=e﹣x﹣1﹣x,则曲线y=f (x)在点(1,2)处的切线方程是.11.(2016•新课标Ⅱ)若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+1)的切线,则b=.12.(2015•新课标Ⅱ)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=.13.(2015•新课标Ⅰ)已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=.三.解答题1.(2020•新课标Ⅰ)已知函数f(x)=e x﹣a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.2.(2020•新课标Ⅲ)设函数f(x)=x3+bx+c,曲线y=f(x)在点(,f())处的切线与y轴垂直.(1)求b;(2)若f(x)有一个绝对值不大于1的零点,证明:f(x)所有零点的绝对值都不大于1.。
2020年高考数学(理)函数与导数 专题02 函数的基本性质(解析版)

函数与导数02函数函数的基本性质【考点讲解】一、具体目标:1.结合具体函数,了解函数奇偶性的含义.会用函数的图象理解和研究函数的奇偶性.2.理解函数的单调性及其几何意义.会用基本函数的图象分析函数的性质.3. 了解函数的周期性、最小正周期的含义,会判断、应用简单函数的周期性.二、知识概述:1.偶函数、奇函数的概念一般地,如果对函数f(x)的定义域内任意一个x,都有__f(-x)=f(x)__,那么函数f(x)就叫做偶函数.一般地,如果对于函数f(x)的定义域内任意一个x,都有__f(-x)=-f(x)__,那么函数f(x)就叫做奇函数.2.奇、偶函数的图象特征偶函数的图象关于__y轴__对称,奇函数的图象关于__原点__对称.3.函数奇偶性的常用结论(1)如果函数f(x)是偶函数,那么f(x)=f(|x|).(2)奇函数在两个对称的区间上具有相同的单调性,偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.4.判断函数的奇偶性的常用方法:(1)定义法一般地,对于较简单的函数解析式,可通过定义直接作出判断;对于较复杂的解析式,可先对其进行化简,再利用定义进行判断.利用定义判断函数奇偶性的步骤:(2)图象法:奇函数的图象关于原点成中心对称,偶函数的图象关于y 轴成轴对称.因此要证函数的图象关于原点对称,只需证明此函数是奇函数即可;要证函数的图象关于y 轴对称,只需证明此函数是偶函数即可.反之,也可利用函数图象的对称性去判断函数的奇偶性. (3)组合函数奇偶性的判定方法①两个奇(偶)函数的和、差还是奇(偶)函数,一奇一偶之和为非奇非偶函数.②奇偶性相同的两函数之积(商)为偶函数,奇偶性不同的两函数之积(商)(分母不为0)为奇函数. ③复合函数的奇偶性可概括为“同奇则奇,一偶则偶”. (4)分段函数的奇偶性判定分段函数应分段讨论,注意奇偶函数的整体性质,要避免分段下结1.已知函数的奇偶性求函数的解析式. 抓住奇偶性讨论函数在各个分区间上的解析式,或充分利用奇偶性产生关于()f x 的方程,从而可得()f x 的解析式.5.已知带有字母参数的函数的表达式及奇偶性求参数.常常采用待定系数法:利用()()0f x f x ±-=产生关于字母的恒等式,由系数的对等性可得知字母的值.6.奇偶性与单调性综合时要注意奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反. 7.增函数与减函数一般地,设函数f (x )的定义域为I ,(1)如果对于定义域I 内某个区间D 上的__任意两个__自变量的值x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是__增函数__.(2)如果对于定义域I 内某个区间D 上的__任意两个__自变量的值x 1,x 2,当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是__减函数__.8.单调性与单调区间如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)__单调性__,区间D 叫做y =f (x )的__单调区间__. 9.函数的最大值与最小值:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:(1)对于任意的x ∈I ,都有__f (x )≤M __;存在x 0∈I ,使得__f (x 0)=M __,那么,我们称M 是函数y =f (x )的最 大值.(2)对于任意的x ∈I ,都有__f (x )≥M __;存在x 0∈I ,使得__f (x 0)=M __,那么我们称M 是函数y =f (x )的最小值.10.函数单调性的常用结论11.对勾函数的单调性对勾函数y =x +ax (a >0)的递增区间为(-∞,-a ]和[a ,+∞);递减区间为[-a ,0)和(0,a ],且对勾函数为奇函数. 12.函数的周期性(1)对于函数f (x ),如果存在一个__非零常数__T ,使得当x 取定义域内的每一个值时,都有__f (x +T )=f (x )__,那么函数f (x )就叫做周期函数,T 叫做这个函数的周期.(2)如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的__最小__正周期. 13.函数周期性的常用结论: 对f (x )定义域内任一自变量x 的值: (1)若f (x +a )=-f (x ),则T =2a (a >0); (2)若f (x +a )=1f (x ),则T =2a (a >0); (3)若f (x +a )=-1f (x ),则T =2a (a >0).14.函数的对称性与周期性的关系(1)如果函数f (x )(x ∈D )在定义域内有两条对称轴x =a ,x =b (a <b ),则函数f (x )是周期函数,且周期T =2(b -a )(不一定是最小正周期,下同).(2)如果函数f (x )(x ∈D )在定义域内有两个对称中心A (a,0),B (b,0)(a <b ),那么函数f (x )是周期函数,且周期 T =2(b -a ).(3)如果函数f (x ),x ∈D 在定义域内有一条对称轴x =a 和一个对称中心B (b,0)(a ≠b ),那么函数f (x )是周期函数,且周期T =4|b -a |.注:对于(1)(2)(3)中的周期公式可仿照正、余弦函数的图象加强记忆.判断函数的周期只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T ,函数的周期性常与函数的其他性质综合命题.15.根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期.1.【2019年高考全国Ⅱ卷理数】已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.【解析】本题主要考查函数的奇偶性,对数的计算.由题意知()f x 是奇函数,且当0x <时,()e axf x =-,又因为ln 2(0,1)∈,(ln 2)8f =,所以ln 2e 8a --=-,两边取以e 为底数的对数,得ln 23ln 2a -=,所以3a -=,即3a =-.【答案】3-2.【2019优选题】已知()f x 是R 上的偶函数,且在[0,)+∞单调递增,若(3)f a f -<(4),则a 的取值范围为 .【解析】:()f x Q 是R 上的偶函数,且在[0,)+∞单调递增,∴不等式(3)f a f -<(4)等价为 (|3|)f a f -<(4),即|3|4a -<,即434a -<-<,得17a -<<,即实数a 的取值范围是17a -<<, 【真题分析】故答案为:17a -<< 【答案】17a -<<.3.【2017课标II 】已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+, 则(2)f = ________.【解析】本题考点奇函数的性质解决求函数值的问题. 法一:(2)(2)[2(8)4]12=--=-⨯-+=f f .法二:由题意可知函数()f x 是定义在R 上的奇函数,所以有()()()232x x x f x f +-=-=-,而因为()0,∞-∈x ,()∞+∈-,0x ,()232x x x f --=-所以有()⎪⎩⎪⎨⎧>-<+=0,20,22323x x x x x x x f ,()12222223=-⨯=f【答案】124. 【2017山东】已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈- 时,()6xf x -=,则f (919)= 【解析】由f (x +4)=f (x -2)可知,()()6=+f x f x 是周期函数,且6T =,所以(919)(66531)(1)f f f =⨯+=(1)6f =-=.【答案】65. 【2019年高考江苏】设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,()f x =(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 . 【解析】作出函数()f x ,()g x 的图象,如图:由图可知,函数2()1(1)f x x =--1()(12,34,56,78)2g x x x x x =-<≤<≤<≤<≤的图象仅有2个交点,即在区间(0,9]上,关于x 的方程()()f x g x =有2个不同的实数根,要使关于x 的方程()()f x g x =有8个不同的实数根,则2()1(1),(0,2]f x x x =--∈与()(2),(0,1]g x k x x =+∈的图象有2个不同的交点,由(1,0)到直线20kx y k -+=的距离为1211k =+,解得2(0)4k k =>, ∵两点(2,0),(1,1)-连线的斜率13k =,∴1234k ≤<,综上可知,满足()()f x g x =在(0,9]上有8个不同的实数根的k 的取值范围为123⎡⎢⎣⎭,. 【答案】123⎡⎢⎣⎭6.【2017山东理15】若函数()e x f x (e 2.71828=L 是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 .①()2x f x -=②()3x f x -=③()3f x x = ④()22f x x =+【解析】①()e =e e 22xx x xy f x -⎛⎫=⋅= ⎪⎝⎭在R 上单调递增,故()2x f x -=具有M 性质; ②()e =e e 33xx x x y f x -⎛⎫=⋅= ⎪⎝⎭在R 上单调递减,故()3xf x -=不具有M 性质;③()3=e e xxy f x x =⋅,令()3e xg x x =⋅,则()()322e e 3e3xxxg x x x x x '=⋅+⋅=+,所以当3x >-时,()0g x '>;当3x <-时,()0g x '<,所以()3=e e xxy f x x =⋅在(),3-∞-上单调递减,在()3,-+∞上单调递增,故()3f x x =不具有M 性质;④()()2=e e 2x x y f x x =+.令()()2e 2x g x x =+, 则()()()22e 2e 2e 110xx x g x xx x ⎡⎤'=++⋅=++>⎣⎦,所以()()2=e e 2x x y f x x =+在R 上单调递增,故()22f x x =+具有M 性质.综上所述,具有M 性质的函数的序号为①④.【答案】①④7.【2017天津理6】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为( ). A.a b c << B.c b a <<C.b a c <<D.b c a <<【解析】 因为奇函数()f x 在R 上增函数,所以当0x >时,()0f x >,从而()()g x xf x =是R 上的偶函数,且在(0,)+∞上是增函数.()()22log 5.1log 5.1a g g =-=,0.822<,又4 5.18<<,则22log 5.13<<,所以0.8202log 5.13<<<,于是()()()0.822log 5.13g g g <<,即b a c <<.故选C.【答案】C8.【2018新课标II 卷11】已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…( )A .50-B .0C .2D .50【解析】本题考点是函数的性质的具体应用,根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果. 由题意可知原函数的定义域为()∞+∞-,的奇函数,并且有()()x f x f +=-11,所以有()()()111--=-=+x f x f x f ,所以有()()()113-=+-=+x f x f x f ,即有()()4+=x f x f ,所以函数是以周期为4的周期函数.因此有()()()()()()()()[]()()2143211250321f f f f f f f f f f +++++=++++Λ.因为()()()()2413f f f f -=-=,,()()()()04321=+++f f f f ,由()()()113-=+-=+x f x f x f 可得()()()00112==+--=f f f从而()()()()()2150321==++++f f f f f Λ,选C .【答案】C9. .已知定义在错误!未找到引用源。
函数与导数例高考题汇编(含答案)

4k 2 1 1 1 1 ≤ ⇒− ≤k <0 [− ,0) f ( x) ≤ ∀ x ∈ ( 0 + ∞ ) e 2 e 时, k 的取值范围为 2 即 e 。 ,故对 , 都有
89.(北京文 18)已知函数 (II)求
f ( x ) = ( x − k ) ex
, (I)求
f ( x)
的单调区间;
′ 【解析】 代入验证,当 m = 1, n = 2 , f ( x) = axg(1− x) = n ( x − 2 x + x) ,则 f ( x) = a (3 x − 4 x +1) ,由
2 3 2 2
1 1 1 1 0, ,1 x1 = , x2 = 1 x= f ′( x ) = a (3x − 4 x +1) = 0 可知, 3 3 , 结合图像可知函数应在 3 递增, 在 3 递减, 即在
2x,
x>0
x+1,x≤0
,若 f(a)+f(1)=0,则实数 a 的值等于
A.-3 B.-1 C.1 D. 3 【答案】A 12.(福建文 10)若 a>0,b>0,且函数 f(x)=4x3-ax2-2bx+2 在 x=1 处有极值,则 ab 的最大值等于 A.2 B.3 C.6 D. 9 【答案】D 13.(广东理 4)设函数 f ( x ) 和 g(x)分别是 R 上的偶函数和奇函数,则下列结论恒成立的是 A. f ( x ) +|g(x)|是偶函数 C.| f ( x) | +g(x)是偶函数 【答案】A B. f ( x ) -|g(x)|是奇函数 D.| f ( x) |- g(x)是奇函数
7.(福建理 5) A.1 【答案】C
∫ 0 (e
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年高考试题分类汇编(函数与导数)
考法1函数的图像与性质
1.(2020·北京卷)函数1()ln 1
f x x x =
++的定义域是 . 2.(2020·天津卷)函数241x y x =+的图象大致为
3.(2020·天津卷)已知函数30()0
x x f x x x ⎧≥=⎨-<⎩,若函数2()()2g x f x kx x =--(k R ∈)恰有4个零点,则k 的取值范围是 A.1(,)(22,)2-∞-+∞ B.1(,)(0,22)2
-∞- C.(,0)(0,22)-∞ D.(,0)(22,)-∞+∞
4.(2020·北京卷)已知函数()21x f x x =--,则不等式()0f x >的解集是
A .(1,1)-
B .(,1)(1,)-∞+∞
C .(0,1)
D .(,0)(1,)-∞+∞
5.(2020·全国卷Ⅲ·文科)设函数()x e f x x a =+,若1(1)4
f =,则a = . 6.(2020·全国卷Ⅱ·理科)设函数()ln 21ln 21f x x x =+--,则()f
x
A .是偶函数,且在1(,)2+∞单调递增
B .是奇函数,且在11(,)22
-单调递减 C .是偶函数,且在1(,)2-∞-单调递增 D .是奇函数,且在1(,)2
-∞-单调递减 7.(2020·全国卷Ⅱ·文科)设函数331()f x x x
=-,则()f x A .是奇函数,且在(0,)+∞单调递增 B .是奇函数,且在(0,)+∞单调递减
C .是偶函数,且在(0,)+∞单调递增
D .是偶函数,且在(0,)+∞单调递减
8.(2020·全国卷Ⅱ·文理科)若2233x y x y ---<-,则
A .ln(1)0y x -+>
B .ln(1)0y x -+<
C .ln 0x y ->
D .ln 0x y -<
9.(2020·全国卷Ⅲ·理科)已知5458<,45138<.设5log 3a =,8log 5b =,13log 8c =,则
A .a b c <<
B .b a c <<
C .b c a <<
D .c a b <<
10.(2020·全国卷Ⅲ·文科)设3log 2a =,5log 3b =,23
c =,则 A .a c b << B .a b c << C .b c a << D .c a b <<
11.(2020·天津卷)设0.73a =,0.81()3
b -=,0.7log 0.8
c =,则a ,b ,c 的大小关系为
A.a b c <<
B.b a c <<
C.b c a <<
D.c a b <<
12.(2020·全国卷Ⅲ·理科)关于函数1()sin sin f x x x
=+有如下四个命题: ①()f x 的图像关于y 轴对称; ②()f x 的图像关于原点对称; ③()f x 的图像关于2x π
=轴对称; ④()f x 的最小值为2.
其中所有真命题的序号是 .
13.(2020·全国卷Ⅲ·文科)设函数1()sin sin f x x x
=+,则 A .()f x 有最小值为2 B .()f x 的图像关于y 轴对称
C .()f x 的图像关于x π=轴对称
D .()f x 的图像关于2x π=
轴对称
2.(2020·上海卷)已知3()f x x =,则1()f x -= .
14.(2020·山东卷)若定义在R 上奇函数()f x 在(,0)-∞单调递减,且(2)0f =,
则满足(1)0xf x -≥的x 的取值范围是
A .[1,1][3,)-+∞
B .[3,1][0,3]--
C .[1,0][1,)-+∞
D .[1,0][1,3]- 考法2函数与导数
1.(2020·全国卷Ⅰ·理科)函数43()2f x x x =-的图像在点(1,(1))f 处的切线方程为
A .21y x =--
B .21y x =-+
C .23y x =-
D .21y x =+
2.(2020·全国卷Ⅰ·文科)曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为 .
3.(2020·北京卷)已知函数2()12f x x =-.
(Ⅰ)求曲线()y f x =的斜率等于2-的切线方程;
(Ⅱ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值.
4.(2020·全国卷Ⅰ·理科)已知2()x f x e ax x =+-.
(Ⅰ)当1a =时,讨论()f x 的单调性;
(Ⅱ)当0x ≥时,31()12
f x x ≥+,求a 的取值范围. 5.(2020·全国卷Ⅰ·文科)已知()(2)x f x e a x =-+.
(Ⅰ)当1a =时,讨论()f x 的单调性;
(Ⅱ)若()f x 有两个零点,求a 的取值范围.
6.(2020·全国卷Ⅱ·理科)已知函数2()sin sin 2f x x x =.
(Ⅰ)讨论()f x 在区间(0,)π的单调性;
(Ⅱ)证明:()f x ≤; (Ⅲ)设n N *∈,证明:22223sin sin 2sin 4sin 24n
n
n x x x x ≤.
7.(2020·全国卷Ⅱ·理科)已知函数()2ln 1f x x =+. (Ⅰ)若()2f x x c ≤+,求c 的取值范围;
(Ⅱ)设0a >,讨论()()()f x f a g x x a
-=-的单调性. 8.(2020·全国卷Ⅲ·理科)设函数3()f x x bx c =++,曲线()y f x =在点11(,())22
f 处的切线与轴垂直. (Ⅰ)求b ;
(Ⅱ)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1.
9.(2020·全国卷Ⅲ·文科)已知函数32()f x x kx k =-+. (Ⅰ)讨论()f x 的单调性;
(Ⅱ)若()f x 有三个零点,求k 的取值范围.
10.(2020·山东卷)已知函数1()ln ln x f x ae x a -=-+. (Ⅰ)当a e =时,求曲线()y f x =在点(1,(1))f 处的切线与两坐标轴围成的三角形的面积;
(Ⅱ)若()1f x ≥,求a 的取值范围.
11.(2020·天津卷)已知函数3()ln f x x k x =+(k R ∈),()f x '为()f x 的导函数.
(Ⅰ)当6k =时,
(i )求曲线()y f x =在点(1,(1))f 处的切线方程; (ii )求函数9()()()g x f x f x x '=-+
的单调区间和极值; (Ⅱ)当3k -时,求证:对任意的1x ,2[1,)x ∈+∞,且12x x >,有 121212
()()()()2f x f x f x f x x x ''+->-. 12.(2020·浙江卷)已知12a <≤,函数()x f x e x a =--,其中 2.71828
e =为
自然对数的底数.
(Ⅰ)证明:函数()y f x =在(0)+∞,上有唯一零点; (Ⅱ)记0x 为函数()y f x =在(0)+∞,上的零点,证明:
0x ≤≤;
(ⅱ)00()(1)(1)x x f e e a a ≥--.
13.(2020·海南卷)已知函数1()ln ln x f x ae x a -=-+. (Ⅰ)当a e =时,求曲线()y f x =在点(1,(1))f 处的切线与两坐标轴围成的三角形的面积;
(Ⅱ)若()1f x ≥,求a 的取值范围.。