核壳乳液聚合
丙烯酸酯核壳乳液聚合工艺

丙烯酸酯核壳乳液聚合工艺哎呀,说起丙烯酸酯核壳乳液聚合工艺,这可真是个技术活儿,得慢慢道来。
你瞧,这工艺就像是做蛋糕,得一层一层来,不能急。
首先,咱们得准备原料,丙烯酸酯这玩意儿就像是蛋糕的面粉,是基础。
然后,核壳乳液聚合,这就像是给蛋糕加上奶油和糖霜,让蛋糕更加美味。
咱们先从核开始,核就是核心,是聚合反应的起点。
这核啊,得用乳化剂和水混合,形成乳液。
乳化剂就像是蛋糕里的泡打粉,能让蛋糕蓬松起来。
水呢,就是蛋糕里的液体,让蛋糕成型。
接下来,就是聚合反应了。
这聚合反应,就像是把面粉、糖、鸡蛋混合在一起,让它们变成一个整体。
在这个过程中,丙烯酸酯会和引发剂反应,形成聚合物。
引发剂就像是蛋糕里的酵母,让面团发酵,变得松软。
然后,就是形成壳的步骤了。
这壳啊,就像是给蛋糕加上一层巧克力涂层,让蛋糕更加诱人。
在聚合反应进行到一定程度后,我们会加入更多的丙烯酸酯,形成壳层。
这壳层能保护核,也能让乳液更加稳定。
最后,就是聚合反应的终止了。
这就像是把蛋糕从烤箱里拿出来,让它冷却。
聚合反应完成后,我们需要加入终止剂,让反应停止。
整个过程中,温度和时间的控制非常重要,就像是烤蛋糕时控制烤箱的温度和时间一样。
温度太高,蛋糕会烤焦;温度太低,蛋糕又烤不熟。
时间太短,蛋糕没熟透;时间太长,蛋糕又会烤过头。
所以,丙烯酸酯核壳乳液聚合工艺,就像是做蛋糕,需要细心和耐心。
每一步都不能马虎,才能做出好的产品。
这工艺虽然复杂,但只要掌握了技巧,就能做出高质量的乳液。
就像做蛋糕一样,虽然步骤多,但只要跟着食谱来,就能做出美味的蛋糕。
《核壳乳液聚合》课件

核壳乳液聚合的微观结构演变
微观结构表征
采用显微镜、光谱分析等 技术手段对核壳乳液聚合 过程中的微观结构进行观 察和表征。
结构演化机理
研究微观结构演变的机理 ,包括聚合物链的伸展、 相分离、相转变等过程。
结构与性能关系
探讨微观结构与乳液和聚 合物性能之间的关系,为 优化核壳乳液聚合提供理 论指导。
核壳乳液聚合的成核与生长过程
核壳乳液聚合的机理研究
核壳乳液聚合的动力学模型
01
02
03
聚合动力学模型
描述了核壳乳液聚合过程 中聚合物的形成速率和聚 合度随时间的变化规律。
反应动力学方程
根据聚合反应机理建立的 反应动力学方程,用于预 测聚合过程的动力学行为 。
动力学参数确定
通过实验测定和数值模拟 方法确定动力学模型中的 参数,以更好地描述聚合 过程。
高分子材料制备
01 02
高分子材料
核壳乳液聚合技术在高分子材料制备方面具有广泛应用,如合成橡胶、 塑料、纤维等。通过控制聚合过程和乳液结构,可以制备出具有优异性 能和功能的高分子材料。
聚合物共混物
核壳乳液聚合技术可以将两种或多种聚合物通过共混制备成具有优异性 能的聚合物共混物,如提高耐热性、增强机械性能、改善加工性能等。
03
CATALOGUE
核壳乳液聚合的影响因素
单体浓度
总结词
单体浓度是影响核壳乳液聚合的重要因素之一。
详细描述
在一定范围内,随着单体浓度的增加,聚合反应速率加快,粒子数目增多,粒径增大。但当单体浓度过高时,会 导致聚合物分子量降低,粒径分布变宽。因此,选择合适的单体浓度对于获得理想的核壳乳液聚合效果至关重要 。
化学反应介质
核壳共聚乳液聚合工艺的研究

核壳共聚乳液聚合工艺的研究嘿,朋友们!今天咱们来聊聊核壳共聚乳液聚合工艺,这就像是一场微观世界里的奇妙魔法秀呢!首先啊,核壳共聚乳液聚合工艺就像是在做超级精细的蛋糕。
核就像是蛋糕中间那最精华、最甜美的夹心部分,而壳呢,就如同包裹着夹心的松软蛋糕体。
这个核的制作,就好比是精心挑选最上等的原料,在聚合反应的初期,先构建出这个核心部分。
这时候的反应条件啊,就像厨师小心翼翼控制着烤箱温度一样,得精确到不能有一丝差错,不然这“核蛋糕”可就做砸啦。
然后呢,壳的形成过程。
这就像是给精心打造的“核蛋糕”穿上一件漂亮又合身的外衣。
要把各种单体慢慢添加进去,就像给衣服一针一线地缝上精美的装饰。
而且啊,这个过程得慢慢来,要是太着急了,就好比是给蛋糕裹上一层厚厚的泥巴,那可就全毁了。
说到这个工艺里的乳化剂,那简直就是这场魔法秀的魔法棒。
乳化剂就像一个超级媒人,把那些原本互不相干的油相和水相拉到一起,让它们欢快地跳起融合之舞。
没有乳化剂,这油和水就像一对斗气的小冤家,怎么都凑不到一块儿去。
反应温度在这个工艺里也是个特别傲娇的角色。
它就像一个脾气古怪的指挥家,高一点低一点都不行。
温度高了,整个聚合反应就像脱缰的野马,变得无法控制;温度低了呢,就像乌龟在爬,反应慢得让人着急,就像等一场永远也不会结束的演唱会一样。
搅拌这个环节也不容小觑啊。
搅拌就像是一场盛大派对的组织者,得把各种分子们都安排得妥妥当当。
要是搅拌不均匀,那分子们就像在黑灯瞎火的舞池里乱撞的醉汉,根本没办法有序地进行聚合,最后得到的乳液就会是一团糟,就像一场被搞砸的狂欢派对后的混乱现场。
还有引发剂,这可是点火的关键角色。
引发剂就像火箭发射的点火装置,一旦启动,就开启了聚合反应的大幕。
要是引发剂的量不合适,要么就像小火苗去点大木头,根本点不着;要么就像引爆了一颗核弹,反应瞬间失控,那可就不得了啦。
在核壳共聚乳液聚合工艺里,单体的选择就像组建一个超级战队。
每个单体都有自己独特的技能,得把它们巧妙地组合起来,才能让这个“战队”发挥出最强大的力量。
核壳乳液聚合

Your site here
LOGO
Experienment
Paper sheets preparation and analysis
hardwood bleached kraft pulp(HBKP)(阔叶木漂白硫酸盐浆) 80 g/m2 basis weight Wet tensile strength and folding endurance
核壳乳液聚合
核壳乳液聚合
1
什么是核壳乳液聚合
2
核壳乳液聚合的核壳结构
3
影响核壳乳液聚合的因素
4
核壳乳液聚合运用举例
Company name
什么是核壳乳液聚合
核壳乳液聚合
核壳乳液聚合是种子乳液聚合的发展。 若种子聚合和后继聚合采用不同单体,则形成核 壳结构的胶粒,在核与壳的界面上形成接枝层, 增加两者的相容性和粘结力,提高力学性能。 在总配比完全相同的情况下,因为组分性质的差 异,采用种子乳液聚合的方法,控制不同的加料 顺序和条件,可以得到结构形态不同的核壳乳胶 粒子。 与普通乳液乳液聚合相比,它有显著的优越性, 如在流变性、最低成膜温度、玻璃转化温度、抗 张强度、粘接性能、加工性等方面有显著的特点。
Company name
影响核壳乳液聚合的因素
壳层物质的加料方法不同, 形成的核壳结构和核壳间结合方式也差别很大。
间歇法:壳单体 一次性加入,在 引发剂存在下引 发聚合,这种方 法也使乳胶粒表 面单体浓度很高。
Company name
影响核壳乳液聚合的因素
影响核壳结构的因素除了两中单体的加料次序外,还 与单体的亲水性有关。 一般乳液聚合都以水为分散介质,亲水性较大的聚合 物易和介质水接近,而疏水性倾向于排斥介质水,因 而形成不同结构形态的胶乳粒子。 正常结构和非正常的结构形态(如翻转形等)乳胶粒。
核壳结构聚合物乳液性能的测试及综合评价

核壳结构聚合物乳液性能的测试及综合评价
1 背景
聚合物乳液具有良好的黏度控制、腐蚀性能和良好的湿润能力,
因此在化学、冶金和石油等不同行业中都得到了广泛应用。
核壳结构
聚合物乳液是一种在外核层包裹一层聚合物核壳的复杂分子结构,它
具有抗原污染性强、抗腐蚀性强和耐热性高的优点,作为新型的产品
被关注度越来越高。
2 测试及评价
核壳结构聚合物乳液测试主要分为理化性能测试和力学性能测试
两个部分。
在理化性能测试中,可以通过黏度、粘度系数、流变曲线、抗腐蚀和抗氧化指数等方法,评估乳液的性能。
同时,在力学性能测
试中,还可以通过抗冲切模量和抗压强度等来衡量乳液的结构强度。
为了能够清晰、准确地评价核壳结构聚合物乳液的性能,还需要
将上述测试结果进行整合,获得一个比较完整的性能综合评价。
根据
乳液的复杂性,可以将性能综合评价分为定性和定量两个部分,在定
性评价中,可以测定乳液的储存、生物相容性、抗氧化性等方面,而
在定量评价中,可以用折算の系数等数字评估乳液的复杂性能。
3 结论
核壳结构聚合物乳液的性能是复杂的,因此,其在不同行业中的
应用需要进行综合测试、综合鉴定才能确定最佳的性能。
另外,未来
也可以根据聚合物乳液特定的应用加以改进,更好地适应不同行业的特点,并提供更出色的性能。
核壳乳液聚合

3.乳胶粒的核-壳结构
在乳胶粒的中心附近是一个富聚合 物的核,其中聚合物含量大而单体 含量少,聚合物被单体所溶胀。。
在核的外围是一层富单体的壳, 其中聚合物被单体溶胀
在壳表面上吸附乳化剂分子而成 一单分子层,以使该乳胶粒稳定 的悬浮在水相中
在核与壳的界面上,分布有正在 增长的或失去活性的聚合物末端, 聚合反应就是发生在这个界面上
核壳乳液聚合的建立
随着复合技术在材料科学中的发展,20世纪80年代,科学家们提 出了“粒子设计”的新概念,即从粒子层面而非宏观的机械混合
来复合。核壳乳液聚合就是在“粒子设计”的概念下建立起来
的。
定义:把两种或多种性质不同的物质在一定条件下分两阶段或 多阶段聚合,使乳胶粒的内侧与外侧分别富集不同的成分,即
3、乳胶粒子核壳结构的表征
Seigou kaw aguchi等对核层单体甲基丙烯 酸进行电位滴定,测得电势与乳液球形涂膜 的电压相同,从而证实了乳液的核壳结构。 用透射电镜(TEM)观察所制得的核壳的粒子 形态。
AndreaM等在壳层单体中加入可提供阳离子 的氨基甲基丙烯酸的氯化物,通过乳液在不同 pH值和温度下的动电特性也证实了带有电荷 的壳层的存在。
5、核壳聚合性能以及应用
①制备互穿聚合物网络胶乳.
有网络结构的网络聚合物胶乳的形成可以增进聚 合物之间的相容性,这是因为采用特定工艺产生的 三维结构把两种聚合物连接起来了。
相分离一般是在聚合过程中产生的。高相容体系 的相区尺寸比低相容体系的要小;由聚合产生的相区 尺寸通常比由机械共混制得的要小得多。而且构成 复合材料互穿聚合物网络的两种聚合物相均为连续 相,相区尺寸小,一般在10- -100nm,小于可见 光的波长,故常成透明状。
核壳乳液聚合及互穿网络聚合物( IPN )制备工艺及原理

随着复合技术在材料科学的发展,20世纪80年代Okubo 提出了“粒子设计”的新概念,其主要内容包括异相结构的控制、异型粒子官能团在粒子内部或表面上的分布、粒径分布及粒子表面处理等。
核-壳型乳液聚合可以认为是种子乳液聚合的发展。
乳胶粒可分为均匀粒子和不均匀粒子两大类。
其中不均匀粒子又可分为两类:成分不均匀粒子和结构不均匀粒子。
前者指大分子链的组成不同,但无明显相界面,后者指粒子内部的聚合物出现明显的相分离。
结构不均匀粒子按其相数可分为两相结构和多相结构。
核﹣壳结构是最常见的两相结均。
如果种子乳液聚合第二阶段加入的单体同制备种子乳液的配方不同,且对核层聚合物溶解性较差,就可以形成具有复合结构的乳胶粒,即核﹣壳型乳胶粒。
即由性质不同的两种或多种单体分子在一定条件下多阶段聚合,通过单体的不同组合,可得到一系列不同形态的乳胶粒子,从而赋予核﹣壳各不相同的功能。
核﹣壳型乳胶粒由于其独特的结构,同常规乳胶粒相比即使组成相同也往往具有优秀的性能。
一、核壳乳液乳胶粒的结构形态根据“核﹣壳”的玻璃化温度不同,可以将核壳型乳胶粒分为硬核﹣软壳型和软核﹣硬壳型:从乳胶粒的结构形态看,主要着几种:正常型、手镯型、夹心型、雪人型及反常型。
其中反常型以亲水树脂部分为核。
图5-7是几种常见的核売型乳胶粒的模型。
核壳乳胶粒子结构形态多种多样,在形成过程中受到诸多因素的影响,很难用热力学分析解决。
大量的研究结果表明,对粒态的影响因素主要有:加料方法和顺序,核壳单体及两聚合物的互溶性,两聚合物的亲水性,引发剂的种类和浓度,聚合场所的黏度,聚合物的分子量,聚合温度等。
这些因素是互相联系、互相制约和矛盾的,不能孤立看待。
(1)单体性质乳胶粒的核﹣壳结构常常是由加入水溶性单体而形成的。
这些聚合单体通常含有羧基、酰胺基、磺酸基等亲水性基团。
由于其水溶性大易于扩散到胶粒表面,在乳胶粒﹣水的界面处富集和聚合。
当粒子继续生长时,其水性基团仍留在界面区,而产生核﹣売结构。
核壳乳液聚合

性能优越
那么核壳结构乳胶粒形成的聚合物乳液的性 能到底比一般聚合物乳液有哪些方面的优越 性呢? 性呢?
1.热处理性能 热处理性能
PEA/PS复合胶乳膜的热处理性能,处理之前膜又软又 复合胶乳膜的热处理性能, 复合胶乳膜的热处理性能 经热处理之后, 弱;经热处理之后,变成刚性和脆性,并且膜的拉伸强 经热处理之后 变成刚性和脆性, 度也增加了。 度也增加了。 而对于50/50的PEA/PS复合胶乳膜,其粒子形态由相 复合胶乳膜, 而对于 的 复合胶乳膜 分离的PS微粒分散在连续相 微粒分散在连续相PEA中.这些膜的力学行为 分离的 微粒分散在连续相 中 这些膜的力学行为 属于软的热塑性弹性体,经过高于Tg以上的温度的热 属于软的热塑性弹性体,经过高于 以上的温度的热 处理,其模量、断裂强度和断裂能量显著增加。 处理,其模量、断裂强度和断裂能量显著增加。 这是由于高于PS的 时 这是由于高于 的Tg时,PS的分子链可以有效的移 的分子链可以有效的移 进行重排,达到平衡状态。此时PEA和PS相的界 动,进行重排,达到平衡状态。此时 和 相的界 面张力达到最小, 可能以半连续或整连续的方式分 面张力达到最小,PS可能以半连续或整连续的方式分 散于PEA相中。这样从热力学角度降低了分散相的凝 相中。 散于 相中 这样从热力学角度降低了分散相的凝 聚作用。 聚作用。
核--壳乳胶粒的生成机理 --壳乳胶粒的生成机理
1.接枝机理 接枝机理
乙烯基单体以乳液聚合方式接枝到丙烯酸系橡胶 还有ABS树脂也是苯乙烯和丙烯腈的混合单体 上。还有ABS树脂也是苯乙烯和丙烯腈的混合单体 以乳液聚合法接枝到丁二烯种子乳胶粒上,制成性 以乳液聚合法接枝到丁二烯种子乳胶粒上, 能优异的高抗冲工程塑料.在核一壳乳液聚合中, 能优异的高抗冲工程塑料.在核一壳乳液聚合中,如 果核、壳单体中一种为乙烯基化合物, 果核、壳单体中一种为乙烯基化合物,而另一种为 丙烯酸酯类单体, 丙烯酸酯类单体,核壳之间的过渡层就是接枝共聚 也就是说, 物,也就是说,在这种情况下核壳乳胶粒的生成是 按接枝机理进行的。 按接枝机理进行的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
什么是核壳乳液聚合
少量单体先形成种子胶乳 后继的正式聚合采用同一种单体
使粒子长大
少量单体先形成核结构部分 后继聚合采用不同单体 形成核壳结构
种子乳液聚合
核壳乳液聚合
Company name
核壳乳液聚合的核壳结构
乳胶粒的核壳结构: 在乳胶粒的中心附近是一 个富聚合物的核,其中聚 合物含量大而单体含量少。 在核的外围是一层富单体 的壳;在壳表面上吸附乳化 剂分子而成一单分子层, 以使该乳胶粒稳定的悬浮 在水相中。 在核与壳的界面上,分布 有正在增长的或失去活性 的聚合物末端,聚合反应 就是发生在这个界面上。
Forestry University
From
4th International Conference on Pulping, Papermaking and Biotechnology
Your site here
LOGO
Contents
1. Abstract 2. Introduction 3. Experienment 4. Results and discussion
the functional monomer dosage was 7.5 g.
Your site here
LOGO
Abstract
used as wet strength agent
single use of APSBM(苯乙烯-丙烯酸丁酯-α-甲基丙烯酸) was not good simultaneous use of 0.3% APSBM and 0.7% PAE showed great improvement of wet strength to 38% SEM photographs showed that the appearance of paper treated with 0.7% PAE and 0.3% APSBM had a close crosslinking(交联)
5. Conclusion
Yoቤተ መጻሕፍቲ ባይዱr site here
LOGO
SUCCESS
THANK YOU
2019/10/9
Abstract
polymerization
butyl acrylate (BA) as soft monomer, styrene (St) as hard monomer
sodium dodecyl sulfate (SDS) and dodecyl polyoxy ethylene (OP-10) as emulsifiers under nitrogen
Company name
核壳乳液聚合的核壳结构
单体液滴
单体液滴
种子胶乳
单体、乳化剂分别处在水溶液、 胶束、液滴三相中的示意图
Company name
影响核壳乳液聚合的因素
根据核和壳单体的不同,正常的核壳聚合物基本上 有两种类型: 硬核软壳型:这类聚合物主要用作涂料。 软核硬壳型:调节玻璃化温度或最低成膜温度。以 丁二烯﹑丙烯酸丁酯等软单体,经乳液聚合后为种 子,甲基丙烯酸甲酯﹑苯乙烯﹑丙烯睛等为硬单体, 后来加入继续聚合,就成为硬壳层。以B(聚丁二烯) 为核,S(苯乙烯)和A(丙烯氰)共聚物为壳,就 成了著名的ABS工程塑料。
Company name
影响核壳乳液聚合的因素
壳层物质的加料方法不同, 形成的核壳结构和核壳间结合方式也差别很大。
间歇法:壳单体 一次性加入,在 引发剂存在下引 发聚合,这种方 法也使乳胶粒表 面单体浓度很高。
Company name
影响核壳乳液聚合的因素
影响核壳结构的因素除了两中单体的加料次序外,还 与单体的亲水性有关。 一般乳液聚合都以水为分散介质,亲水性较大的聚合 物易和介质水接近,而疏水性倾向于排斥介质水,因 而形成不同结构形态的胶乳粒子。 正常结构和非正常的结构形态(如翻转形等)乳胶粒。
Related imformation
Title
synthesis and application of anionic acrylic emulsion(阴离 子丙烯酸) used as paper wet-strength additive
Authors
Xin Liu, Chunhua Tian, Yuying Wu, Xueming Zhang College of Materials Science and Technology, Beijing
Company name
核壳乳液聚合的应用举例(1) 多层特种结构聚合物乳胶粒子
递变进料、单体A单体B、洋葱 当R0:R1=1:2,内部富含B外部富含A的核壳聚合物; 当R0»R1,无规共聚物;当R0«R1,典型的B核A壳聚合物
Company name
LOGO
核壳乳液聚合的应用举例(2)
synthesis and application of anionic acrylic(阴离 子丙烯酸) emulsion used as paper wet-strength additive
核壳乳液聚合
核壳乳液聚合
1
什么是核壳乳液聚合
2
核壳乳液聚合的核壳结构
3
影响核壳乳液聚合的因素
4
核壳乳液聚合运用举例
Company name
什么是核壳乳液聚合
核壳乳液聚合
核壳乳液聚合是种子乳液聚合的发展。 若种子聚合和后继聚合采用不同单体,则形成核 壳结构的胶粒,在核与壳的界面上形成接枝层, 增加两者的相容性和粘结力,提高力学性能。 在总配比完全相同的情况下,因为组分性质的差 异,采用种子乳液聚合的方法,控制不同的加料 顺序和条件,可以得到结构形态不同的核壳乳胶 粒子。 与普通乳液乳液聚合相比,它有显著的优越性, 如在流变性、最低成膜温度、玻璃转化温度、抗 张强度、粘接性能、加工性等方面有显著的特点。
丙烯酸丁酯、苯乙烯、十二烷基硫酸钠、烷基酚聚氧乙烯醚
the optimal conditions
the ratio of SDS to OP-10 was 1:2, total dosage was 8%;
the dosage of initiator was 0.25 g, including 0.15g in seeded polymerization process and 0.1g in shell polymerization process;
Company name
影响核壳乳液聚合的因素
核壳乳液粒子构成机理 接枝机理 一种单体在另一种聚合物存在下进行聚合时,在适当 的条件下,会多去聚合物上的活泼氢原子而发生接枝 共聚。如St-BA核壳乳液聚合 互穿聚合物网络机理 两种聚合物分子链相互贯穿并以化学键的方式各自交 联而成的网络结构 离子键合机理——不同电荷的相互作用