三种意识突破椭圆学习难点

合集下载

圆的认识说课稿(15篇)

圆的认识说课稿(15篇)

圆的认识说课稿1 一、说教材: 在之前的学习中,学生已经学习过长方形、正方形等平面图形以及他们的周长、面积计算,也直观地认识过圆。

在此基础上,本单元开始正式学习圆的有关知识,这也是小学阶段的最后一个认识平面图形的单元。

长方形、正方形、三角形、平行四边形、梯形等都是直线图形,而圆是曲线图形。

从研究直线图形到研究曲线,对学生而言是一种跨越。

因为研究曲线图形的思想、方法与直线图形相比,是有变化和提升的。

二、说学生 曲线图形的思想、方法与直线图形相比,是有变化和提升的'。

因此,通过对圆的研究,学生不仅需要掌握圆的一些基础知识,还需要通过学习,感受“化曲为直”“等积变形”“极限”等数学思想方法,进一步发展数学思维能力和问题解决能力。

三、说教学目标 1、认识圆各部分的名称,知道圆的各部分名称。

2、掌握圆的特征以及在同一个圆里半径和直径的关系; 3、初步学会用圆规画圆,培养学生的作图能力。

四、说重点 掌握圆的特征以及在同一个圆里半径和直径的关系; 五、说难点 掌握三种画圆的方法。

六、说教学过程 (一)口算练习 (二)板书课题 今天我们学习圆的认识 同学们生活中有很多关于圆的物品,老师搜集了一些,请同学们欣赏,课件出示。

同学们你们能举出生活中有关有的物品的例子吗? 同学们刚才你们都谈到了有关圆的物品的面,是的圆是平面图形,以前我们还学过很多平面图形,谁能举例?(同学们可能会谈到长方形、正方形、三角形等) 如果让大家用最快的速度剪一个图形,你剪哪个图形?为什么?进而引出圆是曲线图形,有别与前面学过的直线图形。

(三)出示学习目标 1、了解三种画的方法; 2、掌握圆的特征,了解圆各部分的名称,以及直径与半径的关系。

(四)请同学们在小组里用准备的工具画圆,看哪个小组方法多,圆画的最好。

(五)各小组汇报 1、实物画圆 2、绳子画圆 3、圆规画圆 4、教师总结,画圆的历史圆的认识说课稿2 一、教学内容 《圆的认识》选自小学数学教材第11册,是在学生学的多种平面图形的基础上展开,是小学数学阶段认识的最后一种常见的平面图形。

苏教版数学高二-选修2-1教案 抛物线的标准方程

苏教版数学高二-选修2-1教案 抛物线的标准方程

2.4.1抛物线的标准方程●三维目标1.知识与技能(1)理解抛物线的定义,掌握抛物线的标准方程及其推导.(2)明确抛物线标准方程中p的几何意义,能解决简单的求抛物线标准方程问题.2.过程与方法(1)通过对抛物线和椭圆、双曲线离心率的比较,体会三种圆锥曲线内在的区别和联系.(2)熟练掌握求曲线方程的基本方法,通过四种不同形式标准方程的对比,培养学生分析、归纳的能力.3.情感、态度与价值观引导学生用运动变化的观点发现问题、探索问题、解决问题,培养学生的创新意识,体会数学的简捷美、和谐美.●重点难点重点:抛物线的定义及其标准方程的推导.通过学生自主建系和对方程的讨论突出重点.难点:抛物线概念的形成.通过条件e=1的画法设计、标准方程与二次函数的比较突破难点.●教学建议从本章来讲,这一节放在椭圆和双曲线之后,一方面是三种圆锥曲线统一定义的需要,抛物线是离心率e=1的特例.另一方面也是解析几何“用方程研究曲线”这一基本思想的再次强化.本节对抛物线定义的研究,与初中阶段二次函数的图像遥相呼应,体现了数学的和谐之美.教材的这种安排,是为了分散难点,符合认知的渐进性原则.为了充分调动学生的积极性,使学生变被动学习为主动学习,易采用“引导探究”式的教学模式,在课堂教学中,始终贯彻“教师为主导,学生为主体,探究为主线”的教学思想,通过引导学生实验、观察、比较、分析和总结,使学生充分地动手、动口、动脑,参与教学的全过程.本节课在实验画法的基础上,以问题为核心,创设情景,通过教师的适时引导,学生间、师生间的交流互动,启迪学生的思维,使学生通过自己的分析、反思、对比并形成抛物线的概念,构建自己的知识体系,尝试合作学习的快乐,体验成功的喜悦.●教学流程设置情景,导入新课.上课开始,用计算机出示太阳系九大行星运行图,以天文学热点事件“冥王星”的降级引入新课:同学们,最近在我们的太阳系发生了一件重大的事件,你们知道吗?⇒引导探究,获得新知(1)复习椭圆、双曲线的第二定义,椭圆和双曲线的离心率e 的取值范围各是什么?(2)离心率e=1是什么含义?你能据此设计一种方案,画出一个这样的点吗?(3)这条曲线是什么?⇒由学生自主建系,求出抛物线的标准方程.并根据焦点位置的不同,写出四种不同的标准方程.归纳标准方程、焦点坐标、准线方程的内在联系和对应关系.⇒通过例1及变式训练,使学生掌握抛物线标准方程的求法,先定位,再定量,利用待定系数法求抛物线的标准方程.⇒通过例2及变式训练,使学生掌握由标准方程求其焦点坐标和准线方程,达到数与形的准确转换.弄清一次项变量系数与焦点同名坐标的四倍关系,焦点坐标与准线方程的相反关系.⇒通过例3及变式训练,使学生掌握抛物线定义和标准方程的综合应用,抛物线上任一点到焦点的距离等于到准线的距离,二者可以灵活转化,在此基础上数形结合,解证有关问题.⇒通过易错易误辨析,体会抛物线标准方程的不同形式,焦点位置有多个,就会有不同的标准方程.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固基本知识,形成基本能力.课标解读1.掌握抛物线的标准方程,会求抛物线的标准方程.(重点)2.抛物线标准方程与定义的应用.(难点)3.抛物线标准方程、准线、焦点的对应.(易错点)抛物线的标准方程1.用《几何画板》画图,如图,点F是定点,l是不经过点F的定直线.H是l上任意一点,过点H作MH⊥l,线段FH的垂直平分线m交MH于点M.拖动点H,观察点M的轨迹.你能发现点M满足的几何条件吗?【提示】点M随着H运动的过程中,始终有|MF|=|MH|,即点M与定点F和定直线l的距离相等.2.比较椭圆、双曲线标准方程的建立过程,你认为应如何选择坐标系,使所建立的抛物线的方程更简单?【提示】根据抛物线的几何特征,我们取经过点F且垂直于直线l的直线为x轴,垂足为K,并使原点与线段KF的中点重合,建立直角坐标系xOy(如图所示).图形标准方程焦点坐标准线方程y2=2px(p>0)F(p2,0)x=-p2y2=-2px(p>0)F(-p2,0)x=p2x2=2py(p>0)F(0,p2)y=-p2 x2=-2py(p>0)F(0,-p2)y=p2求抛物线的标准方程已知抛物线的顶点在原点,试求满足下列条件的抛物线的标准方程:(1)过点(-3,2);(2)焦点在直线x-2y-4=0上;(3)焦点到准线的距离为52.【思路探究】对于(1),需要确定p的值和开口方向两个条件,∵点(-3,2)在第二象限,∴抛物线的标准方程可设为y2=-2px(p>0)或x2=2py(p>0);对于(2),∵标准方程下抛物线的焦点在坐标轴上,∴求出直线x-2y-4=0与坐标轴的两个交点(4,0)和(0,-2),即为所求抛物线两种情况下的焦点;而对于(3),由题意知,p=52,下一步需要讨论抛物线的开口方向.【自主解答】(1)∵点(-3,2)在第二象限,∴抛物线的标准方程可设为y2=-2px(p>0)或x2=2py(p>0).把点(-3,2)的坐标分别代入y2=-2px(p>0)和x2=2py(p>0),得4=-2p·(-3)或9=2p·2,即2p=43或2p=92.∴所求抛物线的标准方程为y2=-43x或x2=92y.(2)令x=0,得y=-2;令y=0,得x=4.∴抛物线的焦点为(4,0)或(0,-2).当焦点为(4,0)时,p2=4.∴2p =16,此时抛物线方程为y 2=16x . 当焦点为(0,-2)时,p2=2.∴2p =8,此时抛物线方程为x 2=-8y . 故抛物线方程为y 2=16x 或x 2=-8y .(3)由焦点到准线的距离为52,可知p =52,∴2p =5.∴所求抛物线方程为y 2=5x 或y 2=-5x 或x 2=5y 或x 2=-5y .1.只有顶点有原点,焦点在坐标轴上的抛物线才能将方程写成标准方程.2.求抛物线的标准方程,应当先定位,再定量,即先根据焦点位置设出方程形式,再利用题目条件求出待定字母的值.另外,若只知道焦点在x 轴上,可设抛物线标准方程为y 2=mx 的形式,若只知道焦点在y 轴上,可设抛物线标准方程为x 2=ny 的形式,避免分类讨论.一抛物线的焦点在y 轴上,抛物线上一点M (m ,-3)到焦点的距离为5,求抛物线的标准方程.【解】 设所求抛物线的方程为x 2=-2py (p >0),则其准线方程为y =p2.由抛物线的定义知点M 到焦点的距离等于点M 到准线的距离, ∴p2-(-3)=5,即p =4. ∴所求抛物线的方程为x 2=-8y .由标准方程求抛物线的焦点坐标和准线方程求下列抛物线的焦点坐标和准线方程:(1)y 2=20x ;(2)2y 2+5x =0;(3)y =ax 2(a ≠0). 【思路探究】抛物线方程化为标准形式→求p →求焦点坐标→求准线方程【自主解答】 (1)由方程可得抛物线开口向右,且2p =20,即p =10,所以抛物线的焦点坐标为(5,0),准线方程为x =-5.(2)将方程2y 2+5x =0变形为y 2=-52x ,焦点在x 轴的负半轴上,又2p =52,所以p =54,所以焦点坐标为(-58,0),准线方程为x =58.(3)将方程y =ax 2(a ≠0)化为x 2=1ay ,焦点在y 轴上.当a >0时,抛物线的焦点在y 轴的正半轴上,又2p =1a ,所以焦点坐标为(0,14a ),准线方程为y =-14a;当a <0时,抛物线的焦点在y 轴的负半轴上,又2p =-1a ,所以焦点坐标为(0,14a ),准线方程为y 1=-14a.1.本例中y =ax 2不是抛物线的标准方程,容易被误认为是标准形式,而将焦点写为F (a4,0).2.求焦点坐标与准线方程的基本方法:(1)一般思路是先将已知方程整理为标准方程,再求解,不可与初中二次函数混淆. (2)此类问题中无论a 取正与负,拋物线y 2=ax 的焦点坐标均为(a4,0),准线均为x =-a 4.无论a 取正与负,拋物线x 2=ay 的焦点坐标均为(0,a 4),准线均为y =-a 4.求下列抛物线的焦点坐标和准线方程: (1)y =-18x 2;(2)x 2=ay (a ≠0).【解】 (1)方程可化为:x 2=-8y ,∴F (0,-2),准线y =2. (2)F (0,a 4),准线y =-a4.抛物线标准方程及定义的应用图2-4-1如图2-4-1,已知点A (4,-2),F 为抛物线y 2=8x 的焦点,直线l为其准线,点M 在抛物线上移动,问M 的坐标是什么时,MA +MF 取得最小值,最小值是多少?【思路探究】 如图,过M 向准线l 引垂线ME ,则MF =ME ,转化为求MA +ME 的最小值.【自主解答】 由题意知,抛物线y 2=8x 的准线l 的方程为x =-2,过M 作ME ⊥l ,垂足为E ,由抛物线的定义知,ME =MF ,此时MA +MF =MA +ME ,当M 在抛物线上移动时,MA +ME 的值在变化,显然M 移动到与A ,E 共线时,MA +ME 取得最小值.此时,AM ∥x 轴,把y =-2代入y 2=8x 得x =12,∴M 点的坐标为(12,-2),距离最小值为6.1.解此类最值、定值问题时,首先要注意抛物线定义的转化应用,其次是注意平面几何知识的应用,例如两点之间线段最短,三角形中三边间的不等关系,点与直线上点的连线垂线段最短等.2.数形结合思想是求解几何最值的常用方法之一.设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为-3,那么PF=________.【解析】如图,由直线AF的斜率为-3,得∠AFH=60°,∠FAH=30°,∴∠PAF =60°.又由抛物线的定义知PA=PF,∴△PAF为等边三角形,由HF=4得AF=8,∴PF=8.【答案】8忽略对焦点位置的讨论而漏解顶点在原点,焦点在x轴上,过焦点作垂直于x轴的直线交抛物线于A,B两点,AB的长为8,求抛物线的方程.【错解】由于抛物线的顶点在原点,焦点在x轴上,因此设所求抛物线的方程为y2=2px(p>0).因为AB=2p=8,所以所求抛物线的方程为y2=8x.【错因分析】错解中只考虑焦点在x轴的正半轴上的情况,而忽略了焦点也可能在x 轴的负半轴上的情况,故出现漏解.【防范措施】抛物线有四种标准方程,每一种所对应的焦点,准线都不相同.因此,在求抛物线方程的有关问题时,要充分考虑各种情况,以免漏解.【正解】由于抛物线的顶点在原点,焦点在x轴上,因此设所求抛物线的方程为y2=2ax(a≠0).因为AB=|2a|=8,所以2a=±8.故所求抛物线的方程为y2=±8x.1.求抛物线的标准方程,一般利用待定系数法,求解时一般分两步,即先定位,再定量.2.由抛物线的方程求焦点坐标和准线方程,若方程不是标准形式应先化成标准形式,然后求焦点坐标和准线方程,应注意方程中一次变量是谁,焦点就在相应坐标轴上,且焦点的同名坐标是一次变量系数的14.3.抛物线的定义可将抛物线上一点到焦点的距离与到准线的距离相互转化,从而求解与抛物线有关的定值与最值问题.1.抛物线y 2=4x 的焦点坐标是________. 【解析】 ∵p =2,∴F (1,0). 【答案】 F (1,0)2.抛物线y =4x 2的准线方程为________. 【解析】 x 2=14y ,∴2p =14,p =18,∴准线方程为y =-116.【答案】 y =-1163.抛物线y 2=2px的准线经过双曲线x 23-y 2=1的左焦点,则p =________.【解析】 双曲线c 2=3+1=4,∴c =2,∴F 1(-2,0), ∴抛物线准线为x =-2,∴-p2=-2,∴p =4.【答案】 44.若圆x 2+y 2-6x =0的圆心恰是抛物线的焦点,求抛物线的标准方程及准线方程. 【解】 圆心为(3,0),∴p2=3,∴p =6,∴抛物线标准方程为y 2=12x ,准线方程为x =-3.一、填空题1.抛物线y 2=8x 的准线方程是________. 【解析】 ∵p =4,∴准线方程为x =-2. 【答案】 x =-22.顶点在原点,焦点在x 轴上的抛物线经过点(2,2),则此抛物线的方程为________. 【解析】 设抛物线方程为y 2=mx ,将(2,2)代入得m =2, ∴抛物线方程为y 2=2x . 【答案】 y 2=2x3.抛物线y 2=2x 上一点M 到焦点的距离为1,则点M 的横坐标是________. 【解析】 准线x =-12,∴x M +12=1,∴x M =12.【答案】 124.若动点P 在y =2x 2+1上,则点P 与点Q (0,-1)连线中点的轨迹方程是________.【解析】 设P (x 0,y 0),中点(x ,y ),则⎩⎪⎨⎪⎧x 0=2x y 0=2y +1.∵y 0=2x 20+1,∴2y +1=2(2x )2+1,∴y =4x 2.【答案】 y =4x 25.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是________.【解析】 由抛物线的方程得p 2=42=2,再根据抛物线的定义,可知所求距离为4+2=6.【答案】 6 6.若抛物线y 2=2px的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为________.【解析】 因为椭圆x 26+y 22=1的右焦点为(2,0),故抛物线的焦点为(2,0),所以p2=2,解得p =4.【答案】 47.已知直线y =3(x -2)与抛物线C :y 2=8x 相交于A 、B 两点,F 为C 的焦点,若AF →=λFB →,(|AF →|>|FB →|),则λ=________.【解析】 如图,设AF =n ,BF =m ,AA 1⊥l ,BB 1⊥l ,FN ⊥AA 1于N ,BM ⊥x 轴于M .则AN =n -4,FM =4-m .又∠AFN =∠FBM =30°,∴⎩⎨⎧ n -4=n 24-m =m 2.∴⎩⎪⎨⎪⎧n =8m =83,∴λ=n m =3. 【答案】 38.抛物线y =-14x 2上的动点M 到两定点(0,-1),(1,-3)的距离之和的最小值为________.【解析】 将抛物线方程化成标准方程为x 2=-4y ,可知焦点坐标为F (0,-1),因为-3<-14,所以点E (1,-3)在抛物线的内部,如图所示,设抛物线的准线为l ,过点E 作EQ ⊥l 于点Q ,过点M 作MP ⊥l 于点P ,所以MF +ME =MP +ME ≥EQ ,又EQ =1-(-3)=4,故距离之和的最小值为4.【答案】 4二、解答题9.求适合下列条件的拋物线方程.(1)顶点在原点,准线x =4;(2)拋物线的顶点是双曲线16x 2-9y 2=144的中心,焦点是双曲线的左顶点.【解】 (1)由题意p 2=4,∴p =8. ∴拋物线方程为y 2=-16x .(2)双曲线中心为(0,0),左顶点为(-3,0),∴拋物线顶点为(0,0),焦点为(-3,0),∴拋物线方程为y 2=-12x .图2-4-210.如图2-4-2所示,动圆P 与定圆C :(x -1)2+y 2=1外切且与y 轴相切,求圆心P 的轨迹.【解】 设P (x ,y ),动圆P 的半径为r .∵两圆外切,∴PC =r +1.又圆P 与y 轴相切,∴r =|x |(x ≠0),即x -12+y 2=|x |+1,整理得y 2=2(|x |+x ).当x >0时,得y 2=4x ;当x <0时,得y =0.∴点P 的轨迹方程是y 2=4x (x >0)和y =0(x <0),表示一条抛物线(除去顶点)和x 轴的负半轴.11.(1)已知抛物线y 2=2px (p >0)的焦点为F ,点P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)在抛物线上,且2x 2=x 1+x 3,试给出FP 1,FP 2,FP 3之间的关系式;(2)设F 为抛物线y 2=4x 的焦点,A ,B ,C 为该抛物线上三点,若FA →+FB →+FC →=0,求|FA →|+|FB →|+|FC →|.【解】 (1)由抛物线方程y 2=2px (p >0)得准线方程为x =-p 2,则由抛物线的定义得FP 1=x 1+p 2,FP 2=x 2+p 2,FP 3=x 3+p 2,则FP 1+FP 3=x 1+p 2+x 3+p 2=x 1+x 3+p ,因为x 1+x 3=2x 2,所以FP 1+FP 3=2x 2+p =2(x 2+p 2)=2FP 2,从而FP 1,FP 2,FP 3之间的关系式为FP 1+FP 3=2FP 2.(2)设点A (x A ,y A ),B (x B ,y B ),C (x C ,y C ),由题意知2p =4,p =2,F (1,0),又FA →+FB →+FC →=0,则有x A -1+x B -1+x C -1=0,即x A +x B +x C =3.由抛物线的定义可知,|F A →|+|FB →|+|FC →|=(x A +p 2)+(x B +p 2)+(x C +p 2)=(x A +x B +x C )+3×p 2=3+3=6.已知圆A :(x +2)2+y 2=1与定直线l :x =1,且动圆P 和圆A 外切并与直线l 相切,求动圆的圆心P 的轨迹方程.【思路探究】 设点P 的坐标为(x ,y ),利用圆P 与圆A 外切及与直线l 相切建立x ,y 的方程,化简即得.【自主解答】 法一 设点P 的坐标为(x ,y ),圆P 半径为r ,由条件知AP =r +1, 即x +22+y 2=|x -1|+1,化简,整理得y 2=-8x .所以点P 的轨迹方程为y 2=-8x .法二 如图,作PK 垂直直线x =1,垂足为K ,PQ 垂直直线x =2,垂足为Q ,则KQ =1,所以PQ =r +1.又AP =r +1,所以AP =PQ ,故点P 到圆心A (-2,0)的距离和定直线x=2的距离相等,所以点P 的轨迹为抛物线,A (-2,0)为焦点,直线x =2为准线.所以p 2=2,所以p =4.所以点P 的轨迹方程为y 2=-8x .1.法一是利用直接法求曲线方程的方法确定点P 的轨迹方程,法二是利用抛物线的定义确定轨迹为抛物线,再根据抛物线的性质写出方程,即定义法,显然法二较为简洁.2.动圆圆心轨迹问题是一类常见问题,求解时一定要审清题意,究竟是外切,内切还是相切,都可能引起结果的不同.已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1,求动点P的轨迹C的方程.【解】设动点P的坐标为(x,y),由题意有x-12+y2-|x|=1,化简得y2=2x +2|x|.当x≥0时,y2=4x;当x<0时,y=0.所以,动点P的轨迹C的方程为y2=4x(x≥0)和y=0(x<0).。

《椭圆及其标准方程(第一课时)》教学设计

《椭圆及其标准方程(第一课时)》教学设计

一. 教材及学情分析:本节课是〈〈普通高中课程标准实验教科书数学》(人民教育出版社课程教材研究所,中学数学课程教材研究开发中心编著)选修1-1第二章第一节〈〈椭圆及其标准方程》第一课时.在这一章中,我们将继续用坐标法探究圆锥曲线的几何特征,建立它们的方程,通过方程研究它们的简单性质,并用坐标法解决一些与圆锥曲线有关的简单几何问题和实际问题,进一步感受数形结合的基本思想.在必修2中学生已初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形. 在选修1中,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题. 由于教材以椭圆为重点交代求方程、利用方程讨论几何性质的一般方法,在双曲线、抛物线的教学中应用和巩固,因此椭圆及其标准方程”起到了承上启下的重要作用.本节内容蕴含了许多重要的数学思想方法,如:数形结合思想、化归思想等.因此,教学时应重视体现数学的思想方法及价值.根据本节内容的特点,教学过程中可充分发挥信息技术的作用,用几何画板的动态作图优势为学生的数学探究与数学思维提供支持.二. 教学目标:1. 知识与技能目标:①理解椭圆的定义②掌握椭圆的标准方程,在化简椭圆方程的过程中提高学生的运算能力2. 过程与方法目标:①经历椭圆概念的产生过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,从具体到一般,掌握数学概念的数学本质,提高学生的归纳概括能力②学会用坐标化的方法求动点轨迹方程解析法③对学生进行数学思想方法的渗透,培养学生具有利用数学思想方法分析和解决问题的意识3. 情感态度价值观目标:一. 教材及学情分析:本节课是〈〈普通高中课程标准实验教科书数学》(人民教育出版社课程教材研究所,中学数学课程教材研究开发中心编著)选修1-1第二章第一节〈〈椭圆及其标准方程》第一课时.在这一章中,我们将继续用坐标法探究圆锥曲线的几何特征,建立它们的方程,通过方程研究它们的简单性质,并用坐标法解决一些与圆锥曲线有关的简单几何问题和实际问题,进一步感受数形结合的基本思想.在必修2中学生已初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形. 在选修1中,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题. 由于教材以椭圆为重点交代求方程、利用方程讨论几何性质的一般方法,在双曲线、抛物线的教学中应用和巩固,因此椭圆及其标准方程”起到了承上启下的重要作用.本节内容蕴含了许多重要的数学思想方法,如:数形结合思想、化归思想等.因此,教学时应重视体现数学的思想方法及价值.根据本节内容的特点,教学过程中可充分发挥信息技术的作用,用几何画板的动态作图优势为学生的数学探究与数学思维提供支持.二. 教学目标:1. 知识与技能目标:①理解椭圆的定义②掌握椭圆的标准方程,在化简椭圆方程的过程中提高学生的运算能力2. 过程与方法目标:①经历椭圆概念的产生过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,从具体到一般,掌握数学概念的数学本质,提高学生的归纳概括能力②学会用坐标化的方法求动点轨迹方程一一解析法③对学生进行数学思想方法的渗透,培养学生具有利用数学思想方法分析和解决问题的意识3. 情感态度价值观目标:一. 教材及学情分析:本节课是〈〈普通高中课程标准实验教科书数学》(人民教育出版社课程教材研究所,中学数学课程教材研究开发中心编著)选修1-1第二章第一节〈〈椭圆及其标准方程》第一课时.在这一章中,我们将继续用坐标法探究圆锥曲线的几何特征,建立它们的方程,通过方程研究它们的简单性质,并用坐标法解决一些与圆锥曲线有关的简单几何问题和实际问题,进一步感受数形结合的基本思想.在必修2中学生已初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形. 在选修1中,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题. 由于教材以椭圆为重点交代求方程、利用方程讨论几何性质的一般方法,在双曲线、抛物线的教学中应用和巩固,因此椭圆及其标准方程”起到了承上启下的重要作用.本节内容蕴含了许多重要的数学思想方法,如:数形结合思想、化归思想等.因此,教学时应重视体现数学的思想方法及价值.根据本节内容的特点,教学过程中可充分发挥信息技术的作用,用几何画板的动态作图优势为学生的数学探究与数学思维提供支持.二. 教学目标:1. 知识与技能目标:①理解椭圆的定义②掌握椭圆的标准方程,在化简椭圆方程的过程中提高学生的运算能力2. 过程与方法目标:①经历椭圆概念的产生过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,从具体到一般,掌握数学概念的数学本质,提高学生的归纳概括能力②学会用坐标化的方法求动点轨迹方程一一解析法③对学生进行数学思想方法的渗透,培养学生具有利用数学思想方法分析和解决问题的意识3. 情感态度价值观目标:一. 教材及学情分析:本节课是〈〈普通高中课程标准实验教科书数学》(人民教育出版社课程教材研究所,中学数学课程教材研究开发中心编著)选修1-1第二章第一节〈〈椭圆及其标准方程》第一课时.在这一章中,我们将继续用坐标法探究圆锥曲线的几何特征,建立它们的方程,通过方程研究它们的简单性质,并用坐标法解决一些与圆锥曲线有关的简单几何问题和实际问题,进一步感受数形结合的基本思想.在必修2中学生已初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形. 在选修1中,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题. 由于教材以椭圆为重点交代求方程、利用方程讨论几何性质的一般方法,在双曲线、抛物线的教学中应用和巩固,因此椭圆及其标准方程”起到了承上启下的重要作用.本节内容蕴含了许多重要的数学思想方法,如:数形结合思想、化归思想等.因此,教学时应重视体现数学的思想方法及价值.根据本节内容的特点,教学过程中可充分发挥信息技术的作用,用几何画板的动态作图优势为学生的数学探究与数学思维提供支持.二. 教学目标:1. 知识与技能目标:①理解椭圆的定义②掌握椭圆的标准方程,在化简椭圆方程的过程中提高学生的运算能力2. 过程与方法目标:①经历椭圆概念的产生过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,从具体到一般,掌握数学概念的数学本质,提高学生的归纳概括能力②学会用坐标化的方法求动点轨迹方程一一解析法③对学生进行数学思想方法的渗透,培养学生具有利用数学思想方法分析和解决问题的意识3. 情感态度价值观目标:一. 教材及学情分析:本节课是〈〈普通高中课程标准实验教科书数学》(人民教育出版社课程教材研究所,中学数学课程教材研究开发中心编著)选修1-1第二章第一节〈〈椭圆及其标准方程》第一课时.在这一章中,我们将继续用坐标法探究圆锥曲线的几何特征,建立它们的方程,通过方程研究它们的简单性质,并用坐标法解决一些与圆锥曲线有关的简单几何问题和实际问题,进一步感受数形结合的基本思想.在必修2中学生已初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形. 在选修1中,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题. 由于教材以椭圆为重点交代求方程、利用方程讨论几何性质的一般方法,在双曲线、抛物线的教学中应用和巩固,因此椭圆及其标准方程”起到了承上启下的重要作用.本节内容蕴含了许多重要的数学思想方法,如:数形结合思想、化归思想等.因此,教学时应重视体现数学的思想方法及价值.根据本节内容的特点,教学过程中可充分发挥信息技术的作用,用几何画板的动态作图优势为学生的数学探究与数学思维提供支持.二. 教学目标:1. 知识与技能目标:①理解椭圆的定义②掌握椭圆的标准方程,在化简椭圆方程的过程中提高学生的运算能力2. 过程与方法目标:①经历椭圆概念的产生过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,从具体到一般,掌握数学概念的数学本质,提高学生的归纳概括能力②学会用坐标化的方法求动点轨迹方程一一解析法③对学生进行数学思想方法的渗透,培养学生具有利用数学思想方法分析和解决问题的意识3. 情感态度价值观目标:一. 教材及学情分析:本节课是〈〈普通高中课程标准实验教科书数学》(人民教育出版社课程教材研究所,中学数学课程教材研究开发中心编著)选修1-1第二章第一节〈〈椭圆及其标准方程》第一课时.在这一章中,我们将继续用坐标法探究圆锥曲线的几何特征,建立它们的方程,通过方程研究它们的简单性质,并用坐标法解决一些与圆锥曲线有关的简单几何问题和实际问题,进一步感受数形结合的基本思想.在必修2中学生已初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形. 在选修1中,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题. 由于教材以椭圆为重点交代求方程、利用方程讨论几何性质的一般方法,在双曲线、抛物线的教学中应用和巩固,因此椭圆及其标准方程”起到了承上启下的重要作用.本节内容蕴含了许多重要的数学思想方法,如:数形结合思想、化归思想等.因此,教学时应重视体现数学的思想方法及价值.根据本节内容的特点,教学过程中可充分发挥信息技术的作用,用几何画板的动态作图优势为学生的数学探究与数学思维提供支持.二. 教学目标:1. 知识与技能目标:①理解椭圆的定义②掌握椭圆的标准方程,在化简椭圆方程的过程中提高学生的运算能力2. 过程与方法目标:①经历椭圆概念的产生过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,从具体到一般,掌握数学概念的数学本质,提高学生的归纳概括能力②学会用坐标化的方法求动点轨迹方程一一解析法③对学生进行数学思想方法的渗透,培养学生具有利用数学思想方法分析和解决问题的意识3. 情感态度价值观目标:一. 教材及学情分析:本节课是〈〈普通高中课程标准实验教科书数学》(人民教育出版社课程教材研究所,中学数学课程教材研究开发中心编著)选修1-1第二章第一节〈〈椭圆及其标准方程》第一课时.在这一章中,我们将继续用坐标法探究圆锥曲线的几何特征,建立它们的方程,通过方程研究它们的简单性质,并用坐标法解决一些与圆锥曲线有关的简单几何问题和实际问题,进一步感受数形结合的基本思想.在必修2中学生已初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形. 在选修1中,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题. 由于教材以椭圆为重点交代求方程、利用方程讨论几何性质的一般方法,在双曲线、抛物线的教学中应用和巩固,因此椭圆及其标准方程”起到了承上启下的重要作用.本节内容蕴含了许多重要的数学思想方法,如:数形结合思想、化归思想等.因此,教学时应重视体现数学的思想方法及价值.根据本节内容的特点,教学过程中可充分发挥信息技术的作用,用几何画板的动态作图优势为学生的数学探究与数学思维提供支持.二. 教学目标:1. 知识与技能目标:①理解椭圆的定义②掌握椭圆的标准方程,在化简椭圆方程的过程中提高学生的运算能力2. 过程与方法目标:①经历椭圆概念的产生过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,从具体到一般,掌握数学概念的数学本质,提高学生的归纳概括能力②学会用坐标化的方法求动点轨迹方程一一解析法③对学生进行数学思想方法的渗透,培养学生具有利用数学思想方法分析和解决问题的意识3. 情感态度价值观目标:一. 教材及学情分析:本节课是〈〈普通高中课程标准实验教科书数学》(人民教育出版社课程教材研究所,中学数学课程教材研究开发中心编著)选修1-1第二章第一节〈〈椭圆及其标准方程》第一课时.在这一章中,我们将继续用坐标法探究圆锥曲线的几何特征,建立它们的方程,通过方程研究它们的简单性质,并用坐标法解决一些与圆锥曲线有关的简单几何问题和实际问题,进一步感受数形结合的基本思想.在必修2中学生已初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形. 在选修1中,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题. 由于教材以椭圆为重点交代求方程、利用方程讨论几何性质的一般方法,在双曲线、抛物线的教学中应用和巩固,因此椭圆及其标准方程”起到了承上启下的重要作用.本节内容蕴含了许多重要的数学思想方法,如:数形结合思想、化归思想等.因此,教学时应重视体现数学的思想方法及价值.根据本节内容的特点,教学过程中可充分发挥信息技术的作用,用几何画板的动态作图优势为学生的数学探究与数学思维提供支持.二. 教学目标:1. 知识与技能目标:①理解椭圆的定义②掌握椭圆的标准方程,在化简椭圆方程的过程中提高学生的运算能力2. 过程与方法目标:①经历椭圆概念的产生过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,从具体到一般,掌握数学概念的数学本质,提高学生的归纳概括能力②学会用坐标化的方法求动点轨迹方程一一解析法③对学生进行数学思想方法的渗透,培养学生具有利用数学思想方法分析和解决问题的意识3. 情感态度价值观目标:一. 教材及学情分析:本节课是〈〈普通高中课程标准实验教科书数学》(人民教育出版社课程教材研究所,中学数学课程教材研究开发中心编著)选修1-1第二章第一节〈〈椭圆及其标准方程》第一课时.在这一章中,我们将继续用坐标法探究圆锥曲线的几何特征,建立它们的方程,通过方程研究它们的简单性质,并用坐标法解决一些与圆锥曲线有关的简单几何问题和实际问题,进一步感受数形结合的基本思想.在必修2中学生已初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形. 在选修1中,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题. 由于教材以椭圆为重点交代求方程、利用方程讨论几何性质的一般方法,在双曲线、抛物线的教学中应用和巩固,因此椭圆及其标准方程”起到了承上启下的重要作用.本节内容蕴含了许多重要的数学思想方法,如:数形结合思想、化归思想等.因此,教学时应重视体现数学的思想方法及价值.根据本节内容的特点,教学过程中可充分发挥信息技术的作用,用几何画板的动态作图优势为学生的数学探究与数学思维提供支持.二. 教学目标:1. 知识与技能目标:①理解椭圆的定义②掌握椭圆的标准方程,在化简椭圆方程的过程中提高学生的运算能力2. 过程与方法目标:①经历椭圆概念的产生过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,从具体到一般,掌握数学概念的数学本质,提高学生的归纳概括能力②学会用坐标化的方法求动点轨迹方程一一解析法③对学生进行数学思想方法的渗透,培养学生具有利用数学思想方法分析和解决问题的意识3. 情感态度价值观目标:。

椭圆及其标准方程

椭圆及其标准方程

椭圆及其标准方程作者:虞倩来源:《外语学法教法研究》2015年第04期中图分类号:G633.6【案例背景分析】《椭圆及其标准方程》一课是新课标中职人教版的内容,是在学生已经初步认识曲线与方程、直线的方程、圆的方程的基础上学习的。

椭圆及其标准方程这一节教材整体来看是两大块内容:一是椭圆的定义;二是椭圆的标准方程。

椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中首先遇到的,所以教材把对椭圆的研究放在了重点,在双曲线和抛物线的教学中巩固和应用.先讲椭圆也与第七章的圆的方程衔接自然.学好椭圆对于学生学好圆锥曲线是非常重要的.教材从学生熟悉的圆的定义出发,通过实际操作活动:准备2颗图钉及一根定长绳子做圆和做椭圆,对比圆的定义及利用定义作图过程,给椭圆下定义求出其标准方程。

让学生应用所学的知识去解决学生身边的、生活中的问题,体会数学与生活的密切联系,产生学习数学的兴趣,感受成功的喜悦。

安排此课,给学生们创设一种自主探究的学习氛围,让学生在探究问题——探索问题——发现问题——解决问题。

【案例描述】1、创设情景,引出课题——椭圆定义及其标准方程。

问:我们以前学习过圆,请同学们回忆一下圆的定义。

答:平面上到定点的距离等于定长的点的轨迹。

问:能否利用手头的工具和圆的定义画圆?(课前要求学生每人准备一块硬纸板,两颗图钉及一根定长绳子)谁上黑板来演示呢?问:现在把这根绳子的两端分别系在两颗图钉上,并分开固定在两个点F1、F2上,并保持拉紧状态移动铅笔,请你们再画一画会是什么样的曲线?答:椭圆。

(黑板上写出课题:椭圆定义及其标准方程)问:大家看,椭圆是一个很美的图形,生活中你在哪里见过椭圆的这种曲线,能否举例呢?答:地球运动轨迹,……等等。

2、通过实验,自主探究,椭圆的定义以及椭圆的标准方程。

问:刚才大家对椭圆有了形象上的认识,我们不仅作出了椭圆这个曲线,而且还在生活实践中找到它的应用,下面我们能否结合圆的定义以及圆的画法给出它的定义呢?答:椭圆是平面上到两个定点的距离之和为常数的点的轨迹。

圆锥曲线与方程的小结 优秀教学设计

圆锥曲线与方程的小结  优秀教学设计

小结圆锥曲线与方程的小结【教学目标】1.通过小结与复习,使同学们完整准确地理解和掌握三种曲线的特点以及它们之间的区别与联系。

2.通过本节教学使学生较全面地掌握本章所教的各种方法与技巧,尤其是解析几何的基本方法――坐标法;并在教学中进一步培养他们形与数结合的思想、化归的数学思想以及“应用数学”的意识。

3.结合教学内容对学生进行运动变化和对立统一的观点的教育。

【教学重难点】教学重点:三种曲线的标准方程和图形、性质教学难点:做好思路分析,引导学生找到解题的落足点【授课类型】新授课【课时安排】1课时【内容分析】在学完椭圆、双曲线、抛物线知识之后进行必要的小结与复习,可以梳理知识要点,使学生从圆锥曲线这个整体高度来全面认识三种曲线;同时也可以对前面所学的各种解析几何的基本方法进行归纳整理。

所以本节在全章教学中起着复习、巩固和提高的作用。

椭圆、双曲线、抛物线同属于圆锥曲线,它们的定义、标准方程及其推导过程以及简单的几何性质都存在着巨大的相似之处,也有着一定的区别。

而前面只是它节逐个学完了三种曲线,还缺少对它们归类比较,为了提高水平,使同学们能够完整准确地理解和掌握三种曲线的特点以及它们之间的区别与联系。

本章介绍使用了较多的思想方法,其中的重点是数形结合的思想,转化与化归思想,坐标法等,这些都是培养学生解决解析几何问题的基本技能和能力的基础。

解析几何是最终能体现运动与变化、对立与统一的思想观点的内容之一。

点与坐标、方程与曲线之间的转化与化归给我们提供了良好的思想教育素材,我们应该给予充分的利用,达到应有的教学效果。

【教学过程】一、复习引入二、章节知识点回顾:椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹,由这些条件可以求出它们的标准方程,并通过分析标准方程研究这三种曲线的几何性质。

1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹。

2.椭圆的标准方程:, ()12222=+b y a x 12222=+b x a y 0>>b a 3.椭圆的性质:由椭圆方程(0>>b a )12222=+b y a x (1)范围: ,,椭圆落在组成的矩形中。

龙教版小学信息技术第二册第四课《月儿弯弯》教学设计

龙教版小学信息技术第二册第四课《月儿弯弯》教学设计

《月儿弯弯》教学设计鸡西市师范附小康瑞一、教材分析本课是龙教版小学信息技术第二册第四课的内容,在学生掌握Windows基本操作和画图软件中几种常用工具的基础上进行教学。

本课前主要介绍了“椭圆”工具,学好这部分知识,对于学生认识、利用信息技术解决实际问题、提高学习信息技术的兴趣、培养信息素养具有一定的作用。

二、学生分析本课的内容对于学生来说相对简单,学生完全有能力自己解决,本课的教学方法以学生的合作、探究学习为主。

三、教学目标知识与技能:掌握椭圆工具的使用方法。

过程与方法:灵活运用椭圆工具的三种模式画图。

培养自主探究、合作学习的能力。

情感态度与价值观:培养学生的创新意识,激发学生的学习兴趣和对祖国的热爱之情。

四、教学重点、难点教学重点:掌握椭圆工具的使用方法。

教学难点:配合使用Shift键,画出正圆以及改变椭圆工具线条的粗细。

五、教学过程1、激趣导入,明确任务问:同学们,老师问你们一个小问题,电影《长江七号》你们看过吗?喜欢里面舍己救人的小七仔吗?老师这有一个关于七仔的小游戏,你们想玩吗?请同学们仔细观察,哪些地方不一样?引出两个形状不同的圆,一个椭圆一个正圆。

画一画:同学们能不能在画图中找出绘制它们的工具,下面请同学们试着画一画这两个图形。

2、自主学习,探索新知活动一:探究学习椭圆工具的第一种样式。

学生演示并说一说如何画椭圆,然后教师示范并说一说如何画正圆,最后引导学生在前面学习的基础上带着两个小任务来画一画。

活动二:合作学习椭圆工具的第二种填充模式。

小组合作用第二种填充模式画出圆呢,请同学研究一下,到前面演示并说出自己的思路,第二个选项所画圆是带边框的实心圆。

活动三:自学椭圆工具的第三种填充模式。

画月牙第三个选项所画圆的是不带边框的实心图形。

巩固练习填画游戏3、大胆想象,自由创作看一看用椭圆工具绘制的图画。

用刚才学过的本领也画这样一副美丽的图画,学生进行创作。

4、作品展示,评价交流同学间交流评价,师及时作出恰当点评,对于创意特别的同学给予鼓励。

高中数学课程思政课堂教学案例的分析与思考——以“椭圆”教学为例


有计划地邀请相关的思政课教师参与,采用小组讨论法、德 尔菲法和综合集成等方法,充分发挥集体智慧,形成系统的 思政元素库和内容载体库, 并最终形成可供课堂教学的课 程思政教案。 另外,这些思政元素库、内容载体库和课程思 政教案需要在课堂教学实践中不断完善、持续改进。
(四)融合创新高中数学课程思政的多维课堂教学方法 课程思政理念下的高中数学教学涉及到两个方面的 基本要素,一是高中数学知识,二是相关的思政元素。 这意 味着,高中数学课程思政的课堂教学方法既源于传统的高 中数学课堂教学方法,又高于传统的高中数学课堂教学方 法,但绝不是简单地在传统的高中数学课堂教学方法作加 法。 传统的高中数学课堂教学注重灌输式讲授,重视推理 和演算,形式单一,难以有机融入思政元素。 课程思政理念 下的高中数学教学亟待改善这种单一的灌输式讲授,亟待 融入其他的教学方式和手段,在思政元素和知识载体之间 架起沟通的桥梁,以便更好地融入思政元素。 为此,我们可 以从教师楷模、数学家精神、社会时事热点、数学史和数学 应用价值这五个维度将相关的思政元素有机融入到课堂 教学中, 融合创新高中数学课程思政的多维课堂教学方 法,在形式上做到顺其自然,在效果上达到“盐溶于水”“润 物细无声”。 其中,“教师楷模”指的是进行高中数学课程思 政教学活动的教师首先自身要做到“身正为范、 学高为 师”,只有这样,授课教师才能理直气壮,受教学生才能心 服口服,课程思政课才能取得真正的共鸣和成效。 笔者认为,高中数学课程思政建设既要有理论上的宏 观研究和指导,也要有实践上的微观分析和思考,要坚持 理论研究与实证研究并举,使之相互促进、相得益彰,从而 不断促进高中数学课程思政研究既推向理论高度,又指向 实践效度。
32 黑龙江教育·教育与教学 2023 . 8
Copyright©博看网. All Rights Reserved.

椭圆曲线求阶算法的分析

中南民族大学学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权中南民族大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

本学位论文属于1、保密□,在______年解密后适用本授权书。

√2、不保密□。

(请在以上相应方框内打“√”)作者签名:日期:年月日导师签名:日期:年月日中南民族大学硕士学位论文第一章 绪论1.1 引言1976年,Diffie和Hellman发表了《New Directions in Cryptography》一文,第一次提出了公钥密码的概念。

所谓的公钥密码体制(Public Key Cryptography)是基于某个难以解决的数学难题,在该数学难题的基础上通过某种公开的算法将加密密钥(公钥)和解密密钥(私钥)相联系起来。

加密密钥和解密密钥是不一样的,加密密钥可以公开而解密密钥必须保密,从加密密钥得到解密密钥非常困难同时计算过程仅仅在理论上可行而实际上是不可能的。

公钥密码学开创了密码学的新领域,在后来的三十多年中,公钥密码这一概念得到了数学家、密码学家和业余爱好者的追捧。

不断的有新的公钥密码模型被提出,但是其中的绝大部分要么被有效的破解,要么由于太复杂而难以实现。

现在,被公认为既安全又能有效实现且具有代表性的公钥密码仅有为数不多的几种,下面将予以简要介绍:一、RSA公钥密码体制它是由Ron Rivest、Adi Shamir和Leonard Adelman于1978年提出的。

《圆锥曲线与方程》复习课教案

一、课题:《圆锥曲线与方程》的复习二、教学目的:1、通过小结与复习,使同学们完整准确地理解和掌握三种曲线的特点以及它们之间的区别与联系。

2、通过本节教学使学生较全面地掌握本章所教的各种方法与技巧,尤其是解析几何的基本方法――坐标法;并在教学中进一步培养他们形与数结合的思想、化归的思想以及“应用数学”的意识3、结合教学内容对学生进行运动变化、自我总结和对立统一的观点的教育 三、教学方法:讲授法、练习法四、教学重点:自我总结并引导学生对三种曲线的标准方程和图形、性质的总结 五、教学难点:做好思路分析,引导学生找到解题的落足点,使学生能够自己独立对知识进行总结 六、教学过程: (一)知识梳理: 1.曲线与方程⑴曲线C 上的点与二元方程()0,=y x f 的实数解建立如下关系: ①曲线上的点的坐标都是这个方程的解; ②以上这个方程的解为坐标的点都是曲线上的点.⑵求曲线的方程的一般步骤①建系;②设点;③列方程;④化简;⑤检查. 2.圆锥曲线的定义⑴平面内满足()212122F F a a PF PF >=+的点P 的轨迹叫做椭圆,定义可实现椭圆上的点到两焦点的距离的相互转化.⑵平面内满足()212122F F a a PF PF <=-的点P 的轨迹叫做双曲线,()212122F F a a PF PF <=-表示焦点2F 对应的一支,定义可实现双曲线上的点到两焦点的距离的相互转化.⑶平面内与一个顶点F 与一条定直线l (不经过点F )距离相等的点的轨迹叫做抛物线,定义可实现抛物线上的点到焦点与到准线距离的相互转化. 3.圆锥曲线的标准方程椭圆、双曲线有两种形式的标准方程,抛物线有四种形式的标准方程.根据曲线方程的形式来确定焦点的位置,根据焦点的位置选择恰当的方程形式. 4.圆锥曲线的简单几何性质⑴圆锥曲线的范围往往作为解题的隐含条件. ⑵双曲线焦点位置不同,渐近线方程不同.⑶椭圆有四个顶点,双曲线有两个顶点,抛物线有一个顶点⑷椭圆、双曲线有两条对称轴和一个对称中心,抛物线只有一条对称轴. ⑸圆锥曲线中基本量p e c b a ,,,,的几何意义及相互转化. 6.直线与圆锥曲线的位置关系⑴直线与圆锥曲线的公共点个数等于由它们的方程构成的方程组解的个数. ⑵直线与椭圆有一个公共点,直线与椭圆相切,但直线与双曲线、抛物线不一定相切,双曲线与平行于渐近线的直线,抛物线与平行(重合)于轴的直线,都只有一个公共点但不相切.7.直线与圆锥曲线相交的弦长⑴求弦长的方法是将直线与圆锥曲线的方程联立后,求出两点坐标,利用两点间距离公式,常用的方法是结合韦达定理,如直线b kx y +=与圆锥曲线相交于()()2211,,,y x B y x A 两点,弦长()21221241x x x x k AB -++=.⑵过抛物线焦点的弦长问题结合定义来解决能化简计算. 8.元圆锥曲线有关的“中点弦”弦的中点坐标与斜率可由曲线方程得到关系,此法称为“点差法”,灵活运用科简化计算,但要以直线与曲线相交为前提,即消元后的方程判别式大于零. 9.当直线过x 轴上的点()0,m M 时,设直线方程为m ty x +=与抛物线方程()022>=p px y 联立消元后的方程较简。

抛物线及其标准方程教学教学反思

抛物线及其标准方程教学教学反思课题导入的思考:关于课题导入,我开始设计是由椭圆和双曲线的第二定义引出抛物线的定义:“我们知道,到一个定点的距离和到一条定直线的距离的比是常数的点的轨迹,当常数在内变化时,轨迹是椭圆;当常数大于时,轨迹是双曲线;那么当常数等于时轨迹是什么曲线呢?这就是今天我们要学习的第三种圆锥曲线——抛物线”.这样引入比较自然,也比较顺畅。

但考虑到教材中没有明确给出椭圆和双曲线的第二定义,只是由47页的例6和59页的例5两个具体的例子让学生对第二定义有所了解,《课标》中也没有明确要求学生掌握这两个定义(教材中是通过信息技术的演示让学生直观了解这两个定义)。

所以由第二定义引入不利于突出本节课的重点,同时学生在表述上也不一定很清晰。

所以,我改用学生最熟悉的二次函数的图像来引入,这样,即让学生很容易想到抛物线这一几何图形,又让学生了解,原来在二次函数中研究抛物线主要是从函数的角度研究,今天研究抛物线更注重它的几何特征和几何性质,更突出解析几何的本质。

同时,我列举了三种情况的二次函数:一个是最一般形式();一个是对称轴是轴();还有一个是最简单形式的顶点在原点,对称轴是轴()。

这样,既使学生在熟悉知识的前提下增强了探索新知识的欲望,又为研究抛物线的标准方程埋下伏笔。

学习探究的思考:一、定义的引入在探究抛物线的定义时,也是设计了几种方案。

一种是用直尺和三角板两个最熟悉的工具画图:如图所示,把一根直尺固定在图上直线的位置,把一块三角尺的一条直角边紧靠着直尺的边缘,再把一条细绳的一端固定在三角尺的另一条直角边的一点,取绳长等于点到直角顶点的长(即点到直线的距离),并且把绳子的另一端固定在图板上的一点,用铅笔尖扣着绳子,使点到笔尖的一段绳子紧靠着三角尺,然后将三角尺沿着直尺上下滑动,笔尖就在图板上描出了一条曲线.请同学们说出这条曲线有什么特征?另一种是利用几何画板作出画抛物线的软件演示。

但这两种方法都是让学生看到现成的东西,不容易让学生信服。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

个 量
过 右 焦 点 F Al F, B F 都 是 联 立方 程组 ; 且 斜 率 为 k 的 直 线 与 椭
几何 条 件 本 质 特征
设 A( x , ) , B( z z , 。 ) , 贝 4 有

先填 写下 表 , 把 几何 条 件 转 化成
8 忌 c
4 愚 0 f 2— —口2
一 十z z 一— 4 k Z — + l’ z 2 一—
一・
而 声一( c — , 一y 1 ) , 商 一( z 一c ,
边形 O E PF, 其 中顶 点 P 在 椭 圆 C 上 , 0为
坐标原 点 , 求 0 到 直 线 l距 离 的 最 小值 ;
围 成 一 个 等 腰
z M对 称 三 角形
N e w U n i v e r s i t y E n t r a n c e E x a mi n a t i o n 2 9

( V)点 M 为直线 Y = = = 去 与该 椭圆在
第一 象 限 内的 交点 , 平行 于 oM 的 直 线 Z交
椭 圆于 A, B 两 点 .求 证 : 直 线 MA , j 与z
的转化 是 几何 问 题 的 代 数 描 述 , 代 数 问题 的 几 何 表示 . 解 决解析几何 问题 , 除 了 掌 握 椭
圆等 圆锥 曲线 的概 念 与 性 质 外 , 还 需 要 以下 三种解 题 意识 : ( 1 )几何 条 件 代 数 化 ; ( 2 )代
轴 始终 围成 一 个等腰 三 角形 ;
( V i )你 还 能 提 出哪 些 类 似 问 题 ?
数运 算几 何 化 ; ( 3 )一般 问题特 殊 化. 这 三种
o ) 的 离心 率 为 , 长轴 端 点 与 短 轴 端 点 间的

z轴 (i i i ) 以 线 段
对 称
距 离 为√ 5 .
(工)求 椭 圆 C 的 方 程 ;
(1 I)过 点 D( 0, 4 ) 的 直 线 Z与 椭 圆 C 交
于 两 点 E, F;
O E, O F 为 邻 边 磕
表 1
转 化 成 适 当
几 何 条 件
本 质 特 征 的代 数 关 系 等 腰 三 角形 , E F k B N一 一 1
( 其 中 N 是
EF 的 中点 )
(i ) BE—B F
三 线 合 一
(j ; ) E A F 的 直 线 AE, AF
角 平 分 线 是 关 于 z 轴 A F+ ^ F一0
22 例2 已知 椭 圆 c: 3 c 2 T



/ 一
f / C

2 \ 一 1 0

l / F


图 l
— 1( 口 > 6 >
程 联立 ,

o ) 的 离心率 为 , 过 右 焦点 F且 斜 率 为 k的
Y 2 ) ,
代 数 关 系
a, b, f三 个 量
由 : : = 3商 得 +3 =4 c .
离 心 率 为
可 以 统 一 成 C 4 3



 ̄ J ' x z = = = 等 , 从 而 一兰 .
将 经 过 “ 实 践一 认 识 ~再 实 践一 再认 识 ” 循 环往复 的提高 过程. 下 面结 合两 个 例 题 来 说 明如 何 利 用 三 种 意 识 击 破
椭 圆学 习难 点 .
例 1 已 知 椭 圆 c: + 一 1 ( n> 6 >
根 据 以上 问题 的求 解过程 , 填 写表 1 :
作 平 行 四 边 形


f P— XE十 F
l Y P —Y E +Y F
0EPF, 顶 点 P
在 椭 圆 C 上
(i V) 若 以 EF OE上 OF, X E XF十 Y E YF
一 0
( i ) 设B ( 、 0 , 一 寺) 4 , , 若B E — B F , 求直
三种 意识 突破 椭 圆 学 习难 点
江 苏省 无锡 市 青 山高 级 中 学 张 启 兆
明确 的解题 意 识 就像 大 海 中 的灯 塔 , 能
( i V)若 以 EF 为 直 径 的 圆 过 原 点 , 求 直
够 引导 我们 的解 题 思 路 通往 成 功之 门. 解 析 线 Z的斜 率 ; 几何 , 研 究 的 问题 是 几 何 问 题 , 研 究 的 手 法 是代 数 法 , 因此 , 解 析 几 何 的 问题 用 的最 多
直 线 与 椭 圆 C 相 交 于 A, B 两 点 .若 一
: 有
( x - c ),  ̄ 1 y 抖 = k 4

得( 4 k +1 ) z。 一8 k c x+4 k C 一n 一0 .
3 商 , 求 实数 忌的值.
分析
代 数关 系.
转 化 成 适 当 的
线 Z的 斜 率 ;
(. . )若 A 是 椭 圆 的 右 顶 点 , 且 EAF
为 直 径 的 圆 过
. 一 o
原 点 ( V)直 线 MA , 直 线 MA, MB 与 X 轴 始 终 MB关 于 — m + Ⅷ 一0
的 角 平 分 线 是 轴 , 求 直 线 的 斜 率 ; ( i i i )以 线段 o E, 0 F 为 邻 边 作 平 行 四
I新高警 数 学
评 注 通 过这 道 例 题 , 在不 同问 题情 境
中概括 总结 “ 几 何 条 件 转 化 成 代 数 关 系” 的 核心 方法 : 分析几何条 件的本质特 征, 选 择 适 当的代数 形 式 来 表示 . 通 常 和斜 率 、 中点 、 距 离 有关. 这种意识 再提高就 是“ 从 现 象 到 本质 , 抓住 事物 的本 质认识 事 物” .
相关文档
最新文档