学而思初一数学秋季班第1讲.有理数与数轴.尖子班.教师版

合集下载

数学:1.2《有理数-数轴》课件(人教新课标七年级上)

数学:1.2《有理数-数轴》课件(人教新课标七年级上)

练习
( A、1)-下21面与两0个.2数是互为B、相反31 数与的-是0.(33c3 )
C、-2.25与2
1 4
D、π与3.14
(2)写出三对非零相反数
练习
下面数轴上的A、B、C/8,点B 表示1,那么离原点较近的点是 ____.
(2)5离原点有___个单位长度,-6离 原点有___个单位长度.
注意:任意一个有理数都可以用数轴上的 点表示.
是数轴的打“√”,不是数轴的打 “×”。
对的打“√”,错的打“×”.
(1)规定正方向、单位长度的直线叫做数轴。 (2)规定单位长度的直线叫做数轴。 (3)规定正方向、原点、单位长度的直线
叫做数轴

如图,数轴上点A,B,C,D分别表示什么数?
-5
-1 0
3.5
A
BC
D
01

在数轴上表示下列各数:
(1)0.5 ,
5
5
2 , 0 , -4 , 2 ,
-0.5 , 1 , 4 ;
(2)200 , -150 , -50 , 100 , -100 .
观察数轴,-4与4有什么相同
与不同之处?它们在数轴上的位置有
什么关系?那么-
5 2

5 2
呢?
-0.5与0.5呢?
4 2.5
4 2.5
-4 -2.5
0 1 2.5 4
如果两个数只有符号不同,那么我 们称其中一个数为另一个数的相反数, 也称这两个数互为相反数
比如 , 4的相反数是-4 , -1/4 的相反数是 1/4 , 4 和 -4 互为相反 数,-1/4 和 1/4 互为相反数
注意:0的相反数是0
4 2.5

学而思初一数学秋季班第7讲.期中复习.尖子班.教师版

学而思初一数学秋季班第7讲.期中复习.尖子班.教师版

1初一秋季·第7讲·尖子班·教师版一 有理数基本概念1. 正数、负数及有理数概念2. 用正、负数表示相反意义的量3. 有理数: 整数与分数统称有理数.4. 有理数的分类:⑴ 按整数和分数分类; ⑵ 按正数、负数和零分类.注:①正数和零统称为非负数;②负数和零统称为非正数; ③正整数和零统称为非负整数; ④负整数和零统称为非正整数.⎧⎫⎪⎬⎨⎭⎪⎩有限小数可化成分数形式,是有理数小数无限循环小数无限不循环小数——不可以化成分数形式,不是有理数二 数轴、相反数、绝对值、倒数、负倒数1. 数轴:规定了原点、正方向和单位长度的直线叫做数轴;2. 相反数:只有符号不同的两个数,互称为相反数.如果a 与b 互为相反数,则有0a b =+,反之亦然.3. 绝对值:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a .正数的绝对值是本身,0的绝对值是0,负数的绝对值是它的相反数.绝对值的性质:⑴ 绝对值的非负性,可以用下式表示:0a ≥,这是绝对值非常重要的性质;⑵ (0)(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩ 0 ;⑶ 若a a =,则0a ≥;若a a =-,则0a ≤; ⑷ 若a b =,则a b =或a b =-; ⑸ a a =-; 7期中复习2初一秋季·第7讲·尖子班·教师版⑹ a b - 数轴上表示数a 的点与表示数b 的点之间的距离,且a b b a -=-.教师备案:1. 解决绝对值的相关问题大多数都是去绝对值符号问题.(看到绝对值就想到去绝对值符号)2. 让学生掌握绝对值的几何意义,利用数形结合及分类思想解题.3. 让学生灵活运用绝对值的基本性质.4. 倒数:乘积为1的两个数互为倒数,特别地,0没有倒数;倒数是它本身的数是1±,正数的倒数是正数,负数的倒数是负数.5. 负倒数:乘积为1-的两个数互为负倒数,特别地,0没有负倒数 ;a 、b 互为负倒数,则有1ab =-,反之亦然.三 有理数的加减法1. 有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数. 2. 有理数加法的运算律:①两个加数相加,交换加数的位置,和不变. a b b a +=+(加法交换律) ②三个数相加,先把前两个数相加,或者先把后两个数相加,和不变. ()()a b c a b c ++=++(加法结合律) 3. 有理数减法法则:减去一个数,等于加上这个数的相反数.例:()a b a b -=+-四 有理数乘除法1. 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘都得0.2. 有理数乘法运算律:乘法交换律、乘法结合律、乘法分配律.3. 有理数除法法则:除以一个不等于0的数,等于乘以这个数的倒数.两数相除,同号得正,异号得负,并把绝对值相除; 0除以任何一个不等于0的数,都得0.4. 有理数除法的运算步骤:首先确定商的符号,然后再求出商的绝对值.5. 有理数乘方:求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂. 在n a 中,a 叫做底数,n叫做指数. 特别注意负数及分数的乘方,应把底数加上括号. 6. 有理数混合运算的运算顺序:先乘方,再乘除,最后加减. 7. 科学记数法科学记数法:把一个大于10的数表示成10n a ⨯的形式(其中110a <≤,n 是正整数),此种记法叫做科学记数法.例如:5200000210=⨯就是科学记数法表示数的形式. 710200000 1.0210=⨯也是科学记数法表示数的形式.【例1】 ⑴在有理数1-,0,35-,(4)--,()1.2+-,4--,56%,()3---中,整数有________有理数综合复习3初一秋季·第7讲·尖子班·教师版个,负数有_________个.⑵下列代数式:2m 、22x +、x 、1a +、1||2a +、21x -、2()|1|ab ---的值,一定为正数的有 个.⑶下列说法正确的有( )个①正数和负数统称为有理数;②1是最小的自然数;③整数和分数统称为有理数;④非 负数是正数和0;⑤正整数和负整数统称为整数;⑥分数都可以化为小数,反过来小数 不一定能化为分数。

初中数学《有理数与数轴》单元教学设计以及思维导图

初中数学《有理数与数轴》单元教学设计以及思维导图

有理数与数轴适用年七年级数学级所需时7课时间主题单元学习概述(说明:简述主题单元在课程中的地位和作用、单元的组成情况,单元的学习重点和难点、解释专题的划分和专题之间的关系,单元的主要的学习方式和预期的学习成果,字数300-500) 本章是第三学段教科书的第一章,既承接前两个学段的内容,又为进一步学习打下基础。

本章主要内容是有理数的有关概念及其运算。

首先,从实例出发引入负数,接着引进关于有理数的一些概念,在此基础上,介绍有理数的加减法运算。

本主题单元,将分成三个专题来组织学习活动。

专题一:认识正、负数及有理数的分类。

专题二:数轴与有理数。

数轴与相反数。

数轴与绝对值。

专题三:数轴与有理数加法。

这三个专题都源于教材,其覆盖了教材的全部要求,又不拘泥于教材,适当进行了拓展和延伸,充分体现了学科服务于生活的理念。

学习本章的一个关键,就是利用数轴的直观性,帮助学生理解相反数与绝对值的概念,掌握比较有理数大小的方法,认识有理数的运算法则。

利用数轴分析物体运动的实例,可以非常直观地获得物体两次运动的结果,从而引出有理数加法的运算法则。

主题单元规划思维导图主题单元学习目标(说明:依据新课程标准要求描述学生在本主题单元学习中所要达到的主要目标)知识与技能:1、通过生活实例,了解有理数等知识是生活的需要.2、理解并掌握数轴、相反数、绝对值、有理数等有关概念.3、通过本单元的学习,掌握有理数的加法。

过程与方法:通过本单元的学习,培养学生应用数学知识的意识,训练和增强学生运用新知识解决实际问题的能力情感态度与价值观:1、过本单元知识的学习,通过生活实例的引入,通过教师、学生双边的教学活动,激励学生学习数学的兴趣,让学生真正体验到数学知识来源于生活并服务于生活.2、通过本单元知识的学习,给学生渗透辩证唯物主义思想。

3、让学生通过观察、思考、探究、讨论、归纳,主动地进行学习。

对应课标(说明:学科课程标准对本单元学习的要求)1、通过实际例子,感受引入负数的必要性。

学而思初一数学资料培优汇总(精华)

学而思初一数学资料培优汇总(精华)
(2)减法法则:减去一个数等于加上这个数的相反数。
(3)乘法法则:几个有理数相乘,奇负得负,偶负得正,并把绝对值相乘。
(4)除法法则:除以一个数,等于乘以这个数的倒数。
3、准确运用各种法则及运算顺序解题,养成良好思维习惯及解题习惯。
二、【典型例题解析】:
1、计算:
2、计算:(1)、
(2)、(-18.75)+(+6.25)+(-3.25)+18.25
(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为;
(2)计算: =(填写最后的计算结果)。
7、观察下列各式,你会发现什么规律?
3×5=15,而15=42-1 5×7=35,而35=62-1……
11×13=143,而143=122-1……
将你猜想的规律用只含一个字母的式子表示出来。
6、已知 ,求 的值。
7、已知 均为正整数,且 ,求 的值。
8、求证 等于两个连续自然数的积。
9、已知 ,求 的值。
10、一堆苹果,若干个人分,每人分4个,剩下9个,若每人分6个,最后一个人分到的少于3个,问多少人分苹果?
三、【备用练习题】:
1、已知 ,比较M、N的大小。
, 。
2、已知 ,求 的值。
第一讲数系扩张--有理数(一)
一、【问题引入与归纳】
1、正负数,数轴,相反数,有理数等概念。
2、有理数的两种分类:
3、有理数的本质定义,能表成 ( 互质)。
4、性质:①顺序性(可比较大小);
②四则运算的封闭性(0不作除数);
③稠密性:任意两个有理数间都存在无数个有理数。

【暑假预习】人教版数学七年级上册讲义:第1讲:有理数和数轴(含答案)

【暑假预习】人教版数学七年级上册讲义:第1讲:有理数和数轴(含答案)

第一讲 有理数与数轴入门测成绩(满分10): 完成情况: 优/中/差1.如果向右走5步记为+5,那么向左走3步记为A .+3B .﹣3C .31+D .31-B2.以下4个有理数中,最小的是A .-1B .1C .0D .-2D 3.31-的相反数是 . 134.下列说法正确的是①0是绝对值最小的有理数 ②相反数大于本身的数是负数 ③一个有理数不是正数就是负数 ④两个数比较,绝对值大的反而小 A .①② B .①③ C .①②③ D .①②③④ A5.若数轴上点A 表示的数是-3, 则与点A 相距4个单位长度的点B 表示的数是 . -7或16.有理数a ,b ,c ,d 在数轴上对应点的位置如图所示,这四个数中,绝对值最大的是 AA .aB .bC .cD .d7.小红的妈妈买了4筐白菜,以每筐25千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重后的记录分别为25.0+,1-,5.0+,75.0-.小红快速准确地算出了4筐白菜的总质量为 千克.99教学目标1.理解并掌握有理数、数轴、相反数、绝对值的意义2.会比较有理数的大小3.会求有理数的相反数和绝对值4.会利用绝对值的知识解决简单的化简问题知识梳理1.正数和负数大于的数叫做0 正数,等在正数前面加上负号"" 的数小于的数叫做,形如-3-0.50 负数0 既不是正数也不是负数2.有理数、和统称为正整数0 负整数整数、统称为正分数负分数分数和统称为整数分数有理数所以有理数可以分为.和正有理数 0 负有理数 3.数轴数轴:规定了 . 和 的直线叫做数轴原点 正方向 单位长度所有的有理数都可用数轴上的点来表示4.数轴的画法(1)画一条直线(一般画成水平的直线)(2)在直线上根据需要选取一点为原点(在原点下面标上“0”) (3)确定正方向(一般规定向右为正,并用箭头表示出来); (4)选取适当的长度为单位长度,从原点向右,每隔一个单位长度取一点,依次表示1,2,3,… 从原点向左,用类似的方法依次表示-1,-2,-3,…5.相反数相反数:只有 不同的两个数叫做互为相反数符号就是0的相反数 0求一个数的相反数只要在 加上"-"即可,若求一个代数式的相反数就是用括号把这 个代数式括起来,再在这个 加上"-".前面括号前性质:若a 与b 互为相反数,则0a b +=,1ab=-(b 0≠)两个数相加为零,则这两个数互为,他们分别位于原点的,且到原点的相反数两侧距离相等6.绝对值绝对值的几何意义:一个数的绝对值是这个数在数轴上的对应点到原点的距离在数轴上离开的距离就叫做这个数的原点绝对值一个正数的绝对值是它本身一个负数的绝对值是它的相反数0的绝对值是绝对值的代数意义:||() () ()aa aaa a=>=-<⎧⎨⎪⎩⎪00典型例题例题1:1.我们把向东运动5米记作“+5米”,则向西运动3米记作________米.-32.中国人很早就开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入了负数.如果收入100元记作+100元,那么-80元表示A.支出80元B.收入20元C.支出20元D.收入80元A练习1:1.如果零上5℃记作5+℃,那么零下5℃记作CA.-5B.-10C.-5 D.-10练习2:1.在-3,-1,2,0这四个数中,是正数的数是CA.-3 B.-1 C.2 D.0例题2:1.有8筐白菜, 以每筐25千克为标准, 超过的千克数记作正数, 不足的千克数记作负数,称后的记录如下:1.5 -3 2 -0.5 1 -2 -2 -2.5回答下列问题:(1)这8筐白菜中, 最接近25千克的那筐白菜为__________千克; 24.5(2)以每筐25千克为标准, 这8筐白菜总计超过多少千克或不足多少千克?5.5(3)若白菜每千克售价2.6元, 则出售这8筐白菜可卖多少元?505.7练习1:1.某日,司机小张作为志愿者在东西向的公路上免费接送游客。

学而思初一数学寒假班第1讲.实数初步.教师版 (2)

学而思初一数学寒假班第1讲.实数初步.教师版 (2)

实数8级 实数的计算与化简 实数7级 实数初步实数6级 绝对值“实数”的风波漫画释义满分晋级阶梯1实数初步题型切片(三个) 对应题目题型目标平方根的定义与性质 例1;例2;例3;例8;演练1,2,3; 立方根的定义与性质 例4;例5;演练4,5; 实数 例6;例7;演练6考点一:了解平方根及算术平方根的概念1、49的平方根是 ,16的算术平方根是 .【解析】7,4±考点二:了解立方根的概念2、8-的立方根是 ,8的立方根是 .【解析】2,2-考点三:了解无理数的概念3、下列各数哪些是有理数,哪些是无理数?322π20.230.131331333 (7),,,,【解析】有理数:227,0.23,;无理数:3π20.131331333...,,编写思路考点剖析知识互联网题型切片【例1】考察平方根及算术平方根的概念及性质,用根号表示非负数的平方根及算术平方根; 【例2】利用非负数的性质解题;【例3】要挖掘被开方数为非负数的隐含条件,确定字母取值范围或取值解题; 【例4】考察立方根的概念及性质;【例5】考察立方根与算术平方根的区别; 【例6】考察无理数、实数的概念; 【例7】考察实数与数轴的关系;【例8】考察无理数的小数及整数部分.【教师备案】 1、知识点引入:2、老师可以在讲的过程中结合具体例子总结:⑴当被开方数扩大(或缩小)2n 倍,它的算术平方根相应地扩大(或缩小)n 倍(0n ≥).定 义 示例剖析平方根的概念:如果一个数的平方等于a ,那么这个数叫做a 的平方根.也就是说,若2x a =,则x就叫做a 的平方根.()224±=,2±就叫做4的平方根平方根的表示:一个非负数a 的平方根可用符号表示为“a ±”. 5的平方根可表示为5±总结:一个正数有两个平方根,且互为相反数;零的平方根是零;负数没有平方根.算术平方根的概念: 一般地,如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根,规定:0的算术平方根为0.4的平方根是2±,其中2叫做4的算术平方根. 算术平方根的表示:一个非负数a 的算术平方根可用符号表示为“a ”. 5的算术平方根可表示为5 双重非负性: 在式子a 中,0a ≥且0a ≥.式子1x -有意义,101x x -≥≥, 总结:一个正数有一个算术平方根;零的算术平方根是零;负数没有算术平方根. 平方根计算:求一个数的平方根的运算,叫做开平方(开方),开方运算和平方 运算互为逆运算.()()20,a a a =≥()2(0)||00(0)a a a a a a a >⎧⎪===⎨⎪-<⎩知识导航模块一 平方根的定义与性质⑵平方根和算术平方根与被开方数之间的关系:①若0a ≥,则2()a a =;②不管a 为何值,总有()2(0)||00(0)a a a a a a a >⎧⎪===⎨⎪-<⎩⑶若一个非负数a 介于另外两个非负数1a 、2a 之间,即120a a a <<≤时,它的算术平方根也介于1a 、2a 之间,即:120a a a <<≤.利用这个结论我们可以来估算一个非负数的算术平方根的大致范围.对新概念的理解能力【例1】 ⑴ 求下列各数的平方根与算术平方根:①4964; ②0.0001; ③5; ④()23-; ⑤16. ⑵ 求下列各式的值:①25; ②0.01±; ③169-; ④()22-; ⑤()26-; ⑥416a⑶ 解关于x 的方程:①2449x =; ②231080x -=;③()225136x -=⑷ 比较下列各数大小:①2___3 ②2___3 ③140___12⑸ 一个正数的平方根是31a +和5,则a =_________.【解析】 ⑴ ① 78±和78; ②0.01±和0.01; ③5±和5; ④ 3±和3; ⑤2±和2⑵ ① 5; ②0.1±; ③13-; ④2; ⑤6; ⑥24a⑶①72±;②6±;③111,55-⑷① <;② >;③ <.⑸2-.非负性的考查【例2】 ⑴ 若230x y ++-=,则xy 的值为( )A .8-B .6-C .5D .6 (北京中考)⑵若()24a -与5b +的值互为相反数,则2a b +的平方根是 . ⑶若()22320070a b c -+-+-=,求()22ca b -的值.【解析】 ⑴ B.⑵ 4a =,5b =-,23a b +=,∴平方根是3±.夯实基础能力提升⑶()222,3,2007,1ca b c a b===∴-=-综合应用能力【例3】 ⑴已知225(1)2005x xy x -+-=+-⋅,求x y 的值.⑵已知2211604n m m m-++-=-,则2mn n +-的倒数的算术平方根为_______.⑶已知20102011a a a -+-=,求22010a -的值.【解析】 ⑴∵20x -≥且20x -≥∴20x -= 即2x =,∴5y = ∴2525x y ==⑵ 49m n =-=-,,结果为15⑶∵20110a -≥ ∴2010<0a -∴原式为 20102011a a a -+-= 20112010a -=,两边平方得220112010a -= ∴220102011a -=定 义示例剖析立方根概念:如果一个数的立方等于a ,那么这个数叫做a 的立方根,也就是说,若3,x a =则x 就叫做a 的立方根.328=, 2就叫做8的立方根表示:一个数a 的立方根可用符号表示3a ,3a 读作“三次根号a ”.5的立方根可表示为35总结:任何一个数都有立方根,且只有一个立方根.正数的立方根为正数,负数的立方根为负数,0的立方根为0.计算:求一个数的立方根的运算,叫做开立方,开立方与立方是互逆运算.()333333,,a a a a a a ==-=-知识导航模块二 立方根的定义与性质对新概念的运用能力【例4】 ⑴ 求下列各数的立方根:①1-; ②8; ③338; ④64; ⑤ ()25-;⑵ 比较大小①310 311; ②9 327 ⑶ 求出下列各式中的a :①若30.343a =,则a = ; ②若33213a -=,则a = ; ③若31250a +=,则a = ;④若()318a -=,则a = .⑷ 下列四种说法中,正确的是( )A 、33x -没有意义B 、一个数的某个平方根恰与它的立方根相等,这个数一定是0C 、一个正数有两个立方根D 、互为相反数的立方根也互为相反数【解析】 ⑴ ① 1-; ②2; ③32; ④ 2; ⑤ 325⑵ ①< ②=⑶ ①0.7 ② 6 ③5- ④3;⑷ D考查综合运用能力【例5】 ⑴3311x x -+-中的x 的取值范围是 ,11x x -+-中的x 的取值范围是 .⑵ 若331y -和312x -互为相反数,求xy 的值.【解析】 ⑴ 任意实数;1x =⑵ ∵331y -与312x -互为相反数,∴31y -与12x -也互为相反数, 即(31)(12)0y x -+-=,∴3320,32,2x y x y x y -===夯实基础能力提升注:无理数的四种形式: (1)圆周率π(2)开不尽的方根;325,(3)含有无理数的式子;+13+17π, (4)特殊结构的数. 0.101001000100001......(10)相邻两个之间依次多个对新概念的运用能力【例6】 ⑴ 下列说法正确的个数为( )①无理数都是实数 ②实数都是无理数 ③无限小数都是无理数 ④带根号的数都是无理数 ⑤没有绝对值最小的实数A 、1个B 、2个C 、3个D 、4个定 义示例剖析无理数:无限不循环小数叫无理数332523-π,,,,…都叫做无理数实数:有理数和无理数统称实数.5和35都是实数实数与数轴的关系:实数与数轴上的点一一对应,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.分类:0⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎨⎪⎪⎪⎧⎫⎪⎨⎪⎨⎬⎪⎪⎪⎭⎩⎩⎪⎪⎫⎧⎪⎪⎨⎬⎪⎪⎩⎭⎩正整数整数负整数有理数正分数实数分数有限小数或无限循环小数负分数正无理数无理数无限不循环小数负无理数夯实基础知识导航模块三 实数⑵ 在33320.318127 3.1470.4829 1.020020002...90.523π------,,,,,,,,,,中,无理数有_________个.⑶ 求下列各数的相反数及绝对值:①6-;② 3.14π-;③312-;④32-⑷ 已知x 是4的平方根,32y =-,25z =,求2x y z +-的值.【解析】 ⑴ A;⑵5个;⑶相反数:①6;②3.14π-;③321-;④23- 绝对值:①6;② 3.14π-;③321-;④23-.⑷ 19,23--实数与数轴的一一对应关系【例7】 ⑴如图所示,在点A 和点B 之间表示整数的点共有_________个.5-3B A⑵如图所示,数轴上表示1,2的对应点分别为A 、B ,点C 到点A 的距离与点B 到点A 的距离相等,则C 所表示的数是( ) A 、21- B 、12- C 、22- D 、22-【解析】 ⑴ 4个;⑵ C近年来对无理数的估算问题考查的越来越多,先给老师们准备几个有关整数部分和小数部分的题,然后再通过一道真题进行详细讲解,并让学生逐步掌握估算无理数范围的方法. 无理数的估算问题【铺垫】⑴ 若404m =-,则估计m 的范围为( )A.1<<2mB.2<<3mC.3<<4mD.4<<5m(实验中学期中)⑵ 若实数k 的整数部分是3,则k 的取值范围是___________.⑶ 观察例题:∵4<7<9,即2<7<3,真题赏析能力提升B A O 221∴7的整数部分为2,小数部分为72-. 请你观察上述的规律后试解下面的问题:如果2的小数部分为a ,3的小数部分为b ,求a b ,的值.【解析】⑴ B; ⑵916k <≤ ⑶2131a b =-=-,.【例8】 (2012海淀期末考试)阅读材料:学习了无理数后,某数学兴趣小组开展了一次探究活动:估算13的近似值。

七年级数学《有理数》图文详解PPT


知3-讲
分析:对数集A中的每一个数应逐个分析.如-2即 不属于B,也不属于C,所以应写在圆A内, 但不在圆B和圆C中,-4同是属于三个数集. 应写在三个数集的公共区域内;-8属于数集 A和数集C,应写在圆A和C的公共区域内,但 不在圆B内,其它数的写法以此类推.
解:如图所示:
总结
知3-讲
本题考查数集的表示方法,注意渗透元素与 集合,集合与集合的关系知识.
(2)通常把正数和0统称为非负数,负数和0统称为非正 数,正整数和0统称为非负整数(也叫做自然数),负 整数和0统称为非正整数.
(3)在对有理数进行分类时,要严格按照同一分类标准, 做 到不重复、不遗漏.
知2-练
1 把下列各数分别填入相应的大括号内.
5,-3,3 ,-0.373 737…,3.14,0,9 2 ,- 6 .
小林说“以大堤为基准,记为0米,则芳芳所在的位 置高为-20米,徐伟所在的位置高为+58米.”
徐伟说:“以铁塔顶为基准,记为0米,则芳芳所在 的位置高为-58米,小林所在的位置高为-38米.”
芳芳说:“徐伟的位置比我高58米.” 他们说的数有一个统一的名称吗?
知识点 1 有理数及相关概念
知1-讲
正数中的“+”可以省略不写,如+1.8可以写成1.8,
知3-练
3 把下列各数分别填入相应的大括号内.
-100,1,8
2 3
,6,0
,+3 1,-2.25, 4
- 10%, 3 ,- 18, 2019 ,- 0.01 .
100 正数:{1, 6,+3 1
4
3 ,100 , 2019, …};
负分数:{ 8 2 ,-2.25, -10%,- 0.01 ,…};

初一上册数学《有理数》教案

初一上册数学《有理数》教案初一上册数学《有理数》教案初一上册数学《有理数》教案1《1.2有理数》教学设计【学习目标】:1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;2、了解分类的标准与集合的含义;3、体验分类是数学上常用的处理问题方法;【学习重点】:正确理解有理数的概念【学习难点】:正确理解分类的标准和按照一定标准分类《1.2.1有理数》同步练习含答案5.对-3.14,下面说法正确的是(B)A.是负数,不是分数B.是负数,也是分数C.是分数,不是有理数D.不是分数,是有理数《1.2有理数》同步练习含答案解析8.如果a与1互为相反数,则|a|=( )A.2B.﹣2C.1D.﹣1【考点】绝对值;相反数.【分析】根据互为相反数的定义,知a=﹣1,从而求解.互为相反数的定义:只有符号不同的两个数叫互为相反数.【解答】解:根据a与1互为相反数,得a=﹣1.所以|a|=1.故选C.【点评】此题主要是考查了相反数的概念和绝对值的性质.9.若|1﹣a|=a﹣1,则a的取值范围是( )A.a>1B.a≥1C.a<1D.a≤1【考点】绝对值.【分析】根据|1﹣a|=a﹣1得到1﹣a≤0,从而求得答案.【解答】解:∵|1﹣a|=a﹣1,∴1﹣a≤0,∴a≥1,故选B.【点评】本题考查了绝对值的求法,解题的关键是了解非正数的绝对值是它的相反数,难度不大.初一上册数学《有理数》教案2教学目标1、掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;2、了解分类的标准与分类结果的相关性,初步了解“集合”的含义;3、体验分类是数学上的常用处理问题的方法。

教学难点正确理解分类的标准和按照一定的标准进行分类知识重点正确理解有理数的概念教学过程(师生活动)设计理念探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).问题1:观察黑板上的9个数,并给它们进行分类.学生思考讨论和交流分类的情况.学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.例如:对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.??…(由于小数可化为分数,以后把小数和分数都称为分数)通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数.按照书本的说法,得出“整数”“分数”和“有理数”的概念.看书了解有理数名称的由来.“统称”是指“合起来总的名称”的意思.试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

2021秋七年级数学上册第1章有理数1、2数轴相反数和绝对值1数轴授课课件新版沪科版


点的两侧,有两个点.
感悟新知
总结
知3-讲
距离是一个长度,在数轴上表示到某个点 的距离为a的点时,用分类讨论思想时要考虑在 这个点左侧且距此点a个单位长度有一个点;在 这个点右侧且距此点a个单位长度也有一个点.
感悟新知
例7 如图1,数轴上有三点A、B、C.请回答:
知3-练
(1)三点A、B、C中,任意两点之间的距离是多少个 单位长度?
感悟新知
1 下列所画数轴正确的是( )
A
B
知1-练
C
D
2 下列说法中,错误的是( )
A.在数轴上,原点位置的确定是任意的
B.在数轴上,正方向是从原点向左
C.在数轴上,确定单位长度时可根据需要任意选取
D.数轴是规定了原点、正方向、单位长度的直线
感悟新知
知识点 2 数轴上的点与有理数的对应关系 知2-讲
1.数轴的两个最基本的应用: 一是知点读数,二是知数画点,它是最直观的数形结 合体.
2.数轴上的点与有理数间的关系:数轴上的每一个点都 表示一个数,所有的有理数都可以用数轴上的点来表 示,但数轴上还有一部分点表示的不是有理数,它们 之间不是一一对应的关系,比如π这样的数也能在数 轴上表示.
感悟新知
4.易错警示:在画数轴时常出现以下几种错误: (1)没有正方向;(2)没有原点;(3)单位长度不统一; (4)标数时顺序不对.
感悟新知
例 1 图判断下列数轴是否正确 . 如果不正确,请指 出错在哪里 .
知1-练
导引:(1)正确;(2)(3)(4)都不正确 . 其出错之处分别是: (2)中的数轴缺少原点; (3)中的数轴负半轴上所标的负数的顺序不对,应将“-2” 写在“-1”左边; (4)中的数轴上的单位长度不统一 .

第二节 数轴的应用(含答案)...七年级数学 学而思

第二节数轴的应用1 数轴的概念(1)定义:规定了原点,正方向和单位长度的直线叫数轴;(2)数轴的定义包含三层含义:①数轴是一条直线,可以向两边无线延伸;②数轴有三个要素:原点、正方向、单位长度,三者缺一不可;③原点的选定、正方向的取向、单位长度大小的确定,都是根据实际需要“规定”的,(3)数轴三要素:①原点:在直线上任取一点表示数0,叫做原点;②正方向:正数所在方向,一般规定直线上向右的方向为正方向;③单位长度:选取某一长度作为单位长度.2.数轴的画法第一步:画一条水平直线(画竖直的直线行不行呢?也行,现在为了读者方便,通常把数轴画咸水平的);第二步:在直线上选取一点为原点,原点表示数0(在原点下边标上“0”);第三步:规定从原点向右的为正方向,那么相反的方向(从原点向左)则为负方向.(用箭头表示出来);第四步:选择适当的长度为单位长度,注:(1)画数轴时一定要牢固地把握数轴的三个要素,缺一不可;(2)常见的错误有:① 没有方向;②没有原点;③ 单位长度不统一;④负数排列错误;⑤直线画成射线;(3)原点的位置、正方向的取向、单位长度大小的确定,都是根据实际需要选取的.3.用数轴表示数(1)数轴上的点都能表示数,正半轴上的点表示的数都是正数;负半轴上的点表示的数都是负数,原点表示0;(2)在数轴的正半轴和负半轴上都有无数个点,每一个点都只表示一个数:(3)任何一个实数都可以用数轴上的一个点来表示:(4)任何一个有理数都能用数轴表示,但数轴上的点不一定表示有理数.4.用数轴比大小(1)在数轴上表示的两个数,右边的数总比左边的数大;(2)正数都大于0,负数都小于0,任意一个正数大于一切负数.1.数形结合(1)利用数轴比较有理数大小,左小右大;(2)利用数轴求绝对值,相反数:(3)表示实际问题中的距离(线段长度).2.分类讨论(1)到已知点的距离相等的点有两个,注意讨论;(2)求一条线段覆盖整数点时也要注意分类讨论.3.转化思想在解决实际问题时(行程问题),注意利用数轴思想,把数据用数轴表示,便于解决问题.例1.||n m -的几何意义是数轴上表示m 的点与表示n 的 点之间的距离.(1)当1-=x 时,则=++-|2||2|x x __________(2)在数轴上表示数x 的点到原点的距离为5,则=-x 3________(3)结合数轴求得|3||2|++-x x 的最小值为_________,取得最小值时x 的取值范围为____;(4)满足3|4||1|>+++x x 的x 的取值范围为__________检测1.实数a ,b ,c 在数轴上的位置如图1-2-4所示,化简||||||||c b b a b a --+++的结果是( )c b a A -+32. c b B -3. c b C +. b c D -.例2.数轴上表示整数的点称为整点,某数轴的单位长度是1cm ,若在数轴上随意画出一条长为10cm 的线段AB ,则线段AB 盖住的整点个数为______个,检测2.(1)在数轴上表示整数的点称为整数点,某数轴的单位长度是1cm ,若在这个数轴上随意画出一条长2020cm的线段AB ,则被线段AB 盖住的整数有( )A.2018个或2019个 B .2019个或2020个 C .2020个或2021个 D.2021个或2022个(2)在数轴上任取一条长度为912019的线段,则此线段在这条数轴上最多能盖住的整数点的个数 是________例3.如图1-2-5所示,R P N M ,,,分别是数轴上四个整数所对应的点,其中有一点是原点,并且.2===PR NP MN 数a 对应的点A 在M 与N 之间,数b 对应的点B 在P 与R 之间,若,6||||=+b a 则原点是( )A .M 或NB .M 或RC .N 或PD .P 或R检测3.(1)如图1-2-6所示,数轴上每个刻度为1个单位长度,点A 对应的数为a ,B 对应的数为b ,且,72=-a b那么数轴上原点的位置在( )A.A 点 B .B 点 C .C 点 D .D 点(2)(江苏张家港期末)如图1—2-7所示,数轴上每个刻度为1个单位长度,数轴上的点A ,B ,C ,D 对应的数分别是整数,,,,d c b a 且,2132++=-d c a b 那么数轴上原点对应的点是( )A.A 点 B .B 点 C .C 点 D .D 点例4.(湖南株洲模拟)如图1-2-8所示,数轴上,点A 的初始位置表示的数为1,现点A 做如下移动:第1次点A向左移动3个单位长度至点,1A 第2次从点1A 向右移动6个单位长度至点2A ,第3次从点2A 向左移动9个单位长度至点,,3ΛA 按照这种移动方式进行下去,如果点n A 与原点的距离不小于20,那么n 的最小值是_________检测4.(1)(山东金乡期末)一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动,设该机器人每秒前进或后退1步,并且每步的距离是一个单位长度,n x 表示第n 秒时机器人在数轴上的位置所对应的数.给出下列结论:;33=x ①;15=x ②;104108x x <③,20082007x x <④其中,正确结论的序号是( )①③.A ②③.B ①②③.C ①②④.D(2)(江苏徐州模拟)如图1-2-9所示,一质点P 从距原点1个单位的A 点处向原点方向跳动,第一次跳动到OA 的中点1A 处,第二次从1A 点跳动到1OA 的中点2A 处,第三次从2A 点跳动到2OA 的中点3A 处,如此不断跳动下去,则第5次跳动后,该质点到原点0的距离为_________例5.如图1-2 - 10所示:在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,b 是最小的正整数,且a ,c 满足.0)6(|2|2=-++c a=+c a )1(______(2)若将数轴折叠,使得点A 与点B 重合,则点C 与数_____表示的点重合;(3)若点A 与点D 之间的距离表示为AD ,点B 与点D 之间的距离表示为BD ,请在数轴上找一点D ,使AD= 2BD, 则点D 表示的数是 __________;(4)点A ,B ,C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒1个单位长度和2个单位长度的速度向右运动,假设£秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC.则=AB _______=AC ________(用含t 的代数式表示);(5)在(4)的条件下,若AB m AC ⋅-2的值不随着时间t 的变化而改变,试确定m 的值(不必陈述理由).检测5.数轴上A点对应的数是-5,B点在A点的右边,电子蚂蚁甲、乙分别在B点以2单位长度每秒、1单位长度每秒的速度向左运动,电子蚂蚁丙在A点以3单位长度每秒的速度向右运动.(1)若电子蚂蚁丙经过5秒到达点C,求点C所代表的数;(2)若它们同时出发,若丙在遇到甲1秒后遇到乙,求B点所表示的数;(3)在(2)的条件下,设它们同时出发经过的时间为t秒,是否存在t值,使得丙到乙的距离是丙到甲的距离的2倍?若存在求t的值;若不存在,说明理由,第二节数轴的应用(建议用时:40分钟)实战演练1.下列说法中,正确的是( )A .比一1大6的数是7 B.数轴上表示的点,在原点右边213-个单位 C.数轴上的原点表示零 D.有些有理数不能在数轴上表示出来2.比较01.0,0,5.0,1--的大小,正确的是( )01.005.01.<<-<-A 01.0015.0.<<-<-B001.05.01.<<-<-C 01.015.00.<-<-<D3.一个点从数轴的原点开始,先向左移动3个单位长度,再向右移动6个单位长度,这个点最终所对应的数是( )6.+A 3.-B 3.+C 9.-D4.如图1-2-1所示,数轴上的点S R Q O P ,,,,表示某城市一条大街上的五个公交车站点,有一辆公交车距P 站点3km ,距Q 站点0.7km ,则这辆公交车的位置在( )A .R 站点与S 站点之间B .P 站点与0站点之间C .O 站点与Q 站点之间D .Q 站点与R 站点之间5.已知a ,b ,c 在数轴上的位置如图1-2-2所示.则在a c b c a a+--⋅-,,,1中,最大的一个是( )a A -.bc B -. a c C +. aD 1.- 6.若有理数在数轴上的对应点如图1-2-3所示,则下列结论中正确的是( )||.b a A > b a B <. ||||.b a C > ||||.b a D <7.如图1-2-4所示,数轴上A ,B 两点分别对应实数a ,b 则下列结论正确的是( )0.>+b a A a b B >. 0.>-b a C 0||||.>-b a D8.如图1-2-5所示,一滴墨水洒在一条数轴上,根据图中标出的数值判断墨迹盖住的整数的个数有( )个?135.A 195.B 200.C 302.D9.(湖北武昌区期末)如图1-2-6所示,数轴上每相邻两点相距一个单位长度,点,,,C B A D 对应的位置对应的数分别是,,,,d c b a 且,10=+-c b d 那么原点对应的点是( )D A . C B . B C . A D .10.如图1- 2-7所示,R P N M ,,,分别是数轴上四个整数所对应的点,其中有一点是原点,并且.1===PR NP MN数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若,3||||=+b a 则原点是( )A .N 或PB M 或RC .M 或ND .P 或R11.(河南郑州中考)在数轴上到原点的距离不大于3的所有整数点有 .12.在数轴上到表示-2的点相距8个单位长度的点表示的数为________13.数轴上的点A 表示-3,将点A 先向右移动7个单位长度,再向左移动5个单位长度得到 点B .那么点B 表示的数是______14.将数轴按如图1-2 -8所示从点A 开始折出一等边△ABC,设A 表示的数为B x ,3-表示的数为C x ,52-表示的数为,5x -则=x ________;若将△ABC 向右滚动,则点2020与点_______重合.(填A 、B 、C )15.已知在纸面上有一数轴(如图1-2-9所示),折叠纸面,例如:若数轴上数2表示的点与数-2表示的点重合,则数轴上数-4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:(1)若数轴上数2表示的点与-2表示的点重合,则数轴上数-6表示的点与数________表示的点重合;(2)与数轴上数5表示的点距离为3的点表示的数为____,(3)若数轴上数-4表示的点与数2表示的点重合.①则数轴上数4表示的点与数______表示的点重合;②若数轴上A ,B 两点之间的距离为2016,并且A ,B 两点经折叠后重合,如果A 点表示的数比B 点表示的数大,则A 点表示的数是 _______.16.如图1-2 - 10所示,半径为1个单位的圆片上有一点A 与数轴上的原点重合,AB 是圆片的直径.(注:结果保留π)(1)把圆片沿数轴向右滚动半周,点B 到达数轴上点C 的位置,点C 表示的数是数(填“无理”或“有理”),这个数是____;(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,-1,+3,-4,-3①第_____次滚动后,A 点距离原点最远;②当圆片结束运动时,此时点A 所表示的数是________拓展创新17.(江苏泗阳县期末)如图1-2 -11所示,圆的周长为4个单位长度,在圆的4等分点处标上字母A ,B ,C ,D ,先将圆周上的字母A 对应的点与数轴的数字1所对应的点重合,若将圆沿着数轴向左滚动.那么数轴上的- 2015所对应的点将与圆周上字母( )所对应的点重合.A .A B.B C.C D.D拓展1.(河北承德期末)如图1—2 - 12所示,圆的周长为4个单位,在该圆的4等分点处分别标上字母m,n,p,q,先让圆周上表示m的点与数轴原点重合,再将数轴按逆时针方向环绕在该圆上,则数轴上表示- 2016的点与圆周上重合的点对应的字母是( )D.C.qB.PmA.n拓展2.等边△ABC在数轴上的位置如图1-2 - 13所示,点A,C对应的数分别为0和-1,若△ABC绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1;则翻转2016次后,点B所对应的数是( ).C2015.D20152017.A5.2016.B5.拓展3.正方形ABCD在数轴上的位置如图1—2- 14所示,点D,A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2015次后,数轴上数2015所对应的点是( )A.点C B.点D C.点A D.点B极限挑战18.三枚棋子放在数轴的整点上(坐标为整数的点).一次移动可任选其中两枚棋子,并将一枚,向右移一个单位,将另一枚向左移一个单位.在下列选项中,最后可将三枚棋子移到同一点上的是( ).(,2,C)20092010.(D,32009,2010B)2009,2010),0.(2009,2010,1.(A)课堂答案培优答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1初一秋季·第1讲·尖子班·教师版长度单位实数5级 有理数综合运算实数4级 有理数与数轴 实数3级 有理数的混合运算 满分晋级阶梯漫画释义1有理数与数轴2初一秋季·第1讲·尖子班·教师版知识点切片(3个)2+1+1知识点目标有理数与数轴(2) 1、点表示数;2、比较大小 相反数与数轴(1) 1、相反数的几何意义 绝对值与数轴(1)1、绝对值的几何意义题型切片(6个)对应题目题型目标用数轴表示数 例1、练习1数轴上点、线段的移动 例2、例3、练习2 利用数轴比较大小例4、练习3 利用数轴性质建立方程求点对应的数 例5、练习4 数轴折叠 例6、练习5 周期问题与数轴例7、练习6数轴:规定了原点、正方向和单位长度的直线叫做数轴;原点、正方向、单位长度称为数轴的三要素,三者缺一不可.有理数与数轴的关系:一切有理数都可以用数轴上的点表示出来.在数轴上,右边的点所对应的数总比左边的点所对应的数大.正数都大于0,负数都小于0,正数大于一切负数. 注意:数轴上的点不都代表有理数,如π.相反数:只有符号不同的两个数,互称为相反数.特别地,0的相反数是0.数轴上,位于原点两侧且到原点距离相等的点表示的数互为相反数.绝对值:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a .正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数.数轴上的点,对应的数绝对值越大,离原点越远.【例1】 ⑴在数轴上画出表示12.540252--,,,,各数的点,并按从小到大的顺序重新排列,用“<”连接起来.⑵如图,数轴上表示数2-的相反数的点是( )A .点PB .点QC .点MD .点N ⑶数轴的单位长度为1,点A ,B 表示的数的绝对值相等,那么点A 表示的数是( ) A .4- B .2- C .0 D .4【解析】⑴分别将数的对应点在数轴上画出,如图,按数轴上从左到右的点对应从小到大的实数,得到 1420 2.552-<-<<< ⑵A .⑶B .【例2】 ⑴数轴上有一点A ,它表示的有理数是3-,将点A 向左移动3个单位得到点B ,再向右移动8个单位,得到点C ,则点B 表示的数是 ,点C 表示的数是 .3210﹣1﹣2P Q M BA 52.50-2123初一秋季·第1讲·尖子班·教师版⑵在数轴上,坐标是整数的点称为“整点”.设数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2013厘米的线段AB ,则线段AB 盖住的整点至少有 个, 至多有 个.【解析】 ⑴由数轴的基本定义可知为62-+,.⑵2013;2014针对例2⑵的铺垫:1、⑴在数轴上,表示1999-和1999的两个点之间有 个整数(含1999-和1999). ⑵在数轴上,表示1999.1-和1999.9的两个点之间有 个整数. 【解析】 ⑴3999;⑵ 3999.针对例2⑵的拓展:1、设数轴的单位长度是1厘米,若在这个数轴上随意画出一条长120132厘米的线段AB ,则线段AB 盖住的整点至少有 个,至多有 个.2、设数轴的单位长度是1厘米,若在这个数轴上随意画出一条长M (M 为正整数)厘米的线段AB ,则线段AB 盖住的整点至少有 个,至多有 个.3、设数轴的单位长度是1厘米,若在这个数轴上随意画出一条长M (1m M m <<+,m为正整数)厘米的线段AB ,则线段AB 盖住的整点至少有 个,至多有 个.【解析】 1、2013;2014. 2、M ,1M +.3、m ,1m +.【例3】 ⑴一个机器人从数轴原点出发,沿数轴正方向以每前进3步后退2步的程序运动,设该机器人每秒钟前进或后退1步,并且每步的距离为1个单位长,n x 表示第n 秒时机器人在数轴上的位置所对应的数. ①求3x 、5x 的值.②比较2013x 与2014x 的大小.⑵电子跳蚤在数轴上的某一点0K ,第一步由点0K 向左跳1个单位到点1K ,第二步由点1K 向右跳2个单位到点2K ,第三步由点2K 向左跳3个单位到点3K ,第四步由点3K 向右跳4个单位到点4K ,…,按以上规律跳了100步时,电子跳蚤落在数轴上的点100K 所表示的数恰好是19.94.求电子跳蚤的初始位置点0K 所表示的数.【解析】⑴①33x =,51x =.②2013405x =,2014404x =,20132014x x <.⑵假设电子跳蚤的起点0K 为0x ,规定向左为负,向右为正,根据题意可得: 01234569910019.94x -+-+-+--+=,030.06x =-.【例4】 ⑴有理数a b ,在数轴上的对应点如图,试比较a a b b a b a b --+-,,,,,的大小. 0ba4初一秋季·第1讲·尖子班·教师版⑵已知a b ,是不为0的有理数,且a a b b a b =-=>,,,那么用数轴上的点来表示a b ,,正确的应该是哪一个( )DCB A a bab 0abb a【解析】⑴根据a b ,在数轴上的位置可知,00a b <>,,且a 的绝对值比2b 的绝对值大,所以a b a a b b b a -<<+<-<<-.⑵ C ,根据题意,00a b <>,,且在数轴上a 的对应点与原点的距离较b 的对应点大.【例5】 ⑴如图,数轴上标出若干点,每相邻的两点相距一个单位长度,点A 、B 、C 、D 对应的数分别为整数a 、b 、c 、d ,且24d a -=.试问:数轴上的原点在哪一点上?A B C D MNabcd⑵如图,数轴上标出若干个点,每相邻的两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d .①若2a b c d +++=-,那么与数轴原点最接近的点是( )A .A 点B .B 点C .C 点D .D 点② 若7a b +=,那么与数轴原点最接近的点是( )A .A 点B .B 点C .C 点D .D 点⑶如图,在数轴上有若干个点,每相邻两个点之间的距离是一个单位长,有理数a 、b 、c 、d 所表示的点是这些点中的4个,且在数轴上的位置如图所示,已知343a b =-,求2c d +的值.dc b a【解析】⑴由数轴可知,3d a =+,代入24d a -=得324a a +-=,解得1a =-所以原点应在点B 处.⑵①C .(3)(4)(7)2a a a a ++++++=-,4a =-,1b =-,0c =,3d =. ② A .37a a ++=,4a a +=,∴0a >,2a =.⑶2-. 提示:2b a =+.【例6】 已知在纸面上有一数轴(如图),折叠纸面.1⑴ 若1表示的点与1-表示的点重合,则2-表示的点与数 表示的点重合: ⑵ 若1-表示的点与3表示的点重合,则5表示的点与数 表示的点重合;⑶ 若数轴上A 、B 两点之间的距离为c 个单位长度,点A 表示的有理数是a ,并且A 、A5初一秋季·第1讲·尖子班·教师版B 两点经折叠后重合,请写出此时折线与数轴的交点表示的有理数是多少?【解析】 ⑴ 2;⑵3-; ⑶此时折线与数轴的交点表示的有理数是12a c ±.【例7】 如图所示,数轴被折成90︒,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3.先让圆周上数字2所对应的点与数轴上的数3所对应的点重合,数轴固定,圆紧贴数轴沿着数轴的正方向滚动,那么数轴上的数2013将与圆周上的数字 重合?98765431023【解析】201345031÷=,则与数字0重合. 针对例7的铺垫:如图所示,圆的周长为4个单位长度,在圆的4等分点处 标上数字0,1,2,3.先让圆周上数字0所对应的点与数轴上的数1-所对应的点重合,再让数轴按逆时针方向绕在该圆上,那么数轴上的数2012-将与圆周上的数字 重合.3210-5-4-3-2-10【解析】20124503÷=,则与数字0重合. 针对例7的拓展:1、如图所示,一数轴被折围成长为3,宽为2的长方形,圆的周长为4且圆上刻一指针,若1在数轴固定的情况下,圆紧贴数轴沿数轴正方向滚动,当圆与7接触的时候,指针的方向是( )DCBA76543210-12、如图,边长为1的等边三角形ABC 从图示的位置开始在数轴上顺时针无滑动地向右滚动,当三角形的一个顶点落在2013x =处时,三角形停止滚动. ①落在2013x =处的点是ABC △的哪个顶点?说明理由. ②在滚动过程中,点A 走过的路程是多少?…20131C B A6初一秋季·第1讲·尖子班·教师版3、把一数轴折成如图所示,第1段为1个单位长度,第2段为2个单位长度,第3段为3个单位长度,……,点O 处有一个圆,圆上刻一指针,开始指针朝东,圆周为4个单位长度,圆紧贴数轴沿着数轴的正方向滚动,当圆与点A 接触时,指针指向 (东、南、西、北),当圆与2009接触时,指针指向 (东、南、西、北).O 北西南东A-10【解析】1、C .2、①顶点C ;②894π.3、在直的数轴上,线段41AO =,414101=⨯+,指针指向北;2009(14)2023--=,因为636420162⨯=,202320167-=,故2009在点O 的西边,202345053÷=+,指针指 向西.7初一秋季·第1讲·尖子班·教师版训练1. 已知a b +与a b -互为相反数,求2000200020032003a b a b ++-【解析】 0. 因为a b +与a b -互为相反数,所以0a b a b ++-=,从而得到00a b ==,所以原式等于0.训练2. 在数轴上任取一条长度为119999的线段,则此线段在这条数轴上最多能盖住的整数点的个数为 . 【解析】 2000.训练3. 设a 是大于1的有理数,若a ,23a +,213a +在数轴上对应的点分别记作A ,B ,C ,则A ,B ,C 三点在数轴上自左至右的顺序是 .(人大附中期中)【解析】 B C A .训练4. ⑴ a 、b 、c 、d 分别为有理数,a 是绝对值最小的有理数,b 是最小的正整数,c 的相反数是其本身,d 为负数且它的倒数是本身.求:①ab 的值;②a b c d ++-的值.⑵ 非零整数m ,n 满足||||50m n +-=,所有这样的有序(即()(),,m n n m 和不同)整数组()m n ,共有 组.(清华附中期中)【解析】 ⑴ 0ab =,2a b c d ++-=;⑵ 5m n +=,若1m =,4n =,有()14,,()14-,,()14-,,()14--,; 若2m =,3n =,有()23,,()23-,,()23-,,()23--,; 若3m =,2n =,有()32-,,()32,,()32-,,()32--,; 若4m =,1n =,有()41,,()41-,,()41--,,()41-,. 所以共有16组.8初一秋季·第1讲·尖子班·教师版用数轴表示数【练习1】 一辆货车从超市出发,向东走了3km 到达小彬家,继续向前走了1.5km 到达小颖家,然后向西走了9.5km 到达小明家,最后回到超市⑴以超市为原点,向东作为正方向,用1个单位长度表示1km ,在数轴上表示出小明,小彬,小颖家的位置. ⑵小明家距离小彬家多远? ⑶货车一共行驶了多少千米? 【解析】⑴如图所示:小颖家小彬家超市小明家西东-6-5-4-3-2-154321⑵小明距离小彬家8km⑶货车共行驶了3 1.59.5519km +++=. 数轴上的点、线段的移动【练习2】 ⑴在数轴上,点A 和点B 都在与154-对应的点上,若点A 以每秒3个单位长度的速度向右运动,点B 以每秒2个单位长度的速度向左运动,则7秒之后,点A 和点B 所处的位置对应的数是什么?这时线段AB 的长度是多少?⑵在数轴上表示整数的点称为整数点,某数轴的单位长度是1cm ,若在这个数轴上随意画出一条长2007cm 的线段AB .被线段AB 盖住的整数有( )个.A .2005或2006B .2006或2007C .2007或2008D .2008或2009【解析】⑴点A 对应的数是694,点B 对应的数是714-,线段AB 的长度是35;⑵C.利用数轴比较大小 【练习3】 数a b c d ,,,所对应的点A B C D ,,,在数轴上的位置如图所示,那么a c +与b d +的大小关系为 .【解析】a c b d +<+.利用数轴性质建立方程求点对应的数【练习4】 如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的整数a 、b 、c 、d ,且29b a -=,那么数轴的原点对应点是( ).A .A 点B .B 点C .C 点D .D 点DCB A【解析】C .2(4)9b b --=,1b =-.9初一秋季·第1讲·尖子班·教师版数轴折叠【练习5】 已知在纸面上有一数轴(如图),折叠纸面.1⑴ 若1-表示的点与5表示的点重合,则7表示的点与数 表示的点重合; ⑵ 若数轴上A 、B 两点之间的距离为8个单位长度,点A 表示的有理数是10-,并且A 、B 两点经折叠后重合,请写出此时折线与数轴的交点表示的有理数是多少?【解析】⑴ 3-;⑵此时折线与数轴的交点表示的有理数是6-或14-.周期问题与数轴【练习6】 如图,圆的周长为3,在圆的三等分点处标上数字0、1、2. 圆从图示的位置向右滚动,那么数轴上的2013将与圆上哪个数字重合?120…201321﹣1【解析】1.数轴是谁最先发现的?勒内·笛卡儿1596年3月31日生于法国安德尔-卢瓦尔省的图赖讷(现笛卡尔,因笛卡儿得名),1650年2月11日逝世于瑞典斯德哥尔摩,是世界著名的法国哲学家、数学家、物理学家。

相关文档
最新文档