高速信号完整性分析

高速信号完整性分析
高速信号完整性分析

高速信号完整性分析

朱良乐

摘 要:介绍了高速信号在芯片和PCB中传输时所引起信号完整性问题以及破坏信号完整性的原因,从理论角度出发,通过论证信号完整性的重要性来分析、论证高速信号在电路中传输时所具有的特征。

关键词:信号完整性,反射,串扰

中图分类号:TP391文献标识码:A

1 信号完整性定义

信号完整性(Signal Integrity,简称SI)指的是信号线上传输的信号质量。信号完整性问题不是由单一因素造成的,而是由板级设计中多种因素共同引起的。破坏信号完整性的原因包括反射、振铃、地弹、串扰等。随着信号工作频率的不断提高,信号完整性问题已经成为高速芯片和高速PCB工程师关注的焦点。

2 信号完整性意义及国内外现状分析

21世纪是电子产品的新世纪,缩短设计周期意味着产品必须能做到首件工作正常。随着半导体技术和深亚微米工艺的不断发展,IC的开关速度目前已经从几十兆赫增加到几百兆赫,甚至达到几千兆赫。如果信号完整性问题不能从产品的开始到设计完成前认真加以解决,将会影响产品的工作性能。信号完整性设计在国外已是一种专门的职业。IN TEL,CISCO,MO TOROLA, AMP,LUCEN T,IBM,HP等许多公司都已有自己专职的工程师。国内在该领域有些企业有专门团队进行过多年探索研究,高速信号完整性问题已经受到越来越多人的关注。

3 信号完整性已经成为设计高速芯片的关键因素之一在芯片设计方面,超深亚微米IC设计技术的研究中,除了要克服由于连线延迟引起的设计迭代之外,设计人员还要克服由于特征尺寸缩小后,信号延迟变小,工作频率提高带来的所谓信号完整性的问题。

在芯片内部工作频率提高的同时,由于集成度的大幅度上升,单个芯片中的连线长度也随之大幅度升高。单个芯片中的连线总长将达到十几公里至几十公里,其中不乏有些连线的长度达到十几米至几十米。根据物理学的基本定律,频率与波长成反比。当芯片的内部工作时钟达到几千兆赫时,相应的波长只有若干米。再考虑到电磁场的有关理论,可知当连线长度达到波长的几倍时,连线将成为向外界发射电磁波的天线,同样这些连线也会成为接收电磁波的天线。考虑到IC芯片内部连线密布,在很高的工作频率下,信号的干扰将成为一个不容忽视的问题,信号的完整性将成为设计面对的另外一个严重的挑战。

4 高速信号传输中信号完整性问题以及解决方法信号完整性不仅是决定信号时序的关键因素,还是影响芯片功能完整性的重要因素。随着串音耦合电容与内层电容比值的增加,由信号完整性问题引起的时序与功能问题越来越多。信号完整性研究物理互联(例如IC设计、版图、封装、电路板、接插件、电缆等)如何影响信号和电源分布的质量。当上升时间下降到1纳秒以下时,互连就不再是透明了,互连的电气效应将使得产品无法工作。4.1 反射是造成信号完整性问题的因素之一

传输线上的阻抗不连续会导致信号反射,当源端与负载端阻抗不匹配时,负载将一部分电压反射回源端。如果负载阻抗小于源阻抗,反射电压为负;如果负载阻抗大于源阻抗,反射电压为正。反射回来的信号还会在源端再次形成反射,从而形成振荡。理想传输线L被内阻为R0的数字信号驱动源V s驱动,传输线的特性阻抗为Z0,负载阻抗为R L。如果终端阻抗跟传输线阻抗不匹配,就会形成反射,反射回来的电压幅值由负载反射系数ρL 决定。ρL可由式(1)得出:

ρ

L

=(R L-Z0)/(R L+Z0)(1)从终端反射回的电压到达源端时,可再次反射回负载端,形成二次反射,此时反射电压的幅值由源反射系数ρs决定。ρs可由式(2)得出:

ρ

s

=(R0-Z0)/(R0+Z0)(2)精确计算反射系数和反射电压的关键是确定传输线的特征阻抗,它不仅仅是印制线的电阻。当印制线上传输的信号速度超过100MHz时,必须将印制线看成是带有寄生电容和电感的传输线,而且在高频下会有电介质损耗,这些都会影响传输线的特征阻抗。

4.2 串扰也是造成信号完整性问题的因素之一

在高速信号系统设计中,反射属于单信号线现象,当然包括地平面问题。但串扰不同,它是两条信号线之间以及地平面之间的耦合,所以又称为三线系统。形成串扰的根本原因是信号变化引起周边的电磁场发生变化,特别是对于高速信号,信号的上升沿和下降沿的时间可以达到ps级,高频分量非常丰富,信号线之间的寄生电容和电感容易成为串扰信号的耦合通道。传输线上分布着电感分量和电容分量,所以整个信号之间的串扰由两部分组成,即容性耦合干扰和感性耦合干扰。

容性耦合干扰是由于干扰源(Aggressor)上的电压变化在被干扰对象(Victim)上引起感应电流从而导致的电磁干扰;感性耦合干扰则是由于干扰源上的电流变化产生的磁场在被干扰对象上引起感应电压从而导致的电磁干扰。感性串扰和容性串扰的基本分析公式如下:

X talk(ind)=(L m)/(R a×T r)(3)其中,L m为互感;R a为干扰源的终端匹配电阻;T r为信号上升沿的时间。

X talk(cap)=(R a×C m)/T r(4)其中,C m为耦合电容;R a为被干扰对象的终端匹配电阻;T r 为信号上升沿的时间。

从上面的公式可以看出,串扰的大小与很多因素有关,如信

浅谈CAD技术在建筑设计中的应用技巧

黄星华

摘 要:针对CAD技术在建筑工程设计中的重要性,阐述了CAD技术的优点,并根据多年从事AutoCAD的教学经验,介绍了AutoCAD绘图的基本命令,总结了CAD技术在建筑设计中的应用技巧,对实际操作时遇到的难题进行了解答,以期对初学者有所帮助。

关键词:CAD,建筑设计,绘图命令,绘图技巧,功能键

中图分类号:TP391文献标识码:A

CAD即计算机辅助设计与制图,是指运用计算机系统辅助一项设计的建立、修改、分析或优化的过程。通过多年的设计实践, CAD技术以简单、快捷、存储方便等优点已在建筑工程设计中承担着不可替代的重要作用。CAD技术在工程设计中的优点主要表现在:1)劳动强度降低,图面清洁;2)设计工作的高效及设计成果的重复利用;3)精度提高;4)资料保管方便;5)CAD在建筑表现图上的优势;6)设计理念的改变。CAD的智能化将部分取代设计师的一些设计工作,而CAD对设计的标准化、产业化起着巨大的推动作用。AutoCAD作为绘图软件已广泛地应用到土木工程中,因此应该以此先进的技术作为自己的绘图工具使用,对于一个建筑工程人员来说,不会AutoCAD是不能胜任现代化工程建设需要的。所以必须学习和掌握AutoCAD软件的使用,提高自己的综合水平,提高工作效益。现就几年来使用与教学AutoCAD的几点小技巧做一介绍。1 基本要求

1.1 需要掌握的重点命令(快捷命令)

1)绘图命令:

L,3L IN E(直线) PL,3PL IN E(多段线)

REC,3RECTAN G L E(矩形)A,3ARC(圆弧)

C,3CIRCL E(圆)DIV,3DIV IDE(等分) BH,3BHA TCH(填充)B,3BLOCK(块定义)

M T,3M TEXT(多行文本)IN,3INSERT(插入块)

2)修改命令:

CO,3COPY(复制) MI,3MIRROR(镜像)

AR,3ARRA Y(阵列)O,3OFFSET(偏移)

RO,3RO TA TE(旋转)M,3MOV E(移动)

E,DEL键3ERASE(删除)X,3EXPLODE(分解)

TR,3TRIM(修剪)EX,3EXTEND(延伸)

号的速率、信号的上升沿和下降沿的速率、PCB板层的参数、信号线间距、驱动端和接收端电气特性及线端接方式等。

4.3 其他因素影响信号完整性

电源、地线噪声,由于芯片封装与电源平面间的寄生电感和电阻的存在,当大量芯片内的电路和输出级同时动作时,会产生较大的瞬态电流,导致电源线上和地线上的电压波动和变化,这也就是通常所说的地跳。除了反射和串扰外,还有其他因素影响信号完整性,如振铃、开关噪声、地弹、电源反弹、衰减、容性负载、端接等。

5 问题解决和结论

5.1 反射的解决方法

PCB板上传输线的反射对数字系统的性能有严重的负面影响,为了将反射的负面影响减到最小,可采取措施抑制它们。有三种方法可以减轻反射的负面影响:1)降低系统频率,使得在其他信号发送到传输线上之前,传输线上的反射已经达到稳态,但这种方法会降低工作频率,减缓系统速度,导致系统达不到设计要求。2)缩短PCB走线,减少反射达到稳态所需的时间,由于缩短PCB走线通常需要使用非常多层数的PCB板,使得成本大大提高,在实际中通常不用。另外,在某些情况下,缩短走线在物理上是不可实现的。3)在传输线上两端分别端接一个与传输线上特征阻抗相同的阻抗,以消除反射,这种方法较好。

5.2 串扰解决方法

从上面的分析来看,在高速电路设计中,除了信号频率对串扰有较大影响外,信号的边沿变化(上升沿和下降沿)对串扰的影响更大,边沿变化越快,串扰越大。所以解决串扰的方法主要从减少干扰源强度和切断干扰路径两个方面进行,有以下几个方法:1)串扰与信号频率成正比,而且在数字电路中,信号的边沿变化(上升沿和下降沿)对串扰的影响最大,边沿变化越快变频分量越丰富,串扰越大,所以尽量少地使用d V/d t高的信号,在超高速设计中可以使用低电压差分信号或其他差分信号。2)在布线空间允许的条件下,在串扰较严重的两条线之间插入一条地线或地平面,可以起到隔离的作用,从而减小串扰。3)加大线间距,减小线的平行长度,必须时可以以jog(凹凸)方式走线。4)对于信号速率比较高的信号,可以将它走线经过的微带线和带状线控制在地平面8m距离内,这样可以显著减少串扰。5)控制传输线阻抗,加入端接匹配电阻以减小或消除反射,从而减小串扰。

Analysis of the integrality of high2speed signal

ZHU Liang2le

Abstract:This paper introduct integrity of high frequency signal in IC,PCB board,and introduce the reason that damage signalintegrity.From theory and mathematic level,this paper analyzes that the reason cause reflecting and crosstalk of the high frequency signal.

K ey w ords:signal integrity,reflecting,crosstalk

五款信号完整性仿真工具介绍

现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 (一)Ansoft公司的仿真工具 现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 Ansoft的信号完整性工具采用一个仿真可解决全部设计问题: SIwave是一种创新的工具,它尤其适于解决现在高速PCB和复杂IC封装中普遍存在的电源输送和信号完整性问题。 该工具采用基于混合、全波及有限元技术的新颖方法,它允许工程师们特性化同步开关噪声、电源散射和地散射、谐振、反射以及引线条和电源/地平面之间的耦合。该工具采用一个仿真方案解决整个设计问题,缩短了设计时间。 它可分析复杂的线路设计,该设计由多重、任意形状的电源和接地层,以及任何数量的过孔和信号引线条构成。仿真结果采用先进的3D图形方式显示,它还可产生等效电路模型,使商业用户能够长期采用全波技术,而不必一定使用专有仿真器。 (二)SPECCTRAQuest Cadence的工具采用Sun的电源层分析模块: Cadence Design Systems的SpecctraQuest PCB信号完整性套件中的电源完整性模块据称能让工程师在高速PCB设计中更好地控制电源层分析和共模EMI。 该产品是由一份与Sun Microsystems公司签署的开发协议而来的,Sun最初研制该项技术是为了解决母板上的电源问题。 有了这种新模块,用户就可根据系统要求来算出电源层的目标阻抗;然后基于板上的器件考虑去耦合要求,Shah表示,向导程序能帮助用户确定其设计所要求的去耦合电容的数目和类型;选择一组去耦合电容并放置在板上之后,用户就可运行一个仿真程序,通过分析结果来发现问题所在。 SPECCTRAQuest是CADENCE公司提供的高速系统板级设计工具,通过它可以控制与PCB layout相应的限制条件。在SPECCTRAQuest菜单下集成了一下工具: (1)SigXplorer可以进行走线拓扑结构的编辑。可在工具中定义和控制延时、特性阻抗、驱动和负载的类型和数量、拓扑结构以及终端负载的类型等等。可在PCB详细设计前使用此工具,对互连线的不同情况进行仿真,把仿真结果存为拓扑结构模板,在后期详细设计中应用这些模板进行设计。 (2)DF/Signoise工具是信号仿真分析工具,可提供复杂的信号延时和信号畸变分析、IBIS 模型库的设置开发功能。SigNoise是SPECCTRAQUEST SI Expert和SQ Signal Explorer Expert进行分析仿真的仿真引擎,利用SigNoise可以进行反射、串扰、SSN、EMI、源同步及系统级的仿真。 (3)DF/EMC工具——EMC分析控制工具。 (4)DF/Thermax——热分析控制工具。 SPECCTRAQuest中的理想高速PCB设计流程: 由上所示,通过模型的验证、预布局布线的space分析、通过floorplan制定拓朴规则、由规

高速数字信号的信号完整性分析

科研训练 设计题目:高速数字信号的信号完整性分析专业班级:科技0701 姓名:张忠凯 班内序号:18 指导教师:梁猛 地点:三号实验楼236 时间:2010.9.14~2010.11. 16 电子科学与技术教研室

摘要: 在高速数字系统设计中,信号完整性(SI)问题非常重要的问题,如高时钟频率和快速边沿设计。本文提出了影响信号完整性的因素,并提出了解决电路板中信号完整性问题的方法。 关键词:高速数字电路;信号完整性;信号反射;串扰 引言: 随着电子行业的发展,高速设计在整个电子设计领域所占的比例越来越大,100 MHz 以上的系统已随处可见,采用CS(线焊芯片级BGA)、FG(线焊脚距密集化BGA)、FF(倒装芯片小间距BGA)、BF(倒装芯片BGA)、BG(标准BGA)等各种BGA封装的器件大量涌现,这些体积小、引脚数已达数百甚至上千的封装形式已越来越多地应用到各类高速、超高速电子系统中。 从IC芯片的封装来看,芯片体积越来越小、引脚数越来越多;这就带来了一个问题,即电子设计的体积减小导致电路的布局布线密度变大,同时信号的上升沿触发速度还在提高,从而使得如何处理高速信号问题成为限制设计水平的关键因素。随着电子系统中逻辑复杂度和时钟频率的迅速提高,信号边沿不断变陡,印刷电路板的线迹互连和板层特性对系统电气性能的影响也越发重要。对于低频设计,线迹互连和板层的影响可以不考虑,但当频率超过50 MHz时,互连关系必须考虑,而在评定系统性能时还必须考虑印刷电路板板材的电参数。因此,高速系统的设计必须面对互连延迟引起的时序问题以及串扰、传输线效应等信号完整性问题。 1.信号完整性的概念: 信号完整性是指信号未受到损伤的一种状态,良好的信号完整性是指在需要时信号仍然能以正确的时序和电压电平值做出响应。差的信号完整性不是由某一单一因素导致的,而是板级设计中多种因素共同引起的。 2.信号完整性问题的分析: 高速不是就频率的高低来说的,而是由信号的边沿速度决定的,一般认为上升时间小于4倍信号传输延迟时可视为高速信号。信号完整性问题的起因是由于不断缩小的上升和下降时间。假如信号的上升沿和下降沿变化比较缓慢,则电路结构和元器件所造成的影响不大,可以忽略。 当信号的上升沿和下降沿变化加快时,整个电路则会转化为传输线问题,即电路的延迟、反射等问题;当电路中有大的电流涌动时会引起地弹,如大量芯片的输出同时开启时,将有一个较大的瞬态电流在芯片与板的电源平面流过,芯片封装与电源平面的电感和电阻会引发电源噪声,这样会在真正的地平面( 0 V)上产生电压的波动和变化,犹如从地面弹回电路的信号一样;通常表现为在一根信号线上有信号通过时,在上与之

Altium Designer中进行信号完整性分析

在高速数字系统中,由于脉冲上升/下降时间通常在10到几百p秒,当受到诸如内连、传输时延和电源噪声等因素的影响,从而造成脉冲信号失真的现象; 在自然界中,存在着各种各样频率的微波和电磁干扰源,可能由于很小的差异导致高速系统设计的失败;在电子产品向高密和高速电路设计方向发展的今天,解决一系列信号完整性的问题,成为当前每一个电子设计者所必须面对的问题。业界通常会采用在PCB制板前期,通过信号完整性分析工具尽可能将设计风险降到最低,从而也大大促进了EDA设计工具的发展…… 信号完整性(Signal Integrity,简称SI)问题是指高速数字电路中,脉冲形状畸变而引发的信号失真问题,通常由传输线不阻抗匹配产生的问题。而影响阻抗匹配的因素包括信号源的架构、输出阻抗(output impedance)、走线的特性阻抗、负载端的特性、走线的拓朴(topology)架构等。解决的方式可以采用端接(termination)与调整走线拓朴的策略。 信号完整性问题通常不是由某个单一因素导致的,而是板级设计中多种因素共同作用的结果。信号完整性问题主要表现形式包括信号反射、信号振铃、地弹、串扰等; 1,Altium Designer信号完整性分析(机理、模型、功能) 在Altium Designer设计环境下,您既可以在原理图又可以在PCB编辑器内实现信号完整性分析,并且能以波形的方式在图形界面下给出反射和串扰的分析结果。 Altium Designer的信号完整性分析采用IC器件的IBIS模型,通过对版图内信号线路的阻抗计算,得到信号响应和失真等仿真数据来检查设计信号的可靠性。Altium Designer的信号完整性分析工具可以支持包括差分对信号在内的高速电路信号完整性分析功能。 Altium Designer仿真参数通过一个简单直观的对话框进行配置,通过使用集成的波形观察仪,实现图形显示仿真结果,而且波形观察仪可以同时显示多个仿真数据图像。并且可以直接在标绘的波形上进行测量,输出结果数据还可供进一步分析之用。 Altium Designer提供的集成器件库包含了大量的的器件IBIS模型,用户可以对器件添加器件的IBIS模型,也可以从外部导入与器件相关联的IBIS模型,选择从器件厂商那里得到的IBIS 模型。 Altium Designer的SI功能包含了布线前(即原理图设计阶段)及布线后(PCB版图设计阶段)两部分SI分析功能;采用成熟的传输线计算方法,以及I/O缓冲宏模型进行仿真。 基于快速反射和串扰模型,信号完整性分析器使用完全可靠的算法,从而能够产生出准确的仿真结果。布线前的阻抗特征计算和信号反射的信号完整性分析,用户可以在原理图环境下运行SI仿真功能,对电路潜在的信号完整性问题进行分析,如阻抗不匹配等因素。 更全面的信号完整性分析是在布线后PCB版图上完成的,它不仅能对传输线阻抗、信号反射和信号间串扰等多种设计中存在的信号完整性问题以图形的方式进行分析,而且还能利用规则检查发现信号完整性问题,同时,Altium Designer还提供一些有效的终端选项,来帮助您选择最好的解决方案。 2,分析设置需求 在PCB编辑环境下进行信号完整性分析。 为了得到精确的结果,在运行信号完整性分析之前需要完成以下步骤:

于博士信号完整性分析入门-初稿

于博士信号完整性分析入门 于争博士 https://www.360docs.net/doc/d817984899.html, 整理:runnphoenix

什么是信号完整性? 如果你发现,以前低速时代积累的设计经验现在似乎都不灵了,同样的设计,以前没问题,可是现在却无法工作,那么恭喜你,你碰到了硬件设计中最核心的问题:信号完整性。早一天遇到,对你来说是好事。 在过去的低速时代,电平跳变时信号上升时间较长,通常几个ns。器件间的互连线不至于影响电路的功能,没必要关心信号完整性问题。但在今天的高速时代,随着IC输出开关速度的提高,很多都在皮秒级,不管信号周期如何,几乎所有设计都遇到了信号完整性问题。另外,对低功耗追求使得内核电压越来越低,1.2v内核电压已经很常见了。因此系统能容忍的噪声余量越来越小,这也使得信号完整性问题更加突出。 广义上讲,信号完整性是指在电路设计中互连线引起的所有问题,它主要研究互连线的电气特性参数与数字信号的电压电流波形相互作用后,如何影响到产品性能的问题。主要表现在对时序的影响、信号振铃、信号反射、近端串扰、远端串扰、开关噪声、非单调性、地弹、电源反弹、衰减、容性负载、电磁辐射、电磁干扰等。 信号完整性问题的根源在于信号上升时间的减小。即使布线拓扑结构没有变化,如果采用了信号上升时间很小的IC芯片,现有设计也将处于临界状态或者停止工作。 下面谈谈几种常见的信号完整性问题。 反射: 图1显示了信号反射引起的波形畸变。看起来就像振铃,拿出你制作的电路板,测一测各种信号,比如时钟输出或是高速数据线输出,看看是不是存在这种波形。如果有,那么你该对信号完整性问题有个感性的认识了,对,这就是一种信号完整性问题。 很多硬件工程师都会在时钟输出信号上串接一个小电阻,至于为什么,他们中很多人都说不清楚,他们会说,很多成熟设计上都有,照着做的。或许你知道,可是确实很多人说不清这个小小电阻的作用,包括很多有了三四年经验的硬件工程师,很惊讶么?可这确实是事实,我碰到过很多。其实这个小电阻的作用就是为了解决信号反射问题。而且随着电阻的加大,振铃会消失,但你会发现信号上升沿不再那么陡峭了。这个解决方法叫阻抗匹配,奥,对了,一定要注意阻抗匹配,阻抗在信号完整性问题中占据着极其重要的

高速电路中的信号完整性问题

高速电路中的信号完整性问题 许致火 (07级信号与信息处理 学号 307081002025) 1 信号完整性问题的提出 一般来讲,传统的低频电路设计对于电子工程师并不是多么复杂的工作。因为在低于30MHz的系统中并不要考虑传输线效应等问题,信号特性保持完好使得系统照常能正常工作。但是随着人们对高速实时信号处理的要求,高频信号对系统的设计带来很大的挑战。电子工程师不仅要考虑数字性能还得分析高速电路中各种效应对信号原来 面目影响的问题。 输入输出的信号受到传输线效应严重的影响是我们严峻的挑战 之一。在低频电路中频率响应对信号影响很小,除非是传输的媒介的长度非常长。然而伴随着频率的增加,高频效应就显而易见了。对于一根很短的导线也会受到诸如振玲、串扰、信号反射以及地弹的影响,这些问题严重地损害了信号的质量,也就是导致了信号完整性性能下降。 2 引起信号完整性的原因 2.1 传输线效应 众所周知,传输线是用于连接发送端与接收段的连接媒介。传统的比如电信的有线线缆能在相当长的距离范围内有效地传输信号。但是高速的数字传输系统中,即使对于PCB电路板上的走线也受到传输线效应的影响。如图1所示,对于不同高频频率的PCB板上的电压分布是不同的。 图 1 PCB在不同频率上的电压波动

因为低频电路可以看成是一个没有特性阻抗、电容与电感寄生效应的理想电路。高速电路中高低电平的快速切换使得电路上的走线要看成是阻抗、电容与电感的组合电路。其等效电路模型如图2所示。导线的阻抗是非常重要的概念,一旦传输路径上阻抗不匹配就会导致信号的质量下降。 图 2 传输线等效电路模型 由图2的模型可得电报方程: 2.2 阻抗不匹配情况 信号源输出阻抗(Zs)、传输线上的阻抗(Zo)以及负载的阻抗(ZL)不相等时,我们称该电流阻抗不匹配。也这是说信号源的能量没有被负载全部吸收,还有一部分能量被反射回信号源方向了。反射后又被信号源那端反射给负载,除了吸收一部分外,剩下的又被反射回去。这个过程一直持续,直到能量全部被负载吸收。这样就会出现过冲与下冲(Overshoot/Undershoot)、振铃(ring)、阶梯波形(Stair-step Waveform)现象,这些现象的产生导致信号出现错误。 当传输媒介的特性阻抗与负载终端匹配时,阻抗就匹配了。对于PCB板来说,我们可以选取合适的负载终端策略及谨慎地选择传输介

于博士信号完整性分析入门(修改)

于博士信号完整性分析入门 于争 博士 https://www.360docs.net/doc/d817984899.html, for more information,please refer to https://www.360docs.net/doc/d817984899.html, 电设计网欢迎您

什么是信号完整性? 如果你发现,以前低速时代积累的设计经验现在似乎都不灵了,同样的设计,以前没问题,可是现在却无法工作,那么恭喜你,你碰到了硬件设计中最核心的问题:信号完整性。早一天遇到,对你来说是好事。 在过去的低速时代,电平跳变时信号上升时间较长,通常几个ns。器件间的互连线不至于影响电路的功能,没必要关心信号完整性问题。但在今天的高速时代,随着IC输出开关速度的提高,很多都在皮秒级,不管信号周期如何,几乎所有设计都遇到了信号完整性问题。另外,对低功耗追求使得内核电压越来越低,1.2v内核电压已经很常见了。因此系统能容忍的噪声余量越来越小,这也使得信号完整性问题更加突出。 广义上讲,信号完整性是指在电路设计中互连线引起的所有问题,它主要研究互连线的电气特性参数与数字信号的电压电流波形相互作用后,如何影响到产品性能的问题。主要表现在对时序的影响、信号振铃、信号反射、近端串扰、远端串扰、开关噪声、非单调性、地弹、电源反弹、衰减、容性负载、电磁辐射、电磁干扰等。 信号完整性问题的根源在于信号上升时间的减小。即使布线拓扑结构没有变化,如果采用了信号上升时间很小的IC芯片,现有设计也将处于临界状态或者停止工作。 下面谈谈几种常见的信号完整性问题。 反射: 图1显示了信号反射引起的波形畸变。看起来就像振铃,拿出你制作的电路板,测一测各种信号,比如时钟输出或是高速数据线输出,看看是不是存在这种波形。如果有,那么你该对信号完整性问题有个感性的认识了,对,这就是一种信号完整性问题。 很多硬件工程师都会在时钟输出信号上串接一个小电阻,至于为什么,他们中很多人都说不清楚,他们会说,很多成熟设计上都有,照着做的。或许你知道,可是确实很多人说不清这个小小电阻的作用,包括很多有了三四年经验的硬件工程师,很惊讶么?可这确实是事实,我碰到过很多。其实这个小电阻的作用就是为了解决信号反射问题。而且随着电阻的加大,振铃会消失,但你会发现信号上升沿不再那么陡峭了。这个解决方法叫阻抗匹配,奥,对了,一定要注意阻抗匹配,阻抗在信号完整性问题中占据着极其重要的

信号完整性分析基础系列之一——眼图测量

信号完整性分析基础系列之一 ——关于眼图测量(上) 汪进进美国力科公司深圳代表处 内容提要:本文将从作者习惯的无厘头漫话风格起篇,从四个方面介绍了眼图测量的相关知识:一、串行数据的背景知识; 二、眼图的基本概念; 三、眼图测量方法; 四、力科示波器在眼图测量方面的特点和优势。全分为上、下两篇。上篇包括一、二部分。下篇包括三、四部分。 您知道吗?眼图的历史可以追溯到大约47年前。在力科于2002年发明基 于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基 于采样示波器的传统方法。 您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是 可以作为一项重要的调试工具的。 在我2004年来力科面试前,我也从来没有听说过眼图。那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。之后我Google“眼图”, 看到网络上有限的几篇文章,但仍不知所云。刚刚我再次Google“眼图”,仍然 没有找到哪怕一篇文章讲透了眼图测量。 网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰 对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元 定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。 二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两 只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码

信号完整性高速互连综述

信号完整性中抖动、噪声研究和发展

信号完整性中抖动、噪声研究和发展 1 引言 随着现代电子产品的开发周期越来越短,工作频率越来越高,尺寸越来越小,产品结构越来越复杂,数字技术的发展日新月异。在20世纪90初,几十兆主 频的X86还是很新鲜的事物,而到如今,频率高达3GHZ的CPU已成为个人电脑的标准配置[1]。手机处理器在10年前ARM7主频还是20MHz,而到了现在2GHz、多核的手机处理器在移动设备上广泛的被应用。处理器遵循着摩尔定律开速的 发展,主频从数十MHz上升到现在的3GHz只用了20年的时间。而在数字产品中,随着工艺的不断改进提升,20前的制造工艺还是微米数量级,而现在已经 步入到了14纳米级工艺。 可见如今的数字电路设计中,芯片的趋势——处理速度越来越快,面积越 来越小,密度却越来越大。数字电路系统的信号速率、时钟频率和集成电路开 关速度[2]的持续增加。这在给广大用户带来更好体验,更便捷应用的同时,也给数字设计者提出了巨大的挑战[3]。信号完整性对于高速电路板和深亚微米(低于0.35微米)芯片设计都是需要考虑的问题[4]。以前在低速设计中可以应 用的方法,在高速电路设计中就编的举步维艰、寸步难行;理论上在设计方法 上应该是正确的,但在实践中却达不到理想的效果。这就涉及到了高速数字电 路设计的问题。I/O速度的提高使得链路总的可用最大抖动预算——单元区间(UI)必将相应的减小。而为了保证设计的整个链路系统有比较好的误码率, 面临的最大挑战就是降低抖动。特征尺寸减小带来的另一个严峻挑战就是功率 损耗和功率密度必须小于某一约束限度,或者说就是使用低功耗设计。 关于抖动的话题对于通信系统的合理设计变得越来越重要,如今,一个通 讯系统的时钟抖动已经成为了影响系统性能的基本限制。时钟抖动的范围与当 今高速串行总线紧密相关,并且数据连接在数字电路系统的设计中,对抖动的 严加控制是必须解决的问题。这是在这种情况下,抖动成为了高速数字通信系 统中,电路设计的一个基本指标。认识什么是抖动,如何描述抖动,成为配置 一个满足性能要求的高速数字系统必不可少的一步。

PCB设计与信号完整性仿真

本人技术屌丝一枚,从事PCB相关工作已达8年有余,现供职于世界闻名的首屈一指的芯片设计公司,从苦逼的板厂制板实习,到初入Pcblayout,再到各种仿真的实战,再到今天的销售工作,一步一步一路兢兢业业诚诚恳恳,有一些相关领悟和大家分享。买卖不成也可交流。 1.谈起硬件工作,是原理图,pcb,码农的结合体,如果你开始了苦逼的pcblayout工作,那么将是漫长的迷茫之路,日复一日年复一年,永远搞不完的布局,拉线。眼冒金星不是梦。最多你可以懂得各种模块的不同处理方式,各种高速信号的设计,但永远只能按照别人的意见进行,毫无乐趣。 2.谈起EDA相关软件,形象的说,就普通的PROTEL/AD来说你可能只有3-6K,对于pads 可能你有5-8K,对于ALLEGRO你可能6-10K,你会哀叹做的东西一样,却同工不同酬,没办法这就是市场,我们来不得无意义的抱怨。 3.众所周知,一个PCB从业者最好的后路就是仿真工作,为什么呢?一;你可以懂得各种模块的设计原则,可以优化不准确的部分,可以改善SI/PI可以做很多,这往往是至关重要的,你可以最大化节约成本,减少器件却功效相同;二;从一个pcblayout到仿真算是水到渠成,让路走的更远; 三:现实的说薪资可以到达11-15K or more,却更轻松,更有价值,发言权,你不愿意吗? 现在由于本人已技术转销售,现在就是生意人了哈哈,我也查询过各种仿真资料我发现很少,最多不过是Mentor Graphics 的HyperLynx ,candense的si工具,

但是他们真的太low了,精确度和完整性根本不能保证,最多是定性的能力,无法定量。真正的仿真是完整的die到die的仿真,是完整的系统的,是需要更高级的仿真软件,被收购的xxsigrity,xx ansys,hspicexx,adxx等等,这些软件才是真正的仿真。 本人提供各种软件及实战代码,例子,从基本入门到高级仿真,从电源仿真,到ddr仿真到高速串行仿真,应有尽有,,完全可以使用,想想以后的高薪,这点投入算什么呢?舍不得孩子套不住狼哦。 所有软件全兼容32位和64位系统。 切记本人还提供学习手册,你懂的,完全快速进入仿真领域。你懂的! 希望各位好好斟酌,自己的路是哪个方向,是否想更好的发展,舍得是哲学范畴,投资看得是利润的最大化,学会投资吧,因为他值得拥有,骚年! 注:本人也可提供培训服务,面面俱到,形象具体,包会! 有购买和学习培训兴趣的请联系 QQ:2941392162

高速信号与信号完整性分解

什么是高速数字信号? 高速数字信号由信号的边沿速度决定,一般认为上升时间小于4倍信号传输延迟时可视为高速信号,而高频信号是针对信号频率而言的。高速电路涉及信号分析、传输线、模拟电路的知识。错误的概念是:8KHz帧信号为低速信号。多高的频率才算高速信号? 当信号的上升/下降沿时间< 3~6倍信号传输时间时,即认为是高速信号. 对于数字电路,关键是看信号的边沿陡峭程度,即信号的上升、下降时间,信号从10%上升到90%的时间小 于6倍导线延时,就是高速信号! 即使8KHz的方波信号,只要边沿足够陡峭,一样是高速信号,在布线时需要使用传输线理论。 信号完整性研究:什么是信号完整性? 时间:2009-03-11 20:18来源:sig007 作者:于博士点击:1813次 信号完整性主要是指信号在信号线上传输的质量,当电路中信号能以要求的时序、持续时间和电压幅度到达接收芯片管脚时,该电路就有很好的信号完整性。当信号不能正常响应或者信号质量不能使系统长期稳定工作时,就出现了信号完整性问题,信号完整性主要表现在延迟、反射、串扰、时序、振荡等几个方面。一般认为,当系统工作在50MHz时,就会产生信号完整性问题,而随着系统和器件频率的不断攀升,信号完整性的问题也就愈发突出。元器件和PCB板的参数、元器件在PCB板上的布局、高速信号的布线等 这些问题都会引起信号完整性问题,导致系统工作不稳定,甚至完全不能正常工作。 1、什么是信号完整性(Singnal Integrity)? 信号完整性(Singnal Integrity)是指一个信号在电路中产生正确的相应的能力。信号具有良好的信号完整性(Singnal Integrity)是指当在需要的时候,具有所必须达到的电压电平数值。主要的信号完整性问题包括反射、振荡、地弹、串扰等。常见信号完整性问题及解决方法: 问题可能原因解决方法其他解决方法 过大的上冲终端阻抗不匹配终端端接使用上升时间缓慢的驱动源 直流电压电平不好线上负载过大以交流负载替换直流负载在接收端端接,重新布线或检查地平面

信号完整性分析基础系列之二十四

信号完整性分析基础系列之二十四——关于抖动(上) 美国力科公司深圳代表处汪进进 写在前面的话 抖动话题是示波器测量的最高境界,也是最风云变换的一个话题,这是因为抖动是示波器测量的诸多功能中最和“数学”相关的。玩数学似乎是需要一定境界的。 “力科示波器是怎么测量抖动的?”,“这台示波器抖动测量准不准?”,“时钟抖动和数据抖动测量方法为什么不一样?”,“总体抖动和峰峰值抖动有什么区别? ”,“余辉方法测量抖动不是最方便吗?”,“抖动和眼图,浴盆曲线之间是什么?”,…… 关于抖动的问题层出不穷。这么多年来,在完成了“关于触发(上)、(下)”和“关于眼图(上)、(下)”,“关于S参数(上)(下)”等三篇拙作后,我一直希望有一篇“关于抖动”的文章问世,但每每下笔又忐忑而止,怕有谬误遗毒。今天,当我鼓起勇气来写关于抖动的时候,我需要特别说明,这是未定稿,恳请斧正。 抖动和波形余辉的关系 有一种比较传统的测量抖动的方法,就是利用余辉来查看信号边沿的变化,然后再用光标测量变化的大小(如图1所示),后来更进了一步,可以利用示波器的“余辉直方图”和相关参数自动测量出余辉的变化范围,这样测量的结果就被称为“抖动”。这个方法是在示波器还没有“测量统计”功能之前的方法,但在90年代初力科发明了测量统计功能之后,这个方法就逐渐被淘汰了。 图1 传统的抖动测量方法 这种传统的方法有下面这些缺点:(1)总会引入触发抖动,因此测量的结果很不准确。(2)只能测量某种参数的抖动,譬如触发上升沿,测量下降沿的余辉变化,反应了宽度的抖动,触发上升沿,测量相邻的上升沿的余辉变化,反应了周期的抖动。显然还有很多类型的抖动特别是最重要的TIE抖动无法测量出来。(3)抖动产生的因果关系的信息也无从得知。 定义抖动的四个维度 和抖动相关的名词非常多:时钟抖动,数据抖动; 周期抖动,TIE抖动,相位抖动,cycle-cycle抖动; 峰峰值抖动(pk-pk jitter),有效值抖动(rms jitter);总体抖动(Tj),随机抖动(Rj),固有抖动(Dj);周期性抖动,DCD抖动,ISI抖动,数据相关性抖动; 定时抖动,基于误码率的抖动; 水平线以上的抖动和水平线以下的抖动…… 这些名词反应了定义抖动的不同维度。 回到“什么是抖动”的定义吧。其实抖动的定义一直没有统一,这可能也是因为需要表达清楚这个概念的维度比较多的原因。目前引用得比较多的定义是: Jitter is defined as the short-term variations of a digital signal’s significant instants from their ideal positions in time. 就是说抖动是信号在电平转换时,其边沿与理想位置之间的偏移量。如图2所示,红色的是表示理想信号,实际信号的边沿和红色信号边沿之间的偏差就是抖动。什么是“理想位置”,“理想位置”是怎么得到的?这是被问到后最不好回答的问题。

信号完整性与高速PCB设计课程报告pdf

H a r b i n I n s t i t u t e o f T e c h n o l o g y 信号完整性与高速P C B设 计课程报告 院系:航天学院 班级: 1021202 姓名:凌霄飞鸿 学号: 任课教师:老师 哈尔滨工业大学 2012年

信号完整性与高速PCB设计 任课老师:老师 凌霄飞鸿 1.课程概述与心得体会: 随着系统设计复杂性和集成度的大规模提高,电子系统设计师们正在从事100MHZ以上的电路设计,总线的工作频率也已经达到或者超过50MHZ,有的甚至超过100MHZ。目前约50% 的设计的时钟频率超过50MHz,将近20% 的设计主频超过120MHz。 当系统工作在50MHz时,将产生传输线效应和信号的完整性问题;而当系统时钟达到120MHz时,除非使用高速电路设计知识,否则基于传统方法设计的PCB将无法工作。因此,高速电路设计技术已经成为电子系统设计师必须采取的设计手段。只有通过使用高速电路设计师的设计技术,才能实现设计过程的可控性。 印制电路板的抗干扰设计与具体电路有着密切的关系,这里仅就PCB抗干扰设计的几项常用措施做一些说明。 1.电源线设计 根据印制线路板电流的大小,尽量加粗电源线宽度,减少环路电阻。同时,使电源线、地线的走向和数据传递的方向一致,这样有助于增强抗噪声能力。 2.地线设计 在电子产品设计中,接地是控制干扰的重要方法。如能将接地和屏蔽正确结合起来使用,可解决大部分干扰问题。电子产品中地线结构大致有系统地、机壳地(屏蔽地)、数字地(逻辑地)和模拟地等。在地线设计中应注意以下几点:(1)正确选择单点接地与多点接地 在低频电路中,信号的工作频率小于1MHz,它的布线和器件间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而应采用一点接地的方式。当信号工作频率大于10MHz时,地线阻抗变得很大,此时应尽量降低地线阻抗,应采用就近多点接地。当工作频率在1~10MHz时,如果采用一点接地,其地线长度不应超过波长的1/20,否则应采用多点接地法。 (2)数字地与模拟地分开。 电路板上既有高速逻辑电路,又有线性电路,应使它们尽量分开,而两者的地线不要相混,分别与电源端地线相连。低频电路的地应尽量采用单点并联接地,实际布线有困难时可部分串联后再并联接地。高频电路宜采用多点串联接地,地线应短而粗,高频元件周围尽量用栅格状大面积地箔。要尽量加大线性电路的接地面积。 (3)接地线应尽量加粗。 若接地线用很细的线条,则接地电位则随电流的变化而变化,致使电子产品的定时信号电平不稳,抗噪声性能降低。因此应将接地线尽量加粗,使它能通过三倍于印制电路板的允许电流。如有可能,接地线的宽度应大于3mm。 (4)接地线构成闭环路。 设计只由数字电路组成的印制电路板的地线系统时,将接地线做成闭路可以明显地提高抗噪声能力。其原因在于:印制电路板上有很多集成电路元件,尤其遇

信号完整性分析

信号完整性背景 信号完整性问题引起人们的注意,最早起源于一次奇怪的设计失败现象。当时,美国硅谷一家著名的影像探测系统制造商早在7 年前就已经成功设计、制造并上市的产品,却在最近从生产线下线的产品中出现了问题,新产品无法正常运行,这是个20MHz 的系统设计,似乎无须考虑高速设计方面的问题,更为让产品设计工程师们困惑的是新产品没有任何设计上的修改,甚至采用的元器件型号也与原始设计的要求一致,唯一的区别是 IC 制造技术的进步,新采购的电子元器件实现了小型化、快速化。新的器件工艺技术使得新生产的每一个芯片都成为高速器件,也正是这些高速器件应用中的信号完整性问题导致了系统的失败。随着集成电路(IC)开关速度的提高,信号的上升和下降时间迅速缩减,不管信号频率如何,系统都将成为高速系统并且会出现各种各样的信号完整性问题。在高速PCB 系统设计方面信号完整性问题主要体现为:工作频率的提高和信号上升/下降时间的缩短,会使系统的时序余量减小甚至出现时序方面的问题;传输线效应导致信号在传输过程中的噪声容限、单调性甚至逻辑错误;信号间的串扰随着信号沿的时间减少而加剧;以及当信号沿的时间接近0.5ns 及以下时,电源系统的稳定性下降和出现电磁干扰问题。

信号完整性含义 信号完整性(Signal Integrity)简称SI,指信号从驱动端沿传输线到达接收端后波形的完整程度。即信号在电路中以正确的时序和电压作出响应的能力。如果电路中信号能够以要求的时序、持续时间和电压幅度到达IC,则该电路具有较好的信号完整性。反之,当信号不能正常响应时,就出现了信号完整性问题。从广义上讲,信号完整性问题指的是在高速产品中由互连线引起的所有问题,主要表现为五个方面:

信号完整性分析基础之八——抖动的频域分析

在上两篇文章中,我们分别介绍了直方图(统计域分析)和抖动追踪(时域分析)在抖动分析中的应用。从抖动的直方图和抖动追踪波形上我们可以得到抖动的主要构成成分以及抖动参数的变化趋势。如需对抖动的构成做进一步的分析,还需要从频域角度去进一步分析抖动的跟踪波形。 抖动的频谱即是对抖动追踪(jitter track)波形做FFT运算。如下图1所示 为一个时钟周期测量参数的追踪、频谱分析步骤及效果,在抖动频谱图上可以清楚的看出某两个频率值点抖动比较大: 图1 抖动频谱 黄色为实际采集到的时钟波形(C1通道) P1测量C1通道时钟信号的时钟周期 F7函数对P1测量参数进行跟踪 F6对F7进行FFT分析 下图2所示为一典型的串行信号抖动追踪频谱图,从图中可看出各种抖动成分;DDj和Pj为窄带频谱(三角形谱或者谱线)但是DDj和Pj的区别是由于DDj是和码型相关的,其频率fDDJ一般会是数据位率的整数倍,如果Pj的频率fPJ正好等于fDDJ,那么从抖动的频谱图里面是很难将DDj和Pj精确的分开的,所以通常在抖动分解的过程中一般通过时域平均的方法来分解DDj;BUj主要由于串扰等因素引起的,一般分为两种,一种是窄带,但幅度较高,很显然这类BUJ也是很难和PJ区分开的,除非我们知道引起BUJ的源头,知道其频率,所以说我们在抖动测试时得到的PJ一般会包含这类BUJ(所以通常情况下对这类BUJ不加区分,直接算做PJ,而将BUJ分类为PJ和OBUJ,在之前的抖动分类文章中有提及);另外一类是宽带的BUJ(很多时候也叫OBUJ,other bounded uncorrelated jitter),幅度很小,基本会埋没到RJ中去,这类抖动很容易被误算作RJ,目前使用在示波器上的抖动分解软件只有Lecroy最近推出的SDAII(基于NQ-SCALE抖动分解理论)能够较好的将这类抖动从Rj中剥离出来;RJ是 宽带频谱,幅度很小。

五款信号完整性仿真分析工具

SI五款信号完整性仿真工具介绍 (一)Ansoft公司的仿真工具 现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 Ansoft的信号完整性工具采用一个仿真可解决全部设计问题: SIwave是一种创新的工具,它尤其适于解决现在高速PCB和复杂IC封装中普遍存在的电源输送和信号完整性问题。 该工具采用基于混合、全波及有限元技术的新颖方法,它允许工程师们特性化同步开关噪声、电源散射和地散射、谐振、反射以及引线条和电源/地平面之间的耦合。该工具采用一个仿真方案解决整个设计问题,缩短了设计时间。 它可分析复杂的线路设计,该设计由多重、任意形状的电源和接地层,以及任何数量的过孔和信号引线条构成。仿真结果采用先进的3D图形方式显示,它还可产生等效电路模型,使商业用户能够长期采用全波技术,而不必一定使用专有仿真器。 (二)SPECCTRAQuest Cadence的工具采用Sun的电源层分析模块: Cadence Design Systems的SpecctraQuest PCB信号完整性套件中的电源完整性模块据称能让工程师在高速PCB设计中更好地控制电源层分析和共模EMI。 该产品是由一份与Sun Microsystems公司签署的开发协议而来的,Sun最初研制该项技术是为了解决母板上的电源问题。 有了这种新模块,用户就可根据系统要求来算出电源层的目标阻抗;然后基于板上的器件考虑去耦合要求,Shah表示,向导程序能帮助用户确定其设计所要求的去耦合电容的数目和类型;选择一组去耦合电容并放置在板上之后,用户就可运行一个仿真程序,通过分析结果来发现问题所在。 SPECCTRAQuest是CADENCE公司提供的高速系统板级设计工具,通过它可以控制与PCB layout相应的限制条件。在SPECCTRAQuest菜单下集成了一下工具: (1)SigXplorer可以进行走线拓扑结构的编辑。可在工具中定义和控制延时、特性阻抗、驱动和负载的类型和数量、拓扑结构以及终端负载的类型等等。可在

信号完整性分析基础系列之一__关于眼图测量(全)

信号完整性分析基础系列之一_——关于眼图测量(全) 您知道吗?眼图的历史可以追溯到大约47年前。在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基于采样示波器的传统方法。 您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。这种对于Sigtest 的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。 在我2004年来力科面试前,我也从来没有听说过眼图。那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。之后我Google“眼图”,看到网络上有限的几篇文章,但仍不知所云。刚刚我再次Google“眼图”,仍然没有找到哪怕一篇文章讲透了眼图测量。 网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。 二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。通常眼图可以用下图所示的图形来描述,由此图可以看出:(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。 (2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。

信号完整性分析与测试

信号完整性分析与测试 信号完整性问题涉及的知识面比较广,我通过这个短期的学习,对信号完整性有了一个初步的认识,本文只是简单介绍和总结了几种常见现象,并对一些常用的测试手段做了相应总结。本文还有很多不足,欢迎各位帮助补充,谢谢! 梁全贵 2011年9月16日

目录 第1章什么是信号完整性------------------------------------------------------------------------------ 3第2章轨道塌陷 ----------------------------------------------------------------------------------------- 5第3章信号上升时间与带宽 --------------------------------------------------------------------------- 6第4章地弹----------------------------------------------------------------------------------------------- 8第5章阻抗与特性阻抗--------------------------------------------------------------------------------- 9 5.1 阻抗 ------------------------------------------------------------------------------------------ 9 5.2 特性阻抗------------------------------------------------------------------------------------- 9第6章反射----------------------------------------------------------------------------------------------11 6.1 反射的定义 ---------------------------------------------------------------------------------11 6.2 反射的测试方法--------------------------------------------------------------------------- 12 6.3 TDR曲线映射着传输线的各点 --------------------------------------------------------- 12 6.4 TDR探头选择 ----------------------------------------------------------------------------- 13 第7章振铃--------------------------------------------------------------------------------------------- 14 第8章串扰--------------------------------------------------------------------------------------------- 16 8.1 串扰的定义 -------------------------------------------------------------------------------- 16 8.2 观测串扰 ----------------------------------------------------------------------------------- 16 第9章信号质量 --------------------------------------------------------------------------------------- 18 9.1 常见的信号质量问题 --------------------------------------------------------------------- 18 第10章信号完整性测试 ----------------------------------------------------------------------------- 21 10.1 波形测试---------------------------------------------------------------------------------- 21 10.2 眼图测试---------------------------------------------------------------------------------- 21 10.3 抖动测试---------------------------------------------------------------------------------- 23 10.3.1 抖动的定义 ------------------------------------------------------------------------ 23 10.3.2 抖动的成因 ------------------------------------------------------------------------ 23 10.3.3 抖动测试 --------------------------------------------------------------------------- 23 10.3.4 典型的抖动测试工具: ---------------------------------------------------------- 24 10.4 TDR测试 --------------------------------------------------------------------------------- 24 10.5 频谱测试---------------------------------------------------------------------------------- 25 10.6 频域阻抗测试 ---------------------------------------------------------------------------- 25 10.7 误码测试---------------------------------------------------------------------------------- 25 10.8 示波器选择与使用要求: -------------------------------------------------------------- 26 10.9 探头选择与使用要求-------------------------------------------------------------------- 26 10.10 测试点的选择--------------------------------------------------------------------------- 27 10.11 数据、地址信号质量测试 ------------------------------------------------------------- 27 10.11.1 简述 ------------------------------------------------------------------------------- 27 10.11.2 测试方法-------------------------------------------------------------------------- 27

相关文档
最新文档