高一数学教案:空间几何体的表面积和体积

合集下载

空间几何体的表面积与体积教案

空间几何体的表面积与体积教案

空间几何体的表面积与体积教案一、教学目标:1. 让学生掌握空间几何体的表面积和体积的计算公式。

2. 培养学生运用空间几何知识解决实际问题的能力。

3. 提高学生的空间想象能力和逻辑思维能力。

二、教学内容:1. 空间几何体的表面积和体积的定义。

2. 常见空间几何体的表面积和体积计算公式。

3. 空间几何体表面积和体积的求解方法。

4. 空间几何体表面积和体积在实际问题中的应用。

三、教学重点与难点:1. 教学重点:空间几何体的表面积和体积的计算公式,求解方法及实际应用。

2. 教学难点:空间几何体表面积和体积的求解方法,实际问题的解决。

四、教学方法:1. 采用讲解法,引导学生掌握空间几何体的表面积和体积的计算公式。

2. 采用案例分析法,让学生通过实际问题,运用空间几何知识解决问题。

3. 采用讨论法,激发学生思考,提高学生的空间想象能力和逻辑思维能力。

五、教学过程:1. 导入:通过展示生活中常见空间几何体,引导学生思考空间几何体的表面积和体积的计算方法。

2. 新课导入:讲解空间几何体的表面积和体积的定义及计算公式。

3. 案例分析:分析实际问题,运用空间几何体的表面积和体积计算公式解决问4. 课堂练习:让学生独立完成练习题,巩固所学知识。

6. 课后作业:布置作业,让学生进一步巩固空间几何体的表面积和体积的计算方法。

7. 课后反思:教师反思教学过程,针对学生的掌握情况,调整教学策略。

六、教学评价:1. 评价学生对空间几何体表面积和体积计算公式的掌握程度。

2. 评价学生运用空间几何知识解决实际问题的能力。

3. 评价学生的空间想象能力和逻辑思维能力。

七、教学拓展:1. 引导学生研究空间几何体的表面积和体积在实际工程中的应用。

2. 引导学生探索空间几何体表面积和体积的求解方法的创新。

八、教学资源:1. 教学课件:制作课件,展示空间几何体的表面积和体积的计算公式及实际问题。

2. 练习题库:整理空间几何体表面积和体积的练习题,供学生课堂练习及课后巩固。

第09讲 空间几何体的表面积和体积

第09讲 空间几何体的表面积和体积

普通高中课程标准实验教科书—数学[人教版]高三新数学第一轮复习教案(讲座9)—空间几何体的表面积和体积一.课标要求:了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。

二.命题走向近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。

即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。

由于本讲公式多反映在考题上,预测008年高考有以下特色:(1)用选择、填空题考查本章的基本性质和求积公式;(2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题;三.要点精讲1.多面体的面积和体积公式表中S表示面积,c′、c分别表示上、下底面周长,h表斜高,h′表示斜高,l表示侧棱长。

2.旋转体的面积和体积公式表中l 、h 分别表示母线、高,r 表示圆柱、圆锥与球冠的底半径,r 1、r 2分别表示圆台 上、下底面半径,R 表示半径。

四.典例解析题型1:柱体的体积和表面积例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm依题意得:⎩⎨⎧=++=++24)(420)(2z y x zx yz xy )2()1(由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3)由(3)-(1)得x 2+y 2+z 2=16 即l 2=16所以l =4(cm)。

点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。

我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。

2021-8-8 空间几何体的表面积和体积(教案)

2021-8-8 空间几何体的表面积和体积(教案)

简单几何体的表面积与体积计算,主要以选择题、填空题的形式呈现,在解答题中,有时与空间线、面位置证明相结合,面积与体积的计算作为其中的一问.核心考点一空间几何体的表面积柱体、锥体、台体、球的表面积公式:①圆柱的表面积S=2πr(r+l);②圆锥的表面积S=πr(r+l);③圆台的表面积S=π(r′2+r2+r′l+rl);④球的表面积S=4πR2.1.【2018新课标1文5】已知圆柱的上、下底面的中心分别为1O,2O,过直线12O O的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A.122πB.12πC.82πD.10π2.【2017新课标1文18】如图,在四棱锥P ABCD-中,//AB CD,且90BAP CDP∠=∠=(1)证明:平面PAB⊥平面PAD;(2)若PA PD AB DC===,90APD∠=,且四棱锥P ABCD-的体积为83,求该四棱锥的侧面积.【解析】(1)由已知90BAP CDP==︒∠∠,得AB AP⊥,CD PD⊥.由于AB CD∥,故AB PD⊥,从而AB⊥平面PAD.又AB⊂平面PAB,所以平面PAB⊥平面PAD.精讲精练知识梳理空间几何体的表面积和体积(2)在平面PAD 内作PE AD ⊥,垂足为E .由(1)知,AB ⊥平面PAD ,故AB PE ⊥,可得PE ⊥平面ABCD . 设AB x =,则由已知可得2AD x =,22PE x =. 故四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=. 由题设得31833x =,故2x =.从而2PA PD ==,22AD BC ==,22PB PC ==.可得四棱锥P ABCD -的侧面积为21111sin 606232222PA PD PA AB PD DC BC ⋅+⋅+⋅+︒=+.【变式训练】1.【2018新课标2理16】已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为515,则该圆锥的侧面积为__________.2.【2015新课标1文18】如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ⊥平面ABCD , (I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -的体积为63,求该三棱锥的侧面积.1、【解析】因为母线,所成角的余弦值为,所以母线,所成角的正弦值为, 因为的面积为,设母线长为,所以,, 因与圆锥底面所成角为,所以底面半径为,因此圆锥的侧面积为. 2、【解析】(Ⅰ) ∵BE ⊥平面ABCD ,∴BE ⊥AC .∵ABCD 为菱形,∴ BD ⊥AC ,∴AC ⊥平面BED ,又AC ⊂平面AEC ,∴平面AEC ⊥平面BED . (Ⅱ)设AB=x ,在菱形ABCD 中,由∠ABC=120°可得, AG=GC=32x ,GB=GD=2x . 在RtΔAEC 中,可得EG=32x .∴ 在RtΔEBG 为直角三角形,可得BE=22x .GEDACBSA SB 78SA SB 158SAB △515l 211551528l ⨯⨯=280l ∴=SA 45︒2cos42l l π=224022rl l π=π=π∴ 31132243E ACD V AC GD BE x -=⨯⋅⋅==,解得x =2.由BA=BD=BC 可得的面积为3,ΔEAD 的面积与ΔECD所以三棱锥E-ACD 的侧面积为核心考点二 空间几何体的体积柱体、锥体和球的体积公式:①V 柱体=Sh (S 为底面面积,h 为高); ②V 锥体=13Sh (S 为底面面积,h 为高);③V 球=43πR 3.1.【2018新课标2文16】已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30︒,若SAB △的面积为8,则该圆锥的体积为________.2.【2019新课标3文理16】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A BC D -挖去四棱锥O EFGH -后所得的几何体,其中O 为长方体的中心,,,,E F G H 分别为所在棱的中点,16cm 4cm AB=BC =, AA =,3D 打印所用原料密度为30.9/g cm ,不考虑打印损耗,制作该模型所需原料的质量为___________g .3.【2020新课标1文19】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC ∆是底面的内接正三角形,P 为DO 上一点,90o APC ∠=. (1)证明:平面PAB ⊥平面PAC ;(2)设DO =,求三棱锥P ABC -的体积.1、【解析】如下图所示,,,又,解得,所以,.2、【解析】由题意得,2146423122EFGHS cm=⨯-⨯⨯⨯=,四棱锥O−EFG的高3cm,∴21123123O EFGHV cm-=⨯⨯=.又长方体1111ABCD A BC D-的体积为22466144V cm=⨯⨯=,所以该模型体积为22114412132V V V cm=-=-=,其质量0.9132118.8g⨯=.3、【解析】(1)连接,,OA OB OC,D为圆锥顶点,O为底面圆心,OD∴⊥平面ABC,P在DO上,,OA OB OC PA PB PC==∴==,ABC∆是圆内接正三角形,AC BC∴=,PAC PBC≅△△,90APC BPC∴∠=∠=︒,即,PB PC PA PC⊥⊥,PA PB P=,PC∴⊥平面,PAB PC⊂平面PAC,∴平面PAB⊥平面PAC;(2)设圆锥的母线为l,底面半径为r,圆锥的侧面积为,rl rlπ=2222OD l r=-=,解得1,r l==2sin603AC r==,在等腰直角三角形APC中,AP AC==Rt PAO∆中,PO===∴三棱锥P ABC-的体积为11333P ABC ABCV PO S-=⋅==△.【变式训练】1.【2018江苏卷】如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.2.如图,四边形ABCD是边长为2的正方形,ED⊥平面ABCD,FC⊥平面ABCD,ED=2FC=2,则四面体ABEF的体积为()30SAO∠=︒90ASB∠=︒211822SABS SA SB SA=⋅==△4SA=122SO SA==AO=2183V OA SO=⋅π⋅⋅=πA.13B.23C.1D.433.【2019新课标2文17】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积.1、【解析】正方体的棱长为2,以其所有面的中心为顶点的多面体是正八面体,其中正八面体的所有棱长都是2.则该正八面体的体积为13×(2)2×1×2=43.2、【解析】∵ ED ⊥平面ABCD 且AD ⊂平面ABCD ,∴ ED ⊥AD . ∵ 在正方形ABCD 中,AD ⊥DC ,而DC ∩ED =D ,∴ AD ⊥平面CDEF.易知FC =ED2=1,V A -BEF =V ABCDEF -V F -ABCD -V A -DEF .∵ V E -ABCD =ED ×S 正方形ABCD ×13=2×2×2×13=83,V B -EFC =BC ×S △EFC ×13=2×2×1×12×13=23,∴ V ABCDEF =83+23=103.又V F -ABCD =FC ×S 正方形ABCD ×13=1×2×2×13=43,V A -DEF =AD ×S △DEF ×13=2×2×2×12×13=43,V A -BEF =103-43-43=23.故选B.3、【解析】(1)因为在长方体1111ABCD A B C D -中,11B C ⊥平面c e a ==BE ⊂平面5c e a ==11B C BE ⊥, 又1BE EC ⊥,1111B C EC C ⋂=,且1EC ⊂平面11EB C ,11B C ⊂平面11EB C ,所以BE ⊥平面11EB C ;(2)设长方体侧棱长为2a ,则1AE A E a ==,由(1)可得1EB BE ⊥;所以22211EB BE BB +=,即2212BE BB =, 又3AB =,所以222122AE AB BB +=,即222184a a +=,解得3a =; 取1BB 中点F ,连结EF ,因为1AE A E =,则EF AB ∥; 所以EF ⊥平面11BB C C ,所以四棱锥11E BB C C -的体积为1111111136318333E BB C C BB C C V S EF BC BB EF -=⋅=⋅⋅⋅=⨯⨯⨯=矩形.核心考点三 多面体与球的切、接问题球的相关性质:1、用一个平面去截球,截面是圆面;经过球心的平面截的圆叫大圆;不经过球心的平面截的圆叫小圆。

2015届高考数学总复习第八章立体几何初步第5课时空间几何体的表面积和体积教学案(含最新模拟、试题改编)

2015届高考数学总复习第八章立体几何初步第5课时空间几何体的表面积和体积教学案(含最新模拟、试题改编)

第八章 立体几何初步第5课时 空间几何体的表面积和体积⎝ ⎛⎭⎪⎫对应学生用书(文)108~110页 (理)110~112页考情分析 考点新知了解柱、锥、台、球的表面积和体积计算公式,会求一些简单几何体的表面积和体积,体会积分思想在计算表面积、体积中的运用. ① 了解柱、锥、台、球的表面积和体积计算公式(不要求记忆公式). ② 会求直棱柱、正棱锥、正棱台、圆柱、圆锥、圆台和球的表面积和体积.1. (必修2P 69习题10改编)用长、宽分别是3π与π的矩形硬纸卷成圆柱的侧面,则圆柱的底面面积为________.答案:94π或14π解析:有两种情况:以3π为圆柱的高时,圆柱底面积为14π,以π为圆柱的高时,圆柱底面积为94π.2. (原创)若等腰直角三角形的直角边长为2,则以一直角边所在的直线为轴旋转一周所成的几何体体积是__________.答案:83π解析:几何体为圆锥,圆锥的底面半径为2,高也为2,体积V =13×π×4×2=83π.3. (2013·南京二模)已知圆锥的侧面展开图是一个半径为3 cm ,圆心角为2π3的扇形,则此圆锥的高为________cm.答案:22解析:设圆锥的底面半径为r ,则2πr =2π3×3,所以r =1,此圆锥的高为32-12=2 2.4. (必修2P 55练习4改编)已知正方形ABCD 的边长为2,E 、F 分别为BC 、DC 的中点,沿AE 、EF 、AF 折成一个四面体,使B 、C 、D 三点重合,则这个四面体的体积为________.答案:13解析:折成的四面体为三棱锥AECF ,S △ECF =12×1×1=12,高为AB =2,所以这个四面体的体积为V =13S △ECF ·AB =13×12×2=13.5. (必修2P 69复习题5改编)若长方体三个面的面积分别为2,3,6,则此长方体的外接球的表面积是________.答案:6π解析:设长方体的过同一顶点的三条棱长分别为a 、b 、c ,则⎩⎨⎧ab =2,ac =3,bc = 6.解得⎩⎨⎧a =1,b =2,c = 3.长方体外接球半径为R =1212+(2)2+(3)2=62,外接球的表面积为S =4π⎝⎛⎭⎫622=6π.1. 侧棱与底面垂直的棱柱叫做直棱柱,直棱柱的侧面积公式是S 直棱柱侧=ch ,底面是正多边形的直棱柱叫做正棱柱.柱体的体积公式是V 柱体=Sh .2. 如果一个棱锥的底面是正多边形,并且顶点在底面的正投影是底面的中心,该棱锥为正棱锥.正棱锥的侧面积公式是S 正棱锥侧=12ch ′;锥体的体积为V 锥体=13Sh .3. 正棱锥被平行于底面的平面所截,截面和底之间的部分叫做正棱台,其侧面积公式是S 正棱台侧=12(c +c′)·h′;台体的体积公式是34. 圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环;圆柱的侧面积公式是S 圆柱侧=cl =2πr ,圆锥的侧面积公式为S 圆锥侧=12cl =πrl ,圆台的侧面积公式为S 圆台侧=12(c +c′)l =π(r +r′)l .5. 球体的体积公式是V 球=43πR 3,其中R 为球的半径.[备课札记]题型1 与几何体的表面积有关的问题例1如图所示,正方体ABCDA 1B 1C 1D 1的棱长为6,则以正方体ABCDA 1B 1C 1D 1的中心为顶点,以平面AB 1D 1截正方体外接球所得的圆为底面的圆锥的全面积为________.答案:(182+24)π解析:设O 为正方体外接球的球心,则O 也是正方体的中心,O 到平面AB 1D 1的距离是体对角线长的16,即为 3.又球的半径是正方体对角线长的一半,即为33,由勾股定理可知,截面圆的半径为(33)2-(3)2=26,圆锥底面面积为S 1=π·(26)2=24π,圆锥的母线即为球的半径33,圆锥的侧面积为S 2=π×26×33=182π.因此圆锥的全面积为S =S 2+S 1=182π+24π=(182+24)π.备选变式(教师专享)如图,在球面上有四个点P 、A 、B 、C ,如果PA 、PB 、PC 两两互相垂直,且PA =PB =PC =a ,求这个球的表面积.解:如题图,设过A 、B 、C 三点的球的截面圆半径为r ,圆心为O′,球心到该圆面的距离为d ,在三棱锥PABC 中,∵PA 、PB 、PC 两两垂直,PA =PB =PC =a , ∴AB =AC =BC =2a ,且点P 在△ABC 内的射影是△ABC 的中心O′,由正弦定理,得2a sin60° =2r ,∴r =63a.又根据球的截面圆性质,有OO′⊥平面ABC , 而PO′⊥平面ABC ,∴P 、O 、O′三点共线,球的半径R =r 2+d 2.又PO′=PA 2-r 2=a 2-23a 2=33a ,∴OO ′=R -33a =d =R 2-r 2,∴⎝⎛⎭⎫R -33a 2=R 2-⎝⎛⎭⎫63a 2,解得R =32a.∴S 球=4πR 2=3πa 2.题型2 与几何体体积有关的问题例2 如图①所示,在Rt △ABC 中,AC =6,BC =3,∠ABC =90°,CD 为∠ACB 的平分线,点E 在线段AC 上,CE =4.如图②所示,将△BCD 沿CD 折起,使得平面BCD ⊥平面ACD ,连结AB ,设点F 是AB 的中点.(1) 求证:DE ⊥平面BCD ;(2) 若EF ∥平面BDG ,其中G 为直线AC 与平面BDG 的交点,求三棱锥B-DEG 的体积.图①图②(1) 证明:在题图①中,∵ AC =6,BC =3,∠ABC =90°,∴ ∠ACB =60°. ∵ CD 为∠ACB 的平分线,∴ ∠BCD =∠ACD =30°.∴ CD =2 3. ∵ CE =4,∠DCE =30°,∴ DE =2.则CD 2+DE 2=EC 2.∴ ∠CDE =90°.DE ⊥DC. 在题图②中,∵ 平面BCD ⊥平面ACD ,平面BCD ∩平面ACD =CD ,DE 平面ACD ,∴ DE ⊥平面BCD.(2) 解:在题图②中,∵ EF ∥平面BDG ,EF Ì平面ABC ,平面ABC ∩平面BDG=BG ,∴ EF ∥BG .∵ 点E 在线段AC 上,CE =4,点F 是AB 的中点, ∴ AE =EG =CG =2.作BH ⊥CD 交于H.∵ 平面BCD ⊥平面ACD ,∴ BH ⊥平面ACD.由条件得BH =32.S △DEG =13S △ACD =13×12AC ·CD ·sin30°= 3.三棱锥B-DEG 的体积V =13S △DEG ·BH =13×3×32=32.变式训练在△ABC 中,∠BAC =90°,∠B =60°,AB =1,D 为线段BC 的中点,E 、F 为线段AC 的三等分点(如图①).将△ABD 沿着AD 折起到△AB′D 的位置,连结B′C (如图②).(1) 若平面AB′D ⊥平面ADC ,求三棱锥B′-ADC 的体积;(2) 记线段B′C 的中点为H ,平面B′ED 与平面HFD 的交线为l ,求证:HF ∥l ; (3) 求证:AD ⊥B′E.图①图②(1) 解:在直角△ABC 中,D 为BC 的中点,所以AD =BD =CD.又∠B =60°,所以△ABD 是等边三角形.取AD 中点O ,连结B′O ,所以B′O ⊥AD.因为平面AB′D ⊥平面ADC ,平面AB′D ∩平面ADC =AD ,B′O 平面AB′D ,所以B′O ⊥平面ADC.在△ABC 中,∠BAC=90°,∠B =60°,AB =1,D 为BC 的中点,所以AC =3,B ′O =32.所以S △ADC =12×12×1×3=34.所以三棱锥B′ADC 的体积为V =13×S △ADC ×B ′O =18. (2) 证明:因为H 为B′C 的中点,F 为CE 的中点,所以HF ∥B′E.又HF 平面B′ED ,B ′E 平面B ′ED ,所以HF ∥平面B′ED.因为HF Ì平面HFD ,平面B′ED ∩平面HFD =l ,所以HF ∥l.(3) 证明:连结EO ,由(1)知,B ′O ⊥AD.因为AE =33,AO =12,∠DAC =30°,所以EO =AE 2+AO 2-2AE·AOcos30°=36.所以AO 2+EO 2=AE 2.所以AD ⊥EO.又B′O Ì平面B′EO ,EO Ì平面B′EO ,B ′O ∩EO =O , 所以AD ⊥平面B′EO.又B′E Ì平面B′EO ,所以AD ⊥B′E. 题型3 简单几何体的综合应用 例3 (2013·徐州调研)在边长为a 的正三角形铁皮的三个角切去三个全等的四边形,再把它的边沿虚线折起(如图),做成一个无盖的正三角形底铁皮箱,当箱底边长为多少时,箱子容积最大?最大容积是多少?解:设箱底边长为x ,则箱高为h =33×a -x 2(0<x<a), 箱子的容积为V(x)=12x 2×sin60°×h =18ax 2-18x 3(0<x<a).由V′(x)=14ax -38x 2=0,解得x 1=0(舍),x 2=23a ,且当x ∈⎝⎛⎭⎫0,23a 时,V ′(x)>0;当x ∈⎝⎛⎭⎫23a ,a 时,V ′(x)<0, 所以函数V(x)在x =23a 处取得极大值,这个极大值就是函数V(x)的最大值: V ⎝⎛⎭⎫23a =18a ×⎝⎛⎭⎫23a 2-18×⎝⎛⎭⎫23a 3=154a 3.答:当箱子底边长为23a 时,箱子容积最大,最大值为154a 3.备选变式(教师专享)四面体的六条棱中,有五条棱长都等于a. (1) 求该四面体的体积的最大值;(2) 当四面体的体积最大时,求其表面积.解: (1) 如图,在四面体ABCD 中,设AB =BC =CD =AC =BD =a ,AD =x ,取AD 的中点为P ,BC 的中点为E ,连结BP 、EP 、CP.得到AD ⊥平面BPC ,∴ V A -BCD =V A -BPC +V D -BPC =13·S △BPC ·AP +13S △BPC ·PD =13·S △BPC ·AD =13·12·aa 2-x 24-a24·x=a 12(3a 2-x 2)x 2≤a 12·3a 22=18a 3(当且仅当x =62a 时取等号). ∴ 该四面体的体积的最大值为18a 3.(2) 由(1)知,△ABC 和△BCD 都是边长为a 的正三角形,△ABD 和△ACD 是全等的等腰三角形,其腰长为a ,底边长为62a ,∴ S 表=2×34a 2+2×12×62a ×a 2-⎝⎛⎭⎫64a 2=32a 2+62a ×10a 4=32a 2+15a 24=23+154a 2.【示例】 (本题模拟高考评分标准,满分14分)如图,底面边长为a ,高为h 的正三棱柱ABC-A 1B 1C 1,其中D 是AB 的中点,E 是BC 的三等分点.求几何体BDEA 1B 1C 1的体积.学生错解:解 ∵ BD =a 2,BE =a3,∠DBE =60°,∴ S △DBE =12BD ·BEsin ∠DBE =324a 2,S △A 1B 1C 1=12·A 1B 1·B 1C 1sin60°=34a 2.由棱台体积公式得VBDEA 1B 1C 1=13h(S △BDE +S △A 1B 1C 1+S △BDE ·S △A 1B 1C 1)=13h ⎝ ⎛⎭⎪⎫324a 2+34a 2+324a 2·34a 2 =73+3272a 2h.审题引导: (1) 弄清组合体的结构,这里几何体DBEA 1B 1C 1不是棱台,也可补上一个三棱锥使之成为一个三棱台;(2) 运用体积公式进行计算.规范解答:解:如图,取BC 中点F ,连结DF 、C 1D 、C 1E 、C 1F ,得正三棱台DBFA 1B 1C 1及三棱锥C 1DEF.∵S △A 1B 1C 1=34a 2,S △DBF =14S △ABC =316a 2,(4分)∴VDBFA 1B 1C 1=13h(S △DBF +S △A 1B 1C 1+S △DBF ·S △A 1B 1C 1)=13h(34a 2+316a 2+34a 2·316a 2)=7348a 2h.(8分) ∴ VC 1DEF =13h ·112·34a 2=3144a 2h ,(10分)∴ VBDEA 1B 1C 1=VDBFA 1B 1C 1VC 1DEF =7348a 2h -3144a 2h =5338a 2h.(14分)错因分析:没有弄清所给几何体的结构,几何体DBEA 1B 1C 1不是棱台.1. (2013·南京调研)如图,已知正三棱柱ABCA 1B 1C 1的底面边长为2 cm ,高为5 cm ,则一质点自点A 出发,沿着三棱柱的侧面绕行两周到达点A 1的最短路线的长为________cm.答案:13解析:根据题意,利用分割法将原三棱柱分割为两个相同的三棱柱,然后将其展开为如图所示的实线部分,则可知所求最短路线的长为52+122=13(cm).2. 一个圆锥的侧面展开图是圆心角为43π,半径为18 cm 的扇形,则圆锥母线与底面所成角的余弦值为________.答案:23解析:设母线长为l ,底面半径为r ,则依题意易知l =18 cm ,由αl =2πr ,代入数据即可得43π×18=2πr ,解得r =12 cm ,因此所求角的余弦值即为r l =1218=23.3. (2013·济南模拟改)如图所示,在正三棱锥S-ABC 中,M 、N 分别是SC 、BC 的中点,且MN ⊥AM ,若侧棱SA =23,则正三棱锥SABC 外接球的表面积是________.答案:36π解析:在正三棱锥S-ABC 中,易证SB ⊥AC ,又MN ∥12BS ,∴ MN ⊥AC.∵ MN ⊥AM ,∴ MN ⊥平面ACM.∴ MN ⊥SC ,∴ ∠CSB =∠CMN =90°,即侧面为直角三角形,底面边长为2 6.此棱锥的高为2,设外接球半径为R ,则(2-R)2+⎝⎛⎭⎫26×32×232=R 2,∴ R =3,∴ 外接球的表面积是36π.4. 我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是________寸.(注:① 平地降雨量等于盆中积水体积除以盆口面积;② 一尺等于十寸)答案:3解析:本题考查圆台的体积公式.做出圆台的轴截面如图,由题意知,BF =14(单位寸,下同),OC =6,OF =18,OG =9,即G 是OF 中点,所以GE 为梯形的中位线,所以GE =14+62=10,即积水的上底面半径为10.所以盆中积水的体积为13(100π+36π+100π×36π)=588π.盆口的面积为142π=196π,所以588π196π=3,即平地降雨量是3寸.5. 如图,四棱锥P-ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,点E 在线段AD 上,且CE ∥AB. (1) 求证:CE ⊥平面PAD ;(2) 若PA =AB =1,AD =3,CD =2,∠CDA =45°,求四棱锥P-ABCD 的体积. (1) 证明:因为PA ⊥平面ABCD ,CE 平面ABCD ,所以PA ⊥CE. 因为AB ⊥AD ,CE ∥AB , 所以CE ⊥AD. 又PA ∩AD =A , 所以CE ⊥平面PAD.(2) 解:由(1)可知CE ⊥AD.在Rt △ECD 中,DE =CD·cos45°=1,CE =CD·sin45°=1.因为AB =CE =1,AB ∥CE ,所以四边形ABCE 为矩形.所以S ABCD =S ABCE +S △ECD =AB·AE +12CE ·DE =1×2+12×1×1=52.又PA ⊥平面ABCD ,PA =1,所以V P-ABCD =13S ABCD ·PA =13×52×1=56.1. (2013·福州模拟)如图所示,已知三棱柱ABC -A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1-ABC 1的体积为________.答案:312解析:三棱锥B 1-ABC 1的体积等于三棱锥A -B 1BC 1的体积,三棱锥A -B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312. 2. 一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是323π,那么这个三棱柱的体积是________.答案:483解析:因为球的体积为323π,柱体的高为2r =4,又正三棱柱的底面三角形内切圆半径与球半径相等,r =2,所以底面边长a =43,所以V 柱=34×(43)2×4=48 3.3. (2013·杭州模拟)如图,在四边形ABCD 中,∠DAB =90°,∠ADC =135°,AB =5,CD =22,AD =2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.解:由已知得CE =2,DE =2,CB =5,S 表面=S 圆台侧+S 圆台下底+S 圆锥侧=π(2+5)×5+π×25+π×2×22=(60+42)π,V=V 圆台-V 圆锥=13(π·22+π·52+22·52π2)×4-13π×22×2=1483π.4. 如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S 平方米塑料片制成圆柱的侧面和下底面(不安装上底面).当圆柱底面半径r 取何值时,S 取得最大值?并求出该最大值(结果精确到0.01平方米).解:由题意可知矩形的高即圆柱的母线长为9.6-8×2r8=1.2-2r ,∴ 塑料片面积S =πr 2+2πr(1.2-2r)=πr 2+2.4πr -4πr 2=-3πr 2+2.4πr =-3π(r 2-0.8r)=-3π(r -0.4)2+0.48π.∴ 当r =0.4时,S 有最大值0.48π,约为1.51平方米.1. 几何体体积的求法:(1) 若所给几何体为柱、锥、台、球等简单几何体,可直接套用公式计算求解;(2) 若所给几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.熟练掌握柱、锥、台、球等各种简单几何体的结构特征,弄清组合体的结构十分必要.2. 求几何体表面上两点间的最短距离的常用方法:选择恰当的棱或母线将几何体展开,转化为求平面上两点间的最短距离.请使用课时训练(B)第5课时(见活页).[备课札记]。

《空间几何体的表面积与体积》导学案

《空间几何体的表面积与体积》导学案

《空间几何体的表面积与体积》导学案一、学习目标1、理解并掌握柱体、锥体、台体和球体的表面积和体积公式。

2、能够运用公式求解常见空间几何体的表面积和体积问题。

3、培养空间想象能力和逻辑推理能力,提高数学应用意识。

二、知识回顾1、多面体的概念由若干个平面多边形围成的几何体叫做多面体。

围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。

2、旋转体的概念一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫做旋转面,封闭的旋转面围成的几何体叫做旋转体。

3、棱柱、棱锥、棱台的结构特征(1)棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。

(2)棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形。

(3)棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。

4、圆柱、圆锥、圆台的结构特征(1)圆柱:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体。

(2)圆锥:以直角三角形的一条直角边为旋转轴,旋转一周所形成的曲面所围成的旋转体。

(3)圆台:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分。

5、球的结构特征以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球。

三、空间几何体的表面积1、棱柱、棱锥、棱台的表面积棱柱、棱锥、棱台都是由多个平面图形围成的多面体,它们的表面积就是各个面的面积之和。

(1)直棱柱的侧面积直棱柱的侧面展开图是矩形,矩形的长等于直棱柱底面多边形的周长,宽等于直棱柱的高。

所以直棱柱的侧面积等于底面周长乘以高。

(2)正棱锥的侧面积正棱锥的侧面展开图是若干个全等的等腰三角形,等腰三角形的底等于正棱锥底面多边形的边长,高等于斜高。

所以正棱锥的侧面积等于底面周长乘以斜高的一半。

(3)正棱台的侧面积正棱台的侧面展开图是若干个全等的等腰梯形,等腰梯形的上底等于正棱台上底面多边形的边长,下底等于正棱台下底面多边形的边长,高等于斜高。

最新人教A版高一数学必修二课件:8.3 简单几何体的表面积与体积-第1课时

最新人教A版高一数学必修二课件:8.3 简单几何体的表面积与体积-第1课时

| 自学导引 |
| 课堂互动 |
| 素养达成 |
| 课后提能训练 |
数学 必修第二册 配人版A版
第六章第八平章面向立量体及几其何应初用步
方向 3 补形法 如图,一个底面半径为 2 的圆柱被一平面所截,截得的几
何体的最短和最长母线长分别为 2 和 3,则该几何体的体积为________.
素养点睛:本题考查了直观想象的核心素养.
| 自学导引 |
| 课堂互动 |
| 素养达成 |
| 课后提能训练 |
数学 必修第二册 配人版A版
第六章第八平章面向立量体及几其何应初用步
柱体、锥体与台体的体积公式
几何体
体积
说明
柱体 锥体 台体
V 柱体=Sh
S 为柱体的_底__面__积___,h 为柱体的 _高___
V 锥体=13Sh
S 为锥体的_底__面__积___,h 为锥体的 _高___
AH=A1A·cos 60°=4(cm). 设 O1A1=r1,OA=r2,则 r2-r1=AH=4.①
| 自学导引 |
| 课堂互动 |
| 素养达成 |
| 课后提能训练 |
数学 必修第二册 配人版A版
第六章第八平章面向立量体及几其何应初用步
设 A1B 与 AB1 的交点为 M,则 A1M=B1M. 又∵A1B⊥AB1,∴∠A1MO1=∠B1MO1=45°. ∴O1M=O1A1=r1. 同理 OM=OA=r2. ∴O1O=O1M+OM=r1+r2=4 3,② 由①②可得 r1=2( 3-1),r2=2( 3+1). ∴S 表=πr21+πr22+π(r1+r2)l=32(1+ 3)π(cm2).
【答案】6+2 2 【解析】V 台体=13(2+4+ 2×4)×3=31×3×(6+2 2)=6+2 2.

第3课时 由三视图确定几何体的表面积或体积(教案)

第3课时由三视图确定几何体的表面积或体积【知识与技能】熟练掌握已知空间几何体的三视图求其表面积和体积的方法.【过程与方法】1.通过空间几何体三视图的应用,培养学生的创新精神和探究能力.2.通过研究性学习,培养学生的整体性思维.【情感态度】通过研究三视图,研究我国著名建筑物的三视图研究,培养学生的爱国情结. 【教学重点】观察,实践,猜想和归纳的探究过程.【教学难点】如何引导学生进行合理的探究.一、复习提问1.如何求空间几何体的表面积和体积(例如:球,棱柱,棱台等);2.三视图与其几何体如何转化.二、思考探究,获取新知如图是一个几何体的三视图,已知左视图是一个等边三角形,根据图中尺寸(单位:m),求该几何体的面积和体积.解该几何体是正三棱柱,由正视图知正三棱柱的高为3cm,底面三角形的高为3cm.则底面边长为2cm,故S底面面积=)2=3÷cm(232S侧面面积=2×3×3=18 (cm2)故这个几何体的表面积S = 2S底面面积十S侧面面积=)2+183(2cm三棱柱的体积是V=)3=3⨯cm(333【教学说明】空间几何体的表面积是几何体表面的面积,它表示几何体表面的大小,体积是几何体所占空间的大小;先将直观图的各个要素弄清楚,然后再代公式进行计算.求空间几何体的表面积是将几何体的各个面的面积相加求得;求体积是将几何体各个部分的体积相加求得,那么请同学们动脑筋想一想,假设没有给出几何体的直观图,只是给出一个几何体的三视图,我们怎样解决求该几何体的表面积和体积呢?此时应首先将该三视图转化为几何体的直观图,然后弄清给出直观图的各个要素,再代公式进行计算思考如何求出四棱台的表面积和体积?请大家回想一下,在解答的过程中,容易出错的地方是什么(让学生思考). 【总结归纳】求组合几何体的表面积的时候容易出错.三、典例精析、掌握新知例1 长方体的主视图与俯视图如图所示,则这个长方体的体积是()A.52B.32C.24D.9【分析】由主视图可知,这个长方体的长和高分别为4和3,由俯视图可知,这个长方体的长和宽分别为4和2,因此这个长方体的长、宽、高分别为4、3、2,因此这个长方体的体积为4×2×3 = 24(平方单位)【答案】C【教学说明】三视图问题一直是中考考查的高频考点,一般题目难度中等偏下,本题所用的知识是:主视图主要反映物体的长和高,左视图主要反映物体的宽和高,俯视图主要反映物体的长和宽.例2 将棱长是1cm的小正方体组成如图所示的几何体,那么这个几何体的表面积是()A. 36 cm2B. 33 cm2C. 30 cm2D. 27 cm2【分析】算表面积应该从六个方向去计算,不要忽视了底面.【答案】A四、师生互动,课堂小结通过这节课的探究学习,发现由三视图求几何体的表面积和体积,要先将三视图转化为其几何体的直观图,分清楚直观图中的几何要素,然后再代公式进行计算;特别要分清几何体的侧面积与表面积;平时多动脑筋,挖掘与题目相关联的知识点.1.布置作业:从教材Pm〜1。

最新教案:空间几何体的表面积和体积(含解析)

空间几何体的表面积和体积柱、锥、台和球的侧面积和体积[基础自测]1.侧面都是直角三角形的正三棱锥,底面边长为a 时,该三棱锥的全面积是( ) A.3+34a 2B.34a 2C.3+32a 2D.6+34a 2解析:选A ∵侧面都是直角三角形,故侧棱长等于22a , ∴S 全=34a 2+3×12×⎝⎛⎭⎫22a 2=3+34a 2. 2.已知正四棱锥的侧棱与底面的边长都为32,则这个四棱锥的外接球的表面积为( )A .12πB .36πC .72πD .108π解析:选B 依题意得,该正四棱锥的底面对角线长为32×2=6,高为 (32)2-⎝⎛⎭⎫12×62=3,因此底面中心到各顶点的距离均等于3,所以该四棱锥的外接球的球心为底面正方形的中心,其外接球的半径为3,所以其外接球的表面积等于4π×32=36π.3.某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为5的等腰三角形,侧视图是一个底边长为6,高为5的等腰三角形,则该几何体的体积为( )A .24B .80C .64D .240解析:选B 结合题意知该几何体是四棱锥,棱锥底面是长和宽分别为8和6的矩形,棱锥的高是5,可由锥体的体积公式得V =13×8×6×5=80.4.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________. 解析:设圆锥的母线为l ,圆锥底面半径为r , 则πrl +πr 2=3π,πl =2πr . 解得r =1,即直径为2. 答案:25.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是________.解析:由三视图可知此几何体的表面积分为两部分:底面积即俯视图的面积,为23;侧面积为一个完整的圆锥的侧面积,且圆锥的母线长为2,底面半径为1,所以侧面积为2π.两部分加起来即为几何体的表面积,为2(π+3).答案:2(π+3)[例1] 某几何体的三视图如图所示,该几何体的表面积是________.[自主解答] 由几何体的三视图可知,该几何体是底面为直角梯形的直四棱柱(如图所示).在四边形ABCD 中,作DE ⊥AB ,垂足为E ,则DE =4,AE =3,则AD =5. 所以其表面积为2×12×(2+5)×4+2×4+4×5+4×5+4×4=92.[答案] 92变式练习1.如图是某宝石饰物的三视图,已知该饰物的正视图、侧视图都是面积为32,且一个内角为60°的菱形,俯视图为正方形,那么该饰物的表面积为( )A.3 B .2 3 C .43 D .4解析:选D 依题意得,该饰物是由两个完全相同的正四棱锥对接而成,正四棱锥的底面边长和侧面上的高均等于菱形的边长,因此该饰物的表面积为8×⎝⎛⎭⎫12×1×1=4.[例2] (1)某几何体的三视图如图所示,它的体积为( )A .72πB .48πC .30πD .24π(2)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 为线段B 1C 上的一点,则三棱锥A -DED 1的体积为________.[自主解答] (1)由三视图知,该几何体是由圆锥和半球组合而成的,直观图如图所示,圆锥的底面半径为3,高为4,半球的半径为3.V =V 半球+V 圆锥=12·43π·33+13·π·32·4=30π.(2)VA -DED 1=VE -ADD 1=13×S △ADD 1×CD =13×12×1=16.[答案] (1)C (2)16变式练习2.(1)四棱锥P -ABCD 的底面ABCD 为正方形,且PD 垂直于底面ABCD ,N 为PB 中点,则三棱锥P -ANC 与四棱锥P -ABCD 的体积比为( )A .1∶2B .1∶3C .1∶4D .1∶8解析:选C 设正方形ABCD 面积为S ,PD =h ,则体积比为 13Sh -13·12S ·12h -13·12Sh 13Sh =14.(2)如图,是某几何体的三视图,则这个几何体的体积是( )A .32B .24C .8D.323解析:选B 此几何体是高为2的棱柱,底面四边形可切割成为一个边长为3的正方形和2个直角边分别为3,1的直角三角形,其底面积S =9+2×12×3×1=12,所以几何体体积V =12×2=24.[例3] 已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A.26 B.36 C.23D.22[自主解答] 由于三棱锥S -ABC 与三棱锥O -ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S -ABC 的高是三棱锥O -ABC 高的2倍,所以三棱锥S -ABC 的体积也是三棱锥O -ABC 体积的2倍. 在三棱锥O -ABC 中,其棱长都是1,如图所示, S △ABC =34×AB 2=34, 高OD =12-⎝⎛⎭⎫332=63, ∴V S -ABC =2V O -ABC =2×13×34×63=26.[答案] A变式练习3.(1)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为( )A .23π B.8π3 C .4 3D.16π3(2)如图所示,已知球O 的面上有四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.解析:(1)由三视图可知几何体的直观图如图所示.其中侧面DBC ⊥底面ABC ,取BC 的中点O 1,连接AO 1,DO 1知DO 1⊥底面ABC 且DO 1=3,AO 1=1,BO 1=O 1C =1.在Rt △ABO 1和Rt △ACO 1中,AB =AC =2, 又∵BC =2,∴∠BAC =90°.∴BC 为底面ABC 外接圆的直径,O 1为圆心, 又∵DO 1⊥底面ABC ,∴球心在DO 1上, 即△BCD 的外接圆为球大圆,设球半径为R , 则(3-R )2+12=R 2,∴R =23. ∴S 球=4πR 2=4π×⎝⎛⎭⎫232=16π3.(2)如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以|CD |=(2)2+(2)2+(2)2=2R ,所以R =62. 故球O 的体积V =4πR 33=6π.答案:(1)D (2)6π课后练习A 组1.某几何体的三视图如图所示,该几何体的体积是( )A .8 B.83 C .4D.43解析:选D 将三视图还原,直观图如图所示,可以看出,这是一个底面为正方形(对角线长为2),高为2的四棱锥,其体积V =13S 正方形ABCD ×P A=13×12×2×2×2=43. 2.已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB =3,BC =2,则棱锥O -ABCD 的体积为( )A.51 B .351 C .251D .651解析:选A 依题意得,球心O 在底面ABCD 上的射影是矩形ABCD 的中心,因此棱锥O -ABCD 的高等于42-⎝⎛⎭⎫1232+222=512,所以棱锥O -ABCD 的体积等于13×(3×2)×512=51. 3.如图是一个几何体的三视图,则它的表面积为( )A .4π B.154π C .5πD.174π 解析:选D 由三视图可知该几何体是半径为1的球被挖出了18部分得到的几何体,故表面积为78·4π·12+3·14·π·12=174π. 4.用若干个大小相同,棱长为1的正方体摆成一个立体模型,其三视图如图所示,则此立体模型的表面积为( )A .24B .23C .22D .21解析:选C 这个空间几何体是由两部分组成的,下半部分为四个小正方体,上半部分为一个小正方体,结合直观图可知,该立体模型的表面积为22.5. 若一个几何体的三视图如下图所示,则此几何体的体积为( )A.112 B .5 C.92D .4解析:选D 由三视图可知,所求几何体是一个底面为六边形,高为1的直棱柱,因此只需求出底面积即可.由俯视图和主视图可知,底面面积为1×2+2×12×2×1=4,所以该几何体的体积为4×1=4.6.如图,正方体ABCD -A ′B ′C ′D ′的棱长为4,动点E ,F 在棱AB 上,且EF =2,动点Q 在棱D ′C ′上,则三棱锥A ′-EFQ 的体积( )A .与点E ,F 位置有关B .与点Q 位置有关C .与点E ,F ,Q 位置都有关D .与点E ,F ,Q 位置均无关,是定值解析:选D 因为V A ′-EFQ =V Q -A ′EF =13×⎝⎛⎭⎫12×2×4×4=163,故三棱锥A ′-EFQ 的体积与点E ,F ,Q 的位置均无关,是定值.7.如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是________.解析:由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为32,连接顶点和底面中心即为高,可求得高为22,所以体积V =13×1×1×22=26. 答案:268.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为________. 解析:因为半圆的面积为2π,所以半圆的半径为2,圆锥的母线长为2.底面圆的周长为2π,所以底面圆的半径为1,所以圆锥的高为3,体积为33π. 答案:33π9.在三棱锥A -BCD 中,AB =CD =6,AC =BD =AD =BC =5,则该三棱锥的外接球的表面积为________.解析:依题意得,该三棱锥的三组对棱分别相等,因此可将该三棱锥补形成一个长方体,设该长方体的长、宽、高分别为a 、b 、c ,且其外接球的半径为R ,则⎩⎪⎨⎪⎧a 2+b 2=62,b 2+c 2=52,c 2+a 2=52,得a 2+b 2+c 2=43,即(2R )2=a 2+b 2+c 2=43,易知R 即为该三棱锥的外接球的半径,所以该三棱锥的外接球的表面积为4πR 2=43π.答案:43π10.如图,把边长为2的正六边形ABCDEF 沿对角线BE 折起,使AC = 6.(1)求证:面ABEF ⊥平面BCDE ; (2)求五面体ABCDEF 的体积.解:设原正六边形中,AC ∩BE =O ,DF ∩BE =O ′,由正六边形的几何性质可知OA =OC =3,AC ⊥BE ,DF ⊥BE .(1)证明:在五面体ABCDE 中,OA 2+OC 2=6=AC 2, ∴OA ⊥OC ,又OA ⊥OB ,∴OA ⊥平面BCDE .∵OA ⊂平面ABEF , ∴平面ABEF ⊥平面BCDE .(2)由BE ⊥OA ,BE ⊥OC 知BE ⊥平面AOC ,同理BE ⊥平面FO ′D ,∴平面AOC ∥平面FO ′D ,故AOC -FO ′D 是侧棱长(高)为2的直三棱柱,且三棱锥B -AOC 和E -FO ′D 为大小相同的三棱锥,∴V ABCDEF =2V B -AOC +V AOC -FO ′D =2×13×12×(3)2×1+12×(3)2×2=4.11.如图,在四棱锥P -ABCD 中,底面是直角梯形ABCD ,其中AD⊥AB ,CD ∥AB ,AB =4,CD =2,侧面P AD 是边长为2的等边三角形,且与底面ABCD 垂直,E 为P A 的中点.(1)求证:DE ∥平面PBC ; (2)求三棱锥A -PBC 的体积.解:(1)证明:如图,取AB 的中点F ,连接DF ,EF .在直角梯形ABCD 中,CD ∥AB ,且AB =4,CD =2,所以BF 綊CD .所以四边形BCDF 为平行四边形. 所以DF ∥BC .在△P AB 中,PE =EA ,AF =FB ,所以EF ∥PB . 又因为DF ∩EF =F ,PB ∩BC =B , 所以平面DEF ∥平面PBC .因为DE ⊂平面DEF ,所以DE ∥平面PBC . (2)取AD 的中点O ,连接PO . 在△P AD 中,P A =PD =AD =2, 所以PO ⊥AD ,PO = 3.又因为平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD , 所以PO ⊥平面ABCD .在直角梯形ABCD 中,CD ∥AB ,且AB =4,AD =2, AB ⊥AD ,所以S △ABC =12×AB ×AD =12×4×2=4.故三棱锥A -PBC 的体积V A -PBC =V P -ABC =13×S △ABC ×PO =13×4×3=433.12.一个空间几何体的三视图及部分数据如图所示,其正视图、俯视图均为矩形,侧视图为直角三角形.(1)请画出该几何体的直观图,并求出它的体积; (2)证明:A 1C ⊥平面AB 1C 1.解:(1)几何体的直观图如图所示,四边形BB 1C 1C 是矩形,BB 1=CC 1=3,BC =B 1C 1=1,四边形AA 1C 1C 是边长为3的正方形,且平面AA 1C 1C 垂直于底面BB 1C 1C ,故该几何体是直三棱柱,其体积V =S △ABC ·BB 1=12×1×3×3=32.(2)证明:由(1)知平面AA 1C 1C ⊥平面BB 1C 1C 且B 1C 1⊥CC 1, 所以B 1C 1⊥平面ACC 1A 1.所以B 1C 1⊥A 1C . 因为四边形ACC 1A 1为正方形,所以A 1C ⊥AC 1.而B 1C 1∩AC 1=C 1,所以A 1C ⊥平面AB 1C 1.B 组1.已知矩形ABCD 的面积为8,当矩形ABCD 周长最小时,沿对角线AC 把△ACD 折起,则三棱锥D -ABC 的外接球表面积等于( )A .8πB .16πC .482πD .不确定的实数 解析:选B 设矩形长为x ,宽为y ,周长P =2(x +y )≥4xy =82,当且仅当x =y =22时,周长有最小值.此时正方形ABCD 沿AC 折起,∵OA =OB =OC =OD ,三棱锥D -ABC 的四个顶点都在以O为球心,以2为半径的球上,此球表面积为4π×22=16π.2.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =3 cm ,AA 1=2 cm ,则四棱锥A -BB 1D 1D 的体积为________cm 3.解析:由题意得VA -BB 1D 1D =23VABD -A 1B 1D 1=23×12×3×3×2=6. 答案:63.如图,平行四边形ABCD 中,AB ⊥BD ,AB =2,BD =2,沿BD 将△BCD 折起,使二面角A -BD -C 是大小为锐角α的二面角,设C 在平面ABD 上的射影为O .(1)当α为何值时,三棱锥C -OAD 的体积最大?最大值为多少?(2)当AD ⊥BC 时,求α的大小.解:(1)由题知CO ⊥平面ABD ,∴CO ⊥BD ,又BD ⊥CD ,CO ∩CD =C ,∴BD ⊥平面COD .∴BD ⊥OD .∴∠ODC =α.V C -AOD =13S △AOD ·OC =13×12·OD ·BD ·OC =26·OD ·OC =26·CD ·cos α·CD ·sin α=23·sin 2α≤23, 当且仅当sin 2α=1,即α=45°时取等号.∴当α=45°时,三棱锥C -OAD 的体积最大,最大值为23.(2)连接OB ,∵CO ⊥平面ABD ,∴CO ⊥AD ,又AD ⊥BC ,∴AD ⊥平面BOC .∴AD ⊥OB .∴∠OBD +∠ADB =90°.故∠OBD =∠DAB ,又∠ABD =∠BDO =90°,∴Rt △ABD ∽Rt △BDO . ∴OD BD =BDAB .∴OD =BD 2AB =(2)22=1,在Rt △COD 中,cos α=OD CD =12,得α=60°.。

高中数学 第一章 空间几何体 1.3 空间几何体的表面积与体积 1.3.2 球的表面积与体积教案 新

球的体积和表面积一、 教学目标知识目标:1、掌握球的体积公式343V R π=、表面积公式24S R π=. 2、会用球的表面积公式、体积公式解决相关问题,培养学生应用数学的能力. 3、能解决与球的截面有关的计算问题及球的“内接〞与“外切〞的几何体问题. 能力目标:通过类比、归纳、猜想等合情推理培养学生勇于探索的精神. 提高学生分析、综合、抽象概括等逻辑推理能力情感目标:通过寻求如何研究球的内切与外接的方法,培养学生将数学知识和生活实际相联系的意识,对学生进行“事物具有多面性〞的辩证唯物主义思想教育. 二、 教学重点、难点重点:球的体积和表面积的计算公式的应用.难点:解决与球相关的“内接〞与“外切〞的几何体问题 三、教学过程2球的表面积:〔以后讲〕11221(3)i i V h S h S h S ≈⋅∆+⋅∆++⋅∆+又∵i h R ≈,且S =12i S S S ∆+∆+++∆∴可得13V R S ≈⋅, 又∵343V R π=,∴13R S ⋅343R π=, ∴24S R π=即为球的表面积公式 小结:球的体积公式343V R π=、表面积公式24S R π=都是以R 为 自变量的函数。

教师讲解,学生感悟分割、近似、极限等思想渗透微积分思想.应 用 举 例练习1:如果球的体积是36πcm 3,那么它的半径是.3练习2: 假设两个球的体积之比为8:27,那么两个球的表面积之比为〔 C 〕〔A 〕8:27 〔B 〕2:3 〔C 〕4:9 〔D 〕2:9 例1 如图,圆柱的底面直径与高都等于球的直径,,求证:〔1〕球的体积等于圆柱体积的23〔2〕球的表面积等于圆柱的侧面积. 证明:〔1〕设球的半径为R ,那么圆柱的 底面半径为R ,高为2R. 那么有V 球=334R π,教师引导学生共同完成让学生巩固加深所学内V 圆柱=πR 2·2R=2πR 3,所以V 球=圆柱V 32.〔2〕因为S 球=4πR 2,S 圆柱侧=2πR ·2R=4πR 2,所以S 球=S 圆柱侧. 变式1:把上一题的圆柱改为正方体,且正方体的棱长为a, 球的半径为多少?变式2:假设把球吹大到内切于正方体的棱,且正方体的棱长为a,此时球的半径又为多少?变式3:假设球接着吹大到刚好包围整个正方体即球各个顶点都在球面上,且正方体的棱长为a,此时球的半径又为多少?容并灵活运用.应用举例例2、如果一个几何体的正视图与侧视图都是全等的长方形,边长分别是4 cm 与2 cm ,如下图,俯视图是一个边长为4 cm 的正方形. (1)求该几何体的全面积. (2)求该几何体的外接球的体积.【审题指导】根据此题所给条件中的三视图,判断该几何体的形状与几何体中相关的数量关系,根据这些求该几何体的全面积及其外接球的体积. 【规X 解答】(1)由题意可知,该几何体是长方体,底面是正方形,边长是4,高是2,………………………3分图1图2图3RA 'C 'CAOA 'B 'C 'D 'D C BAO小结 2.掌握球的体积公式343V R π=、表面积公式24S R π=3.熟练掌握球的内切、外接问题解决此类问题的实质就是根据几何体的相关数据求球的直径或半径,关键是根据“切点〞和“接点〞,作出轴截面图,把空间问题转化为平面问题来计算.学生小结,教师完善.结,可以逐步提高学生自我获取知识的能力.教师完善,使知识更系统化.作业1、课本P 29 B12、 2、半球内有一个内接正方体,正方体的一个面在半球的底面圆内,假设正方体的边长为 6,求半球的表面积和体积。

8.3.1棱柱、棱锥、棱台的表面积与体积 2023-2024学年人教版数学高一 教学案

8.3.1 棱柱、棱锥、棱台的表面积与体积一、导入新课,板书课题本节进一步认识简单几何体的表面积和体积;表面积表示几何体表面的大小;体积表示几何体所占空间的大小;出示板书:【棱柱、棱锥、棱台的表面积与体积】二、出示目标,明确任务1.了解多面体的表面积2.了解棱柱、棱锥、棱台的表面积3.了解棱柱、棱锥、棱台的体积三、学生自学,独立思考(3min)(打开课本阅读114页-115页内容,思考以下问题)1.找出你阅读内容中的知识点2.找出你阅读内容中的重点3.找出你阅读内容中的困惑点、疑难问题四、自学指导,紧扣教材自学指导一(5min)阅读至课本114页例1,思考并完成以下问题1.多面体的表面积就是围成多面体各个面的面积的和。

2.棱柱、棱锥、棱台的表面积就是围成它们的各个面的面积的和。

3.例1中,四面体P-ABC的各棱长均为a(1)四面体P-ABC的四个面式是全等的等边三角形(2)PBC的面积为多少?(3)四面体P-ABC的表面积为多少?自学指导二(5min)阅读至课本115页例2,思考并完成以下问题1.完成以下表格2.思考:观察棱柱、棱锥、棱台的体积公式,它们之间有什么关系?(从结构特征来解释)3.阅读例2,完成以下问题(1)漏斗由_______和_______两部分组成;(2)V长方体ABCD-A’B’C’D’的体积为多少?(3)V棱锥P-ABCD的体积为多少?(4)漏斗的容积为多少?五、自学展示,精讲点拨1.学生口头回答自学指导问题,教师点拨并板书(答案见PPT)2.书面检测:课本116页练习1题精讲点拨自学指导13.先判断出是正三角形.,求得一个正三角形的面积,再求出四个正三角形的面积。

即求出了四面体的表面积。

自学指导22.观察所给出的体积公式,并结合图形,得出圆柱、圆锥、圆台,它们之间的关系。

3.漏斗可以看成长方体和棱锥俩部分组成,分别求出两部分的体积并相加,即求出了漏斗的容积导入新课,板书课题上节课我们学习了棱柱、棱锥、棱台的表面积和体积的求法,那么这节课我们学习圆柱、圆锥、圆台、球的表面积和体积的求法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学教案:空间几何体的表面积和体积 鉴于大家对十分关注,小编在此为大家整理了此文高一数学教案:空间几何体的表面积和体积,供大家参考! 本文题目:高一数学教案:空间几何体的表面积和体积 EA8求是学院教学资源部KnY求是教学 第十五课时 1.3.1 空间几何体的表面积 教学目标 1、通过展开柱、锥、台的侧面,进一步认识柱、锥、台. 2、了解柱、锥、台的表面积的计算公式. 教学重点 多面体和旋转体的侧面积公式. 教学难点 侧面展开图. 教学过程 一、问题情境 已知ABB1A1是圆柱的轴截面,AA1=a,AB=,P是BB1的中点;一小虫沿圆柱的侧面从A1爬到P,求小虫爬过的最短路程. 二、学生活动 观察下图,试配对:A: B: C: . 三、建构数学 1、平面展开图:将一个简单的多面体沿着它的某些棱将它剪开而成为平面图形,这个平面图形称为平面展开图. 2、直棱柱:侧棱和底面垂直的棱柱. 3、正棱柱:底面是正多边形的直棱柱. 4、正棱锥:底面是正多边形,并且顶点在底面的正投影是底面的中心的棱锥.正棱锥的侧棱长都相等. 5、正棱台:正棱锥被平行于底面的平面所截,截面和底面之间的部分. 6、侧面展开图及其公式: (1)直棱柱:S直棱柱侧= (2)正棱锥:S正棱锥侧= (3)正棱台:(由正棱锥截去小正棱锥) S正棱台侧=. (4)正棱柱、正棱锥、正棱台的侧面积公式之间的关系可用下图表示:(见课本P.50) (5)圆柱、圆锥、圆台的侧面积公式之间的关系类似可用下图表示:(见课本P.50) 四、数学运用 例1、设计一个正四棱锥形冷水塔顶,高是0.85米,底面的边长是1.5米,制造这种塔顶需要多少平方米铁板?(保留两位有效数字) 例2、有一根长为5cm,底面半径为1cm的圆柱形铁管,用一段铁丝在铁管上缠绕4圈,并使铁丝的两个端点落在圆柱的同一条母线的两端,则铁丝的最短长度为多少?(精确到0.1cm) 例3、如图,正三角形ABC的边长为4,D、E、F分别为各边的中点,M、N、P分别为BE、DE、EF的中点,将△ABC沿DE、EF、DF折成三棱锥以后; 问:(1)NMP等于多少度? (2)擦去线段EN、EP、EM后剩下的几何体是什么?其侧面积为多少? 例4、已知圆锥有一个内接圆柱,此圆柱的底面在圆锥的底面上,圆柱的高等于圆锥的底面半径,且圆柱的全面积∶圆锥的底面积=3∶2;(1)求圆锥母线与底面所成的角的正切值;(2)圆锥的侧面积与圆柱的侧面积的比. 学生练习:课本P.53 1、2、3、4、5、6. 五、回顾小结 本节主要学习了多面体和旋转体的侧面积公式.应注意侧面展开图的画法特征. 六、课外作业 (一)自测训练:必修2 学习与评价[课课练] P.030 分层训练 班级 姓名 (二)反馈练习(友情提醒:老师喜欢书写认真、过程完整、页面清洁的作业) [ 1.3.1 空间几何体的表面积] 1、如图是正方体纸盒的展开图,那么直线AB、CD在原来 正方体中位置关系是( ) A、平行 B、垂直相交且成60 C、垂直 D、异面且成60 2、已知圆柱的侧面积为,则当轴截面的对角线长取最小值时,圆柱母线长l与底面半径r的关系是( ) A、 B、 C、 D、 3、一张长、宽分别为8cm、4cm的矩形硬纸板,以这硬纸板为侧面,将它折成正四棱柱,则此四棱柱的对角线长为 . 4、将半径为R的圆分割成面积之比为1∶2∶3的三个扇形作为三个圆锥的侧面,设这三个圆锥的底面半径依次为、、;则++的值为 . 5、如图,长方体ABCD-A1B1C1D1中,,,,并且; 求沿着长方体的表面自A到C1的最短路线的长. 6、已知圆锥的底面半径为,母线为,侧面展开图的圆心角为,求证:. 7、(1)计算: = . (2)函数的反函数是 . (3)函数有最 值为 . (4)函数的单调增区间是 . (5)已知f(x)是偶函数,g(x)是奇函数,f(x)+g(x)=2x;则f(x)= . 1.3 空间几何体的表面积和体积(2) 班级 姓名 第十六课时 1.3.2 空间几何体的体积(1) 教学目标 1、整体理解柱、锥、台的体积公式. 2、能正确运用这些公式计算一些简单的几何体的体积. 教学重点 柱、锥、台的体积公式. 教学难点 三棱锥的等积变换. 教学过程 一、问题情境 用上口直径为34cm、底面直径为24cm、深为35cm的水桶盛得的雨水正好为桶深的五分之一,问此次的降水量为多少(精确到0.1cm)?(降水量是指单位面积的水平地面上降下的雨水的深度). 二、学生活动 (1)试将一堆排放整齐的书,推成倾斜状;看看体积有没有发生变化? (2)将一圆柱形萝卜,斜刀一切,再原来的两底接起来,看看体积有没有变化? (3)阅读课本,体会各公式之间的关系. 三、建构数学 1、长方体的体积:V长方体= abc = Sh. 2、柱体的体积:V柱体= Sh. 3、锥体的体积:V锥体=. 4、台体的体积:V台体=. 5、柱体、锥体、台体的体积公式之间的关系如下: 四、数学运用 例1、有一堆相同的规格的六角螺帽毛坯共重5.8kg;已知底面六边形边长是12mm,高是10mm,内孔直径是10mm,那么约有毛坯多少个?(铁的比重为7.8g/cm3) 例2、在长方体ABCD-A1B1C1D1中,用截面截下一个棱锥C-A1DD1;求C-A1DD1的体积与剩余部分的体积之比. 例3、如图,正方体ABCD-A1B1C1D1中,棱长为,E、F分别是棱AA1和CC1的中点,求四棱锥A1-EBFD1的体积. 学生练习: 课本P.56 练习:1、2、3、4. 五、回顾小结 本节主要学习了柱、锥、台的体积公式. 几个重要的结论: (1)一个几何体的体积等于它的各部分的体积之和.体积相等的两个几何体叫等积体; 全等的两个几何体一定是等积体;等底、等高的柱体或锥体是等积体. (2)计算三棱锥体积时,可灵活选底,简化运算. (3)柱体、锥体、台体的体积之间的内在关系为: 六、课外作业 (一)自测训练:必修2 学习与评价[课课练] P.032 分层训练 拓展延伸 班级 姓名 (二)反馈练习(友情提醒:老师喜欢书写认真、过程完整、页面清洁的作业) [ 1.3.2 空间几何体的体积(1)] 1、正棱锥的高和底面边长都缩小为原来的二分之一时,它的体积是原来的( ) A、 B、 C、 D、 2、已知两个平行于底面的平面将棱锥的高分成相等的三段,则此棱锥被分成的三部分的体积(自上而下)之比是( ) A、1∶2∶3 B、1∶4∶9 C、1∶8∶27 D、1∶7∶19 3、一个盛满水的无盖圆柱的母线长为5dm,底面直径为4dm,将其倾斜45后,能够流出来的水的体积为 dm3. 4、将一个正三棱柱形的木块,经车床切割加工,旋成与它等高并且尽可能大的圆柱形,则旋去部分的体积是原三棱柱体积的 倍. 5、一个正方体和一个圆柱等高,并且侧面积也相等,试比较它们的体积的大小. 6、如图,三棱柱ABC-A1B1C1中,E、F分别为AB、AC的中点,平面EB1C1F将三棱柱分成体积为V1V2两部分,求V1∶V2的值. 7、正三棱柱ABC-A1B1C1的各条棱长均为,E、F分别是AA1、CC1的中点,求几何体B-EFB1的体积. 8、(复习) (1)函数的反函数的解析表达式为( ) A、 B、 C、 D、 (2)函数的定义域为 . (3)若,则整数= . (4)已知为常数,若,,求的值. 1.3 空间几何体的表面积和体积(3) 班级 姓名 第十七课时 1.3.2 空间几何体的体积(2) 教学目标 1、理解球的体积公式和球的表面积公式. 2、能正确运用这些公式计算有关球的体积和表面积. 教学重点 球的体积公式和球的表面积公式. 教学难点 对公式推导的理解即分割求和化为准确和的方法的理解. 教学过程 一、问题情境 如图,一个底面半径为R的圆柱形量杯中装有适量的水; 若放入一个半径为r的实心铁球,水面高度恰好升高r; 问:R∶r的值是多少? 二、学生活动 (1)倒沙实验: 一个底面半径和高都等于R的圆柱,挖去一个以上底面为底面,下底面圆心为顶点的圆锥后,用沙粒充满后,再将其所容纳的沙粒倒入一个半径为R的半球内,结果刚好也能充满半球.说明两者体积相等. (2)计算上图中的等高截面的面积: 上图中,取相同的高度h,试计算出等高截面的面积,并观察它们的关系. 并阅读课本,问:可用什么知识来解释此问题? 三、建构数学 1、球的体积公式:V长方体=. 由上图可推出:. 亦可由准锥体推出: 2、球的表面积:. 即:球的表面积是球的大圆面积的4倍. 球面被经过球心的平面截得的圆叫做球的大圆,大圆的半径等于球的半径. 四、数学运用 例1、如图是一个奖杯的三视图,试根据奖杯的三视图计算

相关文档
最新文档