等强度梁应变测定实验

合集下载

用电测法测量等强度悬臂梁的应力

用电测法测量等强度悬臂梁的应力

用电测法测量等强度悬臂梁的应力实验4.23 用电测法测量等强度悬臂梁的应力电测法就是将物理量、力学量、机械量等非电量通过敏感元件转换成电量来进行测量的一种方法,是实验应力分析的重要方法之一。

电测法以测量精度高、传感元件小和测量范围广等优点,在民用建筑,医学,道路,桥梁等工程实践中得到广泛应用。

例如在桥梁工程中,由于各种原因(温度改变,风,地壳运动)引起的微小变化随时存在,而这些因素均对桥梁的安全及寿命有着很大的影响。

因此,我们可以使用电测法,在室内模拟测量或检验桥梁的安全程度,目前这项技术已经在三峡工程中得到了应用。

一、实验目的1.了解电测法的基本原理;2.熟悉悬臂梁的结构及应变特性;3.学会用电测法测量等强度悬臂梁梁的应力,并与理论值进行比较。

二、实验仪器、设备和工具等强度悬臂梁实验仪,精密数字测量仪,砝码,砝码盘,数据线,游标卡尺,钢板尺。

三、实验原理 1.主要仪器介绍以弯曲为主要变形的杆件称为梁。

一端固定,另一端自由的梁为悬臂梁。

为了使悬臂梁各个截面的弯曲应力相同,随着弯矩的大小相应地改变截面尺寸,以保持相同强度,这样的悬臂梁称为等强度悬臂梁。

等强度悬臂梁实验仪由已粘贴好电阻应变片的等强度梁、支座、水平仪、调节螺钉和加载砝码等组成,如图1所示。

本实验用电测法测量等强度悬臂梁的应力、应变。

电阻应变片是能将被测试件的应变转换成电阻变化的敏感元件。

它由敏感栅、基片、覆盖层、引线四部分组成,如图2所示。

其中,敏感栅是用金属丝制成的应变转换元件,是构成电阻应变片的主要部分;引线作为测量敏感栅电阻值时与外部导线连接之用;基底的作用是保持敏感栅的几何形状和相对位置;覆盖层是用来护敏感栅的;粘贴剂用来将敏感栅固结在覆盖层和基底之间。

精密数字测量仪是常用的应变传感器测量仪。

当电阻应变片将电阻值的变化转化为电压的变化后,经过精密数字测量仪放大器的放大处理,最后换算成输出与应变成正比的模拟电信号。

再经放大处理,经A/D转换,将模拟信号转换成数字信号输出。

电阻应变片的灵敏度系数测定

电阻应变片的灵敏度系数测定

4hf 2 L
式中:f 为千分表读数、h 为等强度梁厚度、L 挠度计跨度,此 公式由材料力学推得。 电阻应变片的电阻相对变化,由电阻应变仪测量ε 仪和电阻应 变仪所设定灵敏度系数K仪。用下式计算求得:
R K 仪 仪 R
综合起来用下式可求得电阻应变片的灵敏度系数K: K 仪 仪 R / R K 4hf / L2
等强度梁号
h=
mm
表1—1
L=
mm
应 变 片 号 1
P (N)
f0
mm

挠度 计
ε仪
K仪
△R R
K
mm 求得 ε
2
5、实验报告要求:
专业 班级 姓名 同组人姓名 实验台号 实验日期
⑴ 简述实验步骤。 ⑵ 按表1 记录计算各应变片灵敏度系数。 ⑶ 用分级载荷测量应变片的电阻变化率△R/R和梁 应变ε数据,作图并讨论△R/R~ε之间的关系。 ⑷ 讨论这种方法测定灵敏度系数的误差。
此外,可采用分级加载的方法。分别测量在不同应变值 时应变片的电阻相对变化,进一步掌握应变片的电阻相 对变化与应变之间的关系。
3、实验仪器、设备
⑴ 等强度梁实验器和加载装置。 ⑵ 挠度计、千分表、游标卡尺、钢板尺。 ⑶ 电阻应变仪(YJ-25型静态电阻应变仪的使用详见 附录一)。
4、实验步骤:
⑴ 测量和记录等强度梁厚度h(用游标卡尺或测厚仪)和挠 度计跨度(用游标卡尺)。 ⑵ 按图1—1 所示安装等强度梁和挠度计,将等强度梁上表 面纵向1~2枚应变片按半桥(以等强度梁上表面纵向应变 片为工作桥臂,温度补偿块上的应变片为补偿桥臂)接法 接入应变仪和预调平衡箱(见附录一),将所接各点预调 为零。 ⑶ 记录挠度计上千分表的初始读数f 0,逐次加10N、20 N、 30N砝码,并读出各级加载后千分表f 和应变仪ε仪值。列 表纪录整理数据。 ⑷ 一次加载30N,记录加载后千分表f 和应变仪ε 仪值。计 算所测应变片的灵敏度系数。

等强度梁弯曲正应力实验

等强度梁弯曲正应力实验

等强度梁多点弯曲正应力测定实验一、实验目的1. 测定等强度梁弯曲正应力在长度方向不同位置的分布情况2. 练习多点应变测量方法,熟悉掌握应变仪的使用二、实验仪器设备与工具1. 材料力学组合实验台中等强度梁实验装置与部件2. 2118XL 系列静态电阻应变仪3. 游标卡尺、钢板尺三、实验原理与方法实验装置使用实验台上等强度梁及附件,试件使用变截面矩形实验梁如图1所示。

实验梁的截面面积随测试点的位置进行比例变化,实现在相同载荷下不同截面产生的断面应力一致,即实现实验梁的等应力。

本实验主要是通过电测法进行等强度梁弯曲应力的测定。

等强度梁为悬臂梁式如图1。

当悬臂梁上加一个载荷P 时,距加载点x 距离的断面上弯距为:Px M =x图1等强度梁贴片图相应断面上的最大应力为:WPx =σ 式中:W ——抗弯断面模量,断面为矩形,b x 为宽度,h 为厚度,则:62h b W x =因而,h b Pxh b Px x x 2266==σ 所谓等强度,即指各个断面在力的作用下应力相等,即σ值不变。

显然,当梁的厚度h 不变时,梁的宽度必须随着x 的变化而变化。

梁有效长度段的斜率 0625.0=tga四、实验步骤1. 设计好本实验所需的各类数据表格。

2. 测量等强度梁的有关尺寸,确定试件有关参数。

见附表1R1R5R3(该实验载荷范围≤50N),分3~5级加载(每级3.拟订加载方案。

估算最大载荷Pmax10N))。

4.实验采用多点测量中半桥单臂公共补偿接线法。

将等强度梁上选取的测点应变片按序号接到电阻应变仪测试通道上,温度补偿片接电阻应变仪公共补偿端。

5.按实验要求接好线,调整好仪器,检查整个测试系统是否处于正常工作状态。

6.实验加载。

加载前。

记下各点应变片初读数,然后逐级加载,每增加一级载荷,依次记录各点应变仪的εi,直至终载荷。

实验至少重复三次。

见附表27.作完实验后,卸掉载荷,关闭仪器电源,整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。

等强度悬臂梁静态应力测试实验报告

等强度悬臂梁静态应力测试实验报告

等强度悬臂梁静态应力测试实验报告
实验名称:强度悬臂梁静态应力测试实验
实验目的:通过对悬臂梁进行静态应力测试,了解悬臂梁在不同力度下的变形和应力分布情况。

实验设备和材料:
1. 强度悬臂梁
2. 支撑杆
3. 杠杆
4. 力传感器
5. 测量仪器(如示波器、测力计等)
实验步骤:
1. 将强度悬臂梁固定在支撑杆上,确保悬臂梁处于水平放置状态。

2. 根据实验要求,选择合适的力度施加在悬臂梁上,使用杠杆将力施加到悬臂梁的端部。

3. 使用力传感器测量施加在悬臂梁上的力大小,并记录下来。

4. 利用测力计或示波器测量悬臂梁上各处的应力分布情况,并绘制应力-位置曲线。

5. 观察悬臂梁在不同力度下的变形情况,并记录下来。

6. 如果需要,可以重复以上步骤,对不同力度的情况进行测试。

实验数据处理和结果分析:
1. 将测得的力度和应力数据整理,绘制力度-应力曲线。

2. 根据应力-位置曲线,分析悬臂梁上不同位置的应力分布情
况。

3. 分析悬臂梁在不同力度下的变形情况,观察是否符合理论预期。

4. 对实验结果进行讨论和总结,指出实验中可能存在的误差和改进措施。

实验注意事项:
1. 悬臂梁固定要稳固,确保测量结果准确可靠。

2. 施加力度时要逐渐增加,避免超过悬臂梁的强度范围而造成破坏。

3. 测量仪器要校准好,确保测量精度。

4. 实验过程中要注意安全,遵守实验室规定和操作规程。

以上是对强度悬臂梁静态应力测试实验报告的一个简要介绍,具体的实验内容和实验数据处理方法可以根据实际情况进行调整和完善。

【精品】等强度悬臂梁静应变测试与分析课程设计

【精品】等强度悬臂梁静应变测试与分析课程设计

等强度悬臂梁静应变测试与分析设计人学号指导教师学院专业班级2013年 1 月 10日目录设计名称 (1)设计任务 (1)设备仪器 (1)DH3818静态电阻应变仪介绍 (1)设计内容 (6)设计原理 (6)实验步骤 (11)数据及其处理 (11)参考文献 (18)十、心得体会 (18)一、课题设计名称:静应力测试及分析课程设计二、设计任务①静应变力测试系统的搭建②电桥的连接方式与各自特点③被测对象的应力,应力的理论计算④理论计算与测试数据的对比分析⑤误差分析(包括理论与实际测试)三、设备仪器DH3818静态电阻应变仪、常温用电阻应变片、温度补偿片、等强度梁、万用表、质量块、502胶水、酒精、焊锡膏、磨砂皮、焊棒、棉签等。

四、DH3818静态电阻应变仪介绍(一)、概述DH3818静态应变测量仪由数据采集箱、微型计算机及支持软件组成。

可自动、准确、可靠、快速测量大型结构、模型及材料应力试验中多点的静态应变(应力)值。

广泛应用于机械制造、土木工程、桥梁建设、航空航天、国防工业、交通运输等领域。

若配接适当的应变式传感器,也可对多点静态的力、压力、扭矩、位移、温度等物理量进行测量。

特点:手控状态时,大屏数码管显示测量通道和输入应变量,且可通过功能键设置显示通道、修正系数及平衡操作;自动平衡:内置120Ω标准电阻,1/4桥(公用补偿)、半桥、全桥连接方便。

(二)、技术指标1、测量点数:有可测10点和20点两种,每台计算机可控制十六台静态应变测量仪;2、程控状态下采样速率:10测点/秒;3、测试应变范围:±19999με;4、分辨率:1με;5、系统不确定度:不大于0.5%±3με;6、零漂:≤4με/2h(程控状态);7、自动平衡范围:±15000με,灵敏度系数K=2.00,120Ω应变计阻值误差的±1.5%;8、测量结果修正系数范围:0.0000~9.9999(手动状态);9、适用应变计电阻值:50~10000Ω;10、应变计灵敏度系数:1.0~3.0可进行任意修正;长导线电阻修正范围:0.0~100Ω;11、交流电源电压:220V±10%,50Hz±2%;12、仪器功率:约15W;(三)、工作原理测量原理:以1/4桥、120Ω桥臂电阻为例对测量原理加以说明。

等强度梁弯曲正应力实验3页

等强度梁弯曲正应力实验3页

等强度梁弯曲正应力实验3页实验目的:通过等强度梁弯曲实验,掌握以下内容:1.测定梁在弯曲时的正应力和应变,并绘制应力-应变曲线。

2.计算梁的杨氏模量。

3.验证梁的材料是否服从胡克定律。

实验原理:等强度梁弯曲实验是将一根矩形截面梁,垂直于梁长轴心的平面上施加一个水平力,使其在弯曲的同时,统计梁的形变量,并根据力与形变量的关系计算出梁的杨氏模量。

具体来说,假设一根矩形截面梁在受到一个水平力F的作用下,在其长度为L处发生了弯曲,此时梁的下表面受到拉伸应力,上表面受到压缩应力。

根据梁的几何关系和应力-应变关系,我们可以得到以下公式:1. 弯曲应变:ε = δ /L其中,δ为梁的挠度,L为梁的长度。

其中,B为梁的宽度,h为梁的高度,σ为梁在弯曲时所受的最大应力。

3. 杨氏模量:E = σ/ε根据上述公式,我们可以通过测量梁的挠度和施加在梁上的力来计算出梁的应变和正应力,从而绘制出应力-应变曲线,并计算出梁的杨氏模量。

实验设备:1. 等强度梁弯曲实验台,包括调节臂和支撑架等部件。

2. 施力器和感应式位移传感器等测量设备。

3. 电子秤和计时器等辅助设备。

实验步骤:1. 用电子秤称量梁的质量,并记录下来。

2. 在实验台上调节调节臂和支撑架等部件,使梁能够自由弯曲,并用感应式位移传感器测量梁的挠度,记录下来。

3. 施加一个水平力F在梁上,测量由位移传感器记录的梁的挠度和电子秤测量的施加力F大小,记录下来。

4. 分别调整施加力F的大小,重复步骤3,直到获得足够数量的数据。

6. 根据应力-应变曲线,计算出梁的杨氏模量,并与理论值进行比较。

如果两个值接近,则说明梁的材料服从胡克定律;否则则说明存在一定的误差。

实验注意事项:1. 在实验过程中,应尽量避免对梁施加过大的力,以免造成梁的破坏。

2. 在记录数据时,应尽量保证精度和准确性,以免影响实验结果。

3. 实验结束后,应将设备归位并清理干净,以确保设备的正常使用。

实验结果分析:通过实验,我们可以清楚地了解梁的力学特性,掌握杨氏模量的测量方法,并检验材料是否服从胡克定律,为工程设计和材料应用提供依据。

实验四、等强度矩形梁弯曲实验

四、等强度矩形梁弯曲实验一、实验目的:1.了解电测法的基本原理2.学会使用应变仪,熟悉应变仪的操作规程3.掌握测量电桥的应用,熟悉各种组桥方式,并比较各种组桥的精确度。

二、实验设备及装置1.BZ2205应变仪2.实验装置见图1图1三、实验原理测量对象为一等强度梁,如图1所示,在等强度梁的各截面处的上下表面分别铁电阻应变片R1,R2,R3,R4,R5,R6,在实验装置附近有一个温度补偿块,作为单臂半桥测量时的温度补偿片,当给试件加载荷时,等强度梁发生变形,其上下表面所贴的电阻应变片随产生拉伸或压缩变形,按电测法原理,可选择不同的接桥方式测出贴片截面处的应变值。

图2 接桥方式1.单臂半桥:其组成形式见图2(a),AB桥臂为测量片R1,BC桥臂为温度补偿片R补,CD、DA桥臂R为应变仪内部提供的标准电阻,应变仪读出的应变值与真实值之间的关系为:p ds εε=2.双臂半桥:其组成形式见图2(b ),AB 桥臂为测量片R 1,BC 桥臂应为R 2,R 为应变仪内部提供的准确电阻,应变仪读出的应变值与真实值关系为:p ds εε2=3.全桥连接:组成形式见图2(c ),AB 、BC 、CD 、DA 四个桥臂分别为测量片R 1,R 2,R 3,R 4,应变仪读出的应变值与真实值之间关系为:p ds εε4=。

四、实验步骤1.熟悉应变仪面板,将电源线接到仪器电源插孔,另一端暂时补通电。

2.按要求将被测点的电阻片接入电桥插孔并将螺丝拧紧。

(采取其中的一种接法)(1)单臂半桥连接时,将测量片R 1接入某通道的A 、B 插孔,将温度补偿片R 补接入同一通道的B 、C 插孔,面板上的“半桥、全桥”开关放置半桥位置。

(2)双臂半桥连接时,将测量片R 1接入某通道的A 、B 插孔,测量片R 2接入同一通道的B 、C 插孔,面板上的“半桥、全桥”开关放置半桥位置。

(3)全桥连接时,将测量片R 1,R 2,R 3,R 4分别接入某一通道的AB 、BC 、CD 、DA 插孔,面板上的“半桥、全桥”开关放置全桥位置。

应变测量组桥实验

应变测量组桥实验一.实验目的1. 了解用电阻应变片测量应变的原理;2. 了解电阻应变仪的工作原理,掌握本型号电阻应变仪的使用; 3. 掌握电阻应变片在测量电桥中的各种组桥方式。

二.实验仪器和设备1. YJ-4501A/SZ 静态数字电阻应变仪;2. 等强度梁实验装置一台;3. 温度补偿块一块。

三.实验原理和方法等强度梁实验装置如图1所示,图中1为等强度梁座体,2为等强度梁,3为等强度梁上下表面粘贴的四片应变片,4为加载砝码(有5个砝码,每个200克),5为水平调节螺钉,6为水平仪,7为磁性表座和百分表。

等强度梁的变形由砝码4加载产生。

等强度梁材料为高强度铝合金,其弹性模量272m G N E =。

等强度梁尺寸见图2。

图1图2在图3的测量电桥中,若在四个桥臂上接入规格相同的电阻应变片,它们的电阻值为R ,灵敏系数为K 。

当构件变形后,各桥臂电阻的变化分别为ΔR 1、ΔR 2、ΔR 3、ΔR 4它们所感受的应变相应为ε1、ε2、ε3、ε4,则BD 端的输出电压U BD 为 ()d AC AC AC BD K U KU R R R R R R R R U U εεεεε44443214321=+--=⎪⎭⎫ ⎝⎛∆+∆-∆-∆=由此可得应变仪的读数应变为4321εεεεε+--=d本实验要完成六种不同的测量电桥接线方法,测量电桥接线方法实验其读数应变与被测点应变间的关系均可按上式进行分析。

四.实验内容1.单臂半桥测量 图3a .采用半桥接线法。

用等强度梁上四个应变片中的任意一片,接在应变仪背面的任意通道的接线柱A 、B 上(1~12通道,任选一个通道),补偿块上的应变片接在接线柱B 、C 上(见图4),应变仪具体使用祥见应变仪使用说明。

b .载荷为零时,将接应变片的通道的初始显示应变置零,然后按每级200克逐级加载至1000克,记录各级载荷作用下的读数应变。

电桥多点接线原理 应变仪上多点测量接法图42. 双臂半桥测量采用半桥接线法。

等强度梁电测试验设计试验报告

等强度梁电测试验设计试验报告一、实验目的和要求1、通过试验设计验证给定试样为等强度梁。

2、试样不能被破坏,即进入屈服。

二、试验设备和仪器1、微机控制电子万能试验机、静态电阻应变仪。

2、数字万用表。

3、游标卡尺,电烙铁等。

三、实验原理和方法图3-1 理论计算示意图1、等强度梁定义:为了使受弯梁截面的弯曲正应力相同,即随着弯矩的改变,对应的改变截面尺寸,以保持梁的应力的不变。

2、以悬挑梁为例,以上图试样为试件,进行理论以及试验验证试样为等强度梁。

3、建立如图所示笛卡尔坐标系,对试样进行分析:由错误!未找到引用源。

,若需使得强度相同,必定有错误!未找到引用源。

为一常数值。

有:错误!未找到引用源。

使得;错误!未找到引用源。

与b线性相关,恰好悬臂梁的弯矩与其自由端的距离成正比,使b为变量,即可验证试样为等强度梁。

在l区段验证有:而错误!未找到引用源。

与x无关,则必定有:错误!未找到引用源。

此时:错误!未找到引用源。

与x无关,则按照此理论设计实验方案,验证试样为等强度梁。

四、实验步骤1、依据试验理论,测量出试样的截面参数,并假定钢材为Q235,屈服强度为错误!未找到引用源。

,确定加载方案,并在电子万能试验机上编辑实验方案。

2、在试样上粘贴电阻应变片,并焊接好接线。

具体电阻应变片的粘贴位置如图所示:3、在试验机上装夹试样,按照1/4桥接线法接线。

试样的装夹如下图所示:4、运行试验方案,记录实验数据5、卸下试样,还原实验仪器,整理现场。

五、实验注意事项1、装夹是注意两个试样必须基本等高,加载点亦须一样,以保证受力均衡。

六、实验数据及处理结果试验数据测量以及处理如下:表6-1 截面尺寸测量表表6-2 a值计算表表6-3 试验数据理论值表表6-4 试验数据应变表对于F=200N时,E=错误!未找到引用源。

10N/mm2,计算出应变片1、2、3、4的应力分别为σ3=-505*210=-106.05N/mm2 , σ4=501*210=105.21N/mm2 , σ5=501*210=105.21N/mm2 , σ6=503*210=105.84N/mm2表6-5 试验数据结果比较结果分析:通过表6-3,6-4理论值与实测值在每个截面的比较和表6-5同一截面理论值与实测值不同截面的比较均可验证为等强度梁。

等强度梁实验报告

一、实验目的1. 了解等强度梁的结构特点及设计原理。

2. 掌握等强度梁的受力分析方法。

3. 熟悉等强度梁实验操作步骤及注意事项。

4. 通过实验,验证等强度梁在受力时的性能。

二、实验原理等强度梁是指梁的各横截面上的最大正应力相等,且均达到材料的许用应力。

其设计原理是通过调整截面尺寸,使梁的各横截面在受到相同弯矩时,产生的最大正应力相等。

等强度梁的受力分析主要包括弯矩、剪力和轴力。

在实验中,主要研究梁的弯曲正应力。

三、实验仪器与设备1. 等强度梁实验装置2. 电阻应变片3. 电阻应变仪4. 加载砝码5. 钢尺6. 钢卷尺7. 计算器四、实验步骤1. 将等强度梁实验装置安装调试完成,确保实验装置稳固可靠。

2. 在等强度梁的预定位置粘贴电阻应变片,确保应变片粘贴牢固。

3. 将应变片接入电阻应变仪,调整仪器的参数,使其处于正常工作状态。

4. 在等强度梁两端分别挂上加载砝码,使梁受到均匀的载荷。

5. 使用钢尺和钢卷尺测量梁的长度、宽度、高度等尺寸参数。

6. 读取电阻应变仪的输出数据,记录梁的应变值。

7. 根据应变值和梁的尺寸参数,计算梁的最大正应力。

8. 分析实验数据,验证等强度梁在受力时的性能。

五、实验结果与分析1. 实验数据(1)梁的尺寸参数:长度L=600mm,宽度b=50mm,高度h=100mm。

(2)加载砝码:m=200g。

(3)应变值:ε1=1.5×10^-4,ε2=2.0×10^-4,ε3=1.8×10^-4,ε4=2.2×10^-4。

2. 计算结果根据实验数据,计算梁的最大正应力为:σmax = (m g L h^2) / (2 b h^3)其中,m为加载砝码质量,g为重力加速度,L为梁的长度,b为梁的宽度,h为梁的高度。

计算结果:σmax = 0.226MPa3. 结果分析实验结果表明,等强度梁在受力时,各横截面上的最大正应力基本相等,符合等强度梁的设计原理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等强度梁应变测定实验
SQ1001804A004 李扬
一.实验目的
1. 熟练掌握电阻应变片测量应变的原理;
2. 熟练掌握本型号电阻应变仪的使用,掌握多点测量方法;
3. 测定等强度梁上已粘贴应变片处的应变,验证等强度梁各横截面上应变(应力)
相等。

二.实验仪器和设备
1. YJ-4501A/SZ静态数字电阻应变仪;
2. 等强度梁实验装置一台;
3. 温度补偿块一块。

三.实验原理和方法
等强度梁实验装置如图1所示,
图中1为等强度梁座体,2为等强度
梁,3为等强度梁上下表面粘贴的四
片应变片,4为加载砝码(有5个砝
码,每个200克),5为水平调节螺钉,
6为水平仪,7为磁性表座和百分表。
等强度梁的变形由砝码4加载产生。
等强度梁材料为高强度铝合金,其弹
性模量
2
72mGNE
。等强度梁尺寸见图2。 图1

图2
等强度梁表面应力计算公式为 xWxM , 62hxbxW
四.实验步骤
1.采用多点单臂半桥接线法,将等强度梁上四个应变片分别接在应变仪背面1~ 4
通道的接线柱A、B上,补偿块上的应变片接在接线柱B、C上(见图3)。
2.载荷为零时,按顺序将应变仪每个通道的初始显示应变置零,然后按每级200
克逐级加载至1000克,记录各级载荷作用下的读数应变。
3. 反复做三遍。

电桥多点接线原理 应变仪上多点测量接法
图3

五.实验结果处理
1.以表格形式处理实验结果,根据实验数据计算各测点1000g载荷作用下的实
验应力值,并计算出理论应力值;计算实验应力值与理论应力值的相对误差。
2.比较实验值与理论值,理论上等强度梁各横截面上应变(应力)应相等。
3.计算任意一片应变片测量的线性度和重复性。

实验数据记录和结果处理参考表

相对误差指: %100理论应变值理论应变值实验应变值
表1
应变

载荷(g)
R1 (με) R2

(με)
1 2 3 平均 1 2 3 平均
0 -1 0 0 -0.3 0 0 -1 -0.3
200 81 83 81 81.7 -82 -82 -83 -82.3
400 161 163 162 162 -164 -163 -164 -163.7
600 242 243 243 242.7 -245 -245 -246 -245.3
800 322 324 325 323.7 -327 -327 -328 -327.3
1000 402 403 406 403.7 -408 -409 -408 -408.3
续表1
应变

载荷(g)
R3 (με) R4

(με)
1 2 3 平均 1 2 3 平均
0 0 -2 0 -0.7 0 0 -2 -0.7
200 -83 -86 -83 -84 81 81 79 80.3
400 -166 -170 -165 -167 163 164 162 163
600 -249 -253 -248 -250 245 244 244 244.3
800 -334 -337 --331 -334 328 326 326 326.7
1000 -418 -420 -415 -417.7 411 408 409 409.3


表2
应力 测点 实验值 (Mpa) 理论值 (Mpa) 相对误差
%
R1 29.07 30.625 -5.08%
R2 29.40 -4%
R3 30.07 -1.81%
R4 29.47 -3.77%

R1的线性度:%8.1%100*35.4257.40335.425

重复性:75.1266.216.165.121.84.33.0222222

六.思考题
1. 本实验中对应变片的栅长尺寸有无要求?为什么?
有要求。在等强度梁表面应力计算时,宽度b(x)是随位置而改变的,故而应变片
的栅长不可过长,否则影响计算结果。

2. 分析实验值与理论值不完全相等的原因。
应变片的粘贴位置、实验人员的读数、应变片的灵敏度、温度的影响等等,都会
造成实验误差。

3. 用什么方法可提高测量等强度梁表面应变的灵敏度?
在原位置改贴2块应变,改变组桥方式,可提高一倍灵敏度。
4. 用加长或增加应变片敏感栅线数的方法改变应变片的电阻值,是否能改变应
变片的灵敏系数?为什么?

不会。由灵敏度公式

K

R

dR

,可以看出,增加敏感栅长度和线数均不能改变其

灵敏系数。

相关文档
最新文档