弹塑性力学第一章

合集下载

塑性力学(第一章)简单应力状态下的弹塑性力学问题

塑性力学(第一章)简单应力状态下的弹塑性力学问题
MC M 1
σ =ψ(ξ),
dε P ∫
σS
A
—— ξ是刻画塑性变形历史的参数
例如:可取 ξ = 例如: 或
A'
O
M M''
'
N
ε
ξ =W P = ∫ ε P σd
图2(a)
该模型不论拉伸还是压缩都使屈服应力提高,对应图2 该模型不论拉伸还是压缩都使屈服应力提高,对应图2(a)中的NM 和NM'' 。
当材料有较大的塑性变形时(弹性变形相对地很小), 当材料有较大的塑性变形时(弹性变形相对地很小), 可近似地认为体积是不可压的。 可近似地认为体积是不可压的。 静水压力对屈服应力的影响也是不大的。 静水压力对屈服应力的影响也是不大的。
应力§1.3 应力-应变关系关系的简化模型
1.理想弹塑性模型
σ < σs时 ε = σ E 当 , 当 , σ = σs时 ε = σ E + λsignε
适用: 适用:拉伸时的屈服应力和压缩时的屈服应力始终是相等 的。
σ
随动强化模型 p σ −ψ(ε ) = σs ,
p 的单调递增函数) (ψ(ε ) 是塑性应变ε p的单调递增函数)
MC M 1
σS
A
上式在线性强化情形下也可写为
σ − hε = σs ,
p
dψ (h = p 是一个常数 ) dε
O
二、塑性与脆性 如果变形很小就破坏,便称是脆性 如果变形很小就破坏,便称是脆性 ——采用弹性理论分析 ——采用弹性理论分析 如果经受了很大的变形才破坏,材料具有较好的 如果经受了很大的变形才破坏, 韧性或延性,这时材料的塑性变形能力较强, 韧性或延性,这时材料的塑性变形能力较强,便 称是塑性 在这种情况下, 塑性。 称是塑性。在这种情况下,物体从开始出现永久 变形到最终破坏之间仍具有承载能力。 变形到最终破坏之间仍具有承载能力。 ——采用塑性力学分析 ——采用塑性力学分析

弹塑性力学 第01-0章绪论

弹塑性力学    第01-0章绪论

静力学: 物体的平衡条件--平衡微分方程和应力边界条件。 几何学: 位移与应变的关系--变形协调关系(几何方程和 位移边界条件)。 物理学: 应力与应变(或应变增量)的关系--本构关系。 如在材料力学中推导扭转切应力、弯曲正应力 时都应用了上述关系。
8、求解弹塑性力学问题的数学方法
由几何方程、物理方程、平衡方程及力和位移的边 界条件求出位移、应变、应力等函数。 精确解法:能满足弹塑性力学中全部方程的解。例 如运用分离变量法将偏微分方程组解耦并化为常微分方 程组进行求解,另外还有级数解法、复变函数解法、积 分变换等。 近似解法:根据问题的性质采用合理的简化假设而 获得近似结果;如有限元法、边界元法、有限差分法 等。
ε ≤ ε s 时,σ = Eε ε > ε s 时,σ = σ s sign ε
⎧1, 当 σ > 0 ⎪ ⎪ sign σ = ⎨0, 当 σ = 0 ⎪ ⎪ ⎩-1, 当 σ < 0
εs = σs E
4、线性强化(硬化)弹塑性模型
假设拉伸和压缩时屈服应力 的绝对值和强化模量E’都相同, 当不卸载时,应力—应变关系可 以写成
如:梁的弯曲问题
弹性力学
材料力学
当 l >> h 时,两者误差很小。
材料力学计算简单而结果往往是近似的,但不少情 况下精度可以满足工程要求的 变截面杆的分析
o
σ (x )
σ
(x )
? P
P x
τ (x )
二、弹塑性力学的基本假设
¾ 连续性假设,应力、应变和位移都可以用坐标的 连续函数表示,便于应用连续和极限的概念。 ¾ 均匀性假设,物体各部分的物理性质都相同,并 不会随坐标位置的改变而发生变化。 ¾ 各向同性假设,物体在各个方向具有相同的物理 性质,弹性常数不随坐标方向的改变而改变。

弹塑性力学01ppt课件

弹塑性力学01ppt课件

第1章 绪论1-2
线性弹性力学的发展,出现了许多分支学科,
如薄壁构件力学、薄壳力学、热弹性力学、 粘弹性力学、各向异性弹性力学等。
37
弹性力学解法也得到不断发展
数值解法 微分方程的差分解 [迈可斯(1932)] 有限单元法 [1946年]
第1章 绪论1-2
复变函数(20世纪30年代)萨文和穆斯赫利什维利 作了大量的研究工作,解决了许多孔口应力集中等 问题。
14
固体材料的弹塑性简单 说明(简单拉伸性能)
弹性极限(屈服 极限)
比例极限
弹性 阶段
塑性阶段(强化)
第1章 绪论
卸加载 (弹性)
弹性应变 塑性应变
低碳钢试件简单拉伸试 验应力—应变曲线图
弹性应变
15
第1章 绪论
• “完全弹性”是对弹性体变形的抽象。
完全弹性使得物体变形成为一种理想模型。 完全弹性是指在一定温度条件下,材料的应力 和应变之间一一对应的关系。 这种关系与时间无关,也与变形历史无关。
38
钱伟长
钱学森
胡海昌 徐芝伦
39
§1-2 弹性力学中的几个基本概念
一、体力
分布在物体体积内的力(重力、惯性力) z
大小: 平均集度
体力
lim F f V 0 V
O
x
fz V
F f
fy
fx
P
y
图11a 40
§1-2 弹性力学中的几个基本概念
方向 f的方向就是ΔF的极限方向
矢量f在坐标轴x、y、z上的投影fx、 f y、 fz ,称为
材料的应力和应变关系通常称为 本构关系
——物理关系或者物理方程
• 线性弹性体和非线性弹性体

弹塑性力学第一章 PPT资料共54页

弹塑性力学第一章 PPT资料共54页

16.11.2019
10
§1-2 基本假设和基本规律
2.1基本假设
假设1:固体材料是连续的介质,即固体体积 内处处充满介质,没有任何间隙。
从材料的微观看此假设不正确。因为粒子 间有空隙,但从宏观上看作为整体进行力学分 析时,假设1是成立的。假设1的目的:变形体 的各物理量为连续函数(坐标函数)。
16.11.2019
11
§1-2 基本假设和基本规律
假设2:物体的材料是均匀的。认为物体内 各点的材料性质相同(力学特性相同),所 以从物体内任一部分中取出微元体进行研究, 它的力学性质代表了整个物体的力学性质。
16.11.2019
12
§1-2 基本假设和基本规律
假设3:小变形假设。物体在外因作用下,物 体产生的变形与其本身几何尺寸相比很小。
哑标如:
3
rr1e1r2e2r3e3 riei riei r j e j 3 i1
uu1e1u2e2u3e3 uiei uiei u j e j

i1

33


1e 1 1 e 11e 1 2 e 2 .. ..3.e 3 3 e .3 ie jie jie jie j
排列符号的作用可以简化公式书写,如: 1. 三阶行列式:
A11 A12 A13 AA21 A22 A23eijkAi1Aj2Ak3eijkA1iA2jA3k
A31 A32 A33
(共六项,三项为正,三项为负)。
16.11.2019
32
§1-5 笛卡尔坐标系下的矢量、 张量基本知识
2. 基向量的叉积:右手系
16.11.2019
弹塑性力学
授课教师:龙志飞 目录

弹塑性力学 陈明祥版的 课后习题答案++汇总

弹塑性力学 陈明祥版的 课后习题答案++汇总
阐明了应力、应变的概念和理论; 弹性力学和弹塑性力学的基本理论框架 得以确立。
七、张量概念及其基本运算(附录一)
1、张量概念
◆ 张量分析是研究固体力学、流体力学及连续介 质力学的重要数学工具 。
◆ 张量分析具有高度概括、形式简洁的特点。
◆ 任一物理现象都是按照一定的客观规律进行的, 它们是不以人们的意志为转移的。
静力学:研究力系或物体的平衡问题,不涉及 物体运动状态的改变;如飞机停在地 面或巡航。
运动学:研究物体如何运动,不讨论运动与受 力的关系; 如飞行轨迹、速度、 加速度。
动力学:研究力与运动的关系。 如何提供加速度?
● 按研究对象分:
◆ 一般力学: 研究对象是刚体。研究力及其与
运动的关系。分支学科有理论力学,分析力学等。
五、 弹塑性力学的基本假设
(1)连续性假设:假定物质充满了物体所 占有的全部空间,不留下任何空隙。
(2)均匀性与各向同性的假设:假定物体内 部各点处,以及每一点处各个方向上的 物理性质相同。
(3)力学模型的简化假设: (A)完全弹性假设 ; (B)弹塑性假设。
⑷ 几何假设——小变形条件
假定物体在受力以后,体内的位移和变形是微小 的,即体内各点位移都远远小于物体的原始尺寸,而 且应变( 包括线应变与角应变 )均远远小于1。根据 这一假定: (A)在弹塑性体产生变形后建立平衡方程时,可以
◆ 分析研究物理现象的方法和工具的选用与人们 当时对客观事物的认识水平有关,会影响问题 的求解与表述。
◆ 所有与坐标系选取无关的量,统称为物理恒量。
◆ 在一定单位制下,只需指明其大小即足以被说明
的物理量,统称为标量。例如温度、质量、功等。
◆ห้องสมุดไป่ตู้在一定单位制下,除指明其大小还应指出其方向

弹塑性力学第一章

弹塑性力学第一章

1. INTRODUCTION1.1. Elasticity and plasticityEssential properties of deformable bodies subjected to external force or other external action are elastic and plastic behavior. As discussed in the discipline of mechanics of materials, that is, if the external forces producing deformation do not exceed a certain limit, that is so called yield criteria, the deformation disappears with the removal of the forces, then we consider this properties as elasticity. Otherwise, the deformation do not disappeared after removal of the forces, then we consider the property as plasticity. Another main difference between perfect elasticity and plasticity, in mathematical view, is a linear problem and a nonlinear problem, respectively.The atom forces in the material internal structure determine the mechanism of this two kind deformation. In fact, the internal structure of solid materials is always stable, on the basis of balance forces between atoms in solids. The suction force makes the atoms tend to close up to each other, and the repulsion force makes the atoms maintain some reasonable distance. In normal cases, these two forces are in Equilibrium State. Atomic structure will not be considered here. It will be interested in the macroscopically response only. When a solid body is subject to external loading, there are two different responses: elastic response and plastic response.Elastic deformation is a simple case easy to be understood. Plastic deformation is a more complex case. Figure 1.1 show the typical curve for a simple tension specimen of metal. The initial elastic region generally appears as a straight line OA, where Adefines the limit ofproportionality.On furtherstraining, the relation betweenstress and strain is no longerlinear but the material is stillelastic, and upon release of theload, the specimen reverts to itsoriginal length. The maximumstress point B at which the loadcan be applied without causingany permanent deformation Fig.1.1 Stress-strain diagram for an annealed cast-steelspecimen.(a) (b) (c) (d)Fig. 1.2 Stress-strain diagrams: (a) ductile metal, (b) cast iron and glass, (c) typical concrete or rock,(d) soils, triaxial compression. (Experimental data taken from reference [15].)defines the elastic limit . The point B is also called the yield point , for it marks the initiation of plastic or irreversible deformation. Usually, there is very little difference between the proportional limit, A, and the elastic limit, B. The behavior in the flat region BC is generally referer to as plastic flow . After C the material is exhibited strain hardening or also known as work hardening. Over some point D the material may be exhibit strain softening, as shown in figure 1.1.Now, consider the unloading from some point E beyond the yield point. The behavior is as indicated in figure 1.1. That is, when the stress is reduced, the strain decreases along an almost elastic unloading line OA .So we say that the unloading obey the elastic rule.Fig. 1.2 is the typical graph of stresses versus relative elongation (compression) for four kinds of materials.1.2. Basic hypothesisThe subject of theory of elasticity and plasticity is concerned with the deformation and motion of elastic-plastic bodies or structures under the action of applied load or other disturbances. The general assumptions employed in the study of theory of elasticity and plasticity are the same as those used in the mechanics of continuous medium. Therefore, throughout this book, we have: (a), continuum hypothesis, we shell suppose that the macroscopic behavior of the solid bodies is the same as if they were perfectly continuous in structure; and physical quantities such as the mass and momentum associated with the matter contained within a given small volume will be regarded as being spread uniformly and without any caves, cracks and discontinuous.(b), Uniform hypothesis and isotropic hypothesis, that is, the materials of elastic-plastic body is homogeneous and uniformly distributed over its volume so that the smallest element cut from the body possesses the same specific physical properties as the body. The elastic properties are the same in all directions. (c), small deformation hypothesis, in this book, we discuss small deformation only.1.3. Historical remarksBefore the engineering design of structures, one must not only know the internal force field acting on the structural material and but also know the material response. It means that we need give an analysis of the stresses, deformation and displacement of structural elements. Therefore we have to know the constitutive relation of materials. Seeking some methods to solve these problems, many researchers have continually studied for over 2000 years.The pioneering works of theory of elasticity and plasticity are given by Augustin Cauchy (1789-1857), Marie-Henri Navier (1785-1836), Leonard Euler (1707-1783), Simon Denis Poisson (1781-1840), Barre de Saint-venant (1797-1886), Nikolai Ivanobich Mushihailishibili (1691-1976),Ludwig Prandtl (1875-1858), Thomas Young (1773-1829), Richard von Mises (1883-1953), and many others.The general principles employed in the study of theory of elasticity and plasticity are the same as those used in studying the mechanics of continuous medium. Their basic formulations can be attributed primarily to the work of Euler and Cauchy. Euler first brought forward the general principles of linear and angular momentum balance for continuous media upon which rest all continuum mechanics, including theory elasticity and plasticity. Cauchy first given the concept of the stress and strain at a point and also found the general differential equations of motion or equilibrium of a continuum in term of the stress. Cauchy’s work on elasticity provided a detailedkinematical theory of strain and deformation. The extension of the mathematical theory to more general solids was first made by Navier in 1821 using special assumption concerning the molecular forces of elastic solids. Technical application began earliest in 1855, when Saint-Venant solved the problem of the twisting of prismatic bars and worked out detailed numerical results. Saint-Venant also took up the problem of plastic flow and developed two-dimensional governing equations which were subsequently generalized to three dimensions by M.Levy in 1871. In 1864 H. Tresca reported experiments to the French Academy, which suggested that the plastic yielding of a metal occured when the maximum shear stress reached to a critical value. After Tresca in 1913 R.V on Mises published his yield condition theory based on theory of distortional energy.In the last century (1901-2000) the theory of elasticity and plasticity have rapidly developed in theory and engineering practical. Many great contributors should be mentioned. Such as B.G.Galerkin, G.R.Kirchhoff, S.P.Timoshenko, grange, A.Nadai, A.A.Il’yushin, W.W.Sokolovsky, W.Prager, R.Hill, Kh.A.Rakhmatulin, G.I.Taylor, P.Perzyna, and many others.In this period, especially in last 50 years, theory of elasticity and plasticity rapidly developed in China too. Qian Xueshen, Qian Weichang, Hu Haichang ,Wang Ren, Huang Kezhi, Xu Benye,Wu Jike, Huang zhuping, Gao yuchen, Wang ziqiang, and many others developed the theory of elasticity and plasticity, specially in the engineering applications. In this period published many valuable books about elasticity and plasticity on theoretical and engineering application.。

弹塑性力学(浙大课件)_图文

物体的速度、加速度
在讨论力学问题时,仅引进标量和矢量的概念是不够的
如应力状态、应变状态、惯性矩、弹性模量等
张量
关于三维空间,描述一切物理恒量的 分量数目可统一地表示成:
M=rn=3n
标量:n=0,零阶张量 矢量:n=1,一阶张量 应力,应变等:n=2,二阶张量
二阶以上的张量 已不可能在三维 空间有明显直观 的几何意义。
(a)
显然,方向余弦l1,l2,l3将由式(a)中
的任意两式和l12+l22+l32=1所确定。
若设偏应力状态 :
由于:
主方向的方向余弦为l1’,l2’,l3’,则由式(1.9)同样得
(b)
显然,方向余弦l1’,l2’,l3’将由式(b)中
的任意两式和l1’2+l2’2+l3’ 2=1所确定

可见式(a)与式(b)具有相同的系数, 且已知l12+l22+l32= l1’2+l2’2+l3’ 2=1
I2’应用较广,又可表达为:
(1.52)
1.3 应变张量
等效应变(应变强度):
(1.54)
等效剪应变(剪应变强度):
(1.55)
1.4 应变速率张量
一般来说物体变形时,体内任一点的变形不但与坐标有关,
而且与时间也有关。如以u、v、w表示质点的位移分量,则:
设应变速率分量为:
质点的运动速度分量
1.4 应变速率张量
斜截面外法线n的方向余弦:
令斜截面ABC 的面积为1
(1.3)
(1.4)
i :自由下标;j为求和下标 (同一项中重复出现)。
1.1 应力张量
斜截面OABC上的正应力:

工程弹塑性力学题库及答案

⼯程弹塑性⼒学题库及答案第⼀章弹塑性⼒学基础1.1什么是偏应⼒状态?什么是静⽔压⼒状态?举例说明?解:静⽔压⼒状态时指微六⾯体的每个⾯只有正应⼒作⽤,偏应⼒状态是从应⼒状态中扣除静⽔压⼒后剩下的部分。

1.2对照应⼒张量与偏应⼒张量,试问:两者之间的关系?两者主⽅向之间的关系?解:两者主⽅向相同。

1.3 简述应⼒和应变Lode参数定义及物理意义:解:µσ的定义、物理意义:;1) 表征S ij的形式;2) µσ相等,应⼒莫尔圆相似,S ij形式相同;3) 由µσ可确定S1:S2:S3。

1.4设某点应⼒张量的分量值已知,求作⽤在过此点平⾯上的应⼒⽮量,并求该应⼒⽮量的法向分量。

解:该平⾯的法线⽅向的⽅向余弦为⽽应⼒⽮量的三个分量满⾜关系⽽法向分量满⾜关系最后结果为:1.5利⽤上题结果求应⼒分量为时,过平⾯处的应⼒⽮量,及该⽮量的法向分量及切向分量。

解:求出后,可求出及,再利⽤关系可求得。

最终的结果为,1.6 已知应⼒分量为,其特征⽅程为三次多项式,求。

如设法作变换,把该⽅程变为形式,求以及与的关系。

解:求主⽅向的应⼒特征⽅程为式中:是三个应⼒不变量,并有公式代⼊已知量得为了使⽅程变为形式,可令代⼊,正好项被抵消,并可得关系代⼊数据得,,1.7已知应⼒分量中,求三个主应⼒。

解:在时容易求得三个应⼒不变量为,,特征⽅程变为求出三个根,如记,则三个主应⼒为记1.8已知应⼒分量,是材料的屈服极限,求及主应⼒。

解:先求平均应⼒,再求应⼒偏张量,,,,,。

由此求得:然后求得:,,解出然后按⼤⼩次序排列得到,,1.9 已知应⼒分量中,求三个主应⼒,以及每个主应⼒所对应的⽅向余弦。

解:特征⽅程为记,则其解为,,。

对应于的⽅向余弦,,应满⾜下列关系(a)(b)(c)由(a),(b)式,得,,代⼊(c)式,得,由此求得对,,代⼊得对,,代⼊得对,,代⼊得1.10当时,证明成⽴。

解:由,移项之得证得第五章简单应⼒状态的弹塑性问题5.1简述Bauschinger效应:解:拉伸塑性变形后使压缩屈服极限降低的现象5.2在拉杆中,如果和为试件的原始截⾯积和原长,⽽和为拉伸后的截⾯积和长度。

弹性力学第1章—绪论


弹性力学:
弹性力学是固体力学的一个分支,是研究弹 性体在外荷载、温度变化、边界约束变动等作用 下,产生的弹性变形和应力的科学。
1.1 弹性力学的研究对象和任务
研究对象: 弹性力学的研究对象为一般及复杂形 状的构件、实体结构、板壳等。
a) 块体(block) b) 平板(plate) c) 壳体 (shell) d,e) 杆件(bar)
1.1 弹性力学的研究对象和任务
与其它课程的关系: 理论力学 刚体的静、动力学 考虑构件变形 材料力学、结构力学 研究对象是杆件或杆系 采用简化的数学模型 考虑构件变形 弹性力学 研究对象是块体、板壳、杆件 采用较精确的数学模型
1.1 弹性力学的研究对象和任务
弹性力学:研究弹性变形 弹塑性力学的构成: 塑性力学:研究塑性变形 总变形=弹性变形+塑性变形
[练习3]什么是小变形假设?小变形假设带来那些简化? 答:假定物体受力以后,整个物体所有各点的位移都远 远小于物体原来的尺寸,就是小变形假设。小变形假 设,在建立物体变形以后的平衡方程时,可以用变形以 前的尺寸来代替变形以后的尺寸,并且,在考察物体的 形变及位移时,转角和位移的二次幂或乘积都可以略去 不计。这样可使弹性力学中的代数方程和微分方程简化 为线性方程。
1.4 弹性力学的发展和研究方法
1946 年之后,又出现了有限单元法,并且得 到迅速的发展和应用,成为现在解决工程结构分 析的强有力的工具。 弹性力学及有关力学分支的发展,为解决现 代复杂工程结构的分析创造了条件,并促进了技 术的进步和发展。
1.4 弹性力学的发展和研究方法
弹性力学问题的研究方法
1.4 弹性力学的发展和研究方法
4、有限单元法─是近半个世纪发展起来的非常有效、 应用非常广泛的数值解法。它首先将连续体变换为离散 化结构,再将变分原理应用于离散化结构,并使用计算 机进行求解的方法。 5、实验方法─模型试验和现场试验的各种方法。 对于许多工程实际问题,由于边界条件、外荷载及 约束等较为复杂,所以常常应用近似解法─变分法、差 分法、有限单元法等求解。

弹塑性力学-01应力分析


A x
pv2px 2p2 ypz2
l2
1 2m 2 2 2n2
2 3
2 v
pv2
2 v
l2 1 2 m 2 2 2 n 2 3 2v 232
3、应力圆
123
v l21 m 22 n 23
v 2 l21 2 m 22 2 n 23 2 v 2
l2m 2n21
1 2 a , 2 0 , 3 a
ma x1 23
3a 2
39
例2:已知某点的应力状态为: x 0, y 20, z 10, xy10, yz0, zx20
求:作用于过该点,方程为 3x 3y2z1 的平面外 侧的正应力和切应力。
解: l:m:n3: 3:2
l2m 2n21
p xl x m yx nzx p ylx ymy nzy p zlx zm y znz
李同林
• 工程弹塑性力学
杨伯源、张义同
• 工程弹塑性力学
毕继红、王晖
• 弹塑性力学引论
杨桂通
• 弹性力学(上、下册) 徐芝伦
• 塑性力学
夏志皋
• 岩土塑性力学原理 郑颖人 沈珠江
. 14
第一章 应力分析
§ 1-1 应力状态 § 1-2 应力张量及分解 § 1-3 等斜截面上的应力、应力状态参数 § 1-4 平衡微分方程
x
a
lco ay,smsxyian
n
xco assian yco assian xy co2as
ax 2ysi2n axy co2as
37
3. 主应力和最大切应力
v 3I1v 2I2 vI30
I1xyzxy
I 2 xy yz zx x 2 y y 2 z z 2 xxy x 2y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档