碳纤维编织布增强铝基复合材料的制备及其渗浸机制研究

碳纤维编织布增强铝基复合材料的制备及其渗浸机制研究
碳纤维编织布增强铝基复合材料的制备及其渗浸机制研究

碳纤维编织布增强铝基复合材料的制备及其渗浸机制研究

碳纤维增强铝基复合材料具有质量轻、强度高、塑性好等优点,在交通运输、国防军工等领域展现出广阔的应用前景。在常规铸造复合条件下,铝熔体对碳纤维的润湿能力极差,两者之间的渗浸过程往往只能在密闭空间内通过施加驱动力而进行。

这使得该类复合材料的生产受到设备规模以及模具尺寸等制备条件的限制,无法大量、广泛的投入到实际生活中。为此,本文以平纹碳纤维编织布作为增强相,探究碳纤维增强铝基复合材料在非密闭空间内简单、高效的生产方法,为实现其规模化生产与应用提供新的思路与借鉴。

本文针对十字平纹编织布中碳纤维的特有分布方式,设计出一套相应的化学镀镍方法对其进行表面金属化处理,并在此基础上开发出两种碳纤维编织布增强铝基复合材料的新型制备技术:其一,电磁渗浸复合技术。在液态复合过程中施加脉冲磁场,使渗浸过程在磁场的强制驱动作用下完成。

并对熔体的渗浸机制、后期的强化方法以及合金元素的分布行为等进行了系统研究;其二,近固态铸轧复合技术。在非密闭空间内利用轧辊转动提供机械压力,强制驱动正处于凝固阶段的近固态覆盖层对碳纤维编织布发生渗浸行为。

并对界面组织的调控、双层纤维的复合、高硬高强基体的应用等相关技术进行开发。最后,探讨了碳纤维的添加以及制备工艺的优化对复合材料性能的影响。

得到的主要结论如下:(1)碳纤维编织布的化学镀镍过程需要镀液具有极佳的稳定性和深镀能力:20mL/L乳酸的添加能够通过络合反应将镀液中游离态镍

离子浓度CNi2+控制在0.009mol/L,保证镀层的稳定析出时间超过120min;343K温度下,pH=4的酸性环境可以保证镀层以层片状的析出

方式均匀生长;而分散剂十二烷基苯磺酸钠的存在则能够通过静电作用增强镀液的深镀能力,使编织布内获得优异表面镀覆效果的碳纤维比例超过80%。该条件下化学镀镍反应的活化能Ea=124.52kJ/mol。

获得的镀层在空气中加热时会发生Ni元素结晶、Ni-P化合以及

Ni-O2氧化三种主要反应,而673K保温60min的处理工艺能够均衡各反应的发生。该镀层在电磁渗浸过程中能够为碳纤维提供充分的润湿性,而在铸轧过程中则可以起到足够的保护作用。

(2)电磁渗浸复合技术中脉冲磁场的引入使熔体对编织布的渗浸方式由逐层渗浸向梯度同步渗浸转变,渗浸过程除依靠Al-Ni反应自发进行外,还可以凭借电磁力的强制驱动以及熔体的流动冲击而实现,渗浸效果得到明显增强。采用“电磁渗浸复合+后期热压强化(773K,6%下压量)”方法制备的碳纤维增强Al-Mg (95-5wt.%)基复合材料,其弯曲强度较纯基体提升超过33%。

而复合材料在弯曲过程中的失效行为则主要由裂纹增值扩展以及结合界面的脱粘分层所导致。(3)近固态铸轧复合过程中,处于凝固阶段的近固态覆盖层能够凭借适宜的自身流动性以及合理的外加压力,在保证碳纤维结构完整、分布稳定的情况下,对其实现充分渗浸。

该渗浸过程中,近固态组织中的液态部分为渗浸碳纤维内部的主要填充材料,而固态部分则起到保证渗浸效果的作用。以此方法制备的十字平纹碳纤维编织布增强铝基复合板材能够实现二维空间内的多角度强化。

单层编织布对工业纯铝的拉伸强度提升效果达到50%,弯曲强度提升效果达到25%。双层编织布对弯曲强度的提升效果超过40%。

而对于强度、硬度较高的5083铝基体,液态铸轧复合方法能够在铸轧过程中

对编织布起到充分的保护作用,使材料弯曲强度提升超过22%。(4)碳纤维与基体界面组织结构的变化能够对复合材料的强化效果起到显著影响,在界面由“碳纤维-镀层(偏聚物)-基体”的间接接触界面向“碳纤维-基体”的直接接触界面转变过程中,碳纤维对铝基体弯曲强度的增强效果由29MPa提升至37MPa。

而在电磁渗浸复合过程中对浇铸温度(993K-1103K)、保温时间(300s-400s)的控制,以及在近固态铸轧复合过程中采用的浸泡预处理(1073K、30s)、后期保温处理(750K,150min),均能够有效促进镀层(偏聚物)的扩散,对复合界面的组织结构起到有效调控。(5)在复合材料的制备过程中,合金元素的行为及分布同时受到其自身属性以及制备条件两方面的影响:自身属性方面,Cu元素多以

Al2Cu/α-Al的共晶形式在基体最后凝固区域存在,Mg元素凭借与碳纤维之间较低的混合焓(-55kJmol-1)能够在熔体中向纤维表面富集,Si元素容易依托于碳纤维表面形核长大,而Mn元素则会随基体成分变化而发生包晶反应,Zn元素的析出与凝固顺序无明显关系;制备条件方面,镀层的存在能够通过Al-Ni反应影响碳纤维附近的熔体成分,而轧制压力的施加则能够将熔体的最后凝固区域大量汇集在碳纤维之间。

碳纤维布基本知识

碳纤维布基本知识 用途: 碳纤维布与结构胶配套使用成为碳纤维复合材料,适用于混凝土结构、木质结构的加固,可有效提高构件的承载力、抗震性能和耐久性。是处理下列工程问题的优秀备选方案: 1、建筑物使用荷载增加; 2、工程使用功能改变; 3、材料老化; 4、混凝土强度等级低于设计值; 5、结构裂缝处理; 6、恶劣环境服役构件修缮、防护。 其他用途:人造卫星、飞机、火箭、体育用品、工业产品等众多领域。 特点: 1、碳纤维抗拉强度高,高于普通钢10-15倍; 2、耐酸碱,抗腐蚀,适宜在恶劣环境中服役;与结构胶配合使用,能阻止有害介质浸渗,对内部结构起保护作用;

3、比重是钢材的23%,基本不增加构件自重,不改变构件截面尺寸; 4、可弯曲缠绕成型,对各类曲面、异型构件加固优势更为显著; 5、可任意剪裁,易粘贴,施工质量易于保证。不需大型施工机具,可搭接粘结任意延长,无明火作业,施工工期短。

碳纤维布使用说明 碳纤维布均与配套结构胶配合使用,形成高性能复合材料。碳纤维加固工艺流程:

构件表面处理→粘贴面修补找平(若平整,此步骤可省去)→涂底胶→卸荷(根据实际情况和设计要求,此步骤有时省去)→配置面胶和裁剪碳纤维布→粘贴碳纤维布→固化→检验→维护 1.构件表面处理 2.粘贴面修补找平(若平整,此步骤可省去) 3.配置底胶 4.卸荷(根据实际情况和设计要求,此步骤有时省去) 5.配置面胶和裁剪碳纤维布 6.粘贴碳纤维布 7.固化 8.检验 9.维护 碳纤维发展简史 1860年,斯旺制作碳丝灯泡 1878年,斯旺以棉纱试制碳丝

1879年,爱迪生以油烟与焦油、棉纱和竹丝试制碳丝(持续照明45小时)1882年,碳丝电灯实用化1911年,钨丝电灯实用化 1950年,美国Wright--Patterson空军基地开始研制黏胶基碳纤维 1959年,美国UCC公司生产低模量黏胶基碳纤维“Thornel—25”,日本大阪工业试验所的进藤昭男发明了PAN基碳纤维 1962年,日本碳公司开始生产低模量PAN基碳纤维(0.5吨/月) 1963年,英国皇家航空研究所(RAE)的瓦特和约翰逊成功地打通了制造高性能PAN基碳纤维(在热处理时施加张力)的技术途径 1964年,英国Courtaulds,Morganite和Roii--Roys公司利用RAE技术生产PAN基碳纤维 1965年,日本群马大学的大谷杉郎发明了沥青基碳纤维美国UCC公司开始生产高模量黏胶基碳纤维(石墨化过程中牵伸) 1970年,日本吴羽化学公司生产沥青基碳纤维(10吨/月),日本东丽公司与美国UCC进行技术合作 1971年,日本东丽公司工业规模生产PAN基碳纤维(1吨/月),碳纤维的牌号为T300,石墨纤维为M40 1972年,美国Hercules公司开始生产PAN基碳纤维日本用碳纤维制造钓竿,美国用碳纤维制造高尔夫球棒

碳纤维布施工工艺方法和要求

碳纤维布施工工艺方法和要求 一、应根据施工现场和被加固构件混凝土实际状况,拟定施工方案和施工计划。对所使用的碳纤维片材、配套树脂、机具等做好施工前准备工作。 (一)表面处理: 1、应清除被加固构件表面的剥落、疏松、蜂窝、腐蚀等劣化混凝 土,露出混凝土结构层,并用修复材料将表面修复平整。 2、应按设计要求对裂缝进行灌缝或封闭处理。 3、被粘贴混凝土表面应打磨平整,除去表层浮浆、油污等杂质, 直至完全露出混凝土结构新面。转角粘贴处要进行导角处理并 打磨成圆弧状,圆弧半径不应小于20㎜。 4、混凝土表面应清理干净并保持干燥。 (二)涂刷底层树脂: 1、按产品供应商提供的材料配比进行配制;甲、乙两组胶按配比 装入容器桶内,采用电锤及扩大头钻头,转速在600转/分,搅 拌时间约8分钟;使胶无色差。搅拌均匀后方可使用。 2、应用滚筒刷将底层树脂均匀涂抹于混凝土表面。应在树脂表面 指触干燥后立即进行下一步工序施工。 (三)找平处理: 1、应按产品供应商提供的工艺规定配制找平材料。 2、应对混凝土表面凹陷部位用找平材料填补平整,且不应有楞角。 3、转角处应用找平材料修复为光滑的圆弧,半径应不小于20㎜。

4、应在找平材料表面指触干燥后立即进行下一步工序施工。(四)粘贴碳纤维片材: 1、粘贴碳纤维布应符合下列要求: (1)按设计要求的尺寸裁剪碳纤维布; (2)应按产品供应商提供的工艺规定配制浸渍树脂并均匀涂抹于所要粘贴的部位; (3)用专用的滚筒顺纤维方向多次滚压,挤除气泡,使浸渍树脂充分浸透碳纤维布。滚压时不得操作碳纤维布; (4)多层粘贴重复上述步骤,应在纤维表面浸渍树脂指触干燥后立即进行下一层的粘贴; (5)在最后一层碳纤维布的表面均匀涂抹浸渍树脂。 2、应按下列步骤粘贴碳纤维板: (1)应按设计要求的尺寸裁剪碳纤维板,按产品供应商提供的工艺规定配制粘结树脂; (2)将碳纤维板表面擦拭干净至无粉尘。如需粘贴两层时,对底层碳纤维板两面均应擦拭干净; (3)擦拭干净的碳纤维板应立即涂刷粘结树脂,胶层应呈突起状,平均厚度不小于2㎜; (4)将涂有粘结树脂的碳纤维板用手轻压贴于需粘贴的位置。用橡皮滚筒顺纤维方向均匀平稳压实,使树脂从两边溢出,保证密实无空洞。当平行粘贴多条碳纤维板时,两板之间空隙应不小于5㎜;

铝合金热处理原理

铝合金热处理原理 铝合金铸件的热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间并以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。 铝合金热处理特点 众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。 铝合金时效强化原理 铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。 铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。 硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。 沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度-温度关系,可用铝铜系的Al-4Cu 合金说明合金时效的组成和结构的变化。图3-1铝铜系富铝部分的二元相图,在548℃进行共晶转变L→α+θ(Al2Cu)。铜在α相中的极限溶解度5.65%(548℃),随着温度的下降,固溶度急剧减小,室温下约为0.05%。 在时效热处理过程中,该合金组织有以下几个变化过程: 形成溶质原子偏聚区-G·P(Ⅰ)区 在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G·P(Ⅰ)区。G·P(Ⅰ)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。 G·P区有序化-形成G·P(Ⅱ)区 随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G·P(Ⅱ)区。它与基体α仍保持共格关系,但尺寸较G·P(Ⅰ)区大。它可视为中间过渡相,常用θ”表示。它比G·P(Ⅰ)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。 形成过渡相θ′ 随着时效过程的进一步发展,铜原子在G·P(Ⅱ)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基体的共格畸变减弱,对位错运动的阻碍作用亦减小,表现在合金性能上硬度开始下降。由此可见,共格畸变的存在是造成合金时效强化的重要因素。 形成稳定的θ相 过渡相从铝基固溶体中完全脱溶,形成与基体有明显界面的独立的稳定相Al2Cu,称为θ相此时θ相与基体的共格关系完全破坏,并有自己独立的晶格,其畸变也随之消失,并随时效温度的提高或时间的

渗铝钢

热浸镀铝钢材的应用与发展 郑毅然高文禄 (东北大学表面技术研究所沈阳110006) 摘要综述了热浸镀铝钢材镀层的形成与结构、性能与应用, 国内外的研究动向及在我国的发展 前景. 关键词热浸镀镀铝钢镀层合金层 学科分类号TG174. 443 热浸镀铝(HotDipAluminizing) 是继热浸镀锌之后发展起来的一种高效防护镀层, 它不仅表面具有银白色光泽和良好的耐候性, 而且还具有优良的耐蚀性, 耐高温氧化性, 耐渗碳性, 耐磨性及对光和热反射性. 因为镀铝钢的基体是钢材, 所以它又具有钢的机械强度.而由于热扩散的作用, 在镀层和基体间形成了呈冶金结合的扩散过渡层, 其产品可成型加工.因此, 在工业发达国家如美、日、德、英等国, 已将热镀铝钢广泛应用于石油、化工、冶金、机械、轻工、交通、建筑、电力、通讯、航空、太阳能等各个领域. 在钢材表面上形成铝层的方法很多, 有热浸镀、扩渗法、热喷涂法、包覆法、真空或化学气相沉积, 有机溶剂电镀法及电泳法, 但目前只有热浸镀、扩渗法和热喷涂法在工业生产上较为常用. 国内目前在钢材表面涂覆铝层主要是采用扩渗法和热喷涂法. 而生产设备简单, 成本低,综合性能好且应用范围广的热浸镀铝钢材, 其工业化生产与应用才刚刚开始. 为此, 本文试图就热浸镀铝钢材镀层的形成与结构、性能与应用及目前国内外的研究发展趋势作简要介绍,以期使这种材料能在我国的基本建设上尽快得到应用. 1热浸镀铝钢材的镀层与结构 热浸镀铝是钢铁材料或制品, 在一定温度下的熔融铝或其合金液中, 浸渍适当时间后, 提出空冷, 便在钢铁表面形成了合金层和纯铝层的化学热处理工艺过程. 在热浸镀铝的生产中,按其生产方式的不同分为熔剂法和森吉米尔法(sendimir). 熔剂法主要是通过酸洗、碱洗、熔剂处理后进行热浸镀铝, 此种方法设备简单, 既适于处理各种规格的管型材及构件, 又适于连续生产其工艺流程如下: 钢材→脱脂→水洗→酸洗→水洗→助镀→烘干→浸镀→淋铝→冷却→水洗→检查. 森吉米尔法主要是用来处理带钢. 其生产过程是带钢先经过氧化炉, 使表面上的油污全部烧掉, 并形成很薄的氧化铁膜, 然后用氢气还原处理, 在得到清洁的钢基体后浸入铝液中, 其镀层的薄厚由安装在带钢出口处的气刀控制. 此种方法的前处理过程主要是先氧化后还原, 因此也称该法为氧化还原法. 此种方法产量高, 产品质量稳定, 但设备复杂, 投资大. 热浸镀铝(合金)镀层, 是由与镀液成份相同的金属外层(通常称为铝层)和镀液成份与钢铁基体合金化而形成的合金内层(通常称为合金层)所构成. 浸镀时, 铁2铝合金层是通过铁原子与铝原子在其交界面上发生化学反应和热扩散而形成的, 因此合金层的厚度随浸镀时间和浸镀温度的增加而增厚在通常情况下, 镀纯铝时, 铝层的厚度为0. 03~0. 05mm, 呈银白色; 合金层厚0. 08~0. 12mm为金属间化合物(FeAl3 或Fe2Al5), 所以说镀铝钢是由纯铝层、合金层及钢铁基体构成的金属材料, 铝层决定了它的耐候、耐蚀及对光(热)的反射性能; 合金层则决定了镀铝钢的耐高温氧化性、耐磨及加工成型性能等. 镀铝钢镀层的组织结构, 随着浸镀液成份不同而有明显的差异, 当浸镀液为纯铝时, 镀层的合金层很厚, 呈舌状镶嵌在铁基体上, 且硬而脆, 几乎不能进行二次加工, 称之为Ⅱ型镀铝钢.

碳纤维布加固施工工序及工艺

碳纤维布的加固施工包含了8步,分别是:1、被加固混凝土表面处理;2、底胶涂布;3、修补胶修补混凝土;4.浸渍胶涂底;5、粘贴纤维布;6.浸渍胶上涂;7.表面涂饰;8.碳纤维补强加固施工质量检查和验收。 纤维复合材(FRP)补强加固施工粘贴剖面图 1.被加固混凝土表面处理 (1)表面处理应达到三个目的:确保结构本体与纤维布牢固粘结,除锈、去污、净化处理混凝土表面的老化部位;利用结构胶修补裂缝、填补孔洞、调整高差、削除尖角,保证碳纤维布粘结在可靠的基底上。 (2)钢筋露出部位须做防锈处理,如损伤程度严重,应采取措施补救。 (3)裂缝修补。若裂缝在5mm以上,采用高强水泥砂浆灌注;裂缝宽度大于0.1mm、小于5mm,采用专用化学裂缝灌注胶灌注裂缝,以低压慢注射为主,固化后打磨修饰平坦;裂缝宽度小于0.1mm,采用封缝胶表面封闭。 (4)表面修补:被粘混凝土面如有缺陷、孔洞或蜂窝麻面,应采用修补胶修补。 ①缺陷或孔洞修补。原结构施工中或后期运行中使结构产生缺角、孔洞、蜂窝麻面,必须用修补胶修补。 ②高差调整。由于模板错位产生混凝土表面高低差,亦必须在粘贴纤维前修

复。大面积可用高强砂浆,局部位置则用修补胶修补。 纤维布(FRP)补强加固施工流程图 (5)表面污垢和碳化物处理。以盘式打磨机、喷砂、高压水冲洗等方法,将表面处理成平坦规整、无松动、无脆弱碎块及无污物的表面,油脂类污物用中性洗涤剂脱脂,用高压气枪清除灰尘,粘结纤维布前混凝土表面必须充分干燥。 (6)修角加工。为防止内凹角处纤维布在粘结时容易剥离或扯起,可采用修补胶泥修补成圆角,圆角半径R应满足规范要求。 对于棱形柱或尖锐外凸角结构,在尖角处的纤维会有较大的应力集中,容易使碳纤维折断,因此必须进行处理。可用研磨机将棱角修饰成半径R的弧形。用修补胶做表面修饰,用弧形量具检测,保证修饰角半径R满足规范要求(特种结构按相关规范要求)。

铝合金热处理工艺

铝合金热处理工艺 铝合金热处理原理 铝合金铸件的热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间以一定的速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。 3.1.1铝合金热处理特点 众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。 3.1.2铝合金时效强化原理 铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。 铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。 硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。 沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度-温度关系,可用铝铜系的Al-4Cu合金说明合金时效的组成和结构的变化。图3-1铝铜系富铝部分的二元相图,在548℃进行共晶转变L→α+θ(Al2Cu)。铜在α相中的极限溶解度5.65%(548℃),随着温度的下降,固溶度急剧减小,室温下约为0.05%。 在时效热处理过程中,该合金组织有以下几个变化过程: 3.1.2.1 形成溶质原子偏聚区-G?P(Ⅰ)区 在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G?P(Ⅰ)区。G?P(Ⅰ)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。 3.1.2.2 G?P区有序化-形成G?P(Ⅱ)区 随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G?P(Ⅱ)区。它与基体α仍保持共格关系,但尺寸较G?P(Ⅰ)区大。它可视为中间过渡相,常用θ”表示。它比G?P(Ⅰ)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。 3.1.2.3形成过渡相θ′ 随着时效过程的进一步发展,铜原子在G?P(Ⅱ)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基体的共格畸变减弱,对位错运动的阻碍作用亦减小,表现在合金性能上硬度开始下降。由此可见,共格畸变的存在是造成合金时

扩散性铝化物涂层附制备工艺

扩散性铝化物涂层及制备工艺 高温铝化物扩散涂层是在20世纪50年代发展起来的,到目前仍被广泛应用,并占整个高温防护涂层的90%。制备铝化物涂层的扩散渗铝工艺成熟,方法多样化。在镍基合金上应用最广的渗铝方法有:固体粉末渗铝,料浆法渗铝。下面简要介绍固体粉末渗铝、料浆渗铝、气相渗铝三种工艺的原理。 1固体粉末渗铝[11] 在耐热钢容器中,将样品包装于扩散剂之中,渗剂由金属铝粉末或富Al的FeAl合金粉末,活化物质(如卤族化合物)及填料(氧化铝)混合组成,用氢或氢气作保护气体,按规定的时间进行热扩散处理。 以钢的渗铝为例来说明渗铝的原理。渗铝过程中发生如下系列反应: 2NH4Cl=2HCl+N2+3H2 6HCl+2Al=2AlCl3+3H2 Fe+AlCl3=FeC13+[Al] 即在高温下,NH4Cl分解释放出HCl气体、HCl和铝粉或FeAl粉中的铝反应形成气态AlCl3。AlCl3扩散向渗件表面,并和基体元素铁反应,铝原子被置换出来.反应式在通常情况下几乎不会发生,但在金属表面有催渗剂的条件是有可能发生的。 一般常见的渗铝温度为850℃~1050℃。温度太低,渗铝速度会急剧下降;温度太高,则渗铝件的晶粒急剧长大而使材料的机械性能变差。 渗铝层的厚度可通过调整渗铝时间和温度来控制。但是,为获得较厚的渗层,延长渗铝时间远没有提高温度那样效果显著,因为在保温一定时间后,合金表面的铝己达到饱和状态,此后渗铝层的厚度将完全取决于铝的扩散速度,即使再延长时间,渗铝层厚度也不会有很大的增加[12]。 固体粉末渗铝的优点是:设备简单,操作方便,特别适用于机械的零部件;其缺点是:渗剂容易被氧化,工件尺寸受限制,对工件表面粗糙度有一定影响。2料桨法渗铝[13][14] 料浆法(slurry process)将渗铝剂和粘结剂配制成料浆,涂在工件表面,烘干后在真空或氢气保护下进行高温扩散处理。高温扩散处理温度一般在1000℃~1200℃。用铝活度高的料浆得到向里扩散型涂层,铝活度低时得到向外扩散型 1 / 4

什么是碳纤维布

什么是碳纤维布 碳纤维布(Carbon)又称碳素纤维布,碳纤布,碳布,碳纤维织物,碳纤维带,碳纤维片材(预浸布)等。 一、按碳纤维原丝不同主要可以分为:1,PAN基碳纤维布(市场上90%以上为该种碳纤维布);2,黏胶基碳纤维布;3,沥青基碳纤维布。 二、按碳纤维规格不同主要可以分为:1,1K碳纤维布;2,3K碳纤维布,3,6K 碳纤维布;4,12K碳纤维布;5,24K及以上大丝束碳纤维布 三、按碳纤维炭化不同主要可以分为:1,石墨化碳纤维布,可以耐2000--3000度高温;2,碳纤维布,可以耐1000度左右高温,3,预氧化碳纤维布,可以耐200--300度高温。 四、按织造方式的不同主要可以分为: 1、机织碳纤维布,主要有:平纹布,斜纹布,缎纹布,单向布等。 2、针织碳纤维布,主要有:经编布,纬编布,圆机布(套管),横机布(罗纹布)等。 3、编织碳纤维布,主要有:套管,盘根,编织带,二维布,三维布,立体编织布等。 4、碳纤维预浸布,主要有:干法预浸布;湿法预浸布;单向预浸布;预浸带;无托 布;有托布等。 5、碳纤维无纺布,非织造布,即碳纤维毡,碳毡,包括短切毡,连续毡,表面毡,针 刺毡,缝合毡等。 利用精炼油中的单体,在高温下把高强度聚丙烯腈纤维予以碳化后所生成的高纯度碳结晶纤维就是碳纤维,由于组成碳纤维的碳原子结晶体特性,它具有非常高的强度。但是,碳纤维通常不被单纯使用,它与环氧树脂等材料形成碳纤维复合材。 碳纤维布使用方法: 1、航空航天国防领域的碳纤维布一般是特制的军用牌号的1K,3K碳纤维布,平纹布为主,其特点是编制精细,强度高,一般和特制树脂配合使用; 2、体育娱乐器材领域如钓具,鱼杆,高尔夫球杆,一般是把碳纤维布做成各种各样的预浸布,非织造布为主,然后使用; 3、工业领域的碳纤维布用于如箱包、制鞋、汽车配件、摩托车配件,也是把碳纤维布做成各种预浸布,以编织布配合环氧树脂为主。其中土木建筑加固用的单向碳纤维布和配套环氧树脂使用。其用途之一:土木建筑,桥梁、隧道、混凝土结构抗震、加固、补强材料:碳纤维布用于结构构件的抗拉、抗剪和抗震加固,该材料与配套胶粘剂共同使用,可构成完整的性能卓越的碳纤维布材增强体系。该体系适用于梁、柱、板、隧道、圆形、弧等。2008.5.12地震之后,碳纤维布在土木建筑,桥梁、隧道、混凝土结构抗震、修复、加固、补强方面的应用得到大力,发展迅速,国产碳纤维布已经完全可以替代进口高价的碳纤维布。

桥梁碳纤维布加固施工方案

碳纤维布施工技术指南 一、总则 1、碳纤维布简介 碳纤维增强塑性是碳纤维材料通过一定的制作工艺与特定的树脂复合而成,其力学特点是应力应变量完全线性弹性,不存在屈服点和塑性区。碳纤维材料具有优异的物理力学性能,加固混凝土构件所用的碳纤维布是有碳纤维长丝组成的柔软片材,具有强度高,自身轻,施工方便、快捷、应用范围广等,用于建筑结构加固的碳纤维具有优良的力学能力,其抗拉力度一般为建筑钢材的几十倍,但是,碳纤维材料织成碳纤维布后,其中的各碳纤维丝很难完全工程工作,在承受较低的荷载时,一部分应力水平较高的碳纤维丝首先达到其抗拉强度并退出工作状态,以此类推,各碳纤维丝逐渐断裂,直至整体破坏,而使用粘结剂后,各碳纤维丝能很好的共同工作,大大提高碳纤维抗拉强度,故碳纤维加固首先必须使用碳纤维布中的碳纤维丝能共同工作,因此胶黏剂对碳纤维布起到的加固作用是比较关键的,它既能确保各碳纤维丝共同工作,又能同时确保碳纤维布与结构共同工作,从而达到加固目的。因此在桥梁工程有广泛发展的前景。 2、碳纤维布加固的作用 作用是纤维材料在加固结构中承担拉应力,改善构件的受力状态,限制裂缝的产生和发展。 3、碳纤维布的应用范围和时机 当混凝土构造因为抗弯承载力不行,选用碳纤维布进行加固时,加固构造的损坏形状一方面取决于原构造的配筋状况,另一方面取决于碳纤维的用量。现假定原构造为适筋构件,则加固构造的损坏形状可分为如下三种状况。 ⑴碳纤维用量较少。损坏时受压区边际混凝土压碎,受拉钢筋屈从,碳纤维能够到达较高的拉应变。 ⑵碳纤维用量适中。损坏时受压区边际混凝土压碎,受拉钢筋屈从,碳纤维可到达某一中等拉应变。 ⑶碳纤维用量较多。损坏时受压区边际混凝土压碎,受拉钢筋屈从,碳纤维应变很低。

影响6系铝合金机械性能的重要因素

影响6系铝合金机械性能的重要因素 6063、6063A、6A02、6061铝合金多用于生产建筑材、工业材、家俱材、梯具材。多数客户对特殊用途的产品抗拉强度、延伸率的要求越来越高,因此根据多年来的实践经验对常用的6系铝合金如何获得更好的机械性能做如下分析: 1)铝合金锭坯的化学成分:6063、6063A是以Mg2Si为强化相的合金,所以首先应确定强化相的含量,一般当Mg2Si的量在0.71%----1.03%范围内时,其抗拉强度随Mg2Si量的增加近似线性的提高,但变形抗力也跟着提高,加工变得困难,但Mg2Si量小于0.72%时,对于挤压系数偏小(小于或等于30)的制品,抗拉强度值有达不到标准要求的危险,当Mg2Si量超过0.9%时,合金的塑性有下降趋势。确定了强化相的量后再确定Mg的含量,Mg是易燃金属,熔炼操作时会有烧损,在确定Mg的控制范围时要考虑烧损所带来的误差,但不能放得太宽,以免合金性能失控,Mg的波动范围应在0.04%之内,T5型材取0.47--0.53%,T6型材取0.57----0.60%。当Mg的范围确定后,可用Mg/Si比来确定硅,Si可与其它元素形成化合物如:AlFeSi,所以Si应在原基础上补约0.09---0.13%,Mg/Si应控制在1.18----1.32之间。6061、6A02合金其Mg2Si量应控制在1.4%左右,为加强其延伸率,Cu的含量约为0.2---0.4%。其维氏硬度大于或等于15 2)铝合金锭坯均匀化:均匀化处理可改善锭坯的塑性,提高其工艺性能,改善制品组织异向性能,消除金属内部的残余应力。(无条件公司可不进行均匀化处理) 3)铝型材挤压温度和速度:6063、6063A其淬火温度不得低于500度,所以挤压温度一般控制在470---490度,6061、6A02其交货状态一般为T6,淬火温度比6063略高约510----520度。具体挤压温度和挤压速度应根据型材壁厚、挤压特性和模具状况等因素来适当调整,坚持高温低速、低温高速的挤压原则。但其出口温度不得低于产品淬火温度。 4)铝型材淬火效果:淬火是为了将在高温下固溶于基体金属中的Mg2Si在出模后经快速冷却到室温而被保留下来,冷却速度常和强化相含量成正比,因其淬火敏感性增高,在Mg2Si 为0.8%的6063合金,从454度冷却至204度的临界冷却温度范围内,最小冷却速度为38度/分钟,而含Mg2Si为1.4%的6061合金在上述临界冷却温度范围的冷却速度不应小于65度/分钟,因此,6063可以用风冷淬火,6061必须用水冷淬火。均匀良好的淬火效果可有效的提高产品机械性能。 5)铝型材人工时效:6063、6061合金型材在刚挤出来的状态下的抗拉强度等于或大于140兆帕,在快速冷却到室温后8小时内加以人工时效可以使其抗拉强度增强至240兆帕以上,人工时效一般采用190---200度保温1--2小时。6061、6A02一般采用180---190度保温4---6时。

【资料】几种常用铝合金的性能

【资料】几种常用铝合金的性能 2024 6061 6063 7075 变形铝合金状态表示法 https://www.360docs.net/doc/d98569788.html,/bbs/thread-4642-1-1.html 2024 (LY12铝合金)通常供应状态为T351 2024(LY12)为铝-铜-镁系中的典型硬铝合金,其成份比较合理,综合性能较好。很多国家都生产这个合金,是硬铝中用量最大的。该合金的特点是:强度高,有一定的耐热性,可用作150°C以下的工作零件。温度高于125°C,2024合金的强度比7075合金的还高。热状态、退火和新淬火状态下成形性能都比较好,热处理强化效果显著,但热处理工艺要求严格。抗蚀性较差,但用纯铝包覆可以得到有效保护;焊接时易产生裂纹,但采用特殊工艺可以焊接,也可以铆接。广泛用于飞机结构、铆钉、卡车轮毂、螺旋桨元件及其他种种结构件。 LY12合金铝的化学成份 n 2024的合金元素为铜,被称为硬铝,具有很高的强度和良好的切削加工性能,但耐腐蚀性

较差。广泛应用于飞机结构(蒙皮、骨架、肋梁、隔框等)、铆钉、导弹构件、卡车轮毂、 补充: 2024疲劳强度较好。 6061 (LD30铝合金)通常供应状态为 T6 6061合金中的主要合金元素为镁与硅,具有中等强度、良好的抗腐蚀性、可焊接性,氧化效果较好。广泛应用于要求有一定强度和抗蚀性高的各种工业结构件,如制造卡车、塔式建

6063 (LD31铝合金)就是建筑上常用的铝型材 7075

固溶处理后塑性好,热处理强化效果特别好,在150度以下有高的强度,并且有特别好的低温强度,焊接性能差,有应力腐蚀开裂倾向,双级时效可提高抗scc性能。7075的主要合金元素为锌,强度很高,具有良好的机械性能及阳极反应。主要用于制造飞机结构及其他要求强度高、抗腐蚀性能强的高应力结构件,如飞机上、下翼面壁板、桁条等。固溶处理后塑性好,热处理强化效果好,在150度以下有良好的强度,并且有特别好的低温强度,焊接性能差,有应力腐蚀开裂倾向。还广泛应用于模具加工、机械设备、工装

碳纤维布加固方案

施工组织设计(专项施工方案)报审表 工程名称:大目湾新城规划4路道路工程I标段编号:A2 致:宁波至高建设监理有限公司(监理单位) 我方已根据施工合同的有关规定完成了象山大目湾新城规划4路道路工程I标段1号桥预制板梁砼表面防水剂处理工程专项施工方案的编制,并经我单位上级技术负责人审查批准,请予以审查。 附件:1号桥防水剂专项施工方案 承包单位(章): _______________ 项目经理:_________________ 日期:___________________ 监理单位审查意见: 项目监理机构(章): 专业/总监理工程师: 日期:________________ 建设单位审核意见: 建设单位(章): 业主代表:_____________ 日期: 本表一式三份,经项目监理机构审核后,建设单位、监理单位、承包单位各存一

份。 大目湾新城规划4路道路工程I标段1号桥 预制板梁 防 水 剂 专 项 施 工 方 案 编制人_______________ 职务(称)____________________________ 审核人_______________ 职务(称)____________________________ 批准人_______________ 职务(称)____________________________ 批准部门(章)浙江建安实业集团股份有限公司 ____________ 编制日期_______________ 二0—四年四月二十五日_______________ 规划4路H标段1号桥为三跨3X 10m预应力砼简支梁桥,中心桩号 DK1+296正交。桥台采用重力式U形桥台,基础为双排①80cm的钻孔灌注桩接承台结构。桥墩为桩接盖梁式,采用单排①100cm的钻孔灌注桩基础+①80cm 立柱。桥梁上部结构采用10m的预应力砼空心板梁,板梁高度60cm。板梁采用C50砼,台帽、桥墩盖梁、

铝合金热处理工艺

铝合金热处理工艺 作者:中国铝板带箔信息中心日期:2006-12-16 点击数:284 3.1铝合金热处理原理 铝合金铸件的热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间并以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。 3.1.1铝合金热处理特点 众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4,6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100,200?)内发生,称人工时效。 3.1.2铝合金时效强化原理 铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。 铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的

数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。 沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度,温度关系,可用铝铜系的Al,4Cu合金说明合金时效的组成和结构的变化。图3,1铝铜系富铝部分的二元相图,在548?进行共晶转变L?α,θ(Al2Cu)。铜在α相中的极限溶解度5.65,(548?),随着温度的下降,固溶度急剧减小,室温下约为0.05,。 在时效热处理过程中,该合金组织有以下几个变化过程: 3.1.2.1 形成溶质原子偏聚区,G?P(?)区 在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G?P(?)区。G?P(?)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。 3.1.2.2 G?P区有序化,形成G?P(?)区 随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G?P(?)区。它与基体α仍保持共格关系,但尺寸较G?P(?)区大。它可视为中间过渡相,常用θ”表示。它比G?P(?)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。 3.1.2.3形成过渡相θ′ 随着时效过程的进一步发展,铜原子在G?P(?)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基

机房碳纤维布承重加固方案

机房碳纤维布承重加固方法 碳纤维,是一种含碳量在95%以上的高强度、高模量纤维的新型纤维材料。它是由片状石墨微晶等有机纤维沿纤维轴向方向堆砌而成,经碳化及石墨化处理而得到的微晶石墨材料。碳纤维“外柔内刚”,质量比金属铝轻,但强度却高于钢铁,并且具有耐腐蚀、高模量的特性,在国防军工和民用方面都是重要材料。 碳纤维布加固适用于房屋建筑和一般构筑物(如:烟囱,砼结构加固;铁路工程,港口工程和水利水电等工程中的砼结构加固和石切体结构搞震加固。 一、某案例简介 1、某案例概况 该工程位于*****,该楼为框架结构现将其由写字楼改造成通讯机房,功能发生改变荷载发生变化,因而采用碳纤维布进行加固来提高该楼承载力。此次加固所用材料采用碳纤维布,碳布用量约为12000平米以及相应数量的碳布浸渍胶,加固效果良好。 上述所用产品均通过安全性鉴定检测检验达标的,安全性鉴定是指按照 GB50728-2011《工程结构加固材料安全性鉴定技术规范》要求,由国家有关主管部门批准的具备相应资格的检验、鉴定机构来为业主方提供选用加固材料的重要依据之一。 2、某案例信息 业主单位:某机房; 主要结构加固材料:碳纤维布12000平米及碳布浸渍胶; 二、机房加固原因 1、原有建筑物的功化 项目概况中提到该楼原为写字楼属于办公性质,现将其改造为通讯机房。荷载明显增加,现对梁、板使用碳纤维进行加固提高抗拉强度,从而达到该楼功能转换的荷载条件,现根据设计院设计要求先采用碳布加固方法进行加固。 三、机房加固方案 1、设计方案 梁及板构件表面通过粘结碳纤维布方式可以增强梁和板底部的抗拉强度,同样对于梁或

板存在的裂缝也能避免进一步恶化,来达到增强该结构的承载力的目的。 根据《混凝土结构加固设计规范》( GB 50367-2013),我们可以通过公式计算得到正截面的承载力。

碳纤维布编织技术

碳纤维布编织技术 编织是一种基本的纺织工艺,能够使两条以上纱线在斜向或纵向互相交织形成整体结构的预成形体。这种工艺通常能够制造出复杂形状的预成形体,但其尺寸受设备和纱线尺寸的限制。在航空工业,目前该技术主要集中在编织的设备、生产和几何分析上,最终的目的是实现完全自动化生产,并将设备和工艺与CAD/CAM 进行集成。该工艺技术一般分为两类,一类的二维编织工艺,另一类是三维编织工艺。

传统的二维编织工艺能用于制造复杂的管状、凹陷或平面零件的预成形体,它与其它纺织技术相比成本相对较低。它的研究主要集中在研发自动化编织机来减少生产成本和扩大应用范围。它的关键技术包括质量控制、纤维方向和分布、芯轴设计等。它在航空工业的应用包括制造飞机进气道和机身J型隔框。该技术通常与RTM和RFI技术结合使用,另外也可以与挤压成形和模压成形联合使用。其应用水平在洛克希德?马丁公司生产F-35战斗机进气道制造中最能体现其先进性,加强筋与进气道壳体是整体结构,减少了95%的紧固件,提高了气动性能和信号特征,并简化了装配工艺。为了克服二维编织厚度方面强度低的问题,开发了三维编织技术,为制造无余量预成形体提供了可能。但是该技术同样受到设备尺寸限制。 针织 针织用于复合材料的增强结构始于上世纪90年代。由于它的方向强度、冲击抗力较机织复合材料好,且针织物的线圈结构有很大的可伸长性,易于制造非承力的复杂形状构件。目前国外已生产了先进的工业针织机,能够快速生产复杂的近无余量结构,而且材料浪费少。用这种方法制造的预成形体可以加入定向纤维有选择地用于某些部位增强结构的机械性能。另外,这种线圈的针织结构在受到外力时很容易变形,因此适于在复合材料上成形孔,比钻孔具有很大优势。但是它较低的机械性能也影响了它的广泛应用。 经编

粘贴碳纤维布加固施工方案

编号:SM-ZD-28434 粘贴碳纤维布加固施工方 案 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

粘贴碳纤维布加固施工方案 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 施工部位:三支队八中队营房楼板加固 施工方法: 1、放线 在混凝土粘贴碳纤维的位置测放打磨控制线,打磨控制线比实际粘贴位置线每边宽5cm。待打磨工作完成后补加粘贴碳纤维的位置线。 2、混凝土面层的清理打磨 用角磨机和圆磨片、钢丝刷在砼面上需粘贴碳纤维的部位进行打磨,磨去砼表面浮层,直至打磨出坚实面,影响粘贴的钢筋头和砼凸起处要用砂轮切掉,混凝土表面层出现剥落、空鼓、蜂窝、腐蚀等劣化现象部位应予以剔除,用指定材料修补,裂缝部位应首先进行封闭处理。用强力吹风机将打磨过的砼面吹干净,做到砼表面清洁、干燥、甚至无粉尘。构件转角部位需打磨成圆角,其半斤不小于20mm。

3、找平 按照使用说明配置找平材料进行找平工作,用小铲刀将配置好的找平材料刮在砼表面凹陷部位,刮严刮实,对于局部较高的突起部分,应用砂轮或磨片磨平,构件表面的小孔、内角用找平材料刮后,表面仍存在的凹凸糙纹用砂纸打磨平整。找平树脂的配制要严格按照使用说明,混合后要充分搅拌均匀,TE环氧腻子的配制比例为,主剂:硬化剂=2:1(重量比) 4、粘贴碳纤维 4.1碳纤维的裁剪 根据设计尺寸将碳纤维布裁剪成行,碳纤维为单向受力材料,顺着纤维的方向为受力方向,裁剪时要特别注意方向,切忌将纤维斜切断。 4.2配制粘贴树脂 按照使用说明配制粘贴树脂,混合后人工充分搅拌均匀。粘贴树脂应随用随配,每次配制量应在40分钟内用完。 4.3碳纤维的粘贴 用滚筒或刷子将配制好的粘贴树脂均匀涂刷到粘贴部

铝合金特性

铝合金铸品轻巧,耐高温,是众多合金铸品中的姣姣者。它刚硬,有良好的伸缩性,抗腐蚀和散热能力,适合各种环境需求。 该文本详尽地介绍了铝合金的所有性质和功用。 表格中显示的是铝合金的性质,其他有关文章可在我们的English language web page(英文网页),和相关的PDF(便携文件格式)中查询, 每一种铝合金产品都有其独到的特性,而我们不断创新的Material Selector(材质选择)将帮你选择最适合你需求的产品。 铝合金特性: ? 耐高温操作 ? 超强防腐蚀 ? 轻便 ? 高硬度及良好的伸缩性 ? 不易变形,耐高压 ? 精良的EMI过滤性 ? 传热性高 ? 导电性高 ? 高品质成品 ? 环保型,可循环使用

参照指数: 1=最高指数, 5=最低指数 A抗高温分裂.合金抵抗温度改变,热胀冷缩时产生的压力的能力 B冲模容量.液体金属流入模具及注入细小部件的能力 C机械加工与质量.切割,切割片特质,成品质量和工具寿命的综合评定 D电镀加工与质量.在正常操作下,模铸接受和保持电镀的能力 E刨光加工与质量.在正常刨光操作下,刨光难易程度,速度,成品质量的综合评定 F 防拈连冲模.液体金属注入模具后,不与模具表面拈连。以混合金属的1%为准 G防腐蚀. 标准盐酸测试下的抗腐蚀能力 H外观. 硫磺酸电解质表层的色泽,明暗度和谐统一 I 防氧化保护层.保护层和合金的基本抗腐蚀力的综合评定 J 高温环境下的伸缩性.在测试温度下延长加热时间,温度高达260°C(500°F)时伸缩性的评定 A380型铝合金 A380型铝合金是最普遍的专用铝合金,因为它集合了易铸模,便于机械加工,热传导好等特性。变移性,承压力,和抗高温分裂性都很强虽然A380型一直被认为便于机械加工,但由于较高的硅含量,使其稍显粗糙。它被广泛地运用于各种产品,包括电机设备的底盘,引擎支架,变速箱,家具,发电机和手工工具。

不锈钢渗铝

不锈钢渗铝 文章来源:钢铁E站通https://www.360docs.net/doc/d98569788.html,/dict/detail.php?id=451 不锈钢简介: 不锈钢是指在大气和弱腐蚀介质中有一定抗蚀能力的钢。不锈钢的碳含量为 0.08%-0.95%,其主要加入元素为Cr、Ni,辅加元素为Ti、Mo、Nb、Cu、Mn、N等。其中Cr是决定不锈钢抗腐蚀性能好坏的主要元素之一。Cr可与氧形成致密的Cr2O3 的保护膜,同时还能提高铁素体的电极电位。Cr是缩小γ区的元素,当Cr含量较高时 能使钢呈单一的铁素体组织,所以,Cr是不锈钢中的必要元素。Ni是扩大γ区的元素,当钢中Ni含量达到一定值时,可使钢在常温下呈单相奥氏体组织,从而提高抗电化学腐蚀能力。Ti、Nb是强碳化物形成元素,会与碳形成碳化物,使Cr留在基体中,避免晶界贫铬,从而减轻钢的晶间腐蚀倾向。Mo、Cu的加入可提高钢在非氧化性酸中的耐蚀性。Mn、N也是扩大γ区的元素,用来取代Ni以降低成本。 按正火状态的组织分类,通常可将不锈钢分为马氏体不锈钢、铁素体不锈钢、奥 氏体不锈钢三类。其中马氏体不锈钢只有Cr进行单一的合金化,在非氧化介质中耐蚀性很低;铁素体不锈钢含碳量一般小于0.25%,Cr含量为13%-30%,韧性低、脆性大;奥氏体不锈钢主要含有Cr、Ni合金元素,克服了马氏体不锈钢和铁素体不锈钢的缺点而综合性能较好。 随着石油、化工、有机合成工业以及其他大量耗能工业的迅速发展,要求不断提 高设备的热效率,余热的回收利用以及使用劣质燃料使得设备的结构和材质的工作条 件变得十分苛刻,特别是石油化工有机合成工业中的反应塔,热交换器及管道均处于 高温的硫化氢和二氧化硫的气氛中,要求所用的材料具有足够的高温强度外,还要求 良好的耐蚀性和加工性。 在燃烧的气体中不锈钢设备低温产生的腐蚀大多为晶间腐蚀和应力腐蚀,在高温(700℃-800℃)下使用时,其表面形成的厚氧化膜容易剥落,易于生成硫化物,其中所含的镍元素易与硫化氢等硫化物反应从而形成硫化镍,由于硫化镍的共晶温度低, 从而加剧了腐蚀过程。不含镍的其它铁素体不锈钢,虽然耐腐蚀性和高温强度较好, 但其加工性差,这使得其使用范围受到限制。

相关文档
最新文档