2011-2019高考数学不等式选讲分类汇编

2011-2019高考数学不等式选讲分类汇编
2011-2019高考数学不等式选讲分类汇编

2011-2019新课标《不等式选讲》分类汇编

1. 【2011年新课标】设函数()3f x x a x =-+,其中0a >。 (1)当1a =时,求不等式()32f x x ≥+的解集 (2)若不等式()0f x ≤的解集为{}|1

x x ≤- ,求a 的值。

【解析】(1)当1a =时,()32f x x ≥+可化为|1|2x -≥。

由此可得 3x ≥或1x ≤-,故不等式()32f x x ≥+的解集为{|3x x ≥或1}x ≤-。 (2)由()0f x ≤的 30x a x -+≤此不等式化为不等式组

30x a x a x ≥??

-+≤?或30x a

a x x ≤??-+≤?

即 4x a a x ≥???≤?? 或2

x a a a ≤???≤-?? 因为0a >,所以不等式组的解集为{}|2

a

x x ≤- 由题设可得2

a

-

= 1-,故2a =

2. 【2012新课标】 已知函数()2f x x a x =++- (1)当3a =-时,求不等式()3f x ≥的解集;

(2)若()4f x x ≤-的解集包含[1,2],求a 的取值范围。 【解析】(1)当3a =-时,()3323f x x x ≥?-+-≥ 2323x x x ≤???

-+-≥?或23323x x x <

x x x ≥?

??-+-≥?1x ?≤或4x ≥

(2)原命题()4f x x ?≤-在[1,2]上恒成立

24x a x x ?++-≤-在[1,2]上恒成立 22x a x ?--≤≤-在[1,2]上恒成立 30a ?-≤≤

3. 【2013新课标1】已知函数f (x )=|2x -1|+|2x +a |,g(x )=x +3. (1)当a =-2时,求不等式f (x )<g(x )的解集;

(2)设a >-1,且当x ∈[-a 2,1

2)时,f (x )≤g(x ),求a 的取值范围.

【解析】(1)当a =-2时,不等式()f x <()g x 化为|21||22|30x x x -+---<,

设函数y =|21||22|3x x x -+---,y =15, 212, 1236, 1x x x x x x ?

-

?

--≤≤??

->???

其图像如图所示,从图像可知,当且仅当(0,2)x ∈时,y <0, ∴原不等式解集是{|02}x x <<. (2)当x ∈[2a -

,1

2

]时,()f x =1a +,不等式()f x ≤()g x 化为13a x +≤+, ∴2x a ≥-对x ∈[2a -

,12]都成立,故2a -≥2a -,即a ≤43

, ∴a 的取值范围为(-1,4

3

].

4. 【2013新课标2】设a ,b ,c 均为正数,且a +b +c =1,证明: (1)ab +bc +ac ≤13

(2)222

1a b c b c a

++≥. (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca , 得a 2+b 2+c 2≥ab +bc +ca .

由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1. 所以3(ab +bc +ca )≤1,即ab +bc +ca ≤1

3

.

(2)因为22a b a b +≥,22b c b c +≥,2

2c a c a

+≥,故222()a b c a b c b c a +++++≥2(a +b +c ), 即222a b c b c a ++≥a +b +c . 所以222

a b c b c a

++≥1.

5. 【2014新课标1】若a >0,b >0,且+=.

(1)求a 3+b 3的最小值;

(2)是否存在a ,b ,使得2a+3b=6?并说明理由 【解析】:(1)∵a >0,b >0,且+=,

=+≥2

, ∴ab≥2, 当且仅当a=b=时取等号.

∵a 3+b 3 ≥2

≥2=4

,当且仅当a=b=时取等号,

∴a 3+b 3的最小值为4

(2)由(1)可知,2a+3b≥2=2

≥4

>6,

故不存在a ,b ,使得2a+3b=6成立.

6. 【2014新课标2】设函数()f x =1(0)x x a a a

++->

(1)证明:()f x ≥2;

(2)若()35f <,求a 的取值范围. 【解析】

(1)由0>a ,有21

|)(1||||1|)(≥+=--+≥-++=a

a a x a x a x a x x f ,∴2)(≥x f (2)|3||1

3|)3(a a

f -++

= 当3>a 时,a a f 1)3(+

=,由5)3(

2153+<

6)3(+

-=,由5)3(

32

51≤<+a 综上,a 的取值范围是)2

215,251(++。

7. 【2015新课标1】已知函数||2|1|)(a x x x f --+=,a>0. (1)当1=a 时,求不等式1)(>x f 的解集;

(2)若)(x f 的图像与x 轴围成的三角形面积大于6,求a 的取值范围. 【解析】(1)当1a =时,1)(>x f 化为01|1|2|1|>---+x x . 当1x ≤-时,不等式化为40x ->,无解;

当11x -<<时,不等式化为320x ->,解得13

2<,解得12x ≤<. 所以1)(>x f 的解集为}23

2|{<

(2)由题设可得,()12,1,312,1,12,,x a x f x x a x a x a x a --<-??=+--≤≤??-++>?

所以函数)(x f 的图像与x 轴围成的三角形的三个顶点分别为)0,3

1

2(

-a A ,

)0,12(+a B ,)1,(+a a C ,ABC ?的面积为2)1(3

2

+a .

由题设得6)1(3

22>+a ,故2a >,所以a 的取值范围为),2(+∞.

8. 【2015新课标2】设,,,a b c d 均为正数,且a b c d +=+,证明: (1)若ab cd >

>

(2

>是a b c d -<-的充要条件.

【解析】(1)因为ab b a b a 2)(2++=+,cd d c d c 2)(2++=+,有题设a b c d +=+,

ab cd >,得22)()(d c b a +>+

>+(2)若a b c d -<-,则22)()(d c b a -<-,即cd d c ab b a 4)(4)(22-+<-+,因为

a b c d +=+,所以ab cd >

+>+

+>22)()(d c b a +>+,即ab cd >,于是

cd d c ab b a 4)(4)(22-+<-+,即22)()(d c b a -<-,因此a b c d -<-,

+>+是a b c d -<-的充要条件。

9. 【2016新课标1】已知函数()123f x x x =+--. (1)在答题卡第(24)题图中画出y= f (x )的图像; (2)求不等式∣f (x )∣﹥1的解集。 【解析】

(1)4,13()12332,1234,2

x x f x x x x x x x ?

?-<-?

?

=+--=--≤

?

-+≥??

作出y= f (x )的图像如右图所示;

(2)①当1x <-时,()41f x x =->,解得3x <或5x >1x ∴<- ②当312x -≤<时,()321f x x =->,解得13x <或1x >,113x ∴-≤<或3

12

x << ③当32x ≥

时,()41f x x =-+>,解得3x <或5x >3

32

x ∴≤<或5x > 综上可知,不等式∣f (x )∣﹥1的解集为1

(,)(1,3)(5,)3

-∞??+∞.

10. 【2016新课标2】已知函数()11

22

f x x x =-++,M 为不等式()2f x <的解集. (1)求M ;

(2)证明:当M b a ∈,时,|1|||ab b a +<+.

【解析】⑴当12x <-时,()11222f x x x x =---=-,若1

12

x -<<-;

当1

122x -≤≤时,()111222

f x x x =-++=<恒成立; 当1

2

x >

时,()2f x x =,若()2f x <,112x <<.

综上可得,{}|11M x x =-<<.

⑵当()11a b ∈-,

,时,有()()22110a b -->, 即22221a b a b +>+,则2222212a b ab a ab b +++>++,则()()22

1ab a b +>+, 即1a b ab +<+,证毕.

11. 【2016新课标3】已知函数f (x )=|2x -a |+a (1)当a =2时,求不等式f (x )≤6的解集;

(2)设函数g (x )=|2x -1|,当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围。 【解析】(1)当a =2时,f (x )=|2x -2|+2

解不等式|2x -2|+2≤6得-1≤x ≤3,因此f (x )≤6的解集为{x |-1≤x ≤3} (2)当x ∈R 时,

f (x )+

g (x )=|2x -a |+a +|1-2x |≥|2x -a +1-2x |+a =|1-a |+a

当x =1

2时,等号成立,∴当x ∈R 时,f (x )+g (x )≥3等价于|1-a |+a ≥3 ①

当a ≤1时,①等价于1-a +a ≥3,无解 当a >1时,①等价于a -1+a ≥3,解得a ≥2 ∴a 的取值范围是[2,+∞)

12. 【2017新课标1】已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集;

(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围. 【解析】

(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.① 当1x <-时,①式化为2340x x --≤,无解;

当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;

当1x >时,①式化为240x x +-≤,从而112

x -+<≤

.

所以()()f x g x ≥的解集为{|1x x -<≤. (2)当[1,1]x ∈-时,()2g x =.

所以()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.

又()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,所以(1)2f -≥且(1)2f ≥, 得11a -≤≤,所以a 的取值范围为[1,1]-.

13. 【2017新课标2】已知a >0,b >0,a 3+b 3=2,证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2. 【解析】

(1)由柯西不等式得:(a+b )(a 5+b 5)≥(+

)2=(a 3+b 3)2≥4,

当且仅当

=

,即a=b=1时取等号,

(2)∵a 3+b 3=2,∴(a+b )(a 2﹣ab+b 2)=2,∴(a+b )[(a+b )2﹣3ab]=2, ∴(a+b )3﹣3ab (a+b )=2,∴

=ab , 由均值不等式可得:=ab≤(

)2,

∴(a+b)3-2≤,∴(a+b )3≤2,∴a+b≤2,当且仅当a=b=1时等号成立.

14. 【2017新课标3】已知函数()||||f x x x =+1--2. (1)求不等式()f x ≥1的解集;

(2)若不等式()f x x x m 2≥-+的解集非空,求m 的取值范围.

【解析】⑴()|1||2|f x x x =+--可等价为()3,1

21,123,2--??

=--<

x f x x x x ≤≥.由()1f x ≥可得:

①当1-x ≤时显然不满足题意;②当12x -<<时,211-x ≥,解得1x ≥; ③当2x ≥时,()31=f x ≥恒成立.综上,()1f x ≥的解集为{}|1x x ≥.

⑵不等式()2-+f x x x m ≥等价为()2

-+f x x x m ≥,

令()()2

g x f x x x =-+,则()g x m ≥解集非空只需要()max ????g x m ≥.

而()22

23,1

31,123,2?-+--?=-+--<

x x x g x x x x x x x ≤≥.

①当1-x ≤时,()()max 13115g x g =-=---=-????; ②当12x -<<时,()2

max

3335312224g x g ????

==-+?-=?? ? ???????

③当2x ≥时,()()2

max 22231g x g ==-++=????。 综上,()max 54g x =

????,故5

4

m ≤.

(1)当1a =时,求不等式()1f x >的解集;

(2)若()01x ∈,时不等式()f x x >成立,求a 的取值范围. 【解析】

(1)当1a =时,()|1||1|f x x x =+--,即2,1,

()2,11,2, 1.x f x x x x -≤-??

=-<

故不等式()1f x >的解集为1{|}2

x x >.

(2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立. 若0a ≤,则当(0,1)x ∈时|1|1ax -≥; 若0a >,|1|1ax -<的解集为20x a <<,所以2

1a

≥,故02a <≤. 综上,a 的取值范围为(0,2].

16. 【2018新课标2】设函数()5|||2|f x x a x =-+--. (1)当1a =时,求不等式()0f x ≥的解集; (2)若()1f x ≤,求a 的取值范围. 【解析】

(1)当1a =时,24,1,

()2,12,26, 2.x x f x x x x +≤-??

=-<≤??-+>?

可得()0f x ≥的解集为{|23}x x -≤≤. (2)()1f x ≤等价于|||2|4x a x ++-≥.

而|||2||2|x a x a ++-≥+,且当2x =时等号成立.故()1f x ≤等价于|2|4a +≥. 由|2|4a +≥可得6a ≤-或2a ≥,所以a 的取值范围是(,6][2,)-∞-+∞.

(1)画出()y f x =的图像;

(2)当[)0x +∞∈,, ()f x ax b +≤,求a b +的最小值. 【解析】

(1)的图像如图所示.

(2)由(1)知,的图像与轴交点的纵坐标为,且各部分所在直线斜率的最大值为,故当且仅当且时,在成立,因此的最小值为.

18. 【2019新课标1】已知a ,b ,c 为正数,且满足abc =1.证明: (1)

222111

a b c a b c

++≤++;(2)333()()()24a b b c c a +++≥++. 【分析】

(1)利用1abc =将所证不等式可变为证明:222a b c bc ac ab ++≥++,利用基本不等式可证

得()

222

2222a b c ab bc ac ++≥++,从而得到结论;

(2)利用基本不等式可得()()()()()()333

3a b b c c a a b b c c a +++++≥+++,再次利用基本不等式可将式转化为()()()

3

3

3

a b b c c a +++++≥得结论.

13,,21()2,1,23, 1.x x f x x x x x ?

-<-??

?

=+-≤

≥???

()y f x =()y f x =y 233a ≥2b ≥()f x ax b ≤+

[0,)+∞a b +5

【详解】(1) ∵abc =1 1111

11a b c b c a c a b

a b c a b c

??∴

++=++?=++ ???

∵2a 2+b 2+c 2()=a 2+b 2(

)+b 2+c 2()+c 2+a 2()

32ab +2bc +2ac

当且仅当a b c ==时取等号

(

)

22211122a b c a b c ??

∴++≥++ ???

,即:222111a b c a b c ++++≥

(2)

∵a +b (

)3+b +c (

)3+c +a

(

)

3

33a +b ()b +c ()c +a (),当且仅当a b c ==时取等号

又a b +≥

b c +≥

,a c +≥(当且仅当a b c ==时等号同时成立)

()()(

)

333

3a b b c c a ∴+++++≥?=

又1abc = ()()()3

3

3

24a b b c c a ∴+++++≥

【点睛】本题考查利用基本不等式进行不等式的证明问题,考查学生对于基本不等式的变形和应用能力,需要注意的是在利用基本不等式时需注意取等条件能否成立.

19. 【2019新课标2】已知()2()f x x a x x x a =-+--。 (1)当1a =时,求不等式()0f x <的解集; (2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围。 【解析】

(1)当1a =时,22242(2),()12(1)22(12),242(1).x x x f x x x x x x x x x x ?-+≥?

=-+--=-<

所以不等式()0f x <等价于224202x x x ?-+

1x x x ?-+-

解得不等式的

解集为{}

2x x <。

(2)当1a ≥时,由(,1)x ∈-∞,可知()2()(1)0f x a x x =--<恒成立,当1a <时根据条件可知()0f x <不恒成立。所以a 的取值范围是1a ≥。

20. 【2019新课标3】设R z y x ∈,,,且1=++z y x . (1)求222)1()1()1(++++-z y x 的最小值; (2)若3

1

)()1()2(222≥-+-+-a z y x 成立,证明:3-≤a 或1-≥a . 【解析】

(1)根据柯西不等式,4)111(3])1()1()1[(2222=++++-≥?++++-z y x z y x 故3

4

)1()1()1(222≥++++-z y x ,当且仅当111+=+=-z y x , 即35=

x ,31-==z y 时,222)1()1()1(++++-z y x 取最小值3

4 (2)方法一:根据柯西不等式,

2222)12(3])()1()2[(a z y x a z y x -+-+-≥?-+-+-133

1

)2(2=?≥+=a ,

证得3-≤a 或1-≥a .

方法二:令),1,2(a z y x ---=,)1,1,1(=,

12≥--∴a ,证得3-≤a 或1-≥a

2013年全国高考理科数学试题分类汇编16:不等式选讲

2013年全国高考理科数学试题分类汇编16:不等式选讲 一、填空题 1 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))若关于实数x 的不等式 53x x a -++<无解,则实数a 的取值范围是_________ 【答案】(],8-∞ 2 .(2013年高考陕西卷(理))(不等式选做题) 已知a , b , m , n 均为正数, 且a +b =1, mn =2, 则 (am +bn )(bm +an )的最小值为_______. 【答案】2 3 .(2013年高考江西卷(理))(不等式选做题)在实数范围内,不等式211x --≤的解集为_________ 【答案】[]0,4 4 .(2013年高考湖北卷(理))设 ,,x y z R ∈,且满足:2221x y z ++=,23x y z ++=,则x y z ++=_______. 【答案】 二、解答题 5 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))选修4—5;不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明: (Ⅰ)13ab bc ca ++≤; (Ⅱ)222 1a b c b c a ++≥. 【答案】 6 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))选修4-5:不等式选讲 已知函数()f x x a =-,其中1a >.

(I)当=2a 时,求不等式()44f x x ≥=-的解集; (II)已知关于x 的不等式()(){} 222f x a f x +-≤的解集为{}|12x x ≤≤,求a 的值. 【答案】 7 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))不等式选讲:设不等式 *2()x a a N -<∈的解集为A ,且32A ∈,12 A ?. (1)求a 的值; (2)求函数()2f x x a x =++-的最小值. 【答案】解:(Ⅰ)因为32A ∈,且12A ?,所以322a -<,且122 a -≥ 解得1322 a <≤,又因为*a N ∈,所以1a = [来源:12999数学网] (Ⅱ)因为|1||2||(1)(2)|3x x x x ++-≥+--= 当且仅当(1)(2)0x x +-≤,即12x -≤≤时取得等号,所以()f x 的最小值为3 8 .(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))D.[选修4-5: 不定式选讲]本小题满分10分. 已知b a ≥>0,求证:b a ab b a 223322-≥- [必做题]第22、23题,每题10分,共20分.请在相应的答题区域内作答,若多做,解答时应写出文字说明、证明过程或演算步骤. 【答案】D 证明:∵=---b a ab b a 223322()=---)(223223b b a ab a () )(22222b a b b a a ---

历年高考数学试题分类汇编

2008年高考数学试题分类汇编 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距 离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. ( 4 1 ,-1) B. (4 1 ,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和 22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④11c a <22 c a . 其中正确式子的序号是B A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22 221x y a b -=(a >0,b >0)上横坐标为32a 的点到右焦点 的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞)

不等式选讲-2019年高考理科数学解读考纲

16 不等式选讲 选考内容 (二)不等式选讲 1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式: (1). (2). (3)会利用绝对值的几何意义求解以下类型的不等式: . 2.了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明. (1)柯西不等式的向量形式: (2). (3). (此不等式通常称为平面三角不等式.) 3.会用参数配方法讨论柯西不等式的一般情形: 4.会用向量递归方法讨论排序不等式. 5.了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题. 6.会用数学归纳法证明伯努利不等式: 了解当n为大于1的实数时伯努利不等式也成立. 7.会用上述不等式证明一些简单问题.能够利用平均值不等式、柯西不等式求一些特定函数的极值. 8.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.

1.从考查题型来看,涉及本知识点的题目主要以选考的方式,在解答题中出现,考查解绝对值不等式、证明不等式等. 2.从考查内容来看,主要考查绝对值不等式的解法、不等式的证明,求最值问题等. 3.从考查热点来看,重点在于考查学生解不等式及利用不等式求解最值问题等,绝对值不等式与函数问题的综合是高考的趋势,值得关注. 考向一 绝对值不等式的求解 样题1 (2018新课标全国Ⅱ理科)设函数 . (1)当1a =时,求不等式()0f x ≥的解集; (2)若()1f x ≤,求a 的取值范围. 样题2 (2018新课标全国Ⅲ理科)设函数 . (1)画出()y f x =的图象;

(2)当[)0x +∞∈,,,求a b +的最小值. 【解析】(1)()y f x =的图象如图所示.

—2018年新课标全国卷1理科数学分类汇编——13.不等式选讲

2011年—2018年新课标全国卷Ⅰ理科数学分类汇编 13.不等式选讲 一、解答题 【2018,23】已知()11f x x ax =+--. (I )当1a =时,求不等式()1f x >的解集; (II )若()0,1x ∈时不等式()f x x >成立,求a 的取值范围. 【2017,23】已知函数()2 4f x x ax =-++,()11g x x x =++-. (1)当1a =时,求不等式()()f x g x ≥的解集; (2)若不等式()()f x g x ≥的解集包含[]1,1-,求a 的取值范围. 【2016,23】已知函数321)(--+=x x x f . (Ⅰ)在答题卡第(24)题图中画出)(x f y =的图像; (Ⅱ)求不等式1)(>x f 的解集.

【2015,24】已知函数()12,0f x x x a a =+-->. (I )当1a =时求不等式()1f x >的解集; (II )若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围. 【2014,24)】若0,0a b >>,且 11 a b +=. (Ⅰ) 求33a b +的最小值;(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由. 【2013,24】已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3. (1)当a =-2时,求不等式f (x )<g (x )的解集; (2)设a >-1,且当x ∈1,22a ?? -???? 时,f (x )≤g (x ),求a 的取值范围.

【2012,24】已知函数()|||2|f x x a x =++-。 (1)当3-=a 时,求不等式3)(≥x f 的解集;(2)若|4|)(-≤x x f 的解集包含[1,2],求a 的取值范围。 【2011,24】设函数()3f x x a x =-+,其中0a >。 (Ⅰ)当1a =时,求不等式()32f x x ≥+的解集; (Ⅱ)若不等式()0f x ≤的解集为{}|1 x x ≤- ,求a 的值。

2018-2020三年高考数学分类汇编

专题一 集合与常用逻辑用语 第一讲 集合 2018------2020年 1.(2020?北京卷)已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B =( ). A. {1,0,1}- B. {0,1} C. {1,1,2}- D. {1,2} 2.(2020?全国1卷)设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A. –4 B. –2 C. 2 D. 4 3.(2020?全国2卷)已知集合U ={?2,?1,0,1,2,3},A ={?1,0,1},B ={1,2},则()U A B ?=( ) A. {?2,3} B. {?2,2,3} C. {?2,?1,0,3} D. {?2,?1,0,2,3} 4.(2020?全国3卷)已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为 ( ) A. 2 B. 3 C. 4 D. 6 5.(2020?江苏卷)已知集合{1,0,1,2},{0,2,3}A B =-=,则A B =_____. 6.(2020?新全国1山东)设集合A ={x |1≤x ≤3},B ={x |2

高考数学《不等式选讲》专项复习

高考数学《不等式选讲》专项复习 一、考纲解读 1.了解绝对值的几何意义,会利用绝对值的定义解不等式,利用绝对值不等式证明不等式和求最值. 2.了解柯西不等式及其几何意义,会用它来证明不等式和求最位. 3.了解基本不等式,会用它来证明不等式和求最值. 4.会用综合法、分析法、反证法及数学归纳法证明不等式. 二、命题趋势探究 本节内容为新课标新增内容,是高考选考内容.题型以含绝对值的不等式的解法和证明为重要考点,不等式的应用为次重要考点,不等式证明放在一般位置,难度为中档. 三、知识点精讲 (一).不等式的性质 1.同向合成 (1), >>?>; a b b c a c (2),c >>?+>+; a b d a c b d (3)0,c0 >>>>?>. a b d ac bd (合成后为必要条件) 2.同解变形 >?+>+; (1)a b a c b c (2)0,0, >?>>?<<; a b c ac bc c ac bc

(3)11 000a b b a >>? >>?>>. (变形后为充要条件) 3.作差比较法 0,0a b a b a b a b >?>->-<<;0,||,a x a x a x a >>?>><-或 (2)22||||a b a b >?> (3)||||x a x b c +++<零点分段讨论 (三).基本不等式 (1)222a b ab +>(当且仅当等号成立条件为a b =) (2)0,0, 2 a b a b +>>≥a b =) ; 0,0,0, 3 a b c a b c ++>>>≥a b c ==时等号成立) (3)柯西不等式 22222()()()a b c d ac bd ++≥+(当且仅当ad bc =时取等号) ①几何意义:||ad bc ??+≤a b a b ||||||≤②推广:22222 2 212 121122()()()n n n n a a a b b b a b a b a b +++++ +≥++ +.当且仅当向量 12(,,,)n a a a a =与向量12(,,,)n b b b b =共线时等号成立.

最新高考文科数学分类汇编:专题十四不等式选讲

《2018年高考文科数学分类汇编》 第十四篇:不等式选讲 解答题 1.【2018全国一卷23】已知()|1||1|f x x ax =+--. (1)当1a =时,求不等式()1f x >的解集; (2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围. 2.【2018全国二卷23】设函数. (1)当时,求不等式的解集; (2)若,求的取值范围. 3.【2018全国三卷23】设函数. (1)画出的图像; (2)当,,求的最小值. ()5|||2|f x x a x =-+--1a =()0f x ≥()1f x ≤a ()211f x x x =++-()y f x =[)0x +∞∈,()f x ax b +≤a b +

4.【2018江苏卷21D 】若x ,y ,z 为实数,且x +2y +2z =6,求222x y z ++的最小值. 参考答案 解答题 1.解: (1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.x f x x x x -≤-??=-<的解集为1 {|}2 x x >. (2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立.

若0a ≤,则当(0,1)x ∈时|1|1ax -≥; 若0a >,|1|1ax -<的解集为20x a <<,所以21a ≥,故02a <≤. 综上,a 的取值范围为(0,2]. 2.解:(1)当时, 可得的解集为. (2)等价于. 而,且当时等号成立.故等价于. 由可得或,所以的取值范围是. 3.解:(1)的图像如图所示. 1a =24,1,()2,12,26, 2.x x f x x x x +≤-??=-<≤??-+>? ()0f x ≥{|23}x x -≤≤()1f x ≤|||2|4x a x ++-≥|||2||2|x a x a ++-≥+2x =()1f x ≤|2|4a +≥|2|4a +≥6a ≤-2a ≥a (,6][2,)-∞-+∞13,,21()2,1,23, 1.x x f x x x x x ?-<-???=+-≤

2019-2020高考数学试题分类汇编

2019---2020年真题分类汇编 一、 集合(2019) 1,(全国1理1)已知集合}242{60{}M x x N x x x =-<<=--<,,则M N = A .}{43x x -<< B .}42{x x -<<- C .}{22x x -<< D .}{23x x << 2,(全国1文2)已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A = A .{}1,6 B .{}1,7 C .{}6,7 D .{}1,6,7 3,(全国2理1)设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B = A .(–∞,1) B .(–2,1) C .(–3,–1) D .(3,+∞) 4,(全国2文1)已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(-1,+∞) B .(-∞,2) C .(-1,2) D .? 5,(全国3文、理1)已知集合2{1,0,1,2}{|1}A B x x =-=≤,,则A B = A .{}1,0,1- B .{}0,1 C .{}1,1- D .{}0,1,2 6,(北京文,1)已知集合A ={x |–11},则A ∪B = (A )(–1,1) (B )(1,2) (C )(–1,+∞) (D )(1,+∞) 7,(天津文、理,1)设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤∈R ,则A B = . 10,(上海1)已知集合{1A =,2,3,4,5},{3B =,5,6},则A B = . 一、 集合(2020) 1.(2020?北京卷)已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B =( ). A. {1,0,1}- B. {0,1} C. {1,1,2}- D. {1,2} 2.(2020?全国1卷)设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则 a =( ) A. –4 B. –2 C. 2 D. 4 3.(2020?全国2卷)已知集合U ={?2,?1,0,1,2,3},A ={?1,0,1},B ={1,2},则()U A B ?=( ) A. {?2,3} B. {?2,2,3} C. {?2,?1,0,3} D. {?2,?1,0,2,3} 4.(2020?全国3卷)已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( ) A. 2 B. 3 C. 4 D. 6 5.(2020?江苏卷)已知集合{1,0,1,2},{0,2,3}A B =-=,则A B =_____.

2020高考理科数学不等式问题的题型与方法

专题三:高考数学不等式问题的题型与方法(理科) 一、考点回顾 1.高考中对不等式的要求是:理解不等式的性质及其证明;掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用;掌握分析法、综合法、比较法证明简单的不等式;掌握简单不等式的解法;理解不等式│a│-│b│≤│a+b│≤│a│+│b│。 2.不等式这部分内容在高考中通过两面考查,一是单方面考查不等式的性质,解法及证明;二是将不等式知识与集合、逻辑、函数、三角函数、数列、解析几何、立体几何、平面向量、导数等知识交汇起来进行考查,深化数学知识间的融汇贯通,从而提高学生数学素质及创新意识. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰. 4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.在近几年全国各省市的高考试卷中,不等式在各种题型中都有出现。在解答题中,不等式与函数、数列与导数相结合,难度比较大,使用导数解决逐渐成为一般方法6.知识网络

其中:指数不等式、对数不等式、无理不等式只要求了解基本形式,不做过高要求. 二、 经典例题剖析 1.有关不等式的性质 此类题经常出现在选择题中,一般与函数的值域,最值与比较大小等常结合在一起 例1.(xx 年江西卷)若a >0,b >0,则不等式-b <1 x 1b D.x <1b -或x >1a 解析:-b <1x 1 a 答案:D 点评:注意不等式b a b a 1 1>? <和适用条件是0>ab 例2.(xx 年北京卷)如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 解析:正数a b c d ,,,满足4a b cd +==,∴ 4=a b +≥,即4ab ≤,当且仅当a =b =2时,“=”成立;又4=2 ( )2 c d cd +≤,∴ c+d ≥4,当且仅当c =d =2时,“=”成立;综上得ab c d +≤,且等号成立时a b c d ,,,的取值都为2 答案:A 点评:本题主要考查基本不等式,命题人从定值这一信息给考生提供了思维,重要不等式可以完成和与积的转化,使得基本不等式运用成为现实。 例3.(xx 年安徽)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是 (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 解析:若对任意∈x R ,不等式x ≥ax 恒成立,当x ≥0时,x ≥ax ,a ≤1,当x <0时,

高考数学复习+不等式选讲大题-(文)

专题十五不等式选讲大题 (一)命题特点和预测: 分析近8年全国新课标1不等式选讲大题,发现8年8考,主要考查绝对值不等式的解法(出现频率太高了,应当高度重视)、不等式恒成立或有解求参数的范围,考查利用不等式的性质、基本不等式、绝对值不等式性质求最值或证明不等式,难度为基础题.2019年不等式选讲大题仍将主要考查绝对值不等式的解法(出现频率太高了,应当高度重视)、不等式恒成立或有解求参数的范围,考查利用不等式的性质、基本不等式、绝对值不等式性质求最值或证明不等式,难度为基础题. (二)历年试题比较: . 时,求不等式 时不等式成立,求的取值范围. 已知函数, 的解集; 的解集包含

已知函数 ?并说明文由 ( )≤ 【解析与点睛】 (2018年)【解析】(1)当时,,即 故不等式的解集为. (2)当时成立等价于当时成立.若,则当时;

若,的解集为,所以,故. 综上,的取值范围为. (2017年)【解析】 x>时,①式化为,从而. 当1 【名师点睛】零点分段法是解答绝对值不等式问题常用的方法,也可以将绝对值函数转化为分段函数,借助图象解题. (2016年)【解析】(I) y=的图像如图所示. f ) (x

(II )由)(x f 的表达式及图像,当1)(=x f 时,可得1=x 或3=x ; 当1)(-=x f 时,可得3 1 = x 或5=x , 故1)(>x f 的解集为{} 31<x f 的解集为 . 【名师点睛】不等式选讲多以绝对值不等式为载体命制试题,主要涉及图像、解不等式、由不等式恒成立求参数范围等.解决此类问题通常转换为分段函数求解,注意不等式的解集一定要写成集合的形式. 以△ABC 的面积为22 (1)3 a +. 由题设得 22 (1)3 a +>6,解得2a >.

不等式选讲-近三年高考真题汇编详细答案版

分类汇编:不等式选讲 2014年真题: 1.[2014·卷] 不等式|x -1|+|x +2|≥5的解集为________. 1.(-∞,-3]∪[2,+∞) 2.[2014·卷] 若关于x 的不等式|ax -2|<3的解集为? ????? x -53<x <13,则a =________. 2.-3 3.[2014·卷] A .(不等式选做题)设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma +nb =5,则m 2+n 2 的最小值为________. 3.A. 5 4.[2014·卷] 若不等式|2x -1|+|x +2|≥a 2 +12 a +2对任意实数x 恒成立,则实数a 的取值围是________. 4.? ?????-1,12 5.[2014·卷] (1)(不等式选做题)对任意x ,y ∈R ,|x -1|+|x |+|y -1|+|y +1|的最小值为( ) A .1 B .2 C .3 D .4 5.(1)C 6.[2014·卷] (Ⅲ)选修4-5:不等式选讲 已知定义在R 上的函数f (x )=|x +1|+|x -2|的最小值为a . (1)求a 的值; (2)若p ,q ,r 是正实数,且满足p +q +r =a ,求证:p 2+q 2+r 2 ≥3. 6. (Ⅲ)解:(1)因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3, 当且仅当-1≤x ≤2时,等号成立, 所以f (x )的最小值等于3,即a =3. (2)由(1)知p +q +r =3,又p ,q ,r 是正实数, 所以(p 2+q 2+r 2)(12+12+12)≥(p ×1+q ×1+r ×1)2=(p +q +r )2 =9, 即p 2+q 2+r 2 ≥3. 7.[2014·卷] 选修4-5:不等式选讲 设函数f (x )=2|x -1|+x -1,g (x )=16x 2 -8x +1.记f (x )≤1的解集为M ,g (x )≤4的解集为N . (1)求M ; (2)当x ∈M ∩N 时,证明:x 2f (x )+x [f (x )]2 ≤14 . 7.解:(1)f (x )=? ????3x -3,x ∈[1,+∞), 1-x ,x ∈(-∞,1). 当x ≥1时,由f (x )=3x -3≤1得x ≤43,故1≤x ≤4 3 ; 当x <1时,由f (x )=1-x ≤1得x ≥0,故0≤x <1. 所以f (x )≤1的解集M =? ????? x 0≤x ≤43. (2)由g (x )=16x 2 -8x +1≤4得16? ?? ??x -142≤4,解得-14≤x ≤34, 因此N =? ????? x -14≤x ≤34,

高考数学百大经典例题——不等式解法

典型例题一 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或 0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3 ,2 5 , 0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<-3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2450)2)(4(0 50 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--

①0 ) ( ) ( ) ( ) ( < ? ? < x g x f x g x f ②0 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( < ? = ? ≤ ? ? ? ≠ ≤ ? ? ≤x g x f x f x g x f x g x g x f x g x f 或 或 (1)解:原不等式等价于 ? ? ? ≠ - + ≥ + - + - ? ≥ + - + - ? ≤ + - + + - ? ≤ + - - - + ? ≤ + - - ? + ≤ - )2 )( 2 ( )2 )( 2 )( 1 )( 6 ( )2 )( 2 ( )1 )( 6 ( )2 )( 2 ( 6 5 )2 )( 2 ( )2 ( )2 (3 2 2 3 2 2 3 2 x x x x x x x x x x x x x x x x x x x x x x x x x 用“穿根法” ∴原不等式解集为[)[) +∞ ? - ? - -∞,6 2,1 )2 , (。 (2)解法一:原不等式等价于0 2 7 3 1 3 2 2 2 > + - + - x x x x 2 1 2 1 3 1 2 7 3 1 3 2 2 7 3 1 3 2 )2 7 3 )( 1 3 2( 2 2 2 2 2 2 > < < < ? ?? ? ? ? < + - < + - ?? ? ? ? > + - > + - ? > + - + - ? x x x x x x x x x x x x x x x 或 或 或 ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞。 解法二:原不等式等价于0 )2 )(1 3( )1 )(1 2( > - - - - x x x x )2 ( )1 3 )( 1 )( 1 2(> - ? - - - ?x x x x 用“穿根法” ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞ 典型例题三

2018年高考数学考试大纲解读专题16不等式选讲理版含答案

专题16 不等式选讲 选考内容 (二)不等式选讲 1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式: (1) a b a b . (2)a b a c c b . (3)会利用绝对值的几何意义求解以下类型的不等式: ; ;ax b c ax b c x a x b c . 2.了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明 . (1)柯西不等式的向量形式: ||||||.(2) 22222()(+)()a b c d ac bd . (3)222222121223231313()()()()()()x x y y x x y y x x y y . (此不等式通常称为平面三角不等式.) 3.会用参数配方法讨论柯西不等式的一般情形: 4.会用向量递归方法讨论排序不等式. 5.了解数学归纳法的原理及其使用范围,会用数学归纳法证明 一些简单问题. 6.会用数学归纳法证明伯努利不等式: 了解当n 为大于1的实数时伯努利不等式也成立 . 7.会用上述不等式证明一些简单问题 .能够利用平均值不等式、 柯西不等式求一些特定函数的极值. 8.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.

1.从考查题型来看,涉及本知识点的题目主要以选考的方式,在解答题中出现,考查解绝对值不等式、证明不等式等. 2.从考查内容来看,主要考查绝对值不等式的解法、不等式的证明,求最值问题等 . 3.从考查热点来看,重点在于考查学生解不等式及利用不等式求解最值问题等,绝对值不等式与函数问题的综合是高考的趋势,值得关注. 考向一 绝对值不等式的求解样题1 (2017新课标全国Ⅰ理科)已知函数 2–4()x ax f x ,11()x x g x ||||. (1)当a =1时,求不等式 ()()f x g x 的解集;(2)若不等式()()f x g x 的解集包含[–1,1],求a 的取值范围. 所以a 的取值范围为[1,1]. 【名师点睛】零点分段法是解答绝对值不等式问题常用的方法, 也可以将绝对值函数转化为分段函数,借助图象解题.

《选修4-5 不等式选讲》知识点详解+例题+习题(含详细答案)

选修4-5不等式选讲 最新考纲:1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:(1)|a+b|≤|a|+|b|(a,b∈R).(2)|a-b|≤|a-c|+|c-b|(a,b∈R).2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c,|ax+b|≥c,|x-c|+|x-b|≥a.3.了解柯西不等式的几种不同形式,理解它们的几何意义,并会证明.4.通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法、数学归纳法. 1.含有绝对值的不等式的解法 (1)|f(x)|>a(a>0)?f(x)>a或f(x)<-a; (2)|f(x)|0)?-a

最新高考数学分类理科汇编

精品文档 2018 年高考数学真题分类汇编 学大教育宝鸡清姜校区高数组2018 年7 月

1.(2018 全国卷 1 理科)设Z = 1- i + 2i 则 Z 1+ i 复数 = ( ) A.0 B. 1 C.1 D. 2 2(2018 全国卷 2 理科) 1 + 2i = ( ) 1 - 2i A. - 4 - 3 i B. - 4 + 3 i C. - 3 - 4 i D. - 3 + 4 i 5 5 5 5 5 5 5 5 3(2018 全国卷 3 理科) (1 + i )(2 - i ) = ( ) A. -3 - i B. -3 + i C. 3 - i D. 3 + i 4(2018 北京卷理科)在复平面内,复数 1 1 - i 的共轭复数对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 5(2018 天津卷理科) i 是虚数单位,复数 6 + 7i = . 1+ 2i 6(2018 江苏卷)若复数 z 满足i ? z = 1 + 2i ,其中 i 是虚数单位,则 z 的实部为 . 7(2018 上海卷)已知复数 z 满足(1+ i )z = 1- 7i (i 是虚数单位),则∣z ∣= . 2

集合 1.(2018 全国卷1 理科)已知集合A ={x | x2 -x - 2 > 0 }则C R A =() A. {x | -1 2} B. {x | -1 ≤x ≤ 2} D. {x | x ≤-1}Y{x | x ≥ 2} 2(2018 全国卷2 理科)已知集合A={(x,y)x2 元素的个数为() +y2 ≤3,x ∈Z,y ∈Z}则中 A.9 B.8 C.5 D.4 3(2018 全国卷3 理科)已知集合A ={x | x -1≥0},B ={0 ,1,2},则A I B =() A. {0} B.{1} C.{1,2} D.{0 ,1,2} 4(2018 北京卷理科)已知集合A={x||x|<2},B={–2,0,1,2},则A I B =( ) A. {0,1} B.{–1,0,1} C.{–2,0,1,2} D.{–1,0,1,2} 5(2018 天津卷理科)设全集为R,集合A = {x 0

《选修4-5--不等式选讲》知识点详解+例题+习题(含详细答案)

选修4-5不等式选讲 最新考纲:1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:(1)|a+b|≤|a|+|b|(a,b∈R).(2)|a-b|≤|a-c|+|c-b|(a,b ∈R).2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c,|ax+b|≥c,|x-c|+|x-b|≥a.3.了解柯西不等式的几种不同形式,理解它们的几何意义,并会证明.4.通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法、数学归纳法. 1.含有绝对值的不等式的解法 (1)|f(x)|>a(a>0)?f(x)>a或f(x)<-a; (2)|f(x)|0)?-a<f(x)

2015-2019全国卷高考数学分类汇编——集合

2014年1卷 1.已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ?= A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2) 2014年2卷 1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ?=( ) A. {1} B. {2} C. {0,1} D. {1,2} 2015年2卷 (1) 已知集合A ={-2,-1,0,2},B ={x |(x -1)(x +2)<0},则A ∩B = (A ){-1,0} (B ){0,1} (C ){-1,0,1} (D ){0,1,2} 2016年1卷 (1)设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B =( ) (A )3(3,)2--(B )3(3,)2-(C )3(1,)2(D )3 (,3)2 2016-2 (2)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =( ) (A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,,

2016-3 (1)设集合{}{}(x 2)(x 3)0,T 0S x x x =--≥=> ,则S I T =( ) (A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) 2017-1 1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}A B x x => D .A B =? 2017-2 2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =,则B =( ) A .{}1,3- B .{}1,0 C .{}1,3 D .{}1,5 2017-3 1.已知集合A ={}22(,)1x y x y +=│ ,B ={}(,)x y y x =│,则A B 中元素的个数为 A .3 B .2 C .1 D .0 2018-1 2.已知集合{}220A x x x =-->,则A =R e A .{}12x x -<< B .{}12x x -≤≤ C .}{}{|1|2x x x x <-> D .}{}{|1|2x x x x ≤-≥

高三数学第二轮复习 不等式选讲

第2讲 不等式选讲 [考情考向分析] 本部分主要考查绝对值不等式的解法.求含绝对值的函数的值域及求含参数的绝对值不等式中参数的取值范围、不等式的证明等,结合集合的运算、函数的图象和性质、恒成立问题及基本不等式、绝对值不等式的应用成为命题的热点,主要考查基本运算能力与推理论证能力及数形结合思想、分类讨论思想. 热点一 含绝对值不等式的解法 含有绝对值的不等式的解法 (1)|f (x )|>a (a >0)?f (x )>a 或f (x )<-a . (2)|f (x )|0)?-a 1. (1)当a =2时,求不等式f (x )≥4-|x -4|的解集; (2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值. 解 (1)当a =2时,f (x )+|x -4|=|x -2|+|x -4|=????? -2x +6,x ≤2,2,2

相关文档
最新文档