AEBSF.HCl_丝氨酸蛋白酶抑制剂_30827-99-7_Apexbio

AEBSF.HCl_丝氨酸蛋白酶抑制剂_30827-99-7_Apexbio
AEBSF.HCl_丝氨酸蛋白酶抑制剂_30827-99-7_Apexbio

丝氨酸蛋白酶抑制剂的研究进展教学提纲

丝氨酸蛋白酶抑制剂的研究进展

丝氨酸蛋白酶抑制剂的研究进展 梁化亮 (生物与食品工程学院,江苏常熟 215500) Progress on antimicrobial peptide [摘要]蛋白酶抑制剂(PIs)是一类能抑制蛋白酶水解酶的催化活性的蛋白或多肽,广泛存在于生物体内,在许多生命活动过程中发挥必不可少的作用。根据活性位点氨基酸种类不同可将蛋白酶抑制剂分为四大类型:丝氨酸蛋白酶抑制剂、巯基蛋白酶抑制剂、天冬氨酸蛋白酶抑制剂和金属蛋白酶抑制剂。其中尤以丝氨酸蛋白酶及其抑制剂在体内一些重要生理活动中起关键性的调控作用。其能对蛋白酶活性进行精确调控,包括分子间蛋白降解,转录,细胞周期,细胞侵入,血液凝固,细胞凋亡,纤维蛋白溶解作用,补体激活中所起的作用。[关键词]丝氨酸蛋白酶抑制剂分类临床应用防御

1 丝氨酸蛋白酶抑制剂 免疫系统是由组织,细胞,效应分子构成,并逐渐进化形成用于阻挠病原微生物的侵入攻击,限制它们扩散进入宿主内环境。这其中起到主要作用的是宿主产生的蛋白酶抑制剂,广泛存在于生物体内的蛋白酶抑制剂在机体内与相应的蛋白酶形成一个动态的系统,在生物体系以及一系列的生理过程中起着调控作用[1],是生物体内免疫系统的重要组成部分。它不仅能使侵入体内的蛋白酶失活并且能将其清除,使附着在宿主表面的病原细菌无法附着生存。其中丝氨酸蛋白酶及其抑制剂在体内一些重要生理活动中起关键性的调控作用[2]。 丝氨酸蛋白酶抑制剂(serine protease inhibitor)泛指具有抑制丝氨酸蛋白酶水解活性的一类物质,广泛存在于动物、植物、微生物体中[3]。在动物体中,丝氨酸蛋白酶抑制剂是维持体内环境稳定的重要因素,一旦平衡失调即导致多种疾病,任何影响其活性的因素也会造成严重的病理性疾病。它们最基本的功能是防止不必要的蛋白水解,调节丝氨酸蛋白酶的水解平衡。作为调控物,丝氨酸蛋白酶抑制剂参与机体免疫反应,对生物体内的血液凝固、补体形成、纤溶、蛋白质折叠、细胞迁移、细胞分化、细胞基质重建、激素形成、激素转运、细胞内蛋白水解、血压调节、肿瘤抑制以及病毒或寄生虫致病性的形成等许多重要的生化反应和生理功能有重要的影响[4]。鉴于其重要的生理功能,丝氨酸蛋白酶抑制剂一直倍受研究者的关注,目前已分离得到多种天然丝氨酸蛋白酶抑制剂,同时如何将其更好地应用于食品、医药领域也成为近来研究热点。 1.1 丝氨酸蛋白酶抑制剂分类

胰蛋白酶分离工艺

1、集落刺激因子(G-CSF ) 组成结构:是一种含有二硫键的单链糖蛋白,由175个氨基酸残基组成的单链非 糖基化多肽链 理化性质:①性状:无色澄明液体 ②分子量:20000,等电点为5.8~6.6 ③溶解度: ④稳定性: 生理作用与临床适应症:作用于造血祖细胞,促进其增殖和分化,其重要作用是 刺激粒、单核巨噬细胞成熟,促进成熟细胞向外周血释放,并能促进巨噬细胞及 噬酸性细胞的多种功能 ,主要用于预防和治疗肿瘤放疗或化疗后引起的白细胞 减少症, 分离纯化工艺: G-CSF 为无菌冻干粉剂,由含有10mM 醋酸钠pH 为4的蛋白溶液经0.2um 过滤后 分装冻干。 由含有高效表达人G-CSF 的原核表达系统(E.coli )经发酵、分离和高度纯化后 经冻干制成。 纯化液聚乙二醇浓缩洗脱液柱层析透析液透析缓冲液溶解沉淀沉淀蛋白质盐析洗脱液纤维素柱层析透析液透析 缓冲液溶解沉淀饱和度至加入硫酸铵透析液透析滤液超滤浓缩正常成人尿液150 ephadexG -%8020000 S DEAE 2、超氧化物歧化酶(SOD ): 组成结构: 理化性质:①性状:淡蓝色冻干粉结晶体 ②分子量:32000左右 ③溶解度: ④稳定性:耐热性强,90℃ 环境120分钟酶活几乎没有损失,100℃环境60分 钟酶活保持90%以上;稳定性高,在pH4.0—11.0范围内酶活稳定。 生理作用与临床适应症:是一种能够催化超氧化物通过歧化反应转化为氧气和过 氧化氢的酶,是一种重要的抗氧化剂,保护暴露于氧气中的细胞 分离纯化工艺: 血液预处理,洗涤红细胞和溶血;去除大部分杂蛋白得SOD 粗品;再经柱层析分离 得到精品。猪血经血液预处理、洗涤红细胞、溶血、乙醇一氯仿混合液除去血红 蛋白,然后用坟柳043HZO 萃取、丙酮沉淀、55一65℃热变性得到粗酶液。粗酶 液上阴离子DEAE 一Cellulose52交换层析柱、分子筛SephadexG-75柱,最终获 得了纯化的铜锌超氧化物歧化酶。

人丝氨酸蛋白酶抑制因子Hespintor成熟肽的基因克隆研究

人丝氨酸蛋白酶抑制因子Hespintor成熟肽的基因克隆研究 发表时间:2014-08-01T17:32:41.840Z 来源:《中外健康文摘》2014年第21期供稿作者:杨勇1 林琳2 [导读] 过表达的蛋白酶抑制因子或者人工合成的蛋白酶抑制因子都能有效地阻断蛋白酶活性。 杨勇1 林琳2 (1大连市妇幼保健院检验科辽宁大连 116033;2大连市友谊医院心内科辽宁大连 116001) 【摘要】目的:阐明人丝氨酸蛋白酶抑制因子Hespintor成熟肽的基因克隆过程,获得人丝氨酸蛋白酶抑制因子Hespintor成熟肽克隆载体,为后续构建Hespintor原核表达载体奠定基础。方法:提取pMD19-T Simple Vector-Hespintor克隆质粒后,应用RT-PCR法扩增Hespintor成熟肽基因片段,对Hespintor成熟肽克隆载体进行构建,及双酶切反应鉴定。结果:琼脂糖凝胶电泳,在约230bp处可见1条特异性条带;蓝斑和白斑斑点数量比对大约为1:1,说明转化效率大约为50%左右;经Bam HⅠ和Hind Ⅲ双酶切鉴定,约230bp处的条带为所克隆的人丝氨酸蛋白酶抑制因子Hespintor成熟肽基因片段。结论:重组克隆质粒pMD19-T Simple Vector-Hespintor成熟肽基因构建成 功。 【关键词】人丝氨酸蛋白酶抑制因子Hespintor成熟肽基因克隆 RT-PCR 【中图分类号】R39 【文献标识码】A 【文章编号】1672-5085(2014)21-0078-02 在肿瘤的生长、血管生成以及侵润和转移过程中,除了生长因子与抑癌基因突变、细胞周期改变等尚有机制的参与外,蛋白酶扮演了最终共同途径的角色,并且在功能性或病理性组织重建过程中起到重要的作用[1]。蛋白酶的活性可由多个层次进行调控[1-3],但最直接的方法还是阻断蛋白酶的活性。过表达的蛋白酶抑制因子或者人工合成的蛋白酶抑制因子都能有效地阻断蛋白酶活性,防止细胞外基质的降解[1,2,4]。因此,蛋白酶抑制因子的作用被更多的研究和关注,其中对组织金属蛋白酶抑制因子的研究最为深入,遗憾的是其临床应用效果并不理想[2]。 丝氨酸蛋白酶抑制因子是一类丝氨酸蛋白酶活性调节因子,参与血凝、纤溶、炎症、免疫反应、胚胎发生和个体发育过程。根据它们的序列、二硫键数目和三维结构,至少可以归类为18个非同源蛋白质家族。其中,Kazal型丝氨酸蛋白酶抑制因子是较为保守的家族之一,目前已发现10多种,其成员主要包括PSTI、TATI、RECKA、ECRG2以及鸟类的卵清蛋白、顶体蛋白抑制因子、弹性蛋白抑制因子、溶血酶抑制因子等[5-7]。 应用抑制性差减扣除杂交技术研究了HBV DNA聚合酶反式调节靶基因,从肝母细胞瘤细胞系HepG2中筛选得到一未知功能新基因,经RT-PCR验证后,结合生物信息学确定该新基因属于一种新Kazal型丝氨酸蛋白酶抑制因子,命名为hespintor[8]。同源分析表明,hespintor 具有与食管癌相关基因2高度同源的serpin基本结构。由于ECRG2具有抑制肿瘤细胞的增值、侵袭及转移等作用,因此提示hespintor可能也具有抑制肿瘤的侵袭与转移的能力,它在细胞中的生物学功能以及抗肿瘤作用有待于深入研究[9-11]。 为了研究hespintor对肿瘤细胞的增值、侵袭和转移的抑制作用,采用基因克隆技术建立hespintor的原核表达体系及纯化方法,观察hespintor重组表达蛋白在体内外是否对肿瘤细胞而行增值具有抑制作用。本文主要是阐明人丝氨酸蛋白酶抑制因子Hespintor成熟肽的基因克隆过程,从而获得人丝氨酸蛋白酶抑制因子Hespintor成熟肽克隆载体,为后续构建Hespintor原核表达载体奠定基础。 1.材料与方法 1.1材料 1.1.1菌株与质粒 (1)大肠杆菌菌株E.coil DH5α感受态细胞由本大连大学医学院中心实验室提供。 (2)pMD19-T Simple Vector购自宝生物工程(大连)有限公司。 1.1.2引物设计与合成 根据GenBank上公布的人丝氨酸蛋白酶抑制因子Hespintor基因序列, 通过运DNAman version4.0软件设计引物扩增人丝氨酸蛋白酶抑制因子Hespintor成熟肽基因。引物F1、F2自行设计交由宝生物工程(大连)有限公司合成。 F1 5'-GGATCCGCCTAAGCCCCG-3' F2 5'-GCGCAAGCTTATCACATTTTCCATATTTTTC-3' 1.1.3 主要试剂 1.1.4主要设备 1.2方法 1.2.1提取pMD19-T Simple Vector-Hespintor克隆质粒 质粒提取试剂盒由TaKaRa公司提供,操作过程严格按照说明书进行,产物置于-40℃保存。 1.2.2 PCR扩增Hespintor成熟肽基因片段 采用2×Taq PCR MasterMix,以pMD19-T Simple Vector-Hespintor克隆质粒为模板, F1/F2为引物,扩增Hespintor基因片段。

鲍曼不动杆菌耐药机制及治疗对策进展论文

2012年4月 *陕西省咸阳市永寿县县人民医院药剂科(713400) 2012年2月14日收稿 不动杆菌广泛分布于外界环境中,易在潮湿环境中生存,还可 存在于健康人皮肤、 咽部、结膜、唾液、胃肠道及阴道分泌物中。不动杆菌分为6种, 即醋酸钙不动杆菌、鲁菲不动杆菌、鲍曼不动杆菌、溶血不动杆菌、琼氏不动杆菌和约翰逊不动杆菌。鲍曼不动杆菌(Acinetobacter baumanii ,AB )为条件致病菌,主要引起呼吸道感染、败血症、泌尿系感染、继发性脑膜炎等。近年来,鲍曼不动杆菌感染的病例数日益增多,而随着广谱抗生素的广泛使用,该菌多重耐药现象日趋严重。通常把对常用的7种抗假单胞菌的抗生素(包括抗假单胞菌的青霉素类、头孢菌素类、氨基糖苷类、喹诺酮类、碳青霉烯类、四环素类、磺胺类)中的至少3类耐药的AB 菌株称之为多重耐药的鲍曼不动杆菌(MDR —AB ),而对上述7类抗生素全耐药的AB 菌株称之为泛耐药的鲍曼不动杆菌(PDR —AB )。本文就鲍曼不动杆菌对抗菌药物的耐药机制和治疗对策进行综述。1鲍曼不动杆菌对抗菌药物的耐药机制 目前关于AB 的耐药的机制已有很多文献报道,主要集中在 产生抗菌药物的灭活酶、 外膜蛋白缺失和外膜通透性下降、基因及细胞功能突变和菌体自身存在的药物主动外排系统等。1.1产生抗菌药物的灭活酶:在A 类中超广谱β内酰胺酶的研究中发现,这类酶是对广谱头孢菌素产生耐药最主要的原因;其在鲍曼不动杆菌中也被分离到。它通常由质粒介导,可使细菌对青 霉素和第1~3代头孢菌素以及单环菌素耐药[2] 。产生氨基糖苷类钝化酶是鲍曼不动杆菌对氨基糖苷类抗生素耐药的主要原因。目 前发现的钝化酶有乙酰转移酶、 核苷转移酶和磷酸转移酶[3]。1.2外膜蛋白缺失、外膜通透性下降:近年来,有关碳青酶烯类耐药的鲍曼不动杆菌报道越来越多,其耐药机制主要为产生碳青酶烯酶,外膜孔道蛋白的表达下降,青霉素结合蛋白的改变。Li -mansky 等[4]证实,由于相对分子质量为29000的外膜蛋白丢失导致AB 菌株对亚胺培南耐药。有研究显示[5],在碳青霉烯耐药的菌 株中, 22-、33-KDaOMPs 表达缺失并产OXA-24。1.3菌体存在药物主动外排系统:药物的主动外排机制在大肠杆菌、铜绿假单孢菌、淋球菌等多种细菌中已得到了证实。国外学者证实了鲍曼不动杆菌中存在RND 类外排泵,命名为AdeABC 外 排系统[6]。该外排系统属RND 超家族, 编码主动外排泵蛋白复合体,能非特异性地将结构不同的多种抗菌药物泵出细胞外,进而 引起细菌耐药。此外, 在鲍曼不动杆菌中发现的主动外排系统还有AdeIJK 、 AdeXYZ 、AdeDE 和AbeM 等。1.4基因突变及细胞的改变:朱健铭等在研究多重耐药鲍曼不动 杆菌(MDR-ABA ) gyrA 基因突变与环丙沙星耐药的关系时发现,临床分离的MDR-ABA 对环丙沙星耐药的分子机制主要表现为gryA 基因83位氨基酸密码子的突变[7]。此外,AB 的细胞结构及药物作用靶位的改变,都可导致抗菌药物与细菌的亲和力下降,导致药效降低或失去抗菌作用。2耐药鲍曼不动杆菌的治疗对策 近年来,随着广谱抗菌药物的广泛使用,临床上关于鲍曼不动杆菌耐药的报道越来越多,并呈现出多重耐药,甚至全耐药及高耐药率的趋势。研究显示,鲍曼不动杆菌对第一、二代头孢菌素几乎耐药,对第三代头孢菌素除头孢他啶稍低外,其他都达60%以上,并且大多数对β-内酰胺酶类的耐药率有上升趋势。防治鲍曼不动杆菌感染除了改善病人营养、提高免疫力、医护人员注意无菌操作和加强病区卫生消毒工作之外,更应注意根据药敏实验 结果合理使用抗生素。针对MDR-AB 或PDR .AB 的治疗, 文献报道和临床使用较广的药物是含舒巴坦制剂、 多粘菌素类、替加环素以及相应药物的联合治疗。2.1含舒巴坦制剂:舒巴坦(sulbactam ,青霉烷砜)为半合成的β-内酰胺酶抑制药,直接作用于细菌的青霉素结合蛋白,从而显示出它对不动杆菌的独特杀菌作用。同时,它可抑制细菌产生的多 种β-内酰胺酶、 多数超广谱β一内酰胺酶(ESBLs )及多种水解酶。据学者Jim énez-Mej ías ME 等[8] 报道, 用氨苄西林/舒巴坦治疗八例院内感染鲍曼不动杆菌的脑膜炎病人,用药前已呈多重耐药,用药后六例治愈。 2.2多黏菌素类:多黏菌素类是从多黏杆菌培养液中分离获得的一组多肽类抗生素。目前,临床上常用的有多黏菌素B 、E 、M 三 型。Michalopoulos 等曾对多黏菌素雾化吸入做了前瞻性研究, 雾化吸入作为呼吸机相关肺炎的辅助方式治疗多耐药的革兰阴性菌感染,同步静脉使用多黏菌素或其他抗菌药物,细菌学和临床 表现均显示有效率83.3%, 未发现与药物相关的不良反应[9]。2.3替加环素:替加环素作用机制是通过与细菌30S 核糖体结合,阻止转移RNA 的进入,使得氨基酸无法结合成肽链,最终阻断细 菌蛋白质合成,限制细菌生长。张小红[10] 等用替加环素对多重耐药菌的体外抗菌活性进行了研究,其中37株MDR-AB 对替加环 摘要:近年来,关于鲍曼不动杆菌感染的报道日益增多,广谱抗生素的大量使用又加剧了其对主要抗菌药物的耐药,多耐药甚至全 耐药的病例较多。回溯文献发现,耐药机制主要体现在产生对抗抗菌药物的灭活酶和细菌本身的特性和突变等方面。针对多重耐药和 泛耐药病例,含舒巴坦制剂、 多粘菌素类、替加环素以及联合用药已成为主流治疗方法。关键词:鲍曼不动杆菌;灭活酶;主动外排系统;菌株变异;联合用药 中图分类号:R516 文献标识码:B 文章编号:1006-0979(2012)08-0101-02 鲍曼不动杆菌耐药机制及治疗对策的研究进展 雷朝晖* alone in the treatment of pain symptoms caused by endometriosis[J].Hum Reprod ,2009,24:3033-3041. [22]Soysal S ,Soysal ME ,Ozer S ,et al.The effects of post-surgical administration of goserelin plus anastrozole compared to goserelin alone in patients with severe endometriosis:a prospective random -ized trial[J].Hum Reprod 2004,19:160-167. [23]Remorgida V ,Abbamonte HL ,Ragni N ,et al.Letrozole and norethisterone acetate in rectovaginal endometriosis.Fertil Steril ,2007,88:724-726. [24]Ferrero S ,Venturini PL ,Ragni N ,et al.Pharmacological treat -ment of endometriosis:experience with aromatase inhibitors [J].Drugs ,2009,69:943-952.[25]李旭冰,毕慧霞.血管内皮生长因子与子宫内膜异位症[J].中国保健营养,243-244. [26]Mahnke JL ,Dawood MY ,Huang ,JC.Vascular endothelial growth factor and interleukin-6in peritoneal fluid of women with en -dometriosis[J].Fertil Steril ,2001,73,166-170. [27]Mclaren J ,Prentice A ,Charnock-Jones DS ,et al.Vascular en -dothelial growth factor (VEGF )concentrations are elevated in peri -toneal fluid of women with endometriosis [J].Hum Reprod ,1996,11,220-223. [28]Hull ML ,Charnock-Jones DS ,Chan CL ,et al.Antiangiogenic agents are effective inhibitors of endometriosis [J].J Clin Endocrinol Metab ,2003,88,2889-2899. [29]Attar E ,Bulun SE ,Aromatase inhibitors:the next generation of therapeutics for endometriosis[J].Fertil Steril 2006,85:1307-1318.[30]Vonkeman HE ,Brouwers JR ,van de Laar MA.Understanding the NSAID related risk of vascular events[J].BMJ ,2006,332:895-898. 101

丝氨酸蛋白酶抑制剂的研究进展

丝氨酸蛋白酶抑制剂的研究进展 梁化亮 (生物与食品工程学院,常熟 215500) Progress on antimicrobial peptide [摘要]蛋白酶抑制剂(PIs)是一类能抑制蛋白酶水解酶的催化活性的蛋白或多肽,广泛存在于生物体,在许多生命活动过程中发挥必不可少的作用。根据活性位点氨基酸种类不同可将蛋白酶抑制剂分为四大类型:丝氨酸蛋白酶抑制剂、巯基蛋白酶抑制剂、天冬氨酸蛋白酶抑制剂和金属蛋白酶抑制剂。其中尤以丝氨酸蛋白酶及其抑制剂在体一些重要生理活动中起关键性的调控作用。其能对蛋白酶活性进行精确调控,包括分子间蛋白降解,转录,细胞周期,细胞侵入,血液凝固,细胞凋亡,纤维蛋白溶解作用,补体激活中所起的作用。 [关键词]丝氨酸蛋白酶抑制剂分类临床应用防御

1 丝氨酸蛋白酶抑制剂 免疫系统是由组织,细胞,效应分子构成,并逐渐进化形成用于阻挠病原微生物的侵入攻击,限制它们扩散进入宿主环境。这其中起到主要作用的是宿主产生的蛋白酶抑制剂,广泛存在于生物体的蛋白酶抑制剂在机体与相应的蛋白酶形成一个动态的系统,在生物体系以及一系列的生理过程中起着调控作用[1],是生物体免疫系统的重要组成部分。它不仅能使侵入体的蛋白酶失活并且能将其清除,使附着在宿主表面的病原细菌无法附着生存。其中丝氨酸蛋白酶及其抑制剂在体一些重要生理活动中起关键性的调控作用[2]。 丝氨酸蛋白酶抑制剂(serine protease inhibitor)泛指具有抑制丝氨酸蛋白酶水解活性的一类物质,广泛存在于动物、植物、微生物体中[3]。在动物体中,丝氨酸蛋白酶抑制剂是维持体环境稳定的重要因素,一旦平衡失调即导致多种疾病,任何影响其活性的因素也会造成严重的病理性疾病。它们最基本的功能是防止不必要的蛋白水解,调节丝氨酸蛋白酶的水解平衡。作为调控物,丝氨酸蛋白酶抑制剂参与机体免疫反应,对生物体的血液凝固、补体形成、纤溶、蛋白质折叠、细胞迁移、细胞分化、细胞基质重建、激素形成、激素转运、细胞蛋白水解、血压调节、肿瘤抑制以及病毒或寄生虫致病性的形成等许多重要的生化反应和生理功能有重要的影响[4]。鉴于其重要的生理功能,丝氨酸蛋白酶抑制剂一直倍受研究者的关注,目前已分离得到多种天然丝氨酸蛋白酶抑制剂,同时如何将其更好地应用于食品、医药领域也成为近来研究热点。 1.1 丝氨酸蛋白酶抑制剂分类 目前,典型的丝氨酸蛋白酶抑制剂基于其序列、拓扑结构及功能的相似性,至少可分为18个家族[5],如表1-1所示。不同家族抑制剂的空间结构也不同。通常这类抑制剂是β片层或混合了α螺旋和β片层的蛋白质,也可能是α螺旋或富含二硫键的不规则蛋白质。但它们都拥有规的反应活性位点环的构象,从而使这些非相关的蛋白质具有相似的生物学功能[6]。因此典型的丝氨酸蛋白酶抑制剂最明确最广泛地代表了蛋白质的趋同进化。 1.2 Serpins Serpins是一类分子量较大的丝氨酸蛋白酶抑制剂超家族,氨基酸残基数为

常见蛋白酶抑制剂

当前位置:生物帮 > 实验技巧 > 生物化学技术 > 正文 蛋白酶及蛋白酶抑制剂大全 日期:2012-06-13 来源:互联网 标签: 相关专题:解析蛋白酶活性测定聚焦蛋白酶研究新进展 摘要: 破碎细胞提取蛋白质的同时可释放出蛋白酶,这些蛋白酶需要迅速的被抑制以保持蛋白质不被降解。在蛋白质提取过程中,需要加入蛋白酶抑制剂以防止蛋白水解。以下列举了5种常用的蛋白酶抑制剂和他们各自的作用特点,因为各种蛋白酶对不同蛋白质的敏感性各不相同,因此需要调整各种蛋白酶的浓度 恩必美生物新一轮2-5折生物试剂大促销! Ibidi细胞灌流培养系统-模拟血管血液流动状态下的细胞培养系统 广州赛诚生物基因表达调控专题 蛋白酶抑制剂 破碎细胞提取蛋白质的同时可释放出蛋白酶,这些蛋白酶需要迅速的被抑制以保持蛋白质不被降解。在蛋白质提取过程中,需要加入蛋白酶抑制剂以防止蛋白水解。以下列举了5种常用的蛋白酶抑制剂和他们各自的作用特点,因为各种蛋白酶对不同蛋白质的敏感性各不相同,因此需要调整各种蛋白酶的浓度。由于蛋白酶抑制剂在液体中的溶解度极低,尤其应注意在缓冲液中加人蛋白酶抑制剂时应充分混匀以减少蛋白酶抑制剂的沉淀。在宝灵曼公司的目录上可查到更完整的蛋白酶和蛋白酶抑制剂表。 常用抑制剂 PMSF 1)抑制丝氨酸蛋白酶(如胰凝乳蛋白酶,胰蛋白酶,凝血酶)和巯基蛋白酶(如木瓜蛋白酶); 2)10mg/ml溶于异丙醇中; 3)在室温下可保存一年; 4)工作浓度:17~174ug/ml(0.1~1.0mmol/L); 5)在水液体溶液中不稳定,必须在每一分离和纯化步骤中加入新鲜的PMSF。 EDTA 1)抑制金属蛋白水解酶; 2)0.5mol/L水溶液,pH8~9;

丝氨酸蛋白酶抑制物在2型糖尿病合并颈动脉粥样硬化患者中的意义

丝氨酸蛋白酶抑制物在2型糖尿病合并颈动脉粥样硬化患者中的意 义 目的分析血清丝氨酸蛋白酶抑制物(vaspin)在2型糖尿病(T2DM)合并颈动脉粥样硬化(CAS)患者中的意义。方法根据有无CAS,将197例T2DM 患者分为CAS T2DM组(A组)和单纯T2DM组(B组)与正常对照组(NC 组)比较血清vaspin水平。结果T2DM患者vaspin高于NC组(P<0.05);B 组vaspin较A组高(P<0.05)。结论vaspin在T2DM合并CAS患者血管病变中有保護作用。 标签:Vaspin;血管病变;糖尿病,2型 [Abstract] Objective To analyze the significance of serine protease inhibitor in patients with type 2 diabetes and carotid artherosclerosis. Methods 197 cases of T2DM patients were divided into the CAS T2DM group (A group)and simple T2DM group (B group)according to whether there was CAS,and the serum vaspin level was compared with that in the normal control group. Results The vaspin in the T2DM patients was higher than that in the NC group(P<0.05),and the vaspin in the group B was higher than that in the group A(P<0.05). Conclusion The vaspin has a protection effect in the vascular lesion of patients with T2DM and CAS. [Key words] Vascular;Vascular lesion;Diabetes;Type 2 2型糖尿病(type 2 diabetes mellitus,T2DM)患者死亡原因中大血管病变占59%[1]。丝氨酸蛋白酶抑制物(vaspin)参与了糖尿病大血管病变的发生发展的过程。该研究探讨T2DM患者血清vaspin与颈动脉粥样硬化(carotid atherosclerosis,CAS)的关系,并探讨其机制。 1 资料与方法 1.1 一般资料 选取2016年1—5月于保定市第一中心医院内分泌一科住院治疗的T2DM 患者197例(T2DM组),均符合WHO1999年推荐的T2DM诊断与分型标准。其中男性107例,女性90例。按照有无CAS分为T2DM合并CAS组(A组)111例和单纯T2DM组(B组)86例,其中A组男56例,女55例,B组男51例,女35例。排除标准:其他类型糖尿病者;合并严重其他系统疾病者;糖尿病急性并发症者;应激状态者;近期有创伤、手术者。正常对照组(NC组)70名,为同期健康体检者,NC组男45名,女25名。 1.2 方法

蛋白酶抑制剂的研究进展

蛋白酶抑制剂的研究进展 郭川 微生物专业,200326031 摘要:自然界共发现四大类蛋白酶抑制剂:丝氨酸蛋白酶抑制剂、巯基蛋白酶抑制剂、金属蛋白酶抑制剂和酸性蛋白酶抑制剂,本文就各大类蛋白酶抑制剂的结构特点,活性部位的研究概况及其在各领域应用的原理及进展。 关键词:蛋白酶抑制剂;结构;应用 天然的蛋白酶抑制剂(PI)是对蛋白水解酶有抑制活性的一种小分子蛋白质,由于其分子量较小,所以在生物中普遍存在。它能与蛋白酶的活性部位和变构部位结合,抑制酶的催化活性或阻止酶原转化有活性的酶。在一系列重要的生理、病理过程中:如凝血、纤溶、补体活化、感染、细胞迁移等,PI发挥着关键性的调控作用,是生物体内免疫系统的重要组成部分。从Kunitz等最早分离纯化出一种PI至今,已有多种PI被发现,根据其作用的蛋白酶主要分以下几类:抑制胰蛋白酶、胰凝乳蛋白酶等的丝氨酸蛋白酶抑制剂,抑制木瓜蛋白酶、菠萝蛋白酶等的巯基蛋白酶抑制剂,抑制胃蛋白酶、组织蛋白酶D等的羧基蛋白酶抑制剂、抑制胶原酶、氨肽酶等的金属蛋白酶抑制剂等。而根据作用于酶的活性基团不同及其氨基酸序列的同源性,可将自然界发现的PI分为四大类:丝氨酸蛋白酶抑制剂、巯基蛋白酶抑制剂(半胱氨酸蛋白酶抑制剂)、金属蛋白酶抑制剂和酸性蛋白酶抑制剂[1]。 1 结构与功能 1.1丝氨酸蛋白酶抑制剂(Serine Protease Inhibitor,Serpin) 丝氨酸蛋白酶抑制剂是一族由古代抑制剂趋异进化5亿年演变而来的结构序列同源的蛋白酶抑制剂。Sepin为单一肽链蛋白质。各种serpin大约有30%的同源序列,疏水区同源性高达70%。血浆中的serpin多被糖基化,糖链经天东酰胺的酰胺基与主链相连。位于抑制性serpin表面、距C端30~40个氨基酸处的环状结构区RSL(reactive site loop)中,存在能被靶酶的底物识别位点识别的氨基酸P1[2];近C端与P1相邻的氨基酸为P1’,依此类推,即肽链结构表示为N端-P15~P9~P1-P1’~P9’~P15’-C端。在对靶酶的抑制中。Serpin 以RSL中的类底物反应活性位点与靶酶形成紧密的不易解离的酶-抑制剂复合物,同时P1-P1’间的反应活性位点断裂。几种perpin氨基酸序列比较发现,serpins各成员的抑制专一性是由P1决定的,且被抑制的酶特异性切点一致。如抗凝血酶,抑制以Arg羧基端为敏感部位的丝氨酸蛋白酶,其中P1为Arg[2]。 1.2巯基蛋白酶抑制剂(Cytsteine Proteinase Inhiitor,CPI) 对于丝氨酸蛋白酶抑制剂(SPI)已有大量研究,巯基蛋白酶抑制剂(CPI)的研究则相对要晚一些。而动物和微生物来源的CPI已有一些研究,发现它们在结构上具有同源性,Barrett等将CPI统称为胱蛋白超家族,并按分子内二硫键的有无与数量,分子量大小等将此家族分为3个成员(F1、F2、F3)。在3个家族中,大多数F1和F3的CPI中都有Glu53-Val54-Val55-Ala56-Gly57保守序列,其同源序列在其它CPI中也被发现,如F2中的Gln-X-Val-Y-Gly和CHα-ras基因产物中的Gln-Val-Val肽段。人工合成的Glu-Val-Val-Ala-Gly 短肽也显示对木瓜蛋白酶有抑制活性,因此可以认为这一保守区段在抑制活性中起着全部或部分的关键作用[3]。对植物来源的CPI研究的不多,已有报道的有水稻、鳄梨和大豆。水稻巯基蛋白酶抑制剂(Oryzacystatin,OC) 具有102个氨基酸残基,有典型的Glu-Val-Val-Ala-Gly保守序列,应与动物CPI同源进化而来。从OCI没有二硫键来看,它应归为F1成员,但从序列比较看,则更接近F3。对OCIGlu---Gly保守序列进行点突变试验表明,突变使其抑制活性大幅度下降,其中当Glu被Pro替代时则活性全无,由此说明,这一段保守序列在OCI的抑制活性中,同动物CPI一样必不可少。除Glu---Gly保守区域外,OCI序列中其

常见致病菌耐药机制与应对措施 (2)

2014年第二季度细菌耐药监测结果预警与应对策略由于抗菌药物的广泛不合理应用。细菌耐药现象日益严峻,临床出现大量多耐药和泛耐药菌株,给医院感染预防控制带来挑战。细菌耐药有一定的区域性和时间性,及时了解和掌握本院常见多耐药菌的流行现状及耐药特征,有利于临床医师合理选择抗菌药物,提高治疗效果,以达到减少为耐药菌的产生。现对2014年第二季度病原菌分布情况和耐药率进行公布,并向临床科室提供细菌耐药应对措施。

菌药物,提示“慎用抗菌药物”;耐药率超过50%的抗菌药物,提示“参照药敏试验结果用药”;耐药率超过75%的抗菌药物,提示“暂停该类抗菌药物的临床应用”。2细菌产生耐药性机制 2.1铜绿假单胞菌耐药机制

铜绿假单胞菌对生存环境和营养条件要求很低,在自然界分布广泛,甚至在医院内环境经常可见,其具有多药耐药性及耐药机制:(1)该菌能够产生破坏抗菌药物活性的多种灭活酶、钝化酶和修饰酶。(2)基因突变,作用靶位变异。(3)细胞膜通透性降低。(4)主动泵出机制将进入的药物排到体外。(5)产生生物膜,阻隔白细胞、多种抗体及抗菌药物进入细菌细胞内吞噬细菌。由于铜绿假单胞菌复杂的耐药机制导致其感染具有难治性和迁延性。 2.2大肠埃希氏菌耐药机制 大肠埃希菌是G-杆菌中分离率较高的机会致病菌,可引起人体所有部位的感染并且呈多重耐药性。 (1)β-内酰胺酶的产生 ①大肠埃希菌对β-内酰胺类抗菌药物耐药主要是由超广谱β-内酰胺酶(ESBLs)引起的,对头霉素类及碳青霉烯类药物敏感。ESBLs可分为五大类:TEM型、SHV型、CTX-M型、OXA型和其他型,大肠埃希菌ESBLs酶以TEM型最常见。TEM型ESBLs 呈酸性,可水解头孢他啶、头孢噻肟。SHV型ESBLs呈碱性,有水解头孢噻吩的巯基。CTX-M型ESBLs呈碱性,对头孢噻肟水解能力强于头孢他啶。OXA型ESBLs 呈弱酸性或弱碱性,主要水解底物是苯唑西林,OXA型酶主要见于铜绿假单胞菌中,在大肠埃希菌中的分离率较低。 ②AmpCβ-内酰胺酶AmpC酶主要作用于头孢菌素类抗菌药物,且不能被克拉维酸抑制。它是水解酶,与β-内酰胺环羧基部分共价结合,在水分子作用下导致β-内酰胺环开环,破坏β-内酰胺类抗菌药物抗菌活性。 ③对酶抑制剂药的耐药的β-内酰胺酶对酶抑制剂药的耐药的β-内酰胺酶(IRT)主要有TEM系列衍变而来,又称为耐酶抑制剂TEM系列酶。 (2)药物作用靶位的改变 (3)主动外排 (4)外膜通透性的下降 2.3肺炎克雷伯杆菌耐药机制 肺炎克雷伯杆菌属于阴性杆菌,通常存在于人类肠道、呼吸道,是除大肠埃希氏菌外导致医源性感染的最重要的条件致病菌。由于抗菌药物的大量使用,在选择性压力下多药耐药肺炎克雷伯杆菌(KPN)菌株不断出现,耐药率日益上升,KPN 耐药机制包括:(1)产抗菌药物灭活酶 ①β-内酰胺酶包括产超广谱β-内酰胺酶(ESBLs)、AmpC酶、耐酶抑制剂β-内酰胺酶、碳青霉烯酶(KPC酶)及金属β-内酰胺酶(MBLs)等。 ESBLs是耐药KPN产生的最主要的一类酶,由质粒介导,产ESBLsKPN对青霉素类、头孢菌素类及单环类药物耐药,但对头霉素类和碳青霉烯类及酶抑制剂敏感。

α1-抗胰蛋白酶缺乏症发病机理

α1-抗胰蛋白酶缺乏症发病机理 *导读:α1-抗胰蛋白酶缺乏症是血中抗蛋白酶成份-α1- 抗胰蛋白酶(简称α1-AT)缺乏引起的一种先天性代谢病,通过常染色体遗传。临床特点为新生儿肝炎,婴幼儿和成人的肝硬化、肝癌和肺气肿等。…… α1-抗胰蛋白酶缺乏症是血中抗蛋白酶成份-α1-抗胰蛋白酶 (简称α1-AT)缺乏引起的一种先天性代谢病,通过常染色体遗传。临床特点为新生儿肝炎,婴幼儿和成人的肝硬化、肝癌和肺气肿等。 【发病机理】 蛋白电泳时α1-AT位于α1球蛋白带内,α1-AT为一种肝脏合 成的糖蛋白,半衰期约4~5日。血清中有对胰蛋白酶活性起抑 制作用的物质,其中α1-AT起90%的作用。除抑制胰蛋白酶活性外,α1-AT还可抑制糜蛋白酶、凝血因子Ⅻ辅助因子及中性粒 细胞的中性蛋白水解酶作用。α1-AT存在于泪液、十二指肠液、唾液、鼻腔分泌物、脑脊液、肺分泌物及乳汁中,羊水中α1-AT 浓度相当于血清的10%,炎症刺激、肿瘤、妊娠或用雌激素治疗可使血清α1-AT浓度增加2~3倍,但这些刺激对α1-AT缺乏症患者则几乎无效。 正常人体内常存在外源性和内源性蛋白酶,如细菌毒素和白细胞崩解出的蛋白酶对肝脏及其他脏器有破坏作用,α1-AT可拮抗

这些酶类,以维持组织细胞的完整性,α1-AT缺乏时,这些酶均可侵蚀肝细胞,尤其是新生儿肠腔消化吸收功能不完善,大分子物质进入血液更多,α1-AT缺乏的婴儿肝脏更易受损害。此外,α1-AT还具有调节免疫应答、影响抗原-抗体免疫复合物清除、补体激活以及炎症反应的作用,并可抑制血小板的凝聚和纤溶的发生。α1-AT缺乏时上述机体平衡的机制失调,导致组织损伤。

常见蛋白酶抑制剂

蛋白酶及蛋白酶抑制剂大全 标签: 相关专题:解析蛋白酶活性测定聚焦蛋白酶研究新进展 摘要: 破碎细胞提取蛋白质的同时可释放出蛋白酶,这些蛋白酶需要迅速的被抑制以保持蛋白质不被降解。在蛋白质提取过程中,需要加入蛋白酶抑制剂以防止蛋白水解。以下列举了5种常用的蛋白酶抑制剂和他们各自的作用特点,因为各种蛋白酶对不同蛋白质的敏感性各不相同,因此需要调整各种蛋白酶的浓度 恩必美生物新一轮2-5折生物试剂大促销! Ibidi细胞灌流培养系统-模拟血管血液流动状态下的细胞培养系统 广州赛诚生物基因表达调控专题 蛋白酶抑制剂 破碎细胞提取蛋白质的同时可释放出蛋白酶,这些蛋白酶需要迅速的被抑制以保持蛋白质不被降解。在蛋白质提取过程中,需要加入蛋白酶抑制剂以防止蛋白水解。以下列举了5种常用的蛋白酶抑制剂和他们各自的作用特点,因为各种蛋白酶对不同蛋白质的敏感性各不相同,因此需要调整各种蛋白酶的浓度。由于蛋白酶抑制剂在液体中的溶解度极低,尤其应注意在缓冲液中加人蛋白酶抑制剂时应充分混匀以减少蛋白酶抑制剂的沉淀。在宝灵曼公司的目录上可查到更完整的蛋白酶和蛋白酶抑制剂表。 常用抑制剂 PMSF 1)抑制丝氨酸蛋白酶(如胰凝乳蛋白酶,胰蛋白酶,凝血酶)和巯基蛋白酶(如木瓜蛋白酶); 2)10mg/ml溶于异丙醇中; 3)在室温下可保存一年; 4)工作浓度:17~174ug/ml(0.1~1.0mmol/L); 5)在水液体溶液中不稳定,必须在每一分离和纯化步骤中加入新鲜的PMSF。 EDTA 1)抑制金属蛋白水解酶; 2)0.5mol/L水溶液,pH8~9; 3)溶液在4℃稳定六个月以上;

4)工作浓度:0.5~1.5mmol/L. (0.2~0.5mg/ml); 5)加入NaOH调节溶液的pH值,否则EDTA不溶解。 胃蛋白酶抑制剂(pepst anti n) l)抑制酸性蛋白酶如胃蛋白酶,血管紧张肽原酶,组织蛋白酶D和凝乳酶; 2)1mg/ml溶于甲醇中; 3}储存液在4℃一周内稳定,-20℃稳定6个月; 4)1作浓度:0.7ug/ml(1umol/L) 5)在水中不溶解。 亮抑蛋白酶肽(leupeptin) 1)抑制丝氨酸和巯基蛋白酶,如木瓜蛋白酶,血浆酶和组织蛋白酶B; 2)lOmg/ml溶于水; 3)储存液4℃稳定一周,-20℃稳定6个月; 4)工作浓度0.5mg/ml。 胰蛋白酶抑制剂(aprotinin) 1)抑制丝氨酸蛋白酶,如血浆酶,血管舒缓素,胰蛋白酶和胰凝乳蛋白酶; 2)lOmg/ml溶于水,pH7~8 3}储存液4℃稳定一周,-20℃稳定6个月; 4)工作浓度:0.06~2.0ug/ml(0.01~0.3umol/L); 5)避免反复冻融: 6)在pH>12.8时失活。 蛋白酶抑制剂混合使用 35ug/ml PMSF…………………………………丝氨酸蛋白酶抑制剂 0.3mg/ml EDTA…………………………………金属蛋白酶抑制剂 0.7ug/ml胃蛋白酶抑制剂(Pepstatin)…………酸性蛋白酶抑制剂 0.5ug/ml亮抑蛋白肽酶(Leupeptin)……………广谱蛋白酶抑制剂

丝氨酸蛋白酶 (2)

丝氨酸蛋白酶 摘要:丝氨酸蛋白酶是一种种类丰富的酶类【1】,之所以以此命名是因为在酶的催化活性位点上包含丝氨酸在内的丝氨酸、组氨酸、天冬氨酸组成的催化三联体。有些丝氨酸蛋白酶类如凝血酶类蛋白酶,其中包括凝血酶,组织纤维蛋白溶酶原激活剂、血纤维蛋白溶酶,它们参与凝血的发生以及炎症应答反应;也有些如胰蛋白酶类的丝氨酸蛋白酶类的参与消化的酶类,包括胰蛋白酶、弹性蛋白酶、胰凝乳蛋白酶;还有一些表达在神经系统中的丝氨酸蛋白酶类,这些酶类与神经系统正常的维持或是介导病理情况的发生。其实丝氨酸蛋白酶类在执行功能的时候也受到许多因素的限制,如受一些抑制剂的影响等,这些物质对蛋白酶功能的执行起到重要的作用。 关键词:丝氨酸蛋白酶催化机制功能调节 酶的功能 已知所有的蛋白分解酶类丝氨酸蛋白酶占到了其中的三分之一,这些酶又可以细分成很多种类有胰蛋白酶、胰凝乳蛋白酶、弹性蛋白酶、凝血酶、纤溶酶、组织纤溶酶原激活剂、神经源类的丝氨酸蛋白酶等。这些酶类具有消化凝血、纤溶、消化、受精、生长发育、凋亡、免疫等方面都有重要的作用。 酶的催化位点 由于丝氨酸蛋白酶的种类很多根据其催化的特点以及种树亲疏性可以分成不同的类别,不同的组织器官,不同的生物种系中酶的分布与种类是不同的(见表格)。但是其催化特点通常都是其反应的催化三联体,丝氨酸的亲核攻击,即丝氨酸的羟基攻击酰胺键的羰基碳,但是在生物进化的长时间了这种催化活性结构也发生了改变。如在有些酶中其催化三联体不在是固定的丝氨酸、天冬氨酸、组氨酸,而是只有丝氨酸与天冬氨酸或是组氨酸的一种组成催化活性位点,也有的如组氨酸成对出现于丝氨酸组合形成新的催化结构,但是无论怎样其上的丝氨酸残基是固定保守的。 酶的活化 对于丝氨酸蛋白酶类的活化,一般来说是通过对酶前体【2】的加工使其形成具有催化活性的酶,或者是通过一些辅助因子的协同作用使其由闭合的非活化状态转成活性状态,也有通过信号的捕获诱发一系列的级联反应从而活化蛋白,或是通过一些关键因子的作用使得构想发生改变来实现活化等等。通常来说酶的状态一种是抑制非活化状态,另一种是活化的活性状态,但是在一些研究中酶具有新的状态,而这种状态与酶原或是缺少辅因子而显示无活性的酶的状态是不同的,虽然这种状态下的酶也没有活性,但是其结构上出现一些特有的变化,在对凝血酶的研究中发现,这种状态称为E*【3】,其伴有一些氨基酸链陷入酶的催化活性部位从而破坏其中的氧离子空穴,致使没得活性受阻,因此对于这种酶的活化一定有其他的方式,研究发现当E*状态下在远离活性部位连接一种配体时会将这种氨基酸陷入活性位点的状况扭转过来,从而恢复酶的活性位点,并在其他因子的作用下得到活化。 酶的催化机制 对于丝氨酸蛋白酶类的催化活性,有的是通过前体酶原的活化,比如胰蛋白酶类

大豆抗营养因子及其消除方法

大豆抗营养因子及其消除方法 【摘要】大豆中含有胰蛋白酶抑制因子和脂肪氧化酶等多种抗营养因子,它们直接影响大豆食品与饲料的营养价值和食用安全性,降低了大豆的利用率。本文综述了胰蛋白酶抑制剂和脂肪氧化酶的抗营养作用以及消除方法的研究进展。 【关键词】胰蛋白酶抑制剂;脂肪氧化酶;抗营养作用;消除方 【正文】 (一)大豆因其蛋白质含量高和氨基酸平衡性好而成为人类植物蛋白和脂肪的主要来源,同时又是发展家畜、家禽和鱼的重要蛋白质饲料来源,但是其中还含有很多 抗营养因子,如胰蛋白酶抑制剂、脂肪氧化酶、凝集素、单宁、植酸等,它们不 但使大豆的营养价值受到影响,还对畜禽的健康产生不同程度的影响,从而降低 了大豆及其加工产品的利用效率。本文对近几十年来国内外学者对胰蛋白酶抑制 剂和脂肪氧化酶的理化性质、抗营养作用机理以及大豆主要抗营养因子消除方法 的研究和报道进行了综。 (二)大豆抗营养因子的消除方 1、物理失活:大豆中部分抗营养因子对热不稳定,充分加热即可使之变性失活。目 前,膨化法是抗营养因子热失活最常用的方法,对全脂大豆及其副产品进行膨化,不仅可降低其所含胰蛋白酶抑制剂等抗营养因子的活性;还会改善大豆所含蛋白质的品质,提高其消化、吸收和利用率,因此得到了广泛的应用。大豆胰蛋白酶抑制剂的失活可以分为耐热性不同的两个阶段,第一个阶段是KTI的热失活,而第二个阶段则是BBI热失活,BBI的热稳定性之所以比KTI强,是由于BBI的分子结构中含有3个二硫键,而KTI则只有2个二硫键。大豆制品中的胰蛋白酶抑制剂的失活程度,多数报道认为失活70%~85%效果较好。刘寅哲利用膨化豆粕代替普通豆粕饲喂肉仔鸡的研究结果表明,肉仔鸡对蛋白质的消化吸收率提高12.9%,31~49日龄肉仔鸡平均日增重提高13.5%,膨化豆粕应用价值明显好于普通豆粕。 2、化学失活:利用抗营养因子的化学特性,添加某些化合物消除或缓解抗营养物质。 用化学试剂处理破坏KTI和BBI分子结构中的二硫键结构,可破坏其活性,同时氨基酸的组成不发生明显变化。张建云等人采用化学钝化法研究了多种化学物质及其浓度、作用时间等因素对胰蛋白酶抑制剂活性的影响,研究结果表明,5%的尿素加20%水处理豆粕30d效果最好,使胰蛋白酶抑制剂的失活率达78.55%。化学方法对不同的抗营养因子均有一定的效果,可节省设备与资源,但存在化学物质残留,影响饲料品质,降低适口性,且排出的脱毒液会造成污染环境,对动物机体也会产生毒害作用。 3、作物育种方法:大豆优良品种的选育是消除抗营养因子的根本,培育专门化品种 是解决大豆及豆制品适口性和品质问题的关键,因为通过加热等物理化学方法将大豆抗营养因子失活的同时,也降低了大豆种子中丰富蛋白的可溶性,而且其中所耗的费用最终加入到产品的成本中,提高了产品的价格。因此,多年来,科学家们一直在寻找低含量或不含胰蛋白酶抑制剂和脂肪氧化酶等抗营养因子的大豆新品。

相关文档
最新文档