概率与统计练习题

合集下载

专题8 统计与概率压轴小题(原卷版)

专题8 统计与概率压轴小题(原卷版)

专题8统计与概率压轴小题一、单选题 1.(2021·全国·高三专题练习)已知数列{a n }满足a 1=0,且对任意n ∈N*,a n +1等概率地取a n +1或a n ﹣1,设a n 的值为随机变量ξn ,则( ) A .P (ξ3=2)=12B .E (ξ3)=1C .P (ξ5=0)<P (ξ5=2)D .P (ξ5=0)<P (ξ3=0)2.(2021·重庆市蜀都中学校高三月考)已知202123202101232021(1)x a a x a x a x a x +=+++++,则20202019201820171023420202021a a a a a a ++++++=( )A .202120212⨯B .202020212⨯C .202120202⨯D .202020202⨯3.(2021·江苏省苏州中学园区校高三月考)已知*,,x y z N ∈,且10x y z ++=,记随机变量ξ为x ,y ,z 中的最大值,则()E ξ=( ) A .103B .143C .5D .1734.(2021·湖南省岳阳县第一中学高三开学考试)如图,在某城市中,M 、N 两地之间有整齐的方格形道路网,其中1A 、2A 、3A 、4A 是道路网中位于一条对角线上的4个交汇处.今在道路网M 、N 处的甲、乙两人分别要到N 、M 处,他们分别随机地选择一条沿街的最短路径,以相同的速度同时出发,直到到达N 、M 处为止.则下列说法正确的是( )A .甲从M 到达N 处的方法有120种B .甲从M 必须经过2A 到达N 处的方法有64种C .甲、乙两人在2A 处相遇的概率为81400D .甲、乙两人相遇的概率为125.(2021·全国·高三专题练习(理))定义数列{}n a 如下:存在k *∈N ,满足1k k a a +<,且存在s N *∈,满足1s s a a +>,已知数列{}n a 共4项,若{}()1,2,3,,4,,i a t x y z i =∈且t x y z <<<,则数列{}n a 共有( )A .190个B .214个C .228个D .252个6.(2021·山东·模拟预测)为迎接第24届冬季奥林匹克运动会,某校安排甲、乙、丙、丁、戊共五名学生担任冰球、冰壶和短道速滑三个项目的志愿者,每个比赛项目至少安排1人.则学生甲不会被安排到冰球比赛项目做志愿者的概率为( ) A .34B .23C .56D .127.(2021·全国·高三专题练习)已知62a x x ⎛⎫+ ⎪⎝⎭展开式的常数项的取值范围为[]135,240,且()2ln 2x a x a x++≥恒成立.则a 的取值范围为( ) A .[][]4,33,4-- B .[][]4,13,4--C .[]1,4D .[]4,3--8.(2021·河南·高三月考(理))2020年疫情期间,某县中心医院分三批共派出6位年龄互不相同的医务人员支援武汉六个不同的方舱医院,每个方舱医院分配一人.第一批派出一名医务人员的年龄为1P ,第二批派出两名医务人员的年龄最大者为2P ,第三批派出三名医务人员的年龄最大者为3P ,则满足123P P P <<的分配方案的概率为( ) A .13B .23C .120 D .349.(2021·全国·高三专题练习(理))已知有5个不同的小球,现将这5个球全部放入到标有编号1、2、3、4、5的五个盒子中,若装有小球的盒子的编号之和恰为11,则不同的放球方法种数为( ) A .150B .240C .390D .144010.(2021·河北·衡水第一中学高三月考(理))甲、乙两人拿两颗如图所示的正四面体骰子做抛掷游戏,规则如下:由一人同时掷两个骰子,观察底面点数,若两个点数之和为5,则由原掷骰子的人继续掷;若掷出的点数之和不是5,就由对方接着掷.第一次由甲开始掷,设第n 次由甲掷的概率为n P ,则10P 的值为( )A .5111024B .12C .5131024D .25751211.(2021·全国·高三专题练习)某校高一年级研究性学习小组利用激光多普勒测速仪实地测量复兴号高铁在某时刻的速度,其工作原理是:激光器发出的光平均分成两束射出,在被测物体表面汇聚,探测器接收反射光,当被测物体横向速度为零时,反射光与探测光频率相同,当横向速度不为零时,反射光相对探测光会发生频移2sin p f νϕλ=,其中v 为测速仪测得被测物体的横向速度,λ为激光波长,ϕ为两束探测光线夹角的一半,如图,若激光测速仪安装在距离高铁1m 处,发出的激光波长为1500nm (91nm 10m -=),某次检验中可测频移范围为99.50010⨯(1/h )至910.00010⨯(1/h ),该高铁以运行速度(337.5km /h 至375km /h )经过时,可测量的概率为( )A .12B .13C .23D .5612.(2021·河南南阳·高三期末(理))众所周知的“太极图”,其形状如对称的阴阳两鱼互抱在一起,也被称为“阴阳鱼太极图”.如图是放在平面直角坐标系中的“太极图”.整个图形是一个圆形224x y +=.其中黑色阴影区域在y 轴右侧部分的边界为一个半圆,给出以下命题: ①在太极图中随机取一点,此点取自黑色阴影部分的概率是12; ②当32a =-时,直线2y ax a =+与白色部分有公共点;③黑色阴影部分(包括黑白交界处)中一点(),x y ,则x y +1;④若点()0,1P ,MN 为圆224x y +=过点P 的直径,线段AB 是圆224x y +=所有过点P 的弦中最短的弦,则()AM BN AB -⋅的值为12.其中所有正确结论的序号是( )A .①③B .③④C .①③④D .①②④二、多选题 13.(2021·湖南·永州市第四中学高三月考)某人投了100次篮,设投完前n 次的命中率为m r .其中1,2n =,….100.已知11000,0.85r r ==,则一定存在0100m <<使得( )A .0.5m r =B .0.6m r =C .0.7m r =D .0.8m r =14.(2021·辽宁实验中学二模)十七世纪至十八世纪的德国数学家莱布尼兹是世界上第一个提出二进制记数法的人,用二进制记数只需数字0和1,对于整数可理解为逢二进,例如:自然数1在二进制中就表示为1,2表示为10,3表示为11,7表示为111,即n +∈N ,11011222k k k k n a a a a --=⋅+⋅++⋅+,其中01a =,0i a =或()11,2,,i k =,记()I n 为上述表示中0的个数,如()21I =,()70I =.则下列说法中正确的是( ).A .()()1218I I <B .()()()22211,2k kI I k k +---=∈≥NC .()()()222I k I k k +=+∈ND .1到127这些自然数的二进制表示中()2I n =的自然数有35个15.(2021·全国·高三专题练习)甲、乙两人进行围棋比赛,共比赛()*2n n N ∈局,且每局甲获胜的概率和乙获胜的概率均为12.如果某人获胜的局数多于另一人,则此人赢得比赛.记甲赢得比赛的概率为()P n ,则( ) A .1(2)8P =B .11(3)32P =C .221()122n nn C P n ⎛⎫=- ⎪⎝⎭D .()P n 的最大值为1416.(2021·江苏南通·一模)在庆祝教师节联欢活动中,部分教职员工参加了学校工会组织的趣味游戏比赛,其中定点投篮游戏的比赛规则如下:①每人可投篮七次,每成功一次记1分;②若连续两次投篮成功加0.5分,连续三次投篮成功加1分,连续四次投篮成功加1.5分,以此类推,连续七次投篮成功加3分,假设某教师每次投篮成功的概率为23,且各次投篮之间相互独立,则下列说法中正确的有( ) A .该教师恰好三次投篮成功且连续的概率为37523⨯B .该教师恰好三次投篮成功的概率为373523⨯C .该教师在比赛中恰好得4分的概率为37523⨯D .该教师在比赛中恰好得5分的概率为552317.(2021·江苏·南京师大附中模拟预测)将2n (n ∈N *)个有编号的球随机放入2个不同的盒子中,已知每个球放入这2个盒子的可能性相同,且每个盒子容纳球数不限记2个盒子中最少的球数为X (0≤X ≤n ,X ∈N *),则下列说法中正确的有( ) A .当n =1时,方差1()4D X = B .当n =2时,3(1)8P X ==C .3n ∀≥,*0,) [(,)n k n N k ∃∈∈,使得P (X =k )>P (X =k +1)成立D .当n 确定时,期望222(2)()2n nn nn C E X -=18.(2021·全国全国·模拟预测)以人工智能、量子信息等颠覆性技术为引领的前沿趋势,将重塑世界工程科技的发展模式,对人类生产力的创新提升意义重大.某公司抓住机遇,成立了甲、乙、丙三个科研小组针对某技术难题同时进行科研攻关,攻克该技术难题的小组都会受到奖励.已知甲、乙、丙三个小组攻克该技术难题的高绿分别为12,12,23,且三个小组各自独立进行科研攻关,则下列说法正确的是( )A .甲、乙、丙三个小组均受到奖励的概率为16B .只有甲小组受到奖励的概率为12C .受到奖励的小组数的期望值等于32D .该技术难题被攻克,且只有丙小组受到奖励的概率为21119.(2021·广东实验中学高三月考)随着高三毕业日期的逐渐临近,有n (2n ≥)个同学组成的学习小组,每人写了一个祝福的卡片准备送给其他同学,小组长收齐所有卡片后让每个人从中随机抽一张作为祝福卡片,则( )A .当4n =时,每个人抽到的卡片都不是自己的概率为38B .当5n =时,恰有一人抽到自己的卡片的概率为340C .甲和乙恰好互换了卡片的概率为111n n-- D .记n 个同学都拿到其他同学的卡片的抽法数为n a ,则*21(1)(),n n n a n a a n N ++=++∈20.(2021·辽宁·模拟预测)某中学为提升学生劳动意识和社会实践能力,利用周末进社区义务劳动,高三一共6个班,其中只有1班有2个劳动模范,本次义务劳动一共20个名额,劳动模范必须参加并不占名额,每个班都必须有人参加,则下列说法正确的是( ) A .若1班不再分配名额,则共有420C 种分配方法B .若1班有除劳动模范之外学生参加,则共有519C 种分配方法 C .若每个班至少3人参加,则共有90种分配方法 D .若每个班至少3人参加,则共有126种分配方法21.(2021·江苏盐城·二模)已知*n N ∈,2,1,n p q ≥+=设()22k k n kn f k C p q-=,其中,2,k N k n ∈≤则( ) A .()201nk f k ==∑B .()202nk kf k npq ==∑C .若4np =,则()()8f k f ≤D .()()0112212nnk k f k f k ==<<-∑∑22.(2021·山东聊城·高三期末)已知红箱内有5个红球、3个白球,白箱内有3个红球、5个白球,所有小球大小、形状完全相同.第一次从红箱内取出一球后再放回去,第二次从与第一次取出的球颜色相同的箱子内取出--球,然后再放回去,依次类推,第1k +次从与第k 次取出的球颜色相同的箱子内取出--球,然后:再放回去.记第n 次取出的球是红球的概率为n P ,则下列说法正确的是( ) A .21732P =B .117232n n P P +=+ C .()2112212n n n n n n P P P P P P ++++-=-+ D .对任意的,i j N +∈且1i j n ≤<≤,()()11111141422180n n i j i j n P P --≤<≤⎛⎫⎛⎫--=-- ⎪⎪⎝⎭⎝⎭∑ 23.(2021·山东济南·高三期末)已知红箱内有5个红球、3个球,白箱内有3个红球、5个白球,所有小球大小、形状完全相同.第一次从红箱内取出一球后再放回去,第二次从与第一次取出的球颜色相同的箱子内取出一球,然后再放回去,依次类推,第1k +次从与第k 次取出的球颜色相同的箱箱子内取出一球,然后再放回去.记第n 次取出的球是红球的概率为n P ,则下列说法正确的是( ) A .21732P =B .117232n n P P +=+ C .()2112212n n n n n n P P P P P P ++++-=-+ D .对任意的i 、j N ∈,且1i j n ≤<≤,()()11111141422180n n i j i j n P P --≤<≤⎛⎫⎛⎫--=-- ⎪⎪⎝⎭⎝⎭∑24.(2021·福建·厦门外国语学校模拟预测)下列命题中,正确的命题是( ) A .已知随机变量服从(),B n p ,若()()30,20E X D X ==,则23p = B .已知()()0.34,0.71P BA P B ==,则()0.37P BA =C .设随机变量ξ服从正态分布()0,1N ,若()1P p ξ>=,则()1102P p ξ-<<=- D .某人在10次射击中,击中目标的次数为()~10,0.8X X B ,,则当8X =时概率最大25.(2021·湖南·雅礼中学高三月考)如图,在某城市中,M 、N 两地之间有整齐的方格形道路网,其中1A 、2A 、3A 、4A 是道路网中位于一条对角线上的4个交汇处.今在道路网M 、N 处的甲、乙两人分别要到N 、M处,他们分别随机地选择一条沿街的最短路径,以相同的速度同时出发,直到到达N 、M 处为止.则下列说法正确的是( )A .甲从M 到达N 处的方法有120种B .甲从M 必须经过2A 到达N 处的方法有9种C .甲、乙两人在2A 处相遇的概率为81400D .甲、乙两人相遇的概率为41100三、双空题26.(2021·浙江省杭州第二中学高三开学考试)已知()522100121032...x x a a x a x a x -+=++++,则1a =__________,1231023...10a a a a ++++=_____________.27.(2021·浙江·高三月考)设()()23403431212x x a a x a x a x a x -+=++++,则1a =______,234234a a a ++=______.28.(2021·浙江·模拟预测)某盒中有9个大小相同的球,分别标号为1,2,…,9,从盒中任取3个球,则取出的3个球的标号之和能被3整除的概率是______;记ξ为取出的3个球的标号之和被3除的余数,则随机变量ξ的数学期望()E ξ=______.29.(2021·浙江·高三期末)袋子里装有编号分别为“2,3,3,4,4,5”的6个大小、质量相同的小球,小明从袋子中一次任取2个球,若每个球被取到的机会均等,记取出的2个小球编号之和为X ,编号之差的绝对值为Y ,记X Y ξ=+,则()6P ξ==______;()E ξ=_____.四、填空题 30.(2021·上海·模拟预测)设整数数列1a ,2a ,…,10a 满足1013a a =,2852a a a +=,且{}11,2i i i a a a +∈++,1,2,,9i =⋅⋅⋅,则这样的数列的个数为___________.31.(2021·陕西渭南·高三月考(文))如图,将一个大等边三角形分成三个全等三角形与中间的一个小等边三角形,设2DF AF =.若在大等边三角形内任取一点P ,则该点取自小等边三角形内的概率为___________.32.(2021·上海·模拟预测)考察等式:0110r r r r m n m m n m m n m n C C C C C C C ----+++=(*),其中,,n m r *∈N ,r m n ≤<且r n m ≤-.某同学用概率论方法证明等式(*)如下:设一批产品共有n 件,其中m 件是次品,其余为正品.现从中随机取出r 件产品,记事件k A ={取到的r 件产品中恰有k 件次品},则()k r km n mk rnC C P A C --=,0k =,1,2,…,r .显然0A ,1A ,…,r A 为互斥事件,且01r A A A ⋃⋃⋃=Ω(必然事件),因此()()()()0110011r r r m n m m n m m n mr rnC C C C C C P P A P A P A C ----+++=Ω=+++=,所以0110r r r r m n m m n m m n m n C C C C C C C ----+++=,即等式(*)成立.对此,有的同学认为上述证明是正确的,体现了偶然性与必然性的统一;但有的同学对上述证明方法的科学性与严谨性提出质疑.现有以下四个判断:①等式(*)成立,②等式(*)不成立,③证明正确,④证明不正确,试写出所有正确判断的序号___________.33.(2021·浙江金华·三模)如图,用四种不同颜色给图中的A ,B ,C ,D ,E ,F ,G ,H 八个点涂色,要求每个点涂一种颜色,且图中每条线段上的点颜色不同,则不同的涂色方法有___________种.34.(2021·山东淄博·三模)如图,在33⨯的点阵中,依次随机地选出A 、B 、C 三个点,则选出的三点满足0AB AC ⋅<的概率是______.35.(2021·江苏·高三开学考试)格点是指平面直角坐标系中横纵坐标均为整数的点.一格点沿坐标线到原点的最短路程为该点到原点的“格点距离”(如:(2,1)P -,则点P 到原点的格点距离为213+=).格点距离为定值的点的轨迹称为“格点圆”,该定值称为格点圆的半径,而每一条最短路程称为一条半径.当格点半径为6时,格点圆的半径有______条(用数字作答).36.(2021·浙江温州·三模)已知关于x 的方程x a x b x c x d -+-=-+-有且仅有一个实数根,其中互不相同的实数a 、b 、c 、{}1,2,3,4,5,6d ∈,且a b c d -=-,则a 、b 、c 、d 的可能取值共有________种.(请用数字作答)37.(2021·全国·高三专题练习)在生物学研究过程中,常用高倍显微镜观察生物体细胞.已知某研究小组利用高倍显微镜观察某叶片的组织细胞,获得显微镜下局部的叶片细胞图片,如图所示,为了方便研究,现在利用甲、乙等四种不同的试剂对A 、B 、C 、D 、E 、F 这六个细胞进行染色,其中相邻的细胞不能用同种试剂染色,且甲试剂不能对C 细胞染色,则共有______种不同的染色方法(用数字作答).38.(2021·重庆·酉阳土家族苗族自治县第三中学校模拟预测)对一个物理量做n 次测量,并以测量结果的平均值作为该物理量的最后结果.已知最后结果的误差2~0,n N n ε⎛⎫⎪⎝⎭,为使误差n ε在(0.5,0.5)-的概率不小于0.9545,至少要测量_____次(若()2~,X N μσ,则(||2)0.9545)P X μσ-<=).。

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。

参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。

参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。

参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。

参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。

参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。

概率论与数理统计试题库及答案考试必做

概率论与数理统计试题库及答案考试必做

概率论与数理统计<概率论>试题一、填空题1.设 A 、B 、C 是三个随机事件;试用 A 、B 、C 分别表示事件1A 、B 、C 至少有一个发生2A 、B 、C 中恰有一个发生3A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8;则P(B )A =3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,则α=4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为和,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)kP X k A k ===⋅⋅⋅则A=______________ 7. 已知随机变量X 的密度为()f x =⎩⎨⎧<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8081,则该射手的命中率为_________10.若随机变量ξ在1,6上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是11.设3{0,0}7P X Y ≥≥=,4{0}{0}7P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用,X Y 的联合分布函数Fx,y 表示P{a b,c}X Y ≤≤<=13.用,X Y 的联合分布函数Fx,y 表示P{X a,b}Y <<=14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量x,y 在区域D 上服从均匀分布,则x,y 关于X 的边缘概率密度在x = 1 处的值为 ;15.已知)4.0,2(~2-N X ,则2(3)E X +=16.设)2,1(~),6.0,10(~N Y N X ,且X 与Y 相互独立,则(3)D X Y -=17.设X的概率密度为2()x f x -=,则()D X = 18.设随机变量X 1,X 2,X 3相互独立,其中X 1在0,6上服从均匀分布,X 2服从正态分布N0,22,X 3服从参数为λ=3的泊松分布,记Y=X 1-2X 2+3X 3,则DY=19.设()()25,36,0.4xy D X D Y ρ===,则()D X Y +=20.设12,,,,n X X X ⋅⋅⋅⋅⋅⋅是独立同分布的随机变量序列,且均值为μ,方差为2σ,那么当n 充分大时,近似有X ~ 或X ~ ;特别是,当同为正态分布时,对于任意的n ,都精确有X ~ 或X ~ .21.设12,,,,n X X X ⋅⋅⋅⋅⋅⋅是独立同分布的随机变量序列,且i EX μ=,2i DX σ=(1,2,)i =⋅⋅⋅ 那么211n i i X n =∑依概率收敛于 . 22.设1234,,,X X X X 是来自正态总体2(0,2)N 的样本,令221234()(),Y X X X X =++- 则当C = 时CY ~2(2)χ;23.设容量n = 10 的样本的观察值为8,7,6,9,8,7,5,9,6,则样本均值= ,样本方差=24.设X 1,X 2,…X n 为来自正态总体2(,)N μσX的一个简单随机样本,则样本均值11ni i n =X =X ∑服从二、选择题1. 设A,B 为两随机事件,且B A ⊂,则下列式子正确的是 AP A+B = P A; B ()P(A);P AB =C (|A)P(B);P B =D (A)P B -=()P(A)P B -2. 以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为 A “甲种产品滞销,乙种产品畅销”; B “甲、乙两种产品均畅销”C “甲种产品滞销”;D “甲种产品滞销或乙种产品畅销”;3. 袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球;则第二人取到黄球的概率是A1/5 B2/5 C3/5 D4/54. 对于事件A,B,下列命题正确的是A 若A,B 互不相容,则A 与B 也互不相容;B 若A,B 相容,那么A 与B 也相容;C 若A,B 互不相容,且概率都大于零,则A,B 也相互独立;D 若A,B 相互独立,那么A 与B 也相互独立;5. 若()1P B A =,那么下列命题中正确的是A AB ⊂ B B A ⊂C A B -=∅D ()0P A B -=6. 设X ~2(,)N μσ,那么当σ增大时,{}P X μσ-<= A 增大 B 减少 C 不变 D 增减不定;7.设X 的密度函数为)(x f ,分布函数为)(x F ,且)()(x f x f -=;那么对任意给定的a 都有A 0()1()a f a f x dx -=-⎰B 01()()2a F a f x dx -=-⎰ C )()(a F a F -= D 1)(2)(-=-a F a F8.下列函数中,可作为某一随机变量的分布函数是A 21()1F x x =+B x x F arctan 121)(π+= C =)(x F 1(1),020,0x e x x -⎧->⎪⎨⎪≤⎩D ()()x F x f t dt -∞=⎰,其中()1f t dt +∞-∞=⎰ 9. 假设随机变量X 的分布函数为Fx,密度函数为fx.若X 与-X 有相同的分布函数,则下列各式中正确的是AFx = F-x; B Fx = - F-x;C f x = f -x;D f x = - f -x.10.已知随机变量X 的密度函数fx=x x Ae ,x 0,λλ-≥⎧⎨<⎩λ>0,A 为常数,则概率P{X<+a λλ<}a>0的值A 与a 无关,随λ的增大而增大B 与a 无关,随λ的增大而减小C 与λ无关,随a 的增大而增大D 与λ无关,随a 的增大而减小 11.1X ,2X 独立,且分布率为 (1,2)i =,那么下列结论正确的是A 21X X = B1}{21==X X P C 21}{21==X X P D以上都不正确12.设离散型随机变量(,)X Y 的联合分布律为 且Y X ,相互独立,则A 9/1,9/2==βαB 9/2,9/1==βαC 6/1,6/1==βαD 18/1,15/8==βα13.若X ~211(,)μσ,Y ~222(,)μσ那么),(Y X 的联合分布为 A 二维正态,且0=ρ B 二维正态,且ρ不定C 未必是二维正态D 以上都不对14.设X,Y 是相互独立的两个随机变量,它们的分布函数分别为F X x,F Y y,则Z = max{X,Y} 的分布函数是AF Z z= max { F X x,F Y y}; B F Z z= max { |F X x|,|F Y y|}C F Z z= F X x ·F Y yD 都不是(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)1/61/91/181/3X Y P αβ15.下列二无函数中, 可以作为连续型随机变量的联合概率密度;Afx,y=cos x,0,⎧⎨⎩x ,0y 122ππ-≤≤≤≤其他B gx,y=cos x,0,⎧⎨⎩1x ,0y 222ππ-≤≤≤≤其他C ϕx,y=cos x,0,⎧⎨⎩0x ,0y 1π≤≤≤≤其他 D hx,y=cos x,0,⎧⎨⎩10x ,0y 2π≤≤≤≤其他16.掷一颗均匀的骰子600次,那么出现“一点”次数的均值为A 50B 100 C120 D 15017. 设123,,X X X 相互独立同服从参数3λ=的泊松分布,令1231()3Y X X X =++,则2()E Y =A1. B9. C10. D6.18.对于任意两个随机变量X 和Y ,若()()()E XY E X E Y =⋅,则A ()()()D XY D X D Y =⋅B ()()()D X Y D X D Y +=+C X 和Y 独立D X 和Y 不独立19.设()(P Poission λX 分布),且()(1)21E X X --=⎡⎤⎣⎦,则λ= A1, B2, C3, D020. 设随机变量X 和Y 的方差存在且不等于0,则()()()D X Y D X D Y +=+是X 和Y 的A 不相关的充分条件,但不是必要条件;B 独立的必要条件,但不是充分条件;C 不相关的充分必要条件;D 独立的充分必要条件21.设X ~2(,)N μσ其中μ已知,2σ未知,123,,X X X 样本,则下列选项中不是统计量的是A 123X X X ++B 123max{,,}X X XC 2321i i X σ=∑D 1X μ-22.设X ~(1,)p β 12,,,,,n X X X ⋅⋅⋅是来自X 的样本,那么下列选项中不正确的是A 当n 充分大时,近似有X ~(1),p p N p n -⎛⎫ ⎪⎝⎭B {}(1),k k n k n P X kC p p -==-0,1,2,,k n =⋅⋅⋅ C {}(1),k k n k n k P X C p p n-==-0,1,2,,k n =⋅⋅⋅ D {}(1),1k k n k i nP X k C p p i n -==-≤≤ 23.若X ~()t n 那么2χ~A (1,)F nB (,1)F nC 2()n χD ()t n24.设n X X X ,,21为来自正态总体),(2σμN 简单随机样本,X 是样本均值,记2121)(11X X n S n i i --=∑=,2122)(1X X n S n i i -=∑=,2123)(11μ--=∑=n i i X n S , 22411()ni i S X n μ==-∑,则服从自由度为1-n 的t 分布的随机变量是 A 1/1--=n S X t μ B 1/2--=n S X t μ C n S X t /3μ-= D n S X t /4μ-=25.设X 1,X 2,…X n ,X n+1, …,X n+m 是来自正态总体2(0,)N σ的容量为n+m 的样本,则统计量2121n i i n m i i n m V n =+=+X =X ∑∑服从的分布是A (,)F m nB (1,1)F n m --C (,)F n mD (1,1)F m n --三、解答题1.10把钥匙中有3把能打开门,今任意取两把,求能打开门的概率;2.任意将10本书放在书架上;其中有两套书,一套3本,另一套4本;求下列事件的概率;1 3本一套放在一起;2两套各自放在一起;3两套中至少有一套放在一起;3.调查某单位得知;购买空调的占15%,购买电脑占12%,购买DVD 的占20%;其中购买空调与电脑占6%,购买空调与DVD 占10%,购买电脑和DVD 占5%,三种电器都购买占2%;求下列事件的概率;1至少购买一种电器的;2至多购买一种电器的;3三种电器都没购买的;4.仓库中有十箱同样规格的产品,已知其中有五箱、三箱、二箱依次为甲、乙、丙厂生产的,且甲厂,乙厂、丙厂生产的这种产品的次品率依次为1/10,1/15,1/20.从这十箱产品中任取一件产品,求取得正品的概率;5.一箱产品,A,B 两厂生产分别个占60%,40%,其次品率分别为1%,2%;现在从中任取一件为次品,问此时该产品是哪个厂生产的可能性最大6.有标号1∼n 的n 个盒子,每个盒子中都有m 个白球k 个黑球;从第一个盒子中取一个球放入第二个盒子,再从第二个盒子任取一球放入第三个盒子,依次继续,求从最后一个盒子取到的球是白球的概率;7.从一批有10个合格品与3个次品的产品中一件一件地抽取产品,各种产品被抽到的可能性相同,求在二种情况下,直到取出合格品为止,所求抽取次数的分布率;1放回 2不放回8.设随机变量X 的密度函数为()x f x Ae -= ()x -∞<<+∞,求 1系数A,2 {01}P x ≤≤3 分布函数)(x F ;9.对球的直径作测量,设其值均匀地分布在b a ,内;求体积的密度函数;10.设在独立重复实验中,每次实验成功概率为,问需要进行多少次实验,才能使至少成功一次的概率不小于;11.公共汽车车门的高度是按男子与车门碰头的机会在以下来设计的,设男子的身高2(168,7)X N ,问车门的高度应如何确定12. 设随机变量X 的分布函数为:Fx=A+Barctanx,-x ∞<<+∞.求:1系数A 与B ;2X 落在-1,1内的概率;3X 的分布密度;13.把一枚均匀的硬币连抛三次,以X 表示出现正面的次数,Y 表示正、反两面次数差的绝对值 ,求),(Y X 的联合分布律与边缘分布;14.设二维连续型随机变量),(Y X 的联合分布函数为 )3arctan )(2arctan (),(y C x B A y x F ++= 求1A B C 、、的值, 2),(Y X 的联合密度, 3 判断X Y 、的独立性;15.设连续型随机变量X,Y 的密度函数为fx,y=(34)0,0,0,x y x y Ae -+>>⎧⎨⎩其他, 求 1系数A ;2落在区域D :{01,02}x y <≤<≤的概率;16. 设),(Y X 的联合密度为x y x x Ay y x f ≤≤≤≤-=0,10),1(),(,1求系数A,2求),(Y X 的联合分布函数;17.上题条件下:1求关于X 及Y 的边缘密度; 2X 与Y 是否相互独立18.在第16题条件下,求)(x y f 和)(y x f ;19.盒中有7个球,其中4个白球,3个黑球,从中任抽3个球,求抽到白球数X 的数学期望()E X 和方差()D X ;20. 有一物品的重量为1克,2克,﹒﹒﹒,10克是等概率的,为用天平称此物品的重量准备了三组砝码 ,甲组有五个砝码分别为1,2,2,5,10克,乙组为1,1,2,5,10克,丙组为1,2,3,4,10克,只准用一组砝码放在天平的一个称盘里称重量,问哪一组砝码称重物时所用的砝码数平均最少21. 公共汽车起点站于每小时的10分,30分,55分发车,该顾客不知发车时间,在每小时内的任一时刻随机到达车站,求乘客候车时间的数学期望准确到秒;22.设排球队A 与B 比赛,若有一队胜4场,则比赛宣告结束,假设A,B 在每场比赛中获胜的概率均为1/2,试求平均需比赛几场才能分出胜负23.一袋中有n 张卡片,分别记为1,2,﹒﹒﹒,n ,从中有放回地抽取出k 张来,以X 表示所得号码之和,求(),()E X D X ;24.设二维连续型随机变量X ,Y 的联合概率密度为:f x ,y=,0x 1,0y x 0,k <<<<⎧⎨⎩其他 求:① 常数k, ② ()E XY 及()D XY .25.设供电网有10000盏电灯,夜晚每盏电灯开灯的概率均为0.7,并且彼此开闭与否相互独立,试用切比雪夫不等式和中心极限定理分别估算夜晚同时开灯数在6800到7200之间的概率;26.一系统是由n 个相互独立起作用的部件组成,每个部件正常工作的概率为0.9,且必须至少由 80%的部件正常工作,系统才能正常工作,问n 至少为多大时,才能使系统正常工作的概率不低于 0.9527.甲乙两电影院在竞争1000名观众,假设每位观众在选择时随机的,且彼此相互独立,问甲至少应设多少个座位,才能使观众因无座位而离去的概率小于1%;28.设总体X 服从正态分布,又设X 与2S 分别为样本均值和样本方差,又设21(,)n X N μσ+,且1n X +与12,,,n X X X ⋅⋅⋅相互独立,求统计量的分布;29.在天平上重复称量一重为α的物品,假设各次称量结果相互独立且同服从正态分布2(,0.2)N α,若以n X 表示n 次称量结果的算术平均值,为使()0.10.95n P X a -<≥成立,求n 的最小值应不小于的自然数30.证明题 设A,B 是两个事件,满足)()(A B P A B P =,证明事件A,B 相互独立; 31.证明题 设随即变量X 的参数为2的指数分布,证明21X Y e -=-在区间0,1上服从均匀分布;<数理统计>试题一、填空题1.设1621,,,X X X 是来自总体X ),4(~2σN 的简单随机样本,2σ已知,令∑==161161i i X X ,则统计量σ-164X 服从分布为 必须写出分布的参数;2.设),(~2σμN X ,而,,,,是从总体X 中抽取的样本,则μ的矩估计值为 ;3.设]1,[~a U X ,n X X ,,1 是从总体X 中抽取的样本,求a 的矩估计为 ;4.已知2)20,8(1.0=F ,则=)8,20(9.0F ;5.θˆ和βˆ都是参数a 的无偏估计,如果有 成立 ,则称θˆ是比βˆ有效的估计;6.设样本的频数分布为则样本方差2s =_____________________;7.设总体X~N μ,σ²,X1,X2,…,Xn 为来自总体X 的样本,X 为样本均值,则D X =________________________;8.设总体X 服从正态分布N μ,σ²,其中μ未知,X1,X2,…,Xn 为其样本;若假设检验问题为1H 1H 2120≠↔σσ:=:,则采用的检验统计量应________________;9.设某个假设检验问题的拒绝域为W,且当原假设H0成立时,样本值x1,x2, (x)落入W 的概率为,则犯第一类错误的概率为_____________________; 10.设样本X1,X2,…,Xn 来自正态总体N μ,1,假设检验问题为:,:=:0H 0H 10≠↔μμ 则在H0成立的条件下,对显著水平α,拒绝域W 应为______________________;11.设总体服从正态分布(,1)N μ,且μ未知,设1,,n X X 为来自该总体的一个样本,记11nii X X n ==∑,则μ的置信水平为1α-的置信区间公式是 ;若已知10.95α-=,则要使上面这个置信区间长度小于等于,则样本容量n 至少要取__ __;12.设n X X X ,,,21 为来自正态总体2(,)N μσ的一个简单随机样本,其中参数μ和2σ均未知,记11n i i X X n ==∑,221()ni i Q X X ==-∑,则假设0H :0μ=的t 检验使用的统计量是 ;用X 和Q 表示13.设总体2~(,)X N μσ,且μ已知、2σ未知,设123,,X X X 是来自该总体的一个样本,则21231()3X X X σ+++,12323X X X μσ++,222123X X X μ++-,(1)2X μ+中是统计量的有 ;14.设总体X 的分布函数()F x ,设n X X X ,,,21 为来自该总体的一个简单随机样本,则n X X X ,,,21 的联合分布函数 ;15.设总体X 服从参数为p 的两点分布,p 01p <<未知;设1,,n X X 是来自该总体的一个样本,则21111,(),6,{},max n niin i n i ni i X XX X X X pX ≤≤==--+∑∑中是统计量的有 ;16.设总体服从正态分布(,1)N μ,且μ未知,设1,,n X X 为来自该总体的一个样本,记11nii X X n ==∑,则μ的置信水平为1α-的置信区间公式是 ;17.设2~(,)X X X N μσ,2~(,)Y Y Y N μσ,且X 与Y 相互独立,设1,,m X X 为来自总体X 的一个样本;设1,,n Y Y 为来自总体Y 的一个样本;2X S 和2Y S 分别是其无偏样本方差,则2222//X X Y Y S S σσ服从的分布是 ;18.设()2,0.3X N μ~,容量9n =,均值5X =,则未知参数μ的置信度为的置信区间是 查表0.025 1.96Z =19.设总体X ~2(,)N μσ,X 1,X 2,…,X n 为来自总体X 的样本,X 为样本均值,则D X =________________________;20.设总体X 服从正态分布N μ,σ²,其中μ未知,X 1,X 2,…,X n 为其样本;若假设检验问题为1H 1H 2120≠↔σσ:=:,则采用的检验统计量应________________;21.设12,,,n X X X ⋅⋅⋅是来自正态总体2(,)N μσ的简单随机样本,μ和2σ均未知,记11n i i X X n ==∑,221()ni i X X θ==-∑,则假设0:0H μ=的t 检验使用统计量T= ;22.设11m i i X X m ==∑和11ni i Y Y n ==∑分别来自两个正态总体211(,)N μσ和222(,)N μσ的样本均值,参数1μ,2μ未知,两正态总体相互独立,欲检验22012:H σσ= ,应用检验法,其检验统计量是 ;23.设总体X ~2(,)N μσ,2,μσ为未知参数,从X 中抽取的容量为n 的样本均值记为X ,修正样本标准差为*n S ,在显著性水平α下,检验假设0:80H μ=,1:80H μ≠的拒绝域为 ,在显著性水平α下,检验假设2200:H σσ=0σ已知,2110:H σσ≠的拒绝域为 ;24.设总体X ~12(,),01,,,,n b n p p X X X <<⋅⋅⋅为其子样,n 及p 的矩估计分别是 ;25.设总体X ~[]120,,(,,,)n U X X X θ⋅⋅⋅是来自X 的样本,则θ的最大似然估计量是 ;26.设总体X ~2(,0.9)N μ,129,,,X X X ⋅⋅⋅是容量为9的简单随机样本,均值5x =,则未知参数μ的置信水平为0.95的置信区间是 ;27.测得自动车床加工的10个零件的尺寸与规定尺寸的偏差微米如下: +2,+1,-2,+3,+2,+4,-2,+5,+3,+4则零件尺寸偏差的数学期望的无偏估计量是28.设1234,,,X X X X 是来自正态总体2(0,2)N 的样本,令221234()(),Y X X X X =++- 则当C = 时CY ~2(2)χ;29.设容量n = 10 的样本的观察值为8,7,6,9,8,7,5,9,6,则样本均值= ,样本方差= 30.设X 1,X 2,…X n 为来自正态总体2(,)N μσX的一个简单随机样本,则样本均值11ni i n =X =X ∑服从二、选择题1.1621,,,X X X 是来自总体),10(N ~X 的一部分样本,设:216292821X X Y X X Z ++=++= ,则YZ~ )(A )1,0(N )(B )16(t )(C )16(2χ )(D )8,8(F2.已知n X X X ,,,21 是来自总体的样本,则下列是统计量的是X X A +)( +A ∑=-n i iX n B 1211)( a X C +)( +10 131)(X a X D ++5 3.设81,,X X 和101,,Y Y 分别来自两个相互独立的正态总体)2,1(2-N 和)5,2(N 的样本, 21S 和22S 分别是其样本方差,则下列服从)9,7(F 的统计量是)(A 222152S S )(B 222145S S )(C 222154S S )(D 222125S S 4.设总体),(~2σμN X ,n X X ,,1 为抽取样本,则∑=-ni i X X n 12)(1是)(A μ的无偏估计 )(B 2σ的无偏估计 )(C μ的矩估计 )(D 2σ的矩估计5、设n X X ,,1 是来自总体X 的样本,且μ=EX ,则下列是μ的无偏估计的是)(A ∑-=111n i i X n )(B ∑=-n i i X n 111 )(C ∑=ni i X n 21 )(D ∑-=-1111n i i X n 6.设n X X X ,,,21 为来自正态总体2(,)N μσ的一个样本,若进行假设检验,当__ __时,一般采用统计量X t =A 220μσσ未知,检验=B 220μσσ已知,检验= C 20σμμ未知,检验= D 20σμμ已知,检验=7.在单因子方差分析中,设因子A 有r 个水平,每个水平测得一个容量为im 的样本,则下列说法正确的是___ __A 方差分析的目的是检验方差是否相等B 方差分析中的假设检验是双边检验C 方差分析中211.()im r e ij i i j S y y ===-∑∑包含了随机误差外,还包含效应间的差异D 方差分析中2.1()rA i i i S m y y ==-∑包含了随机误差外,还包含效应间的差异8.在一次假设检验中,下列说法正确的是______ A 既可能犯第一类错误也可能犯第二类错误B 如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误C 增大样本容量,则犯两类错误的概率都不变D 如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误9.对总体2~(,)X N μσ的均值μ和作区间估计,得到置信度为95%的置信区间,意义是指这个区间A 平均含总体95%的值B 平均含样本95%的值C 有95%的机会含样本的值D 有95%的机会的机会含μ的值 10.在假设检验问题中,犯第一类错误的概率α的意义是 A 在H 0不成立的条件下,经检验H 0被拒绝的概率 B 在H 0不成立的条件下,经检验H 0被接受的概率 C 在H 00成立的条件下,经检验H 0被拒绝的概率 D 在H 0成立的条件下,经检验H 0被接受的概率 11. 设总体X 服从正态分布()212,,,,,n N X X X μσ是来自X 的样本,则2σ的最大似然估计为A ()211n i i X X n =-∑B ()2111n i i X X n =--∑C 211n i i X n =∑ D 2X 12.X 服从正态分布,1-=EX ,25EX =,),,(1n X X 是来自总体X 的一个样本,则∑==ni inX X 11服从的分布为___ ;A N 1-,5/nB N 1-,4/nC N 1-/n,5/nD N 1-/n,4/n13.设n X X X ,,,21 为来自正态总体2(,)N μσ的一个样本,若进行假设检验,当___ __时,一般采用统计量X U =A 220μσσ未知,检验=B 220μσσ已知,检验=C 20σμμ未知,检验=D 20σμμ已知,检验=14.在单因子方差分析中,设因子A 有r 个水平,每个水平测得一个容量为i m 的样本,则下列说法正确的是____ _ A 方差分析的目的是检验方差是否相等 B 方差分析中的假设检验是双边检验C 方差分析中211.()im r e ij i i j S y y ===-∑∑包含了随机误差外,还包含效应间的差异D 方差分析中2.1()rA i i i S m y y ==-∑包含了随机误差外,还包含效应间的差异15.在一次假设检验中,下列说法正确的是___ ____ A 第一类错误和第二类错误同时都要犯B 如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误C 增大样本容量,则犯两类错误的概率都要变小D 如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误16.设ˆθ是未知参数θ的一个估计量,若ˆE θθ≠,则ˆθ是θ的___ _____A 极大似然估计B 矩法估计C 相合估计D 有偏估计 17.设某个假设检验问题的拒绝域为W,且当原假设H 0成立时,样本值x 1,x 2, …,x n落入W 的概率为,则犯第一类错误的概率为__________; A B C D18.在对单个正态总体均值的假设检验中,当总体方差已知时,选用A t 检验法B u 检验法C F 检验法D 2χ检验法19.在一个确定的假设检验中,与判断结果相关的因素有 A 样本值与样本容量 B 显著性水平α C 检验统计量 DA,B,C 同时成立 20.对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受00:H μμ=,那么在显著水平下,下列结论中正确的是A 必须接受0HB 可能接受,也可能拒绝0HC 必拒绝0HD 不接受,也不拒绝0H21.设12,,,n X X X ⋅⋅⋅是取自总体X 的一个简单样本,则2()E X 的矩估计是A 22111()1n i i S X X n ==--∑B 22211()n i i S X X n ==-∑C 221S X +D 222S X +22.总体X ~2(,)N μσ,2σ已知,n ≥ 时,才能使总体均值μ的置信水平为0.95的置信区间长不大于LA 152σ/2LB 15.36642σ/2LC 162σ/2LD 16 23.设12,,,nX X X ⋅⋅⋅为总体X 的一个随机样本,2(),()E X D X μσ==,12211()n i i i C X X θ-+==-∑为 2σ的无偏估计,C =A 1/nB 1/1n -C 1/2(1)n -D 1/2n - 24.设总体X 服从正态分布()212,,,,,n N X X X μσ是来自X 的样本,则2σ的最大似然估计为A ()211n i i X X n =-∑B ()2111n i i X X n =--∑C 211n i i X n =∑ D 2X 25.设X ~(1,)p β 12,,,,,n X X X ⋅⋅⋅是来自X 的样本,那么下列选项中不正确的是A 当n 充分大时,近似有X ~(1),p p N p n -⎛⎫⎪⎝⎭B {}(1),k kn k n P X k C p p -==-0,1,2,,k n =⋅⋅⋅C {}(1),k k n k n k P X C p p n-==-0,1,2,,k n =⋅⋅⋅D {}(1),1k kn k i nP X k C p p i n -==-≤≤ 26.若X ~()t n 那么2χ~A (1,)F nB (,1)F nC 2()n χ D ()t n27.设n X X X ,,21为来自正态总体),(2σμN 简单随机样本,X 是样本均值,记2121)(11X X n S n i i --=∑=,2122)(1X X n S n i i -=∑=,2123)(11μ--=∑=n i i X n S , 22411()ni i S X n μ==-∑,则服从自由度为1-n 的t 分布的随机变量是A 1/1--=n S X t μ B 1/2--=n S X t μ C nS X t /3μ-=D nS X t /4μ-=28.设X 1,X 2,…X n ,X n+1, …,X n+m 是来自正态总体2(0,)N σ的容量为n+m 的样本,则统计量2121ni i n mi i n m V n =+=+X =X ∑∑服从的分布是A (,)F m nB (1,1)F n m --C (,)F n mD (1,1)F m n -- 29.设 ()2~,X N μσ,其中μ已知,2σ未知,1234,,,X X X X 为其样本, 下列各项不是统计量的是____A4114i i X X ==∑ B142X X μ+-C42211()i i K X X σ==-∑ D4211()3i i S X X ==-∑30. 设 ()2~,N ξμσ,其中μ已知,2σ未知,123,,X X X 为其样本, 下列各项不是统计量的是A 22212321()X X X σ++ B13X μ+C123max(,,)X X X D 1231()3X X X ++三、计算题1.已知某随机变量X 服从参数为λ的指数分布,设n X X X ,,,21 是子样观察值,求λ的极大似然估计和矩估计;10分2.某车间生产滚珠,从某天生产的产品中抽取6个,测得直径为: 已知原来直径服从)06.0,(N μ,求:该天生产的滚珠直径的置信区间;给定05.0=α,645.105.0=Z ,96.1025.0=Z 8分3.某包装机包装物品重量服从正态分布)4,(2μN ;现在随机抽取16个包装袋,算得平均包装袋重为900=x ,样本均方差为22=S ,试检查今天包装机所包物品重量的方差是否有变化05.0=α488.2715262.6)15(2025.02975.0==)(,χχ8分 4.设某随机变量X 的密度函数为⎩⎨⎧+=0)1()(λλx x f 其他10<<x 求λ的极大似然估计; 6分5.某车间生产滚珠,从长期实践可以认为滚珠的直径服从正态分布,且直径的方差为04.02=σ,从某天生产的产品中随机抽取9个,测得直径平均值为15毫米,试对05.0=α求出滚珠的平均直径的区间估计;8分)96.1,645.1(025.005.0==Z Z6.某种动物的体重服从正态分布)9,(μN ,今抽取9个动物考察,测得平均体重为3.51公斤,问:能否认为该动物的体重平均值为52公斤;05.0=α8分96.1645.1025.005.0==Z Z7.设总体X 的密度函数为:⎩⎨⎧+=0)1()(ax a x f 其他10<<x , 设n X X ,,1 是X 的样本,求a 的矩估计量和极大似然估计;10分8.某矿地矿石含少量元素服从正态分布,现在抽样进行调查,共抽取12个子样算得2.0=S ,求σ的置信区间1.0=α,68.19)11(22=αχ,57.4)11(221=-αχ8分9.某大学从来自A,B 两市的新生中分别随机抽取5名与6名新生,测其身高单位:cm 后算得x =,y =;1.9s 3.11s 2221==,;假设两市新生身高分别服从正态分布X-N μ1,σ2,Y-N μ2,σ2其中σ2未知;试求μ1-μ2的置信度为的置信区间;9=,11=10.10分某出租车公司欲了解:从金沙车站到火车北站乘租车的时间; 随机地抽查了9辆出租车,记录其从金沙车站到火车北站的时间,算得20x =分钟,无偏方差的标准差3s =;若假设此样本来自正态总体2(,)N μσ,其中2,μσ均未知,试求σ的置信水平为的置信下限;11.10分设总体服从正态分布2(,)N μσ,且μ与2σ都未知,设1,,n X X 为来自总体的一个样本,其观测值为1,,n x x ,设11n i i X X n ==∑,2211()n n i i S X X n ==-∑;求μ和σ的极大似然估计量;12.8分掷一骰子120次,得到数据如下表若我们使用2χ检验,则x 取哪些整数值时,此骰子是均匀的的假设在显著性水平0.05α=下被接受13.14分机器包装食盐,假设每袋盐的净重服从2~(,)X N μσ正态分布, 规定每袋标准重量为1μ=kg,方差220.02σ≤;某天开工后,为检验其机器工作是否正常,从装好的食盐中随机抽取抽取9袋,测得净重单位:kg 为:,,,,,,,,算得上述样本相关数据为:均值为0.998x =,无偏标准差为0.032s =,21()0.008192nii x x =-=∑;问1在显著性水平0.05α=下,这天生产的食盐的平均净重是否和规定的标准有显著差异2 在显著性水平0.05α=下,这天生产的食盐的净重的方差是否符合规定的标准3你觉得该天包装机工作是否正常14.8分设总体X 有概率分布现在观察到一个容量为3的样本,11x =,22x =,31x =;求θ的极大似然估计值15.12分对某种产品进行一项腐蚀加工试验,得到腐蚀时间X 秒和 腐蚀深度Y 毫米的数据见下表:X 5 5 10 20 30 40 50 60 65 90 120 Y 4 6 8 13 16 17 19 25 25 29 46假设Y 与X 之间符合一元线回归模型01Y X ββε=++1试建立线性回归方程;2在显著性水平0.01α=下,检验01:0H β=16. 7分设有三台机器制造同一种产品,今比较三台机器生产能力,记录其五天的日产量17.10分设总体X 在),0(θ)0(>θ上服从均匀分布,n X X ,,1 为其一个样本,设},,max{1)(n n X X X =1)(n X 的概率密度函数()n p x 2求()[]n E X18.7分机器包装食盐,假设每袋盐的净重服从2~(,)X N μσ正态分布,规定每袋标准重量为1μ=kg,方差220.02σ≤;某天开工后,为检验其机器工作是否正常,从装好的食盐中随机抽取抽取9袋,测得净重单位:kg 为:,,,,,,,,算得上述样本相关数据为:均值为0.998x =,无偏标准差为0.032s =,在显著性水平0.05α=下,这天生产的食盐的净重的方差是否符合规定的标准19.10分设总体X 服从正态分布2(,)N μσ,1,,n X X 是来自该总体的一个样本,记11(11)kk i i X X k n k ==≤≤-∑,求统计量1k k X X +-的分布;20.某大学从来自A,B 两市的新生中分别随机抽取5名与6名新生,测其身高单位:cm 后算得x =,y =;1.9s 3.11s 2221==,;假设两市新生身高分别服从正态分布X-N μ1,σ2,Y-N μ2,σ2其中σ2未知;试求μ1-μ2的置信度为的置信区间;9=,11=<概率论>试题参考答案一、填空题1. 1 C B A 2 C B A C B A C B A3 B A C A C B 或 C B A C B A C B A C B A2. , 3.3/7 , 4.4/7 = 1/1260 , 5., 6. 1/5, 7.1=a ,=b 1/2, 8., 9.2/3, 10.4/5, 11.5/7, 12.Fb,c-Fa,c, 13.F a,b, 14.1/2, 15., 16., 17.1/2, 18.46, 19.85 20.22(,),(0,1),(,),(0,1)N N N N nnσσμμ; 21.22μσ+, 22,1/8 ,23.X =7,S 2=2 , 24.2N ,n σμ⎛⎫⎪⎝⎭,二、选择题1.A 2.D 3.B 4.D 5.D 6.C 7.B 8.B 9.C 10 .C11.C 12.A 13.C 14.C 1 5.B 16.B 17.C 18.B 19.A 20 .C21.C 22.B 23.A 24.B 25.C 三、解答题 1. 8/15 ;2. 11/15, 21/210, 32/21;3. 1 , 2, 3 ;4. ;5. 取出产品是B 厂生产的可能性大;6. m/m+k;7.11{}(3/13)(10/13)k P X K -== 28. 1A =1/2 , 211(1)2e -- , 31,02()11,02xx e x F x e x ⎧<⎪⎪=⎨⎪-≥⎪⎩9. 1/32/3330()161()(),()366f x x x a b b a πππ-⎧⎪=⎨⎡⎤∈⎪⎢⎥-⎣⎦⎩其他, 10. 4≥n11. 提示:99.0}{01.0}{≥<≤≥h x P h x P 或,利用后式求得31.184=h 查表(2.33)0.9901φ= 12. 错误!A=1/2,B=1π; 错误! 1/2; 错误! f x=1/π1+x 2 13. 14. 12,,22A B C ππ===;2 222(,)(4)(9)f x y x y π=++;3 独立 ;15. 1 12; 2 1-e -31-e -816. 124A =24322432340003812(/2)010(,)3861014301111x y y y x x y x y x F x y y y y x y x x x x y x y <<⎧⎪-+-≤<≤<⎪⎪=++≥≤<⎨⎪-≤<≤⎪≥≥⎪⎩或 17. 1212(1),01()0,x x x x f x ⎧-≤≤=⎨⎩其他 ; 212(1),01()0,y y y y f y ⎧-≤≤=⎨⎩其他2不独立18. 22,0,01()0,Y X yy x x f y x x ⎧<<<<⎪=⎨⎪⎩其他 ;22(1),1,01(1)()0,X Y x y x y y f x y -⎧≤<<<⎪-=⎨⎪⎩其他19. 1224(),()749E X D X ==20. 丙组 21. 10分25秒 22. 平均需赛6场j PiP1/823. 2(1)(1)(),()212k n k n E X D X +-== ; 24. k = 2, EXY=1/4, DXY=7/144 25. 26. 27. 537 28. (1)t n - 29. 1630. 提示:利用条件概率可证得;31. 提示:参数为2的指数函数的密度函数为220()00xe xf x x -⎧>=⎨≤⎩ ,利用21xY e-=-的反函数⎪⎩⎪⎨⎧--=0)1ln(21y x 即可证得;<数理统计>试题参考答案一、填空题1.)1,0(N , 2.∑=n i i X n 11=, 3.121-∑=ni i x n , 4., 5.)ˆ()ˆ(β<θD D 6.2 , 7.n 2σ, 8.n-1s 2或∑=n 1i 2i )x -(x , 9. , 10.⎭⎬⎫⎩⎨⎧>2u |u |σ,其中n x u =11.21X u α-±, 385;12.X t =13. 222123X X X μ++-, (1)2X μ+ ; 14.1(,,)n F x x 为1()ni i F x =∏,15.2111,(),6,{}max n ni in i i ni i X XX X X ≤≤==--∑∑ ;16.21X u α-±,17. (,)F m n , 18.,, 19.n 2σ, 20.n-1s 2或∑=n1i 2i )x -(x ,21.T =, 22.F ,2121(1)()(1)()mi i ni i n X X F m Y Y ==--=--∑∑ , 23.__22221122100222()()(1),(1)(1)n n i i i i n x x x x t n n n αααχχσσ==-⎧⎫⎧⎫--⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪->-⋃<-⎬⎨⎬⎨⎬⎪⎪⎪⎪⎪⎩⎭⎪⎪⎪⎪⎩⎭⎩⎭∑∑, 24.2,1X S n p p X∧∧==- , 25.12max{,,,}n X X X θ=⋅⋅⋅ ,26.[4.412,5.588], 27.2 , 28.1/8 , 29.X =7, S 2=2, 30.2N ,n σμ⎛⎫⎪⎝⎭二、选择题1.D 2.B 3.B 4.D 5.D 6.C 7.D 8.A 9.D 10.C11.A 12.B 13.D 14.D 15.C 16.D 17.B 18.B 19.D 20.A21.D 22.B 23.C 24.A 25.B 26.A 27.B 28.C 29.C 30.A 三、计算题 1.10分解:设n X X X ,,,21 是子样观察值 极大似然估计: ∑⋅===-=-∏ni iix nni x eeL 11)(λλλλλ∑=-⋅=ni i n n x l n L l 1)(λλλ0)(1=-=∂∂∑=ni i n x n L l λλλ x1=λ 矩估计:λ=⋅λ⋅=⎰+∞λ-1)(0dx e x X E x 样本的一阶原点矩为:∑==ni i X n X 11所以有:XX X EX 1ˆ1=λ⇒=λ⇒= 2.8分解:这是方差已知,均值的区间估计,所以有: 置信区间为:],[22αασ+σ-Z n X Z n X 由题得:95.14)1.152.158.149.141.156.14(61=+++++=X696.105.0025.0===αn Z代入即得:]96.1606.095.14,96.1606.095.14[⨯-⨯-所以为:]146.15,754.14[ 3.8分解:统计量为:)1(~)1(222--n X S n σ0H :22024==σσ,1H :202σσ≠16=n ,22=S ,224=σ代入统计量得875.116215=⨯ 262.6)15(875.12975.0=<χ所以0H 不成立,即其方差有变化; 4.6分解:极大似然估计:λλλλλ)()1()1(),,(111∏∏==+=+=ni i nni i n X X X X L ;∏=++=ni i X n L 1ln )1ln(ln λλ0ln 1ln 1=++=∑=ni i X nd L d λλ 得 ∑∑==+-=ni ini iXX n 11ln ln ˆλ5.8分解: 这是方差已知均值的区间估计,所以区间为:],[22αασ+σ-Z n x Z n x 由题意得:905.004.0152==α=σ=n x 代入计算可得]96.192.015,96.192.015[⨯+⨯-化间得:]131.15,869.14[ 6.8分解:52:00==μμH ,01:μμ≠H7.093523.51-=-=-nx σμ96.12=αμ96.17.0|7.0|025.0=μ<=-所以接受0H ,即可以认为该动物的体重平均值为52;7.10分 解: 矩估计为:210121)1()(21++=++=+⋅=+⎰a a x a a dx x a x X E a a 样本的一阶原点矩为:∑==ni i x n X 11所以有:XX a X a a --=⇒=++112ˆ21极大似然估计:∏∏==⋅+=+=ni i a ni ni an x a x a x x x f 1121)1(])1[(),,,(两边取对数:∑=++=ni i n x a a n x x f 11)ln()1ln(),,(ln两边对a 求偏导数:=∂∂afln ∑=++ni i x a n 1)ln(1=0 所以有:∑=--=ni ix na1)ln(1ˆ8.8分 解:由2222221)1(ααχσχ≤-≤-S n 得 2222)1(αχσS n -≥,22122)1(αχσ--≤S n所以σ的置信区间为:)11()1(222αχS n -,)11()1(2212αχ--S n 将12=n ,2.0=S 代入得 15.0,31.09.解:这是两正态总体均值差的区间估计问题;由题设知,2-n n 1)s -(n 1)s -(n s .05.01.9s 3.11s 172y 9.175x 6,n 5,n 21222211w 222121++========α,,,, 2分=, 4分 选取9=,则21μμ-置信度为的置信区间为: ⎥⎦⎤⎢⎣⎡+++++21w 21221w212n 1n 12)s -n (n t y -x ,n 1n 12)s -n (n t -y -x αα 8分 =,. 10分 注:置信区间写为开区间者不扣分; 10. 解:由于μ未知,故采用2222(1)~(1)n S n χχσ-=-作枢轴量 2分要求()1L P σσα≥=- 2分这等价于要求22()1L P σσα≥=-, 也即2222(1)(1)()1Ln S n S P ασσ--≤=- 2分而2212(1)((1))1n S P n αχασ--≤-=- 2分所以2212(1)(1)Ln S n αχσ--=-,故2221(1)(1)Ln S n ασχ--=- 1分 故σ的置信水平为1α-的置信下限为L σ=由于这里9n =,0.05α=,20.95(8)15.507χ=所以由样本算得ˆ 2.155L σ= 1分 即σ的置信水平为的置信下限为; 11. 解:写出似然函数221222()()2222(,)(2)ni i i n x x ni L eμμσσμσπσ=-----=∑== 4分取对数2222211ln (,)ln(2)()2nn ii L x μσπσμσ==---∑ 2分求偏导数,得似然方程221231ln 1()0ln 1()0n i i n i i L x L n x μμσμσσσ==∂⎧=-=⎪∂⎪⎨∂⎪=-+-=⎪∂⎩∑∑ 3分解似然方程得:ˆX μ=,ˆσ= 1分12.解:设第i 点出现的概率为i p ,1,,6i =101266:H p p p ====,1126:,,,H p p p 中至少有一个不等于161分采用统计量 221()ri i i i n np np χ=-=∑1分在本题中,6r =,0.05α=,20.95(5)11.07χ= 1分所以拒绝域为2{11.107}W χ=≥ 1分 算实际的2χ值,由于1612020i np =⨯=,所以22222621()(20)4(2020)(20)(20)2010i i i i n np x x x np χ=--+-+--===∑ 1分所以由题意得2(20)011.10710x -≤<时被原假设被接受即9.4630.54x <<,故x 取[10,30]之间的整数时, 2分 此骰子是均匀的的假设在显著性水平0.05α=下被接受;1分13. 解:“这几天包装是否正常”,即需要对这天包装的每袋食盐净重的期望与方差分别作假设检验1检验均值,总共6分0:1H μ=,1:1H μ≠ 选统计量,并确定其分布~(1)X t t n =-确定否定域21{||}{|| 2.306}W t t t α-=≥=≥统计量的观测值为0.1875x t ==因为21||0.1875 2.306t t α-=<=,所以接受0:1H μ=;2检验方差,总共6分220:0.02H σ≤,220:0.02H σ>选统计量222211()~(1)0.02nii XX n χχ==--∑确定否定域2221{(1)}{15.5}W n αχχχ-=≥-=≥ 统计量的观测值为222221180.032()20.480.020.02n i i x x χ=⨯=-==∑因为22120.4815.5(1)n αχχ-=>=-,所以拒绝220:0.02H σ≤32分结论:综合1与2可以认为,该天包装机工作是不正常的; 14.解:此时的似然函数为123123()(1,2,1)(1)(2)(1)L P X X X P X P X P X θ======== 2分即225()2(1)2(1)L θθθθθθθ=⨯-⨯=- 2分 ln ()ln 25ln ln(1)L θθθ=++- 1分ln ()511d L d θθθθ=-- 1分 令 ln ()0d L d θθ= 1分得θ的极大似然估计值5ˆ6θ=.1分15.解:1解:根据公式可得01ˆˆY X ββ=+其中 011ˆˆˆXYXX l lY X βββ⎧=⎪⎨⎪=-⎩ 2分。

中考数学专题冲刺《统计与概率》练习题含答案

中考数学专题冲刺《统计与概率》练习题含答案

专题八统计与概率【专题分析】统计与概率在中考中的常考点有数据的收集方法,平均数、众数和中位数的计算与选择,方差和标准差的计算和应用,统计图的应用及信息综合分析;事件的分类,简单事件的概率计算,画树状图或列表求概率,对频率和概率的理解等.统计与概率在中考中一般以客观题的形式进行考查,选择题、填空题较多,同时考查多个考点的综合性题目一般以解答题的形式进行考查;统计与概率在中考中所占的比重约为6%~12%.【解题方法】解决统计与概率问题常用的数学思想是方程思想和分类讨论思想;常用的数学方法有分类讨论法,整体代入法等.【知识结构】【典例精选】为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果.居民(户)132 4月用电量(千瓦时/户)40505560误的是( )A.中位数是55 B.众数是60C.方差是29 D.平均数是54【思路点拨】根据众数、中位数、方差、平均数的定义及计算公式分别进行计算,即可得出答案.答案:C规律方法:解决此类题目的关键是准确掌握各个统计量的概念及计算方法,分别计算直接选择或排除.若一组数据1,2,x,4的众数是1,那么这组数据的方差是32 .【思路点拨】根据众数的定义求出x的值,再根据平均数的计算公式求出这组数据的平均数,再根据方差公式进行计算即可.【解析】根据众数的意义得到x=1,这组数据的平均数x=1+2+1+44=2,所以这组数据的方差是S2=14[(1-2)2+(2-2)2+(1-2)2+(4-2)2]=14×6=32.规律方法:为了准确而快速地记忆方差的计算公式,可以用下面12个字来理解性的记忆,即“先平均、再作差、平方后、再平均”,也就是说,先求出一组数据的平均数,再将每一个数据都与平均数作差,然后将这些差进行平方,最后求这些差的平方的平均数,其结果就是这组数据的方差.作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如下:宁波市4月份某一周公共自行车日租车量统计图(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入9 600万元,估计2014年共租车3 200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率(精确到0.1%).【思路点拨】(1)根据众数、中位数和平均数的定义即可求出; (2)4月份天数与平均数的积;(3)租车的次数与每次的租车费的积为租车收入,由租车收入与投入的比即可求出百分率.【自主解答】解:(1)8,8,8.5.(2)30×8.5=255(万车次).(3)3 200×0.1÷9 600=1÷30≈3.3%.答:2014年租车费收入占总投入的3.3%.某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级一班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)【思路点拨】(1)由题意得,掷一枚质地均匀的骰子,向上一面的点数的等可能的情况共有6种,其中点数为奇数的情况有3种,所以P=36=12;(2)判断游戏是否公平,利用画树状图或列表法表示出所有等可能的情况,求出两人胜出的概率,若概率相同,则游戏公平,否则游戏不公平.【自主解答】解:(1)所求概率P=36=12.(2)游戏公平.理由如下:由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果,∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的.规律方法:解决判断游戏是否公平的问题,首先应分别计算出两人获胜的概率,然后比较两个概率的大小,若相同则公平,若不相同则不公平.【能力评估检测】一、选择题1.下列事件是随机事件的是( D )A.明天太阳从东方升起B.任意画一个三角形,其内角和是360°C.通常温度降到0 ℃以下,纯净的水结冰D.射击运动员射击一次,命中靶心2.某校为纪念世界反法西斯战争70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为8.6,9.5,9.7,8.7,9,则这5个数据的中位数和平均分分别是( C )A.9.7,9.1 B.9.5,9.1C.9,9.1 D.8.7,93.甲、乙两名同学某学期的四次数学测试成绩(单位:分)如下表:S甲=17,S乙=25,下列说法正确的是()A.甲同学四次数学测试成绩的平均数是89分B.甲同学四次数学测试成绩的中位数是90分C.乙同学四次数学测试成绩的众数是80分D.乙同学四次数学测试成绩较稳定答案:B4.一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机从这个袋子中摸出一个球,摸到白球的概率是( B ) A. 19 B. 13 C. 12 D. 235.如图,在一长方形内有对角线长分别为2和3的菱形、边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是( B )A .落在菱形内B .落在圆内C .落在正六边形内D .一样大6.小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是( B )A. 23B. 49C. 12D. 197.为积极响应创建“全国卫生城市”的号召,某校 1 500名学生参加了卫生知识竞赛,成绩记为A ,B ,C ,D 四等.从中随机抽取了部分学生的成绩进行统计,绘制成如下两幅不完整的统计图,根据图中信息,以下说法不正确的是( )A .样本容量是200B .D 等所在扇形的圆心角为15°C .样本中C 等所占百分比是10%D .估计全校学生成绩为A 等的有900人答案: B8.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示: 候选人 甲 乙 丙 丁测试成绩 (百分制) 面试 86 92 90 83笔试 90 83 83 92如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取( B )A .甲B .乙C .丙D .丁9.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色……如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( B )A .①②③B .①②C .①③D .②③10.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数.如796就是一个“中高数”.若十位上的数字为7,则从3,4,5,6,8,9中任选两个数,与7组成“中高数”的概率是( C )A. 12B. 23C. 25D. 35二、填空题11.一组正整数2,3,4,x 从小到大排列,已知这组数据的中位数和平均数相等,那么x 的值是5 .12.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为 P (奇数),指针落在线上时重转,则P (偶数)< P (奇数)(填“>”“<”或“=”).13.“服务社会,提升自我.”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰是一男一女的概率是35.三、解答题14.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲、乙这10次射击成绩的方差S甲,S乙哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选7环参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选9环参赛更合适.解:(1)乙的平均成绩:(8+9+8+8+7+8+9+8+8+7)÷10=8(环).(2)根据图象可知,甲的波动小于乙的波动,则S甲<S乙.(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.15.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.解:(1)根据题意画树状图如下:由树状图可知,选手A一共获得8种可能的结果,这些结果的可能性相等.(2)P(A晋级)=48=12.16.为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组).(1)报名参加课外活动小组的学生共有30人,将条形图补充完整;(2)扇形图中m=25,n=108;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.解:(1)∵由两种统计图可知,报名参加“地方戏曲”小组的有13人,占13%,∴报名参加课外活动小组的学生共有13÷13%=100(人),参加“民族乐器”小组的有100-32-25-13=30(人).(2)∵m%=25100×100%=25%.∴m=25.n=30100×360=108.(3)画树状图如下:∵共有12种等可能的结果,恰好选中甲、乙的有2种,∴P(选中甲、乙)=212=16.。

《概率论与数理统计》习题及答案

《概率论与数理统计》习题及答案

概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。

2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。

3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。

4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。

5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。

6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。

7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。

8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。

9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。

10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。

11、设B A ,是两事件,则B A ,的差事件为 。

12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。

13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。

14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。

15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。

16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。

17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。

9.1.2概率与统计练习题

9.1.2概率与统计练习题

件B'∪D',依据互斥事件的概率加法公式,有P(B'∪D')=P(B')+P(D')=0
.29+0.35=0.64. ②(法一)由于A,AB型血不能输给B型血的人,所以“任找一人,其
考点整合 基础训练 典例导练 考径避陷 方法技巧 名校押题
1~6 6~9 10~12
血不能输给张三”为事件A'∪C',依据互斥事件的概率加法公式, 有P(A'∪C')=P(C')+P(A')=0.28+0.08=0.36.
①任找一人,其血可以输给张三的概率是多少? ②任找一人,其血不能输给张三的概率是多少? (2)一个箱子内有9张票,其号码分别为1,2,…,8,9,从中任取出2张,其 号码至少有一个为奇数的概率是多少? 【分析】(1)分析的是互斥事件,那么直接用公式可解决.
例题备选
(2)“至少有一个为奇数”的对立事件是“都为偶数”,那么可以 用对立事件的概率来解决. 【解析】(1)①对任一人,其血型为A,B,AB,O的事件分别记为A',B', C',D'.由已知,有P(A')=0.28,P(B')=0.29,P(C')=0.08,P(D')=0.35.因为B, O型血可以输给张三,所以“任找一人,其血可以输给张三”为事
2.特别地,若事件B与事件A互为对立事件,则A∪B为必然 事件,P(A∪B)=1.再由加法公式得P(A)=1-P(B). 3.若事件A与B互斥,则P(A∪B)=P(A)+P(B)(推广情况:如果 A1、A2、…、An彼此至斥,则P(A1∪A2∪…∪An)=P(A1)+P(A2)+

《概率与数理统计》练习册及答案

第一章 概率论的基本概念一、选择题1.将一枚硬币连抛两次,则此随机试验的样本空间为( ) A .{(正,正),(反,反),(一正一反)} B.{(反,正),(正,反),(正,正),(反,反)} C .{一次正面,两次正面,没有正面} D.{先得正面,先得反面}2.设A ,B 为任意两个事件,则事件(AUB)(Ω-AB)表示( ) A .必然事件 B .A 与B 恰有一个发生 C .不可能事件 D .A 与B 不同时发生3.设A ,B 为随机事件,则下列各式中正确的是( ). A.P(AB)=P(A)P(B)B.P(A-B)=P(A)-P(B)C.)()(B A P B A P -=D.P(A+B)=P(A)+P(B)4.设A,B 为随机事件,则下列各式中不能恒成立的是( ). A.P(A -B)=P(A)-P(AB) B.P(AB)=P(B)P(A|B),其中P(B)>0C.P(A+B)=P(A)+P(B)D.P(A)+P(A )=15.若φ≠AB ,则下列各式中错误的是( ).A .0)(≥AB P B.1)(≤AB P C.P(A+B)=P(A)+P(B) D.P(A-B)≤P(A) 6.若φ≠AB ,则( ).A. A,B 为对立事件B.B A =C.φ=B AD.P(A-B)≤P(A)7.若,B A ⊂则下面答案错误的是( ). A. ()B P A P ≤)( B. ()0A -B P ≥C.B 未发生A 可能发生D.B 发生A 可能不发生8.下列关于概率的不等式,不正确的是( ). A. )}(),(min{)(B P A P AB P ≤ B..1)(,<Ω≠A P A 则若C.1212(){}n n P A A A P A A A ≤+++ D.∑==≤ni i ni i A P A P 11)(}{9.(1,2,,)i A i n =为一列随机事件,且12()0n P A A A >,则下列叙述中错误的是( ).A.若诸i A 两两互斥,则∑∑===ni i n i i A P A P 11)()(B.若诸i A 相互独立,则11()1(1())nni i i i P A P A ===--∑∏C.若诸i A 相互独立,则11()()n ni i i i P A P A ===∏D.)|()|()|()()(1231211-=Λ=n n ni i A A P A A P A A P A P A P10.袋中有a 个白球,b 个黑球,从中任取一个,则取得白球的概率是( ). A.21B.ba +1C.ba a+ D.ba b + 11.今有十张电影票,其中只有两张座号在第一排,现采取抽签方式发放给10名同学,则( )A.先抽者有更大可能抽到第一排座票B.后抽者更可能获得第一排座票C.各人抽签结果与抽签顺序无关D.抽签结果受以抽签顺序的严重制约12.将n 个小球随机放到)(N n N ≤个盒子中去,不限定盒子的容量,则每个盒子中至多有1个球的概率是( ).A.!!N n B. n Nn !C. nn N N n C !⋅D.Nn 13.设有r 个人,365≤r ,并设每个人的生日在一年365天中的每一天的可能性为均等的,则此r 个人中至少有某两个人生日相同的概率为( ).A.r r P 3651365-B. rr r C 365!365⋅C. 365!1r -D. rr 365!1-14.设100件产品中有5件是不合格品,今从中随机抽取2件,设=1A {第一次抽的是不合格品},=2A {第二次抽的是不合格品},则下列叙述中错误的是( ). A.05.0)(1=A PB.)(2A P 的值不依赖于抽取方式(有放回及不放回)C.)()(21A P A P =D.)(21A A P 不依赖于抽取方式15.设A,B,C 是三个相互独立的事件,且,1)(0<<C P 则下列给定的四对 事件中,不独立的是( ). A.C AUB 与B. B A -与CC. C AC 与D. C AB 与16.10张奖券中含有3张中奖的奖券,现有三人每人购买1张,则恰有一个中奖的概率为( ). A.4021 B.407 C. 3.0D. 3.07.02310⋅⋅C 17.当事件A 与B 同时发生时,事件C 也随之发生,则( ). A.1)()()(-+≤B P A P C P B.1)()()(-+≥B P A P C P C.P(C)=P(AB)D.()()P C P A B =18.设,1)()|(,1)(0,1)(0=+<<<<B A P B A P B P A P 且则( ). A. A 与B 不相容 B. A 与B 相容 C. A 与B 不独立D. A 与B 独立19.设事件A,B 是互不相容的,且()0,()0P A P B >>,则下列结论正确的 是( ). A.P(A|B)=0B.(|)()P A B P A =C.()()()P AB P A P B =D.P(B|A)>020.已知P(A)=P,P(B)=q 且φ=AB ,则A 与B 恰有一个发生的概率为( ). A.q p +B. q p +-1C. q p -+1D. pq q p 2-+21.设在一次试验中事件A 发生的概率为P,现重复进行n 次独立试验 则事件A 至多发生一次的概率为( ). A.n p -1B.n pC. n p )1(1--D. 1(1)(1)n n p np p --+-22.一袋中有两个黑球和若干个白球,现有放回地摸球4次,若至少摸 到一个白球的概率为8180,则袋中白球数是( ). A.2B.4C.6D.823.同时掷3枚均匀硬币,则恰有2枚正面朝上的概率为( ). A.0.5B.0.25C.0.125D.0.37524.四人独立地破译一份密码,已知各人能译出的概率分别为61,31,41,51则密码最终能被译出的概率为( ). A.1B.21 C.52 D.32 25.已知11()()(),()0,()(),416P A P B P C P AB P AC P BC ======则事件A,B,C 全不发生的概率为( ). A.81 B.83 C.85 D.87 26.甲,乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,则目标被击中的概率为( ). A. 0.5B. 0.8C. 0.55D. 0.627.接上题,若现已知目标被击中,则它是甲射中的概率为( ). A.43 B.65C.32D.116 28.三个箱子,第一箱中有4个黑球1个白球,第二箱中有3个黑球3个白球,第三个箱中有3个黑球5个白球,现随机取一个箱子,再从这个箱中取出一个球,则取到白球的概率是( ). A.12053 B.199 C.12067 D.1910 29.有三类箱子,箱中装有黑、白两种颜色的小球,各类箱子中黑球、白球数目之比为,2:3,2:1,1:4已知这三类箱子数目之比为1:3:2,现随机取一个箱子,再从中随机取出一个球,则取到白球的概率为( ). A.135 B.4519 C.157 D.3019 30.接上题,若已知取到的是一只白球,则此球是来自第二类箱子的概率为( ). A.21 B.31 C.75 D.71 31.今有100枚贰分硬币,其中有一枚为“残币”中华人民共和国其两面都印成了国徽.现从这100枚硬币中随机取出一枚后,将它连续抛掷10次,结果全是“国徽”面朝上,则这枚硬币恰为那枚“残币”的概率为( ).A.1001 B. 10099C.1010212+ D.10102992+ 32.玻璃杯成箱出售,每箱20只,假设各箱含0,1,2只残品的概率分别是0.8,0.1,0.1,一顾客欲购一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机察看1只,若无残次品,则买下该箱玻璃杯,否则退回,如果顾客确实买下该箱,则此箱中确实没有残次品的概率为( ). A.0.94B.0.14C.160/197D.420418419C C C + 二、填空题1.E :将一枚均匀的硬币抛三次,观察结果:其样本空间=Ω.2.某商场出售电器设备,以事件A 表示“出售74 Cm 长虹电视机”,以事件B 表示“出售74 Cm 康佳电视机”,则只出售一种品牌的电视机可以表示为 ;至少出售一种品牌的电视机可以表示为 ;两种品牌的电视机都出售可以表示为 .3.设A ,B ,C 表示三个随机事件,试通过A ,B ,C 表示随机事件A 发生而B ,C 都不发生为 ;随机事件A ,B ,C 不多于一个发生 .4.设P (A )=0.4,P (A+B )=0.7,若事件A 与B 互斥,则P (B )= ;若事件A 与B 独立,则P (B )= .5.已知随机事件A 的概率P (A )=0.5,随机事件B 的概率P (B )=0.6及条件概率P (B|A )=0.8,则P (AUB )=6.设随机事件A 、B 及和事件AUB 的概率分别是0.4,0.3和0.6,则P (AB )= .7.设A 、B 为随机事件,P (A )=0.7,P (A-B )=0.3,则P (AB )= .8.已知81)()(,0)(,41)()()(======BC p AC p AB p C p B p A p ,则C B A ,,全不发生的概率为 .9.已知A 、B 两事件满足条件P (AB )=P (AB ),且P (A )=p,则P (B )= . 10.设A 、B 是任意两个随机事件,则{()()()()}P A B A B A B A B ++++= . 11.设两两相互独立的三事件A 、B 和C 满足条件:φ=ABC ,21)()()(<==C p B p A p ,且已知 169)(=C B A p ,则______)(=A p . 12.一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 .13.袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是 .14.将C 、C 、E 、E 、I 、N 、S 这7个字母随机地排成一行,恰好排成SCIENCE 的概率为 .15.设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从由A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属于A 生产的概率是 .16.设10件产品有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率是 .17.甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5.现已知目标被命中,则它是甲射中的概率是 .18.假设一批产品中一、二、三等品各占60%,30%,10%,从中随意取出一件,结果不是三等品,则取到的是一等品的概率是 .19.一种零件的加工由三道工序组成,第一道工序的废品率为1p ,第二道工序的废品率为2p ,第三道工序的废品率为3p ,则该零件的成品率为. 20.做一系列独立试验,每次试验成功的概率为p ,则在第n 次成功之前恰有m 次失败的概率是 .第二章 随机变量及其分布一、选择题1.设A,B 为随机事件,,0)(=AB P 则( ).A..φ=ABB.AB 未必是不可能事件C.A 与B 对立D.P(A)=0或P(B)=02.设随机变量X 服从参数为λ的泊松分布,且},2{}1{===X P X P 则}2{>X P 的值为( ). A.2-eB.251e -C.241e -D.221e -. 3.设X 服从]5,1[上的均匀分布,则( ). A.4}{ab b X a P -=≤≤ B.43}63{=<<X P C.1}40{=<<X PD.21}31{=≤<-X P4.设),4,(~μN X 则( ). A.)1,0(~4N X μ- B.21}0{=≤X P C.)1(1}2{Φ-=>-μX PD.0≥μ5.设随机变量X 的密度函数为⎩⎨⎧<<=其他,010,2)(x x x f ,以Y 表示对X 的三次独立重复观察中事件}21{≤X 出现的次数,则( ).A .由于X 是连续型随机变量,则其函数Y 也必是连续型的B .Y 是随机变量,但既不是连续型的,也不是离散型的C .649}2{==y P D.)21,3(~B Y6.设=≥=≥}1{,95}1{),,3(~),,2(~Y P X P p B Y p B X 则若( ). A.2719 B.91C.31D.278 7.设随机变量X 的概率密度函数为(),23X f x Y X =-+则的密度函数为( ).A.13()22X y f ---B.13()22X y f --C.13()22X y f +--D.13()22X y f +- 8.连续型随机变量X 的密度函数)(x f 必满足条件( ). A.1)(0≤≤x fB.)(x f 为偶函数C.)(x f 单调不减D.()1f x dx +∞-∞=⎰9.若)1,1(~N X ,记其密度函数为)(x f ,分布函数为)(x F ,则( ). A.{0}{0}P X P X ≤=≥ B.)(1)(x F x F --= C.{1}{1}P X P X ≤=≥D.)()(x f x f -=10.设)5,(~),4,(~22μμN Y N X ,记},5{},4{21+≥=-≤=μμY P P X P P 则( ). A.21P P =B.21P P <C.21P P >D.1P ,2P 大小无法确定11.设),,(~2σμN X 则随着σ的增大,}|{|σμ<-X P 将( ). A.单调增大B.单调减少C.保持不变.D.增减不定12.设随机变量X 的概率密度函数为(),()(),()f x f x f x F x =-是X 的分布函数,则对任意实数a 有( ). A.⎰-=-adx x f a F 0)(1)(B.⎰-=-adx x f a F 0)(21)(C.)()(a F a F =-D.1)(2)(-=-a F a F13.设X的密度函数为01()0,x f x ≤≤=⎪⎩其他,则1{}4P X >为( ).A.78B.14⎰C.141-⎰D.3214.设~(1,4),(0.5)0.6915,(1.5)0.9332,{||2}X N P X Φ=Φ=>则为( ).A.0.2417B.0.3753C.0.3830D.0.866415.设X 服从参数为91的指数分布,则=<<}93{X P ( ). A.)93()99(F F -B.)11(913ee - C.ee 113-D.⎰-939dx e x16.设X 服从参数λ的指数分布,则下列叙述中错误的是( ).A.⎩⎨⎧≤>-=-0,00,1)(x x e x F x λB.对任意的x e x X P x λ-=>>}{,0有C.对任意的}{}|{,0,0t X P s X t s X P t s >=>+>>>有D.λ为任意实数17.设),,(~2σμN X 则下列叙述中错误的是( ). A.)1,0(~2N X σμ-B.)()(σμ-Φ=x x FC.{(,)}()()a b P X a b μμσσ--∈=Φ-Φ D.)0(,1)(2}|{|>-Φ=≤-k k k X P σμ18.设随机变量X 服从(1,6)上的均匀分布,则方程012=++Xx x 有实根的概率是( ). A.0.7B.0.8C.0.6D.0.519.设=<=<<}0{,3.0}42{),,2(~2X P X P N X 则σ( ). A .0.2B.0.3C.0.6D.0.820.设随机变量X服从正态分布2(,)N μσ,则随σ的增大,概率{||}P X μσ-<( ). A.单调增大 B.单调减少 C.保持不变 D.增减不定二、填空题1.随机变量X 的分布函数)(x F 是事件 的概率. 2.已知随机变量X 只能取-1,0,1,2四个数值,其相应的概率依次是cc c c 161,81,41,21,则=c3.当a 的值为 时, ,2,1,)32()(===k a k X p k 才能成为随机变量X 的分布列.4.一实习生用一台机器接连独立地制造3个相同的零件,第i 个零件不合格的概率)3,2,1(11=+=i i p i ,以X 表示3个零件中合格品的个数,则________)2(==X p .5.已知X 的概率分布为⎪⎪⎭⎫⎝⎛-4.06.011,则X 的分布函数=)(x F .6.随机变量X 服从参数为λ的泊松分布,则X 的分布列为 .7.设随机变量X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧∈∈=其它,0]6,3[,92]1,0[,31)(x x x f ,若k 使得{}32=≥k X p则k 的取值范围是 . 8.设离散型随机变量X 的分布函数为: 且21)2(==X p ,则_______,________a b ==.9.设]5,1[~U X ,当5121<<<x x 时,)(21x X x p <<= . 10.设随机变量),(~2σμN X,则X的分布密度=)(x f .若σμ-=X Y ,则Y 的分布密度=)(y f .11.设)4,3(~N X ,则}{=<<-72X p .12.若随机变量),2(~2σN X ,且30.0)42(=≤<X p ,则_________)0(=≤X p . 13.设)2,3(~2N X,若)()(c X p c X p ≥=<,则=c .14.设某批电子元件的寿命),(~2σμN X ,若160=μ,欲使80.0)200120(=≤<X p ,允许最大的σ= .15.若随机变量X 的分布列为⎪⎪⎭⎫⎝⎛-5.05.011,则12+=X Y 的分布列为 . 16.设随机变量X服从参数为(2,p)的二项分布,随机变量Y服从参数为(3,p)的二项分布,若P{X≥1}=5/9,则P{Y≥1}= . 17.设随机变量X服从(0,2)上的均匀分布,则随机变量Y=2X 在(0,4)内的概率密度为()Y f y = .18.设随机变量X服从正态分布2(,)(0)N μσσ>,且二次方程240y y X ++=无实根的概率为1/2,则μ= .第三章 多维随机变量及其分布一、选择题1.X,Y 相互独立,且都服从]1,0[上的均匀分布,则服从均匀分布的是( ). A.(X,Y)B.XYC.X+YD.X -Y2.设X,Y 独立同分布,11{1}{1},{1}{1},22P X P Y P X P Y =-==-=====则( ). A.X =Y B.0}{==Y X P C.21}{==Y X P D.1}{==Y X P3.设)(1x F 与)(2x F 分别是随机变量X 与Y 的分布函数,为使)()(21x bF x aF -是某个随机变量的分布函数,则b a ,的值可取为( ). A.52,53-==b aB.32,32==b aC.23,21=-=b aD.23,21-==b a4.设随机变量i X 的分布为12101~(1,2){0}1,111424i X i X X -⎛⎫ ⎪===⎪⎝⎭且P 则12{}P X X ==( ). A.0 B.41C.21D.15.下列叙述中错误的是( ). A.联合分布决定边缘分布B.边缘分布不能决定决定联合分布C.两个随机变量各自的联合分布不同,但边缘分布可能相同D.边缘分布之积即为联合分布 6.设随机变量(X,Y) 的联合分布为: 则b a ,应满足( ). A .1=+b aB. 13a b += C.32=+b a D.23,21-==b a7.接上题,若X ,Y 相互独立,则( ). A.91,92==b aB.92,91==b aC.31,31==b aD.31,32=-=b a8.同时掷两颗质体均匀的骰子,分别以X,Y 表示第1颗和第2颗骰子出现的点数,则( ).A.1{,},,1,2,636P X i Y j i j ==== B.361}{==Y X P C.21}{=≠Y X PD.21}{=≤Y X P9.设(X,Y)的联合概率密度函数为⎩⎨⎧≤≤≤≤=其他,y x y x y x f 010,10,6),(2,则下面错误的是( ).A.1}0{=≥X PB.{0}0P X ≤=C.X,Y 不独立D.随机点(X,Y)落在{(,)|01,01}D x y x y =≤≤≤≤内的概率为1 10.接上题,设G 为一平面区域,则下列结论中错误的是( ). A.{(,)}(,)GP X Y G f x y dxdy ∈=⎰⎰B.2{(,)}6GP X Y G x ydxdy ∈=⎰⎰C.1200{}6x P X Y dx x ydy ≥=⎰⎰D.⎰⎰≥=≥yx dxdy y x f Y X P ),()}{(11.设(X,Y)的联合概率密度为(,)0,(,)(,)0,h x y x y Df x y ≠∈⎧=⎨⎩其他,若{(,)|2}G x y y x =≥为一平面区域,则下列叙述错误的是( ).A.{,)(,)GP X Y G f x y dxdy ∈=⎰⎰B.⎰⎰-=≤-Gdxdy y x f X Y P ),(1}02{C.⎰⎰=≥-Gdxdy y x h X Y P ),(}02{D.⎰⎰=≥DG dxdy y x h X Y P ),(}2{12.设(X,Y)服从平面区域G 上的均匀分布,若D 也是平面上某个区域,并以G S 与D S 分别表示区域G 和D 的面积,则下列叙述中错误的是( ). A.{(,)}DGS P X Y D S ∈=B.0}),{(=∉G Y X PC.GDG S S D Y X P -=∉1}),{( D.{(,)}1P X Y G ∈=13.设系统π是由两个相互独立的子系统1π与2π连接而成的;连接方式分别为:(1)串联;(2)并联;(3)备用(当系统1π损坏时,系统2π开始工作,令21,X X 分别表示21ππ和的寿命,令321,,X X X 分别表示三种连接方式下总系统的寿命,则错误的是( ). A.211X X Y += B.},m ax {212X X Y = C.213X X Y +=D.},m in{211X X Y =14.设二维随机变量(X,Y)在矩形}10,20|),{(≤≤≤≤=y x y x G 上服从均匀分布.记.2,12,0;,1,0⎩⎨⎧>≤=⎩⎨⎧>≤=Y X Y X V Y X Y X U 则==}{V U P ( ).A.0B.41C.21D.4315.设(X,Y)服从二维正态分布),,,,(222121ρσσμμN ,则以下错误的是( ). A.),(~211σμN X B ),(~221σμN X C.若0=ρ,则X,Y 独立 D.若随机变量),(~),,(~222211σμσμN T N S 则(,)S T 不一定服从二维正态分布 16.若),(~),,(~222211σμσμN Y N X ,且X,Y 相互独立,则( ). A.))(,(~22121σσμμ+++N Y XB.),(~222121σσμμ---N Y XC.)4,2(~2222121σσμμ+--N Y XD.)2,2(~2222121σσμμ+--N Y X17.设X ,Y 相互独立,且都服从标准正态分布(0,1) N ,令,22Y X Z +=则Z 服从的分布是( ).A .N (0,2)分布 B.单位圆上的均匀分布 C.参数为1的瑞利分布 D.N (0,1)分布18.设随机变量4321,,,X X X X 独立同分布,{0}0.6,i P X =={1}0.4i P X ==(1,2,3,4)i =,记1234X X D X X =,则==}0{D P ( ).A.0.1344B.0.7312C.0.8656D.0.3830 19.已知~(3,1)X N -,~(2,1)Y N ,且,X Y 相互独立,记27,Z X Y =-+~Z 则( ).A.)5,0(NB.)12,0(NC.)54,0(ND.)2,1(-N20.已知sin(),0,,(,)~(,)40,C x y x y X Y f x y π⎧+≤≤⎪=⎨⎪⎩其他则C 的值为( ).A.21B.22C.12-D.12+ 21.设⎪⎩⎪⎨⎧≤≤≤≤+=其他,020,10,31),(~),(2y x xy x y x f Y X ,则}1{≥+Y X P =( ) A.7265 B.727 C.721 D.727122.为使⎩⎨⎧≥=+-其他,00,,),()32(y x Ae y x f y x 为二维随机向量(X,Y)的联合密度,则A 必为( ).A.0B.6C.10D.1623.若两个随机变量X,Y 相互独立,则它们的连续函数)(X g 和)(Y h 所确定的随机变量( ).A.不一定相互独立B.一定不独立C.也是相互独立D.绝大多数情况下相独立24.在长为a 的线段上随机地选取两点,则被分成的三条短线能够组成三角形的概率为( ).A.21B.31C.41D.5125.设X 服从0—1分布,6.0=p ,Y 服从2=λ的泊松分布,且X,Y 独立,则Y X +( ). A.服从泊松分布 B.仍是离散型随机变量 C.为二维随机向量 D.取值为0的概率为026.设相互独立的随机变量X,Y 均服从]1,0[上的均匀分布,令,Y X Z +=则( ).A.Z 也服从]1,0[上的均匀分布B.0}{==Y X PC.Z 服从]2,0[上的均匀分布D.)1,0(~N Z27.设X,Y 独立,且X 服从]2,0[上的均匀分布,Y 服从2=λ的指数分布,则=≤}{Y X P ( ).A.)1(414--e B.414e - C.43414+-e D.2128.设⎪⎩⎪⎨⎧≤≤≤≤=其他,010,20,23),(~),(2y x xy y x f Y X ,则(X,Y)在以(0,0),(0,2),(2,1)为顶点的三角形内取值的概率为( ).A. 0.4B.0.5C.0.6D.0.829.随机变量X,Y 独立,且分别服从参数为1λ和2λ的指数分布,则=≥≥--},{1211λλY X P ( ).A.1-eB.2-eC.11--eD.21--e 30.设22[(5)8(5)(3)25(3)](,)~(,)x x y y X Y f x y Ae-+++-+-=,则A 为( ).A.3π B.π3 C.π2 D.2π 31.设某经理到达办公室的时间均匀分布在8点12点,他的秘书到达办公室的时间均匀分布在7点到9点.设二人到达的时间相互独立,则他们到达办公室的时间相差不超过5分钟的概率为( ). A.481 B.21C.121D.24132.设12,,,n X X X 相独立且都服从),(2σμN ,则( ). A.12n X X X === B.2121()~(,)n X X X N nnσμ+++C.)34,32(~3221+++σμN XD.),0(~222121σσ--N X X33.设(,)0,(,)(,)~(,)0,g x y x y GX Y f x y ≠∈⎧=⎨⎩其它,D 为一平面区域,记G,D 的面积为,,D G S S ,则{(,)}P x y D ∈=( ).A.G DS S B.GG D S S C.⎰⎰D dxdy y x f ),( D.⎰⎰Ddxdy y x g ),( 二、填空题1.),(Y X 是二维连续型随机变量,用),(Y X 的联合分布函数),(y x F 表示下列概率: (1);____________________),(=<≤≤c Y b X a p (2);____________________),(=<<b Y a X p (3);____________________)0(=≤<a Y p (4).____________________),(=<≥b Y a X p2.随机变量),(Y X 的分布率如下表,则βα,应满足的条件是 .3.设平面区域D 由曲线xy 1=及直线2,1,0e x x y ===所围成,二维随机变量),(Y X 在区域D 上服从均匀分布,则),(Y X 的联合分布密度函数为 .4.设),,,,(~),(222121ρσσμμN Y X ,则Y X ,相互独立当且仅当=ρ . 5.设相互独立的随机变量X 、Y 具有同一分布律,且X 的分布律为P (X=0)=1/2,P (X=1)=1/2,则随机变量Z=max{X,Y}的分布律为 .6.设随机变量321,,X X X 相互独立且服从两点分布⎪⎪⎭⎫ ⎝⎛2.08.010,则∑==31i i X X 服从 分布 .7.设X 和Y 是两个随机变量,且P{X ≥0,Y ≥0}=3/7,P{X ≥0}=P{Y ≥0}=4/7,则P{max (X ,Y )≥0}= .8.设某班车起点站上车人数X 服从参数为(0)λλ>的泊松分布,每位乘客在中途下车的概率为p(0<p<1),且中途下车与否相互独立.以Y 表示在中途下车的人数,则在发车时有n 个乘客的条件下,中途有m 人下车的概率为 ;二为随机变量(X ,Y )的概率分布为 .9.假设一设备开机后无故障工作的时间X 服从参数为1/5的指数分布,设备定时开机,出现故障时自动关机,而在无故障时工作2小时便关机,则该设备每次开机无故障工作的时间Y 的分布函数 .10.设两个随机变量X 与Y 独立同分布,且P (X=-1)=P (Y=-1)=1/2,P (X=1)=P (Y=1)=1/2,则P (X=Y )= ;P (X+Y=0)= ; P (XY=1)= .第四章 随机变量的数字特征一、选择题1.X 为随机变量,()1,()3E X D X =-=,则2[3()20]E X +=( ). A. 18 B.9 C.30 D. 32 2. 设二维随机向量(X,Y)的概率密度函数为(),0,0(,)0,x y e x y f x y -+⎧<<+∞<<+∞=⎨⎩其它,则()E XY =( ).A. 0B.1/2C.2D. 1 3. (X,Y )是二维随机向量,与0),(=Y X Cov 不等价的是( ).A. EY EX XY E ⋅=)(B. DY DX Y X D +=+)(C. DY DX Y X D +=-)(D. X 与Y 独立 4. X,Y 独立,且方差均存在,则=-)32(Y X D ( ).A.DY DX 32-B. DY DX 94-C. DY DX 94+D. DY DX 32+5. 若X,Y 独立,则( ). A. DY DX Y X D 9)3(-=- B. DY DX XY D ⋅=)(C. 0]}][{[=--EY Y EX X ED. 1}{=+=b aX Y P6.若0),(=Y X Cov ,则下列结论中正确的是( ). A. X,Y 独立B. ()D XY DX DY =⋅C. DY DX Y X D +=+)(D. DY DX Y X D -=-)(7.X,Y 为两个随机变量,且,0)])([(=--EY Y EX X E 则X,Y( ).A. 独立B. 不独立C. 相关D. 不相关 8.设,)(DY DX Y X D +=+则以下结论正确的是( ).A. X,Y 不相关B. X,Y 独立C. 1xy ρ=D. 1xy ρ=- 9.下式中恒成立的是( ).A. EY EX XY E ⋅=)(B. DY DX Y X D +=-)(C. (,)Cov X aX b aDX +=D. 1)1(+=+DX X D10.下式中错误的是( ).A. ),(2)(Y X Cov DY DX Y X D ++=+B. (,)()Cov X Y E XY EX EY =-⋅C. ])([21),(DY DX Y X D Y X Cov --+=D. ),(694)32(Y X Cov DY DX Y X D -+=- 11.下式中错误的是( ).A. 22)(EX DX EX +=B. DX X D 2)32(=+C. b EY b Y E +=+3)3(D. 0)(=EX D12.设X 服从二项分布, 2.4, 1.44EX DX ==,则二项分布的参数为( ). A. 4.0,6==p n B. 1.0,6==p n C. 3.0,8==p n D. 1.0,24==p n13. 设X 是一随机变量,0,,2>==σσμDX EX ,则对任何常数c,必有( ). A. 222)(C EX c X E -=- B. 22)()(μ-=-X E c X E C. DX c X E <-2)( D. 22)(σ≥-c X E14.()~(,),()D X X B n pE X =则( ). A. n B. p -1 C. p D.p-1115.随机变量X 的概率分布律为1{},1,2,,,P X k k n n===()D X 则= ( ). A.)1(1212+n B. )1(1212-n C. 2)1(12+n D. 2)1(121-n 16. 随机变量⎪⎩⎪⎨⎧≤>=-0,00,101)(~10x x e x f X x,则)12(+X E =( ). A.1104+ B. 41014⨯+ C. 21 D. 20 17.设X 与Y 相互独立,均服从同一正态分布,数学期望为0,方 差为1,则(X ,Y )的概率密度为( ). A. 22()21(,)2x y f x y e π+-=B. 22()2(,)x y f x y +-=C. 2()2(,)x y f x y +-=D. 2241(,)2x y f x y e π+-=18.X 服从]2,0[上的均匀分布,则DX=( ). A.21 B. 31 C.61D. 121 19.,),1,0(~3X Y N X =则EY=( ). A.2 B.n 43 C. 0 D. n 3220. 若12,~(0,1),1,2,i Y X X X N i =+=则( ).A. EY=0B. DY=2C.~(0,1)Y ND.~(0,2)Y N 21. 设2(,),(,)X b n p YN μσ,则( ).A.2()(1)D X Y np p σ+=-+B.()E X Y np μ+=+C.22222()E X Y n p μ+=+D.2()(1)D XY np p σ=-22.将n 只球放入到M 只盒子中去,设每只球落在各个盒中是等可能的,设X 表示有球的盒子数,则EX 值为( ). A. ])11(1[nMM -- B.M n B. ])1(1[n M M - D. n Mn ! 23. 已知X 服从参数为`λ的泊松分布,且[(1)(2)]1E X X --=,则λ为( ). A. 1 B.-2 C.21D.41 24. 设1X ,2X ,3X 相互独立,其中1X 服从]6,0[上的均匀分布,2X 服从正态分布)2,0(2N ,3X 服从参数为3的泊松分布,记12323Y X X X =-+,则DY=( ).A. 14B.46C.20D. 9 25. 设X 服从参数为1的指数分布,则2()X E X e -+=( ). A. 1 B.0 C.13 D. 4326. 设X 为随机变量,}3|{|,,2σμσμ≥-==X P DX EX 则满足( ). A. 91≤ B. 31≤ C. 91≥ D. 31≥ 27. 设X,Y 独立同分布,记,,Y X V Y X U +=-=则U 与V 满足( ). A. 不独立 B. 独立 C.相关系数不为0 D. 相关系数为0 28. 设随机变量1210,,X X X 相互独立,且1,2(1,2,,10)i i EX DX i ===,则下列不等式正确的是( ).A. 21011}1{-=-≥<-∑εεi i X P B. 21011}1{-=-≥<-∑εεi i X PC. 2101201}10{-=-≥<-∑εεi i X P D. 2101201}10{-=-≤<-∑εεi i X P29. 利用正态分布有关结论,⎰∞+∞---+-dx e x x x 2)2(22)44(21π=( ).A. 1B.0C.2D. -1 30.设(X,Y )服从区域},0:),{(a y x y x D ≤≤=上的均匀分布,则||Y X E - 的值为( ).A. 0B.a 21C. a 31D. a 41 31. 下列叙述中正确的是( ). A. 1)(=-DX EXX DB.~(0,1)N C. 22)(EX EX = D. 22)(EX DX EX +=32.某班有n 名同学,班长将领来的学生证随机地发给每个人,设X 表示恰好领到自己学生证的人数,则EX 为( ). A. 1 B.2n C.2)1(+n n D. nn 1- 33.设X 服从区间]2,1[-上的均匀分布,1,00,()0,1,0X X DY Y X -<⎧⎪===⎨⎪>⎩则.A.32 B. 31 C. 98D. 1 34.某种产品表面上的疵点数服从泊松分布,平均每件上有1个疵点,若规定疵点数不超过1的为一等品,价值10元;疵点数大于1不多于3的为二等品,价值8元;3个以上者为废品,则产品的废品率为( ). A.e 38 B. e 381- C. e 251- D. e25 35. 接上题,任取一件产品,设其价值为X, 则EX 为( ). A.e 376 B. e316C. 9D. 6 36. 设⎩⎨⎧<<=其他,010,2)(~x x x f X ,以Y 表示对X 的三次独立重复观察中“21≤X ”出现的次数,则DY=( ).A . 169 B. 916 C. 43 D. 3437. 设(X,Y)为连续型随机向量,其联合密度为),(y x f ,两个边缘概 率密度分别为()X f x 与()Y f y ,则下式中错误的是( ). A. ()X EX xf x dx +∞-∞=⎰ B. ⎰⎰+∞∞-+∞∞-=dxdy y x xf EX ),( C. ⎰⎰+∞∞-+∞∞-=dxdy y x f y EY ),(22 D. ()()()X Y E XY xyf x f y dxdy +∞+∞-∞-∞=⎰⎰二、填空题1.随机变量X 服从参数为λ的泊松分布,且2)(=X D ,则{}==1X p .2.已知离散型随机变量X 可能取到的值为:-1,0,1,且2()0.1,()0.9E X EX ==,则X的概率密度是 .3.设随机变量2~(,)X N μσ,则X 的概率密度()f x =EX = ;DX = .若σμ-=X Y ,则Y 的概率密度()f y =EY = ;DY = .4.随机变量~(,4)X N μ,且5)(2=X E ,则X 的概率密度函数(24)0.3,p X <<=为 .5.若随机变量X服从均值为3,方差为2σ的正态分布,且(24)0.3,P X <<=则(2)P X <= .6.已知随机变量X 的分布律为:则()E X = ,()D X = ,(21)E X -+= . 7.设4,9,0.5,(23)_____________XY DX DY D X Y ρ===-=则.8.抛掷n 颗骰子,骰子的每一面出现是等可能的,则出现的点数之和的方差为 .9.设随机变量X 和Y 独立,并分别服从正态分布(2,25)N 和(3,49)N ,求随机变量435Z X Y =-+的概率密度函数为 .10.设X 表示10次独立重复射击命中目标的次数,每次击中目标的概率为0.4,则2X 的数学期望E (2X )= .11.已知离散型随机变量X 服从参数为2的泊松分布,则随机变量Z=3X-2的数学期望E (Z )= .第五章 大数定理及中心极限定理一、选择题1. 已知的i X 密度为()(1,2,,100)i f x i =,且它们相互独立,则对任何实数x , 概率∑=≤1001}{i i x X P 的值为( ).A. 无法计算B.100110011001[()]i i i i x xf x dx dx ==≤∑⎰⎰C. 可以用中心极限定理计算出近似值D. 不可以用中心极限定理计算出近似值2. 设X 为随机变量,}3|{|,,2σμσμ≥-==X P DX EX 则满足( ).A. 91≤B. 31≤C. 91≥D. 31≥ 3. 设随机变量1X ,210,,X X 相互独立,且1,2(1,2,,10)i i EX DX i ===,则( )A. 21011}1{-=-≥<-∑εεi iXP B. 21011}1{-=-≥<-∑εεi iXPC. 2101201}10{-=-≥<-∑εεi i X P D. 2101201}10{-=-≤<-∑εεi i X P 4. 设对目标独立地发射400发炮弹,已知每发炮弹的命中率为0.2由中心极限定理,则命中60发~100发的概率可近似为( ).A. (2.5)ΦB. 2(1.5)1Φ-C. 2(2.5)1Φ-D. 1(2.5)-Φ5. 设 1X ,2,,n X X 独立同分布,2,,1,2,,,i i EX DX i n μσ===当30≥n 时,下列结论中错误的是( ).A.∑=ni iX1近似服从2(,)N n n μσ分布B.niXn μ-∑(0,1)N 分布C. 21X X +服从)2,2(2σμN 分布D.∑=ni iX1不近似服从(0,1)N 分布6. 设12,,X X 为相互独立具有相同分布的随机变量序列,且()1,2,i X i =服从参数为2的指数分布,则下面的哪一正确? ( )A.()lim ;n i n X n P x x →∞⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭∑B. ()2lim ;n i n X n P x x →∞⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭∑C. ()2lim ;n i n X P x x →∞⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭∑D. ()2lim ;n i n X P x x →∞⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭∑其中()x Φ是标准正态分布的分布函数.二、填空题1、设n μ是n 次独立重复试验中事件A 出现的次数,p q p A P -==1,)(,则对 任意区间],[b a 有⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤-<∞→b npq np a P n n μlim = .2、设n μ是n 次独立重复试验中事件A 出现的次数,p 是事件A 在每次试验中发生的概率,则对于任意的0>ε,均有⎭⎬⎫⎩⎨⎧>-∞→εμ||lim p n P n n = .3、一颗骰子连续掷4次,点数总和记为X ,估计)1810(<<X p = .4、已知生男孩的概率为0.515,求在10000个新生婴儿中女孩不少于男孩的概率= .第六章 样本及抽样分布一、选择题1. 设12,,,n X X X 是来自总体X 的简单随机样本,则12,,,n X X X 必然满足( )A.独立但分布不同;B.分布相同但不相互独立; C 独立同分布; D.不能确定2.下列关于“统计量”的描述中,不正确的是( ). A .统计量为随机变量 B. 统计量是样本的函数C. 统计量表达式中不含有参数D. 估计量是统计量3. 设总体均值为μ,方差为2σ,n 为样本容量,下式中错误的是( ). A.0)(=-μX E B. 2()D X nσμ-=C. 1)(22=σS ED. ~(0,1)X N4. 下列叙述中,仅在正态总体之下才成立的是( ). A.22211()()nnii i i XX X n X ==-=-∑∑ B. 2S X 与相互独立C. 22])ˆ([)ˆ()ˆ(θθθθθ-+=-E D ED. 221[()]nii E X n μσ=-=∑ 5. 下列关于统计学“四大分布”的判断中,错误的是( ). A. 若12~(,),F F n n 则211~(,)F n n FB .若2~(),~(1,)T t n T F n 则C .若)1(~),1,0(~22x XN X 则D .在正态总体下2212()~(1)nii Xx n μσ=--∑6. 设2,i i X S 表示来自总体2(,)i i N μσ的容量为i n 的样本均值和样本方差)2,1(=i ,且两总体相互独立,则下列不正确的是( ).A. 2221122212~(1,1)SF n n S σσ--B.12(~(0,1)X X NC.)(~/11111n t n S X μ- D.2222222(1)~(1)n S x n σ--7. 设总体服从参数为θ1的指数分布,若X 为样本均值,n 为样本容量,则下式中错误的是( ).A.θ=X EB. 2DX nθ=C. ()22(1)n E Xnθ+= D. ()221θ=XE8. 设12,,,n X X X 是来自总体的样本,则211()1ni i X X n =--∑是( ).A.样本矩B. 二阶原点矩C. 二阶中心矩D.统计量9. 12,,,n X X X 是来自正态总体)1,0(N 的样本,2,S X 分别为样本均值与样本方差,则( ).A. )1,0(~N XB. ~(0,1)nX NC.221~()ni i X x n =∑ D.~(1)Xt n S- 10. 在总体)4,12(~N X 中抽取一容量为5的简单随机样本,,,,,54321X X X X X 则}15),,,,{m ax (54321>X X X X X P 为( ).A. )5.1(1Φ-B. 5)]5.1(1[Φ- C. 5)]5.1([1Φ- D. 5)]5.1([Φ 11.上题样本均值与总体均值差的绝对值小于1的概率为( ).A. 1)5.0(2-ΦB. 1)25(2-ΦC. 1)45(2-Φ D. 1)5.2(2-Φ 12. 给定一组样本观测值129,,,X X X 且得∑∑====91291,285,45i i i i X X 则样本方差2S 的观测值为 ( ).A. 7.5B.60C.320D. 265 13. 设X 服从)(n t 分布, a X P =>}|{|λ,则}{λ-<X P 为( ).A.a 21B. a 2C. a +21 D. a 211-14. 设12,,n X X X ,是来自总体)1,0(N 的简单随机样本,则∑=-ni i X X 12)(服从分布为( ).A .)(2n x B. )1(2-n x C. ),0(2n N D. )1,0(nN15. 设12,,,n x x x 是来自正态总体2(0,2)N 的简单随机样本,若298762543221)()()2(X X X X c X X X b X X a Y ++++++++=服从2x 分布,则c b a ,,的值分别为( ).A.161,121,81 B. 161,121,201 C. 31,31,31 D. 41,31,21 16. 在天平上重复称量一重为a 的物品,假设各次称量结果相互独立且同服从2(,0.2)N a 分布,以n X 表示n 次称量结果的算术平均,则为了使n a X P n ,95.0}1.0{≥<-值最小应取作( ). A. 20 B. 17 C. 15 D. 1617. 设随机变量X 和Y 相互独立,且都服从正态分布2(0,3)N ,设921,,,X X X 和921,,,Y Y Y 分别是来自两总体的简单随机样本,则统计量9iXU =∑服从分布是( ).A. )9(tB. )8(tC. )81,0(ND. )9,0(N二、填空题1.在数理统计中, 称为样本.2.我们通常所说的样本称为简单随机样本,它具有的两个特点是 .3.设随机变量n X X X ,,,21 相互独立且服从相同的分布,2,σμ==DX EX ,令∑==ni i X n X 11,则EX =;.DX =4.设n X X X ,,,21 是来自总体的一个样本,样本均值_______________=X ,则样本标准差___________=S ;样本方差_________________2=S ;样本的k 阶原点矩为 ;样本的k 阶中心矩为 .5.),,,(1021X X X 是来自总体)3.0,0(~2N X 的一个样本,则=⎭⎬⎫⎩⎨⎧≥∑=101244.1i i X P .6.设n X X X ,,,21 是来自(0—1)分布)}1{,1}0{(p X P p X P ==-==的简单随机样本,X 是样本均值,则=)(X E .=)(X D .7.设),,,(21n X X X 是来自总体的一个样本,),,,()()2()1(n X X X 是顺序统计量,则经验分布函数为 8.设),,,(21n X X X 是来自总体的一个样本,称 为统计量;9.已知样本1621,,,X X X 取自正态分布总体)1,2(N ,X 为样本均值,已知5.0}{=≥λX P ,则=λ . 10.设总体),(~2σμN X ,X 是样本均值,2n S 是样本方差,n为样本容量,则常用的随机变量22)1(σnS n -服从分布.11.设n X X X ,,,21 为来自正态总体),(~2σμN X 的一个简单随机样本,则样本均值∑==ni i X n X 11服从 ,又若i a 为常数),2,1,0(n i a i =≠,则∑=ni i i X a 1服从 .12.设10=n 时,样本的一组观测值为)7,4,8,5,4,5,3,4,6,4(,则样本均值为 ,样本方差为 .第七章 参数估计一、选择题1. 设总体X 在),(ρμρμ+-上服从均匀分布,则参数μ的矩估计量为( ).(A )X1 (B )∑=-n i i X n 111 (C )∑=-ni i X n 1211 (D )X 2. 设总体),(~2σμN X ,n X X ,,1 为抽取样本,则∑=-n i i X X n 12)(1是( ).)(A μ的无偏估计 )(B 2σ的无偏估计 )(C μ的矩估计 )(D 2σ的矩估计3. 设X 在[0,a]上服从均匀分布,0>a 是未知参数,对于容量为n 的样本n X X ,,1 ,a 的最大似然估计为( ) (A )},,,m ax {21n X X X (B )∑=ni i X n 11(C )},,,m in{},,,m ax {2121n n X X X X X X - (D )∑=+ni i X n 111;4. 设总体X 在[a,b]上服从均匀分布,n X X X ,,,21 是来自X 的一个样本,则a 的最大似然估计为( ) (A )},,,m ax {21n X X X (B )X (C )},,,m in{21n X X X (D )1X X n -5. 设总体分布为),(2σμN ,2,σμ为未知参数,则2σ的最大似然估计量为( ).(A )∑=-n i i X X n 12)(1 (B )∑=--n i i X X n 12)(11 (C )∑=-n i i X n 12)(1μ (D )∑=--n i i X n 12)(11μ 6. 设总体分布为),(2σμN ,μ已知,则2σ的最大似然估计量为( ).(A )2S (B )21S nn - (C )∑=-n i i X n 12)(1μ (D )∑=--n i i X n 12)(11μ 7. 设总体X 的密度函数是⎩⎨⎧<<=-其他,010,),(1x ax a x f a (120),,,,n a x x x >是取自总体的一组样本值,则a 的最大似然估计为( ). A. ∑=-ni ixn1lnB. 11ln n i i x n =∑C. 11ln()ni i x n =-∑ D. ∑=-n i ix n 1ln8. 设总体X 的概率密度为⎪⎩⎪⎨⎧<<-=其他,00),(6)(3θθθx x xx f ,n X X X ,,,21 是来自X 的简单随机样本,则θ的矩估计量为( ).A. XB. X 2C. ),,,m ax (21n X X XD.∑=ni iX19. 设总体X 的数学期望为μ,方差为2σ,),(21X X 是X 的一个样本, 则在下述的4个估计量中,( )是最优的.(A) 2115451ˆX X +=μ(B) 2124181ˆX X +=μ(C) 2132121ˆX X +=μ(D) 2143121ˆX X +=μ 10. 321,,X X X 设为来自总体X 的样本,下列关于)(X E 的无偏估计中,最有效的为( ).(A ))(2121X X + (B ))(31321X X X ++ (C ))(41321X X X ++ (D ))313232321X X X -+11. 设),,,(21n X X X 为总体),(2σμN (μ已知)的一个样本,X 为样本均值,则在总体方差2σ的下列估计量中,为无偏估计量的是( ).(A )22111ˆ()n i i X X n σ==-∑; (B )22211ˆ()1n i i X X n σ==--∑; (C )22311ˆ()n i i X n σμ==-∑; (D )22411ˆ()1n i i X n σμ==--∑. 12. 设n X X ,,1 是来自总体X 的样本,且μ=EX ,则下列是μ的无偏估计的是( ). 13. 设)2(,,,21≥n X X X n 是正态分布),(2σμN 的一个样本,若统计量∑-=+-1121)(n i ii X XK 为2σ的无偏估计,则K 的值应该为( ) (A )n 21 (B )121-n (C )221-n (D )11-n 14. 下列叙述中正确的是( ).A . 若θˆ是θ的无偏估计,则()2ˆθ也是2θ的无偏估计.B . 21ˆ,ˆθθ都是θ的估计,且)ˆ()ˆ(21θθD D ≤,则1ˆθ比2ˆθ更有效. C . 若21ˆ,ˆθθ都是θ的估计,且2221)ˆ()ˆ(θθθθ-≤-E E ,则1ˆθ优于2ˆθ D . 由于0)(=-μX E ,故.μ=X15. 设n 个随机变量n X X X ,,,21 独立同分布,2σ=X D ,∑==n i i X n X 11,∑=--=n i i X X n S 122)(11,则( )A. S 是σ的无偏估计量B. 2S 不是2σ的最大似然估计量C. nS X D 2= D. 2S 与X 独立16. 设θ是总体X 中的参数,称),(θθ为θ的置信度a -1的置信区间,即( ). A. ),(θθ以概率a -1包含θ B. θ 以概率a -1落入),(θθ C. θ以概率a 落在),(θθ之外D. 以),(θθ估计θ的范围,不正确的概率是a -117. 设θ为总体X 的未知参数,21,θθ是统计量,()21,θθ为θ的置信度为)10(1<<-a a 的置信区间,则下式中不能恒成的是( ).A. a P -=<<1}{21θθθB. a P P =<+>}{}{12θθθθC. a P -≥<1}{2θθD. 2}{}{12a P P =<+>θθθθ 18. 设),(~2σμN X 且2σ未知,若样本容量为n ,且分位数均指定为“上侧分位数”时,则μ的95%的置信区间为( )A. )(025.0u n X σ±B. ))1((05.0-±n t n S XC. ))((025.0n t nS X ±D. ))1((025.0-±n t nS X19. 设22,),,(~σμσμN X 均未知,当样本容量为n 时,2σ的95%的置信区间为( )A. ))1()1(,)1()1((2025.022975.02----n x S n n x S nB. ))1()1(,)1()1((2975.022025.02----n x S n n x S nC. ))1()1(,)1()1((2975.022025.02----n t S n n t S n D. ))1((025.0-±n t nS X 20. n X X X ,,,21 和n Y Y Y ,,,21 分别是总体),(211σμN 与),(222σμN 的样本,且相互独立,其中21σ,22σ已知,则21μμ-的a -1置信区间为( )A. ])2()[(22212121n S n S n n t Y X z a +-+±- B. ])[(2221212n n Z Y X a σσ+±-。

高考数学一轮复习概率与统计单元专项练习题附参考答案

高考数学一轮复习概率与统计单元专项练习题附参考答案1.(理)设,那么的展开式中的系数不可能是( )A.10B.40C.50D.80(文)为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg) ,得到频率分布直方图如下:根据上图可得这100名学生中体重在〔56.5,64.5〕的学生人数是( )A.20B.30C.40D.502.(理)四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱所代表的化工产品放在同一仓库是平安的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么平安存放的不同方法种数为( )A.96B.48C.24D.0(文)从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( )A. B. C. D.3.甲:A1、A2是互斥事件;乙:A1、A2是对立事件,那么( )A.甲是乙的充分但不必要条件B.甲是乙的必要但不充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件,也不是乙的必要条件4.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,,270;使用系统抽样时,将学生统一随机编号1,2,,270,并将整个编号依次分为10段。

如果抽得号码有以下四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的以下结论中,正确的选项是( )A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样5.在正方体上任选3个顶点连成三角形,那么所得的三角形是直角非等腰三角形的概率为( )A. B. C. D.6.在三维柱形图中,主对角线上两个柱形高度的乘积与副对角线上的两个柱形的高度的乘积相差越大两个变量有关系的可能性就()A.越大B.越小C.无法判断D.以上都不对7.(理)抛掷两个骰子,至少有一个4点或5点出现时,就说这些试验成功,那么在10次试验中,成功次数的期望是( )A. B. C. D.(文)为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将局部数据丧失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到5.0之间的学生数为b,那么a, b的值分别为( )A.0,27,78B.0,27,83C.2.7,78D.2.7,838.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.这组数据的平均数为10,方差为2,那么|x-y|的值为( )A.1B.2C.3D.49.一项研究要确定是否能够根据施肥量预测作物的产量。

概率统计练习题

概率统计复习题1.一射手向目标射击3 次,i A 表示第i 次射击中击中目标这一事件)3,2,1(=i ,则3次射击 中至多2次击中目标的事件为( ): 321321321321)(;)(;)(;)(A A A D A A A C A A A B A A A A ⋃⋃⋃⋃2. 袋中有10个乒乓球,其中7个黄的,3个白的,不放回地依次从袋中随机取一球。

则第一次和第二次都取到黄球的概率是( );()715A ; ()49100B ; ()710C ; ()2150D3..将一枚均匀的硬币抛掷三次,恰有一次出现正面的概率为( ) A.81 B. 83 C. 41 D.214、设事件A 与B 互不相容,则有( ) )()()()(B P A P B A P A = )()()(B P B A P B =)()()()(A P B P B A P C -= )()()()(AB P A P B A P D -=5.设事件A 与B 相互独立,且0)(,0)(>>B p A p ,则下列等式成立的是() A. φ=AB B. 0)|(=A B pC. )(1)(A p B p -=D. )()()(B p A p B A p =6.设随机变量X 的取值范围是(-1,1),以下函数可作为X 的概率密度的是() A. .;11,0,21)(其它<<-⎪⎩⎪⎨⎧=x x f B. .;11,0,2)(其它<<-⎩⎨⎧=x x fC .;11,0,)(其它<<-⎩⎨⎧=x x x f . D. .;11,,0)(2其它<<-⎩⎨⎧=x x x f7、设随机变量)1,0(~N X ,X 的分布函数为)(x Φ,则{}2>X P 的值为( )[])2(12)(Φ-A 1)2(2)(-ΦB)2(2)(Φ-C )2(21)(Φ-B8、设随机变量X 的密度函数为⎩⎨⎧∈=其它0],0[2)(A x x x f ,则常数A=( )A 、41B 、21C 、 1D 、29. 设A 、B 是两个随机事件,且0)(=AB P ,则 ( )A 、A 和B 不相容; B 、A 和B 独立;C 、0)(0)(==B P A P 或;D 、)()(A P B A P =-10.加工一种零件需经过三道独立工序,各道工序的废品率为321,,p p p ,则加工该种零件的成品率为( ) 3211)(p p p A -)1)(1)(1)((321p p p B --- 3211)(p p p C --- 3213211)(p p p p p p D ----11.若A 与B 互为对立事件,则下式成立的是( ) A. P (AB )=P (A )P (B ) B P (A ⋃B )=ΩC. P (AB )=φD. P (A )=1-P (B )12.下列各函数中,可作为某随机变量概率密度的是( )A . ⎩⎨⎧-<<=其他,1;10,3)(2x x x fB .⎩⎨⎧<<-=其他,0;11,4)(3x x x fC . ⎩⎨⎧<<=其他,0;10,2)(x x x fD .⎪⎩⎪⎨⎧<<=其他,0;10,21)(x x f13.列函数中可作为某一随机变量X 的概率密度的是( )A.()⎩⎨⎧≤≤=其他00cos πx x x f B.()⎩⎨⎧≤≤=其他00sin 23πx x x f C.()⎩⎨⎧≤≤=其他00cos 2πx x x f D.()⎩⎨⎧≤≤-=其他0sin 22ππx x x f 14 。

统计与概率练习题

第10章第1节一、选择题1.某公司甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是()A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法[答案] B[解析]①因为抽取销售点及地区有关,因此要采用分层抽样法;②从20个特大型销售点中抽取7个调查,总体和样本都比较少,适合采用简单随机抽样法.2.为规范学校办学,省教育厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽到一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应是()A.13 B.19C.20 D.51[答案] C[解析]由系统抽样的原理知抽样的间隔为524=13,故抽取的样本的编号分别为7,7+13,7+13×2,7+13×3,即7号、20号、33号、46号,从而可知选C.3.(2010·山东潍坊)某工厂的三个车间在12月份共生产了3600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a、b、c,且a、b、c构成等差数列,则第二车间生产的产品数为()A.800 B.1000C.1200 D.1500[答案] C[解析]因为a、b、c成等差数列,所以2b=a+c,∴a +b +c3=b ,∴第二车间抽取的产品数占抽样产品总数的三分之一,根据分层抽样的性质可知,第二车间生产的产品数占总数的三分之一,即为1200双皮靴.4.(2010·曲阜一中)学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为n 的样本,其频率分布直方图如图所示,其中支出在[50,60)的同学有30人,若想在这n 个人中抽取50个人,则在[50,60)之间应抽取的人数为( )A .10B .15C .25D .30[答案] B[解析] 根据频率分布直方图得总人数n =301-0.01+0.024+0.036×10=100,依题意知,应采取分层抽样,再根据分层抽样的特点,则在[50,60)之间应抽取的人数为50×30100=15.5.在100个产品中,一等品20个,二等品30个,三等品50个,用分层抽样的方法抽取一个容量20的样本,则二等品中A 被抽取到的概率( ) A .等于15 B .等于310 C .等于23D .不确定[答案] A[解析] 每一个个体被抽到的概率相等,等于20100=15.6.(2010·四川文,4)一个单位职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人,为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本,则从上述各层中依次抽取的人数分别是( ) A .12,24,15,9 B .9,12,12,7 C .8,15,12,5D .8,16,10,6[答案] D[解析] 从各层中依次抽取的人数分别是40×160800=8,40×320800=16,40×200800=10,40×120800=6. 7.(文)(2010·江西抚州一中)做了一次关于“手机垃圾短信”的调查,在A 、B 、C 、D 四个单位回收的问卷依次成等差数列,再从回收的问卷中按单位分层抽取容量为100的样本,若在B 单位抽取20份问卷,则在D 单位抽取的问卷份数是( ) A .30份 B .35份 C .40份D .65份[答案] C[解析] 由条件可设从A 、B 、C 、D 四个单位回收问卷数依次为20-d,20,20+d,20+2d ,则(20-d)+20+(20+d)+(20+2d)=100,∴d =10,∴D 单位回收问卷20+2d =40份. (理)(2010·广西南宁一中模考)从8名女生,4名男生中选出6名学生组成课外小组,如果按性别比例分层抽样,则不同的抽样方法种数为( ) A .C84C42 B .C83C43 C .2C86D .A84A42[答案] A[解析]抽样比68+4=12,∴女生抽8×12=4名,男生抽4×12=2名,∴抽取方法共有C84C42种.8.(2010·湖北理,6)将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003,这600名学生分住在三个营区.从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区.三个营区被抽中的人数依次为( ) A .26,16,8 B .25,17,8 C .25,16,9D .24,17,9[答案] B[解析] 根据系统抽样的特点可知抽取的号码间隔为60050=12,故抽取的号码构成以3为首项,公差为12的等差数列.在第Ⅰ营区001~300号恰好有25组,故抽取25人,在第Ⅱ营区301~495号有195人,共有16组多3人,因为抽取的第一个数是3,所以Ⅱ营区共抽取17人,剩余50-25-17=8人需从Ⅲ营区抽取.9.(2010·茂名市调研)某学校在校学生2000人,为了迎接“2010年广州亚运会”,学校举行了“迎亚会”跑步和爬山比赛活动,每人都参加而且只参及其中一项比赛,各年级参及比赛人数情况如下表:第一级 第二级 第三级 跑步 a b c 爬山xyz其中a b c =253,全校参及爬山的人数占总人数的14.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则高三级参及跑步的学生中应抽取 ( ) A .15人 B .30人 C .40人D .45人[答案] D[解析] 由题意,全校参及爬山人数为x +y +z =2000×14=500人,故参及跑步人数为a +b +c =2000-500=1500人,又a b c =253,∴a =300,b =750,c =450,∴高三级参及跑步的学生应抽取450×2002000=45人.10.(2010·山东日照模考)某企业三月中旬生产A 、B 、C 三种产品共3000件,根据分层抽样的结果,企业统计员制作了如下的统计表格.由于不小心,表格中A 、C 产品的有关数据已被污染看不清楚,统计员记得A 产品的样本容量比C 产品的样本容量多10件,根据以上信息,可得C 产品的数量是( )产品类别 A B C 产品数量(件) 1300 样本容量(件)130A.900件B .800件C .90件D .80件[答案] B[解析] 设A ,C 产品数量分别为x 件、y 件,则由题意可得: ⎩⎪⎨⎪⎧x +y +1300=3000x -y ×1301300=10, ∴⎩⎪⎨⎪⎧ x +y =1700x -y =100,∴⎩⎪⎨⎪⎧x =900y =800,故选B. 二、填空题11.(文)(2010·瑞安中学)某校有学生1485人,教师132人,职工33人.为有效防控甲型H1N1流感,拟采用分层抽样的方法,从以上人员中抽取50人进行相关检测,则在学生中应抽取________人. [答案] 45[解析] 设在学生中抽取x 人,则 x 1485=501485+132+33,∴x =45.(理)(2010·山东潍坊质检)一个总体分为A ,B 两层,其个体数之比为41,用分层抽样法从总体中抽取一个容量为10的样本,已知B 层中甲、乙都被抽到的概率为128,则总体中的个体数是________. [答案] 40[解析] 设x 、y 分别表示A ,B 两层的个体数,由题设易知B 层中应抽取的个体数为2, ∴C22Cy2=128,即2y y -1=128,解得y =8或y =-7(舍去),∵x y =41,∴x =32,x +y =40.12.一个总体中的80个个体编号为0,1,2,…,79,并依次将其分为8个组,组号为0,1,…,7,要用下述抽样方法抽取一个容量为8的样本:即在第0组先随机抽取一个号码i ,则第k组抽取的号码为10k +j ,其中j =⎩⎪⎨⎪⎧i +k i +k<10i +k -10 i +k≥10,若先在0组抽取的号码为6,则所抽到的8个号码依次为__________________. [答案] 6,17,28,39,40,51,62,73[解析] 因为i =6,∴第1组抽取号码为10×1+(6+1)=17,第2组抽取号码为10×2+(6+2)=28,第3组抽取号码为10×3+(6+3)=39,第4组抽取号码为10×4+(6+4-10)=40,第5组抽取号码为10×5+(6+5-10)=51,第6组抽取号码为10×6+(6+6-10)=62,第7组抽取号码为10×7+(6+7-10)=73.13.(2010·安徽文)某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户.从普遍家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是____________. [答案] 5.7%[解析] 拥有3套或3套以上住房的家庭所占比例普通家庭为50990,而高收入家庭为70100. ∴该地拥有3套或3套以上住房的家庭所占比例为99 000×50990+1 000×70100100 000=571 000=5.7%. 14.从某地区15000位老人中随机抽取500人,其生活能否自理的情况如下表所示:男 女能 178 278 不能2321 则该地区生活不能自理的老人中男性比女性约多______人. [答案] 60[解析] 由表可知所求人数为 (23-21)×15000500=60(人). 三、解答题15.(2010·山东滨州)某高级中学共有学生2000人,各年级男、女生人数如下表:高一 高二 高三 女生 373 x y 男生377370z已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.(1)现用分层抽样的方法在全校抽取48名学生,问应在高三年级抽取多少人? (2)已知y≥245,z≥245,求高三年级女生比男生多的概率. [解析] (1)∵x2000=0.19,∴x =380.∴高三年级学生人数为y +z =2000-(373+377+380+370)=500现用分层抽样的方法在全校抽取48名学生,应在高三年级抽取的人数为482000×500=12(人). (2)设“高三年级女生比男生多”为事件A ,高三年级女生、男生数记为(y ,z). 由(1)知,y +z =500,且y ,z ∈N*,又已知y≥245,z≥245,所有基本事件为:(245,255),(246,254),(247,253),(248,252),(249,251),(250,250),(251,249),(252,248),(253,247),(254,246),(255,245).共11个.事件A 包含的基本事件有(251,249),(252,248),(253,247),(254,246),(255,245).共5个. ∴P(A)=511.答:高三年级女生比男生多的概率为511.16.(文)(2010·泰安模拟)某校举行了“环保知识竞赛”,为了了解本次竞赛成绩情况,从中随机抽取部分学生的成绩(得分均为整数,满分100分),进行统计,请根据频率分布表中所提供的数据,解答下列问题:(1)求a 、b 、c 的值及随机抽取一考生其成绩不低于70分的概率;(2)若从成绩较好的3、4、5组中按分层抽样的方法抽取6人参加社区志愿者活动,并指定2名负责人,求从第4组抽取的学生中至少有一名是负责人的概率.组号 分组 频数 频率 第1组 [50,60) 5 0.05 第2组 [60,70) b 0.35 第3组 [70,80] 30 c 第4组 [80,90] 20 0.20 第5组 [90,100)10 0.10 合计a1.00[解析] (1)a =100,b =35,c =0.30由频率分布表可得成绩不低于70分的概率约为: p =0.30+0.20+0.10=0.60.(2)因为第3、4、5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组分别为:第3组:3060×6=3人, 第4组:2060×6=2人, 第5组:1060×6=1人,所以第3、4、5组分别抽取3人,2人,1人.设第3组的3位同学为A1、A2、A3,第4组的2位同学为B1、B2,第5组的1位同学为C1,则从六位同学中抽两位同学有15种可能抽法如下:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1), 其中第4组的2位同学B1、B2至少有一位同学是负责人的概率为915=35.(理)(2010·厦门三中阶段训练)某学校在2010年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[160,165),第2组[165,170),第3组[170,175),第4组[175,180),第5组[180,185),得到的频率分布直方图如图所示.(1)求第3、4、5组的频率;(2)为了能选拔出最优秀的学生,该校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,则第3、4、5组每组各抽取多少名学生进入第二轮面试? (3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求:第4组至少有一名学生被甲考官面试的概率?[解析] (1)由题设可知,第3组的频率为0.06×5=0.3, 第4组的频率为0.04×5=0.2, 第5组的频率为0.02×5=0.1. (2)第3组的人数为0.3×100=30, 第4组的人数为0.2×100=20, 第5组的人数为0.1×100=10.因为第3、4、5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组抽取的人数分别为: 第3组:3060×6=3,第4组:2060×6=2, 第5组:1060×6=1,所以第3、4、5组分别抽取3人、2人、1人.(3)设第3组的3位同学为A1,A2,A3,第4组的2位同学为B1,B2,第5组的1位同学为C1,则从六位同学中抽两位同学有:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1)共15种可能.其中第4组的2位同学B1、B2至少有一位同学入选的有:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(B1,B2),(A3,B2),(B1,C1),(B2,C1)共9种可能, 所以第4组至少有一名学生被甲考官面试的概率为P =915=35.17.(文)(2010·山东邹平一中模考)已知某单位有50名职工,现要从中抽取10名职工,将全体职工随机按1~50编号,并按编号顺序平均分成10组,按各组内抽取的编号依次增加5进行系统抽样.(1)若第5组抽出的号码为22,写出所有被抽出职工的号码;(2)分别统计这10名职工的体重(单位:公斤),获得体重数据的茎叶图如图所示,求该样本的方差;(3)在(2)的条件下,从这10名职工中随机抽取两名体重不轻于73公斤(≥73公斤)的职工,求体重为76公斤的职工被抽取到的概率. [解析] (1)由题意,第5组抽出的号码为22. 因为2+5×(5-1)=22,所以第1组抽出的号码应该为2,抽出的10名职工的号码分别为 2,7,12,17,22,27,32,37,42,47. (2)因为10名职工的平均体重为x -=110(81+70+73+76+78+79+62+65+67+59) =71所以样本方差为:s2=110(102+12+22+52+72+82+92+62+42+122)=52.(3)从10名职工中随机抽取两名体重不轻于73公斤的职工,共有10种不同的取法:(73,76),(73,78),(73,79),(73,81),(76,78),(76,79),(76,81),(78,79),(78,81),(79,81).故所求概率为P(A)=410=2 5.(理)(2010·沈阳市)从某校高三年级800名学生中随机抽取50名测量身高,据测量被抽取的学生的身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),……,第八组[190.195],下图是按上述分组方法得到的频率分布直方图.(1)根据已知条件填写下列表格:组别一二三四五六七八样本数(2)试估计这所学校高三年级800名学生中身高在180cm以上(含180cm)的人数为多少;(3)在样本中,若第二组有1名男生,其余为女生,第七组有1名女生,其余为男生,在第二组和第七组中各选一名同学组成实验小组,问:实验小组中恰有一男一女的概率是多少?[解析](1)由频率分布直方图得第七组频率为:1-(0.008×2+0.016×2+0.04×2+0.06)×5=0.06,∴第七组的人数为0.06×50=3.由各组频率可得以下数据:组别一二三四五六七八样本数 2 4 10 10 15 4 3 2(2)由频率分布直方图得后三组频率和为0.08+0.06+0.04=0.18,估计这所学校高三年级800名学生中身高在180cm以上(含180cm)的人数为800×0.18=144.统计及概率练习题11 / 11 (3)第二组中四人可记为a 、b 、c 、d ,其中a 为男生,b 、c 、d 为女生,第七组中三人可记为1、2、3,其中1、2为男生,3为女生,基本事件列表如下:a b c d 11a 1b 1c 1d 22a 2b 2c 2d 33a 3b 3c 3d所以基本事件有12个.实验小组中恰有一男一女的事件有1b,1c,1d,2b,2c,2d,3a ,共7个,因此实验小组中恰有一男一女的概率是712.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
第七章 直线回归与相关分析
一. 填空题
1. 相关系数的取值范围是 。
2. 用来说明回归方程代表性大小的统计分析指标是 U 。
3. 统计上常用 分析来研究呈因果关系的两个变量间的关系,用 分析来研究呈平行关系的两个变量间
的关系。
4. 对于简单直线回归方程,其回归平方和的自由度为 。
5. 在直线回归方程中,自变量改变一个单位,依变量平均增加或减少的单位数可用 来进行表示。

二. 判断题
1. 当直线相关系数r=0时,说明变量之间不存在任何相关关系。
2. 如果两个变量的变动方向一致,同时呈上升或下降趋势,则二者是正相关关系。
3. 相关系数r有正负、大小之分,因而它反映的是两现象之间具体的数量变动关系。
4. 回归系数 b的符号与相关系数r的符号,可以相同也可以不同。
5. 回归分析和相关分析一样,所分析的两个变量都一定是随机变量。
6. 在直线回归分析中,两个变量是对等的,不需要区分因变量和自变量。
7. 正相关指的是两个变量之间的变动方向都是上升的。

三. 选择题
1. 在回归直线中y=a+bx 中,b<0,则x与y之间的相关系数 。
A. r=0 B r=1 C 0< r <1 D -1 r <0

2 由样本求得r=-0.09,同一资料做回归分析时,b值应为 。
A. b<0 B b>0 C b=0 D b≥0

3. 简单线性回归系数t检验,其自由度为 。
A. n-2 B n-1 C n D 2n-1

4. 回归系数和相关系数的符号是一致的,其符号均可用来判断现象 。
A. 线性相关还是非线性相关 B 正相关还是负相关 C 完全相关还是不完全相关 D 单相关还
是负相关

5. 相关分析是研究 。
A. 变量之间的数量关系 B 变量之间的变动关系 C 变量之间的相互关系的密切程度 D 变量
之间的因果关系
2

6. 在回归直线y=a+bx 中,b表示 。
A. 当x增加一个单位时,y增加a的数量 B当x增加一个单位时,y增加b的数量
C 当x增加一个单位时,y的平均增加量 D 当x增加一个单位时,x的平均增加量

7. 当相关系数r=0时,表明 。
A. 现象之间完全无关 B相关程度较小
C 现象之间完全相关 D 无直线相关关系

8. 若计算得一相关系数r=0.94,则 。
A. x与y之间一定存在因果关系 B同一资料做回归分析时,求得回归系数一定为正值
C同一资料做回归分析时,求得回归系数一定为负值 D 求得回归截距a>0

9. 根据样本计算得一相关系数r,经t检验,P<0.01,说明 。
A. 两变量有高度相关 B r来自高度相关的相关总体
C r来自总体相关系数ρ的总体 D r来自ρ≠0的总体

10 若rA. 不存在任何关系 B 有直线相关关系
C 有确定的函数关系 D 不存在直线关系,但不排除存在某种曲线关系

11. 在X和Y的直线相关分析中,r越大,则 。
A. 各散点越靠近回归直线 B 散点越离开回归直线
C 回归直线对X轴越倾斜 D 回归直线对X轴越平坦

12. 如果直线相关系数r=1,则一定有 。
A. SS总=SS残 B SS残=SS回
C SS总=SS回 D SS总>SS回

13. 直线回归分析中,回归系数b的绝对值越大,则 。
A. 用回归直线估计的效果越好 B用回归直线估计的效果越差
C 回归直线的斜率越大 D 回归直线越远离坐标原点

14. 最小二乘估计方法的本质要求是 。
A. 各点到直线的垂直距离的和最小 B各点到x轴的纵向距离的平方和最小
C 各点到直线的垂直距离的平方最小 D 各点到直线的纵向距离的平方和最小

15. 在简单线性回归分析中,剩余平方和反映了 。
A. 应变量y的变异度 B自变量x的变异度
C 扣除x影响后y的变异度 D 扣除y影响后x的变异度
3

第八章 可直线化的非线性回归分析
一 填空题

1. 确定两个变量间曲线类型的常用方法有
和 。

2. 在进行非线性回归曲线的直线化时,对原始数据进行转换的方法通常有 和
3. 可以反映回归曲线拟合程度的高低。

二. 判断题
1. 直线关系是两变量间最简单的一种关系,但这种关系通常仅在变量一定的取值范围内成立
2. 所有的曲线类型都可以通过变量转换成直线形式。
3. 对曲线进行直线化,必须结合双变量资料本身的特性。

相关文档
最新文档