第八章 脂类代谢 20110425

合集下载

【课件】第八章脂质代谢ppt

【课件】第八章脂质代谢ppt
Knoop由此推测无论脂肪酸链的长短,脂肪 酸的降解总是每次水解下两个碳原子。

据此,Knoop 提出脂肪酸的氧化发生在-碳原子 上,而后Ca与C之间的键发生断裂,从而产生二碳

单位,此二碳单位Knoop推测是乙酸。
以后的实验证明Knoop推测的准确性,由此提出 了脂肪酸的 -氧化作用。

第七章 脂类代谢
本章要求 本章主要学习脂类 (主要是脂肪)物质 在生物体的分解及合成代谢。要求重点掌握 脂肪酸在生物体内的氧化分解途径—β-氧化 和从头合成途径,了解脂类物质的功能和其 他的氧化分解途径。
目录
第一节 生物体 内 的脂类 第二节 脂肪的分解代谢 第三节 脂肪的生物合成 第四节 磷脂和糖脂的代谢(自学) 第五节 胆固醇的代谢(自学)

(1) 脂肪酸的活化
脂肪酸的活化是指脂 肪酸的羧基与CoA酯 化成脂酰CoA的过程。反应如下:
脂肪酸的活化需要ATP的参与。每活化1分 子脂肪酸,需要1分子ATP转化为AMP,即要消

耗2个高能磷酸键。这可以折算成需要2分子 ATP水解成ADP。
在体内,焦磷酸很快被磷酸酶水解,使得 反应不可逆。
1.概念

单纯脂类是 由脂肪酸和 醇形成的酯
2.种类 (1)酰基甘油酯
(2) 蜡
O= O=
——
O=
重要脂类:甘油三酯

CH2—O —C—R1 R2—C—O—C—H
CH2—O —C—R3
甘油三酯
R1、R2、R3可以相同,也可以不全相同甚 至完全不同,R2多是不饱和的。
注 意!

甘油三脂中脂肪酸不饱和的较多时, 在室温下呈液态,称为油。反之,则呈固 态,称为脂。甘油三脂又称油脂。

生物化学脂类代谢

生物化学脂类代谢

VLDL 的代谢过程 HDL
新生 进入血液
VLDL
VLDL
成熟 ApoCⅡ+LPL水解其
VLDL
中的TG
VLDL表面的过量的ApoC、PL及Ch
HDL
FA、
CETP促进HDL的CE到VLDL
Gly
VLDL颗粒逐渐变小,ApoB100、ApoE含量相对增多,密度 逐渐增加
VLDL残粒(IDL)
小部分被肝 细胞上的 LRP摄取
血浆脂蛋白中的蛋白质部分。 Apo至少有20种,分为ApoA(AⅠ、AⅡ)、 (B100、B48)、C(CⅠ、CⅡ、CⅢ )、D、E、F、 J及Apo(a)。
Apo作为脂蛋白的结构成分,具有以下主要 功能:
(1) 结合和转运脂类;双性α-螺旋结构
(2) 调节酶活性;
(3) 作为脂蛋白受体的配体。
特殊的脂质转运蛋白
二、血浆脂蛋白的分类、组成及结构
(一)血浆脂蛋白的分类 1.电泳法
按其移动的快慢,可将脂蛋白依次分为: α-脂蛋白、 前β-脂蛋白、β-脂蛋白,乳糜微 粒在原点不动
CM β 前β α
+
血浆脂蛋白琼脂糖凝胶电泳图谱
γ-
CM
-
-
CM VLDL
2-
前-
1-
-
A-
LDL HDL
血清蛋白电泳 血浆脂蛋白电泳 超速离心 (琼脂糖凝胶电泳)
4.生理功能: 转运外源性TG。
CM特点: •CM颗粒大能使光散射,密度小。 •空腹血中不含CM! •饭后血清,4℃过夜形成奶油层。
(二)极低密度脂蛋白(VLDL)
1.合成部位及来源: 主要是肝脏合成,禁食时 小肠粘膜细胞少量 。肝细胞内的 PL、 CE及 ApoB100 、 E 与 新 合 成 的 TG 形 成 新 生 的 VLDL 。

脂类代谢ppt医学课件

脂类代谢ppt医学课件

O
CO2
CH3CCH3
丙酮
β-羟丁酸 脱氢酶
2.酮体的利用
利用酮体的酶有两种: 1.琥珀酰CoA转硫酶
(主要存在于心、肾、脑和骨骼肌细胞的线粒体 中)
2.乙酰乙酸硫激酶
(主要存在于心、肾、脑细胞线粒体中)。
酮体利用的基本过程
(1) -羟丁酸在-羟丁酸脱氢酶的催化下脱氢,生 成乙酰乙酸。
OH CH3CHCH2COOH
R1CH2CH2CH2CH2 CH2COOH
脂肪酸的β-氧化作用
(1)脂肪酸的活化
脂肪酸首先在线粒体外或胞浆中被活化形 成脂酰CoA,然后进入线粒体或在其它细胞 器中进行氧化。
在脂酰CoA合成酶(硫激酶) 催化下,由 ATP提供能量,将脂肪酸转变成脂酰CoA:
R-COOH
脂酰CoA合成酶
R-CO~SCoA
三羧酸循环 三羧酸循环-羟基丁酸,
CO2+H2O
丙酮)
一、脂肪的酶促水解
脂肪的降解是经过脂肪酶水解的。组织中有三种脂肪 酶,逐步把脂肪水解成甘油和脂肪酸。这三种酶是脂 肪酶、甘油二酯脂肪酶、甘油单酯脂肪酶,其水解下:
脂肪酶
脂肪
甘油+脂肪酸
O
O
O
CH2-O C R1
脂肪酶
O
CH2-O C R1
R2 C O C H O
脂类代谢
脂类(脂质)知识回顾
生物体的脂质分为单纯脂质和复合脂质。 (1)单纯脂质:三酰甘油,又称脂肪或甘油三酯;
蜡。 (2)复合脂质:磷脂、糖脂、固醇等。
1g三酰甘油氧化放出能量37.66kJ能量。 而1g葡萄糖氧化产生16.7kJ的能量。
脂类具有供能、保温及保护层、生物体内的 组成部分(生物膜)、信息识别和免疫等功能。

第八章+脂类代谢(王镜岩考研生物化学)

第八章+脂类代谢(王镜岩考研生物化学)

第八章+脂类代谢(王镜岩考研生物化学)第八章脂类代谢(对应教材第28章,29章)湖大生物学院一、脂质的消化、吸收和传送n1、脂类–什么是脂类生物体内通过弱极性或非极性溶剂抽提得到的不溶于水的有机分子李新梅湖大生物学院16人体内最重要的脂肪酸3n李新梅湖大生物学院胰脂酶n 李新梅湖大生物学院脂肪的吸收和转运–4、人体血浆中脂蛋白(第2章117-119页第29章292-294页)n(1)脂蛋白形式结构–以图中乳糜微粒为例,在脂蛋白中,疏水脂类构成核心,外面围绕着极性脂和载脂蛋白,以增加溶解度。

nn (nn 李新梅湖大生物学院n–李新梅湖大生物学院二、脂肪酸分解代谢n 1、脂肪组织释放脂肪酸受激素的调控(脂肪动员)n (1)甘油三酯脂肪酶分解脂肪–脂肪组织中脂肪颗粒的主要成分是三脂酰甘油–在激素作用下,甘油三酯脂肪酶被激活–脂肪经甘油三酯脂肪酶降解生成脂肪酸和甘油脂肪酸则转运到其他组织甘油绝大部分经糖异生途径转化为葡萄糖;李新梅湖大生物学院甘油三酯脂肪酶李新梅湖大生物学院甘油三酯n李新梅湖大生物学院李新梅湖大生物学院(3)甘油的分解和糖异生李新梅湖大生物学院n (1)甘油糖异生经过哪些过程–甘油→3-磷酸甘油→磷酸二羟丙酮→1,6-二磷酸果糖↓3-磷酸甘油醛↗→6-磷酸果糖→6-磷酸葡萄糖→葡萄糖(2)催化的酶是哪些?l 甘油磷酸激酶耗ATPl 3-磷酸甘油脱氢酶磷酸丙糖异构酶l 醛缩酶果糖二磷酸酶6-磷酸葡萄糖异构酶l 葡萄糖-6-磷酸酶2n 李新梅湖大生物学院β-氧化即每次从脂肪酸链上降解下来的是2碳单位n (1)脂肪酸的活化n(2)脂酰CoA转运入线粒体基质李新梅湖大生物学院②肉碱穿梭系统的成员肉碱脂酰转移酶I 膜间隙肉碱脂酰转移酶II 基质李新梅湖大生物学院–n n––(3)脂酰辅酶A的β氧化n SCoARCH 烯脂酰CoA 脱氢酶RCH 李新梅湖大生物学院nn3、脂肪酸——n李新梅湖大生物学院n (––其他产物:16分子CO –软脂酸的标准自由能是解产生自由能是773.8千卡,能量转化率为30%李新梅湖大生物学院4、奇数脂肪酸的氧化n 奇数碳脂肪酸在最后一轮β中生成丙酰CoA–反刍动物中利用奇数脂肪酸提供大多数哺乳动物很罕见奇数脂肪酸–在哺乳动物的肝脏中,丙酰的催化反应转化为琥珀酰?羧化,消旋,变构琥珀酰CoA 转换成草酰乙酸,进入糖异生途径。

脂类代谢

脂类代谢

脱氢
FADH2
CHCORCH CHCO-SCoA
OH
加水
H2O
RCH CH2CO-SCoA COO
脱氢
NADH+H+ +
RC CH2CO-SCoA CO-
硫解
乙酰CoA 乙酰CoA
RCORCO-SCoA
脂酰CoA 2C) 脂酰CoA (少2C)
COCH3CO-SCoA
脂肪酰CoA(Cn) ( ) 脂肪酰 (脱氢 脱氢) 脱氢 一 次 氧 化 β(
一、血脂的来源与去路
内源性: 内源性:体内合成或脂肪动员
血 脂
来源
外源性: 外源性:食物消化吸收
去路 在组织细胞氧化供能 构成生物膜 转变成其他物质 进入脂库
二、血浆脂蛋白
为脂类在血浆中的运输形式.各种 为脂类在血浆中的运输形式 各种 脂蛋白中的脂类和蛋白质含量各不相 因而可以进行分类. 同,因而可以进行分类 因而可以进行分类
脂肪酰CoA 脂肪酰 )
HS- CoA β- 脂肪酰 脂肪酰CoA 酶 酰CoA 酰
脂肪酰CoA(Cn-2) ( 脂肪酰 ) β化
脂肪酸氧化的能量生成(16:0) 脂肪酸氧化的能量生成(16:0) 消耗 产生 FA活化 FA活化 7 FADH2 7 NADH+H+ 乙酰CoA 8 乙酰CoA - 2 2 7 = 14 3 7 = 21 12 8 = 96 129
脂肪的中间代谢
食物脂肪(外源性 食物脂肪 外源性) 外源性
合成脂肪(内源性) 合成脂肪(内源性)
小肠 脂肪
CM
肝 脂肪→ 糖→脂肪→VLDL
脂 肪 代 谢 概 况
CM CM FFA 脂肪细胞 合成、储存、 合成、储存、 动员脂肪 动员 FFA VLDL * FFA: 游离脂肪酸 ** CM: 乳糜微粒

脂类代谢8ppt(共69张PPT)

脂类代谢8ppt(共69张PPT)

2CH3CO亚C油oA 酸
CH2CHOHCH2OH (2)化学修饰调节
2C十H3八CO碳CH二2CO烯CoA 18:2 酸
9,12
6,9
ω-6 植物油
HDL主要由肝脏合成,小肠亦可合成部分HDL。
(1)乙α酰-乙亚酸麻的酸活化:(两条途十径八)碳三烯 18:3 C●基H2本O原H 料包括甘油、脂酸、磷酸酸盐、胆碱(choline)、
B
C
9
R1
O
11
R2
O
G
OH
R1
R1
R2
R2
O
D
9
R1
R2
11
OH H
O R1
R2 OH E
O
OH R2
I
OH R1
R2 OH F COOH
●根据其R1及R2两条侧链中双键数目的多少,PG又分 为1, 2,3类,在字母的右下角标示。
R1
COHO
COHO
R2
C3 H
C3 H
OH 1类
OH
2类
3类
COHO C3 H
• 酮体的利用
(1)乙酰乙酸的活化:(两条途径)
● 乙酰乙酸+琥珀酰CoA
琥珀酰CoA转硫酶 乙酰乙酰CoA+琥珀酸
● 乙酰乙酸
乙酰乙酰硫激酶
乙酰乙酰CoA
(2)乙酰乙酰CoA硫解生成乙酰CoA:
CH3COCH2CO~SCoA
乙酰乙酰CoA硫解酶 2CH3CO~SCoA
CoASH
• 酮体生成的生理意义 • 酮体生成的调节
CH2OCR3 甘油三酯
◆肝、肾等组织含有甘油激酶,能催化游离甘油磷酸化生成3-磷 酸甘油,供甘油三酯合成。脂肪细胞缺乏甘油激酶,不能直接 利用甘油合成甘油三酯。

生物化学8-脂代谢


甘油
ATP
22个ATP分子
ATP NADH
丙酮酸 乙酰CoA
3 NADH + FADH2 + GTP 柠檬酸循环和线粒体呼吸链 CO2 + H2O
脂肪酸的分解代谢
含 碳 的 脂 肪 酸 ( 软 脂 酸 ) 16
主要方式: β- 氧化途径
脂肪酸在氧化分解时,碳链的断裂发 生在脂肪酸羧基端的β-位(每次切除2个 碳原子)。反应在线粒体基质中进行。
亚油酸和亚麻酸是人体必需脂肪酸
合成
(花生、芝麻、棉籽油中富含)
多不饱和脂肪酸 如:花生四烯酸 EPA(二十碳五烯酸,鱼油主要成分) DHA(二十二碳六烯酸,脑黄金)
不饱和脂肪酸的氧化
1. 氧化反应发生在线粒体基质中;
2. 活化和跨越线粒体内膜都与饱和脂肪酸相同;
3. 进行β-氧化,到达双键位置; 4. 分子内双键需要2个酶:异构酶和还原酶。 5. 进行β-氧化。
脂肪酸β-氧化过程与柠檬酸循环中的部分反应过程 类似, 试写出这两个途径中的类似的反应过程。
脂肪酸β-氧化 柠檬酸循环
脂酰CoA脱氢生成α-β 烯脂酰CoA
琥珀酸生成延胡索酸
α-β 烯脂酰CoA水化生成L-β 羟脂酰CoA
L-β 羟脂酰CoA再脱氢生成β-酮脂酰CoA
延胡索酸生成苹果酸
苹果酸生成草酰乙酸
酮体生成的意义
1. 酮体具水溶性,能透过血脑屏障及毛细血管壁, 是输出脂肪能源的一种形式。 2. 长期饥饿时,酮体供给脑组织50—70%的能量。 3. 禁食、应激及糖尿病时,心、肾、骨骼肌摄取酮 体代替葡萄糖供能,节省葡萄糖以供脑和红细胞 所需,并可防止肌肉蛋白的过多消耗。
脂肪酸氧化、糖异生、酮体代谢的关系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档