一问多解,一题多问

合集下载

论小学数学教学中提高学生一题多解能力的方法

论小学数学教学中提高学生一题多解能力的方法

论小学数学教学中提高学生一题多解能力的方法摘要:一题多解的数学解题形式多变,教师在执教时要有意识地启发学生从不同的角度探索问题,用不同的方法去解决及剖析相同的数理问题,这样有利于学生拓展思维,掌握学习方法。

一题多解教学方法有利于提高学生综合分析问题的能力,促进学生智力发展,培养动手动脑的习惯,注重培养学生的创新思维,从而提高学生的数学学习能力。

关键词:小学数学;一题多解;教学数学新课标强调“鼓励学生采用多种方法解决问题”,许多教学实践也表明,在我国小学数学教学实践中,应以解决常见问题为例,通过多样化的解题方式来使学生的头脑更加灵活变通,培养他们形成良好的思维习惯,不断提升自身对数学问题一题多解的能力。

一、引导打破固化思维,启发学生的创新思路数学思维能力包括数字运算、数学想象、逻辑推理和数学应用能力,这些能力有助于培养学生的问题意识,激发他们的创新思维,培养他们解决数学问题的综合能力,有助于培养他们的数学探究能力。

但是,在解题过程中,一题多解往往反映出解决问题的能力和思维发展的水平。

基于此,教师应引导学生进行多解训练,,既要激发学生多解思维,延伸学生思维广深度,深化新知的认识,提高学生分析和解决问题的能力,培养学生灵活多变的思维方式。

问题解决教学中,教师应启发学生的创新思维,引导学生敢于求异,从而帮助学生突破思维的舒适区和瓶颈,树立创新意识,摆脱过去一贯的思维模式。

例如:以教学“长方体的表面积”为例,笔者引导学生归纳出求解长方体的表面积公式后,为学生展示了有关长方体的物品,并提出问题:“倘若这个长方体少了一个底面,请大家想一下这个面的面积公式?若前部少了一面,那个面的面积公式又如何呢?若个底面少了,那个底面的面积公式又如何呢?个底面被删除,此时实际只需要什么?哪个物体只需要个面?通过讨论,学生们很快就能说出个面的面积计算公式,知道少了个底面,实际仅需要长方体的侧面积,通风管就是只需要个面。

以此为基础,通过实物与教学工具的应用,引导学生深入探究,不仅培养了他们的问题意识,还促进了其创造性思维能力,提高他们多思多解决的能力。

二次函数的一题多问含解析

二次函数的一题多问含解析

,如图所示:
y
A
OB
E3
x
Q
E4
D
第(8)问图 3
求得
.
(9) 在 轴上是否存在一点 F,使 若不存在,请说明理由;
【解答】存在这样的点 F,
为等腰三角形,若存在,请求出 F 的坐标;



【解析】①以 A 为圆心 AD 长为半径作 , 与 轴有两个交点,分别为

即为所求,如下图所示:
y
F1
A
B
O
y
N2
N3
A
B
O
x
N1 D C
第(10)问图

,解得
(与点 C 重合,舍去),


,解得

综上所述
.
(11) 在抛物线上是否存在一点 H(不与点 A 重合),使
,若存在,求出
点 H 的坐标;若不存在,请说明理由;
【解答】存在点 H 使
【解析】过点 A 作 BC 的平行线,平行线与抛物线的交点即为 H,如图所示:
第(9)问图 3 是 AD 的中点,



,设
,将 M 坐标带入得到


时,
,所以
.
(10) 在抛物线上是否存在一点 N(N 不与点 C 重合),使
,若存在,求
出点 N 的坐标;若不存在,请说明理由;
【解答】
【解析】如图所示,利用三角形同底等高面积相等,两个三角形都以 AB 为底,只要高相 等即可.
,解得
,故

再次与二次函数解析式联立得

解得
,即

又因为
,设

四年级下册一题多解试题

四年级下册一题多解试题

四年级下册一题多解试题四年级下册一题多解试题随着教育改革的深入推进,我国的教育评估也逐渐与国际接轨。

近年来,一题多解的试题设计理念在学科教育中得到了广泛应用和推广。

在四年级下册数学试题中,也涌现出了一大批一题多解的试题,为学生的思维拓展和创新思考提供了更广阔的空间。

一、一题多解试题的基本概念所谓一题多解试题,就是在题目本身不变的情况下,可以有不同的解题思路或解法。

解题的多样性既能够检验学生的基础知识和技能,又能够促进学生的思维拓展和认知创新。

例如:题目:33÷11=?解法1:用竖式算法计算,得到商为3余数为0,即33÷11=3。

解法2:可以将33分成3份,每份11,即33÷11=3。

解法3:33÷11可以转化为33÷(10+1),即3÷(10÷11+1÷11),再化简得到33÷11=3。

二、解题思维的提升一题多解的试题设计,对学生的解题思维提供了更多的拓展和提升空间。

一方面,学生需要全面掌握基础知识,掌握基本的计算方法和技巧。

另一方面,学生需要尝试不同的解题思路,将所学知识与实际问题相结合,发挥自己的创造力和思维能力。

例如:题目:将下列数从小到大排列:3/4,7/8,2/3。

思路1:转化分母,得到6/8,7/8,8/12,再比较分子,得到7/8,6/8,8/12,从小到大排列为6/8,7/8,8/12。

思路2:将分数转化成小数,得到0.75,0.875,0.6667,从小到大排列为0.6667,0.75,0.875。

思路3:将分子转化成相同的数,得到9/12,7/8,8/12,从小到大排列为7/8,8/12,9/12。

三、教育评估的改进一题多解的试题设计,改变了传统的教育评估方式,更加注重学生的思维能力和创新能力。

通过这种试题设计,可以更好地检验学生的解题思维和方法,发现学生的优势和不足之处,为教师的针对性教学提供重要的帮助和指导。

三年级上册奥数(教案)第15讲:一题多解

三年级上册奥数(教案)第15讲:一题多解

(三年级)备课教员:×××第15讲一题多解一、教学目标: 1. 充分调动学生思维的积极性,提高他们综合运用已学知识解答数学问题的技能技巧;多角度的思考能力。

2. 锻炼学生思维的灵活性,促进他们长知识、长智慧。

3. 开阔学生的思路,引导学生灵活地掌握知识的纵横联系,培养和发挥学生的创造性。

二、教学重点:综合运用已学知识解答数学问题的技能技巧。

三、教学难点:引导学生灵活地掌握知识的纵横联系。

四、教学准备:PPT课件五、教学过程:第一课时(50分钟)一、导入(5分)师:同学们,大家听过“树上有10只鸟,猎人开枪打死了1只,还剩几只?”的问题吗?生:……(可能回答听过,也可能回答没听过)师:那我们再来一起听一下吧?(PPT出示)师:同学们你们觉得这位同学说的怎么样?生:太聪明了。

师:那么,大家想想,这位同学为什么会问这么多的问题呢?难道他真的是故意要给老师捣乱吗?生:不是……(各抒己见,有理即可)师:你们说得真好!因为有时候一个问题就是会出现很多情况,需要我们去解答的。

他的脑筋急转弯真是太厉害了吧!生:是的。

师:同学们我们有时候也要向这位同学学习,遇到问题要积极思考,从多种情况,多种角度去解决问题哦。

老师期待着大家能用很多的解题方法和思路来制造一个大大的惊喜!师:好了,下面我们就开始进入今天的正式学习阶段吧,今天我们来学习的是一题多解,考验大家脑筋的时候来了哦。

加油,看看谁想到的解题方法最多!【板书课题:一题多解】二、探索发现授课(40分)(一)例题1:(13分)从阿派家经卡尔家和欧拉家到学校有460米,从阿派家到欧拉家有370米,从学校到卡尔家有330米。

从卡尔家到欧拉家有多少米?(所有位置在同一直线上)师:大家看一下,这是一题什么类型的问题?生:路程、距离。

师:我们能一下子看明白题意吗?生:不能,有点乱,想不过来。

师:那么我们可以运用什么数学方法来帮助思考和看清题意呢?生:画线段图。

鸡兔同笼问题(一题多解)

鸡兔同笼问题(一题多解)

鸡兔同笼问题(一题多解)
1.某次测验有50道判断题,每做对一题得3分,不做或做错一题倒扣1分,某学生共得82分,问没答或做错了几道题?
解法一:3x-1(50-x)=82
x=33
所以50-x=17
解法二:不做或者做错扣1分本来对了可以得3分
所以不做或做错1题就会从满分里少掉4分
50题满分为50×3=150
一共少了 150-82=68分
所以可以判断没做或者做错的题数为 68/4=17
解法三:设全部答对,则得50*3=150分
与实际差了150-82=68分
每做错一道,不光答对的3分得不到,还另外损失1分,实际损失4分
一题损失4分,17题损失68分
没答或做错了17道题
解法四:解;设做对了x道题,问没答或做错了(50-x)道题。

3x-(50-x)*1=82
3x-50+x=82
4x=132
x=33
50-x=50-33=17
解法五:另一种方法;解;设做对了x道题,问没答或做错了y道题。

{x+y=50 3x-y=82
用x+y=50加上3x-y=82得
4x=132
x=33
把x=33代入x+y=50中
33+y=50
y=17
答;没答或做错了17道题。

解法六:解:设答对x题,答错(50-x)题。

由题意得,3x-(50-x)=82
去括号,得3x-50+x=82
移项,得3x+x=82+50
合并同类项,得4x=132
系数化为1,得x=33
∴50-x=17
答:答对33题,答错17题。

立体几何最值问题-高考数学一题多解

立体几何最值问题-高考数学一题多解

立体几何最值问题-高考数学一题多解一、攻关方略事物的空间形成,总是表现为不同维数且遵循由低维到高维的发展规律,所谓升维策略,就是把维数、抽象水平较低的或局部的问题转化为维数、抽象水平较高或整体性较强的整体间的关系问题,通过对整体性质或关系的考虑,使原问题获得解决的策略,如平面图形通过翻折或旋转成为空间图形就是二维向三维的转化与变换.在解题时,考虑把高维空间的问题转化为低维空间的问题,这种处理问题的方法叫降维法,也可称之为降维策略,如将立体几何问题转化为平面几何问题.实际上,许多立体几何问题如求空间角、空间距离等,通常总是转化为平面内的问题,通过计算来解决的,当然将空间角、空间距离转变为平面角、平面上点线距离这一步是需要证明的.在立体几何学习中经常碰到几何体中有变角或变动的线段,此时必须根据题意列出沟通已知量与变量之间的关系,运用函数与方程的思想来处理,立体几何中由于动点的变化引起的最值,通常建立关于与动点相关的角度的目标函数,转化为函数最值问题求解.若在空间图形中建立空间直角坐标系,利用向量坐标法,结合条件得到方程(组),则可用解方程(组)求出结果,利用函数与方程的思想方法还可以解空间图形中涉及线面关系、面面关系的探究性问题.真可谓:翻折旋转二维升三,空间问题降维处理.点动角变牵动图形,立几最值函数搞定.1.如图所示,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,DBC △、ECA △、FAB 分别是以BC 、CA 、AB 为底边的等腰三角形,沿虚线剪开后,分别以BC 、CA 、AB 为折痕折起DBC △、ECA △、FAB ,使得D 、E 、F 重合,得到三棱锥.当ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为______.【针对训练】2.点P 在ABC 所在平面α外,PA α⊥,PB PC ==,3tan 2PBC ∠=,则点A 到平面PBC 的距离的最大值是______.3.如图所示,在ABC 中,2AB BC ==,120ABC ∠=︒.若平面ABC 外的点P 和线段AC 上的点D ,满足PD DA =,PB BA =,则四面体P BCD -的体积的最大值是______.4.已知底面边长为2的正三棱锥-P ABC ,其表面展开图是123PP P ,如图所示,求123PP P 的各边长及此三棱锥的体积V .5.已知球的直径4SC =,A 、B 是该球面上的两点,30ASC BSC ∠=∠=︒,则三棱锥S ABC -的体积的最大值为______.(2021全国新高考Ⅰ卷19)6.已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?(2022新高考1卷)7.已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且333l ≤≤)A .8118,4⎡⎤⎢⎥⎣⎦B .2781,44⎡⎤⎢⎥⎣⎦C .2764,43⎡⎤⎢⎥⎣⎦D .[18,27](2022年全国乙卷(文数)第12题)8.已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A .13B .12C D .2(2022年全国乙卷(文数)第18题)9.如图,四面体ABCD 中,AD CD ⊥,AD CD =,ADB BDC ∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2AB BD ==,60ACB ∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC -的体积.10.如图,已知平面四边形ABCD ,AB=BC=3,CD=1,ADC=90°.沿直线AC 将ACD 翻折成ACD '△,直线AC 与BD '所成角的余弦的最大值是________.11.已知四边形ABCD ,2AB BD DA ===,BC CD ==ABD △沿BD 折起,使二面角A BD C --的大小在5,66ππ⎡⎤⎢⎥⎣⎦内,则直线AB 与CD 所成角的余弦值取值范围是()A .08⎡⎢⎣⎦,B .08⎡⎢⎣⎦,C .01⎡⎫⎪⎢⎪⎣⎦⎣⎭ D .88⎢⎣⎦,参考答案:1.3【分析】先求得所求三棱锥体积的表达式,然后利用导数或基本不等式求得体积的最大值.【详解】解法一:由题意可知,折起后所得三棱锥为正三棱锥,当ABC 的边长变化时,设ABC 的边长为()0a a >cm ,则ABC 的面积为24a .DBC △的高为56a -,则正三棱锥的高为=∴2503->,∴0a <<.∴所得三棱锥的体积213412V a =⨯=.令45253t a a =-,则34100t a =',由0t '=,得a =此时所得三棱锥的体积最大,为3.解法二:如图所示,连接OD 交BC 于点G ,由题意知,OD BC ⊥,OG 是等边三角形ABC 内切圆半径,21π1sin 3232BC BC OG ⨯⨯=⨯⨯,解得OG =,∴OG 的长度与BC 的长度成正比.设OG x =,则BC =,5DG x =-,2132ABC S x =⨯=△,则所得三棱锥的体积2213V =⨯=令()452510f x x x =-,50,2x ⎛⎫∈ ⎪⎝⎭.则()3410050f x x x '=-,令()0f x '≥,即4320x x -≤,得02x <≤.则当50,2x ⎛⎫∈ ⎪⎝⎭时,()()280f x f =≤,∴V ≤.∴所求三棱锥的体积的最大值为3.解法三:如图所示,连接OE 交AC 于点H ,连接AO 、OC ,设OH x =.则AC =,5EH x =-,三棱锥D ABC -2ABC S = ,D ABC V -=2≤=,当且仅当104x x =-,即2x =时取等号.∴所求三棱锥的体积的最大值为3.【点睛】本题为平面图形折叠成空间图形,当折叠终止时,几何体是一个正三棱锥,这个正三棱锥底面边长是一个变元,从而导致三棱锥体积的变化,特别要提醒的是,在折叠问题中,必须注意到折叠过程中哪些要素在变化,哪些要素始终保持不变,其中不变要素见核心要素.根据平面图形的性质,寻找不变的数量关系以及直线与直线平行和垂直的位置关系,是解决折叠问题的突破口,因此折叠问题要通过变图、想图、构图、用图的过程,积极思考,体会解题程序方向性,直击问题的本质,折叠问题既要看清平面转化为空间的过程,又要了解三维空间图形问题的平面化处理,两者是互通的.在建立体积表达式的函数模型之后,结合函数思想求最值,通常用导数法,也可考虑运用基本不等式的方法.策略一:以动正三角形AEC 的边长为变元建立函数关系式,运用导数法求其最大值.策略二:以动正三角形ABC 的中心到边的距离为变元建立函数关系式,运用导数法求其最大值.策略三:以动正三角形ABC 的中心到边的距离为变元建立函数关系式,运用基本不等式求最大值,注意等号成立的条件.2【分析】法一,取BC 的中点D ,连接AD 、PD ,设ADP θ∠=,用θ的正余弦表示AD ,PD ,再利用等体积法求解作答.法二,作PD BC ⊥于点D ,连接AD ,作AF PD ⊥于点F ,证明AF ⊥平面PBC ,再利用均值不等式求解作答.【详解】解法一,取BC 的中点D ,连接AD 、PD ,如图,因PB PC =,则PD BC ⊥,而3tan2PBC ∠=,有sin PBC ∠=则有sin PD PB PBC =⋅∠=PA ⊥平面ABC ,,AD BC ⊂平面ABC ,则PA AD ⊥,PA BC ⊥,又,,PA PD P PA PD ⋂=⊂平面PAD ,因此BC ⊥平面PAD ,AD ⊂平面PAD ,则AD BC ⊥,在Rt PAD △中,令(0,)2ADP πθ∠=∈,sin ,cos PA PD AD PD θθ==,设点A 到平面PBC 的距离为h ,11,22PBC ABC S BC PD S BC AD =⋅=⋅ ,由A PBC P ABC V V --=得:1133PBC ABC S h S PA ⋅=⋅ ,即1122BC PD h BC AD PA ⋅⋅=⋅⋅,于是得cos sin 2AD PA PD PD h PD PD θθθ⋅⋅==,当且仅当22=πθ,即4πθ=时取等号,所以点A 到平面PBC解法二,在PBC 中,作PD BC ⊥于点D ,连接AD ,作AF PD ⊥于点F,如图,PA ⊥平面ABC ,BC ⊂平面ABC ,则PA BC ⊥,又,,PA PD P PA PD ⋂=⊂平面PAD ,因此BC ⊥平面PAD ,而BC ⊂平面PBC ,则有平面PAD ⊥平面PBC ,又平面PAD ⋂平面PBC PD =,AF ⊂平面PAD ,因此AF ⊥平面PBC ,即AF 就是点A 到平面PBC 的距离,而3tan 2PBC ∠=,有sin PBD ∠=sin PD PB PBD =⋅∠=,在Rt PAD △中,22211()1222PA AD PD PA AD AF PD PD PD PD +⋅=≤==当且仅当3PA AD ==时取等号,所以点A 到平面PBC3.12##0.5【分析】先求得四面体P BCD -体积的表达式,利用基本不等式或函数的单调性求得体积的最大值.【详解】解法一:由2AB BC ==,120ABC ∠=︒,可得AC =要求四面体P BCD -的体积,关键是寻找底面三角形BCD 的面积BCD S △和点P 到平面BCD 的距离h ,易知2h ≤.设AD x =,则DP x =,DC x =,()12sin 3022DBC xS x =⨯⨯⨯︒=△,其中(0,x ∈,且h x ≤.∴2111366622P BCDBCD x x x x V S h h x -⎛⎫-+=⨯=≤≤= ⎪ ⎪⎝⎭△.当且仅当x x =,即x =P BCD -的体积的最大值是12.解法二:设PD AD x ==,∵PB PA =,PBD ABD ≌△△,1133P BCD BCD V S h -=⨯=△(h 为三棱锥P BCD -的高).当平面PBD ⊥平面BDC 时,使四面体PBCD 的体积较大.作PH BD ⊥,垂足为H ,则PH ⊥平面BCD ,sin sin h PH PD PDB x ADB ==⋅∠=⋅∠.此时,()211sin sin sin 662P BCDx x V ADB ADB ADB -=⋅∠≤∠=∠⎝⎭,当且仅当x =1sin 2P BCD V ADB -=∠,当90ADB ∠=︒,即AD BD ⊥时,P BCD V -最大值为12.解法三:∵13P BCD BCD V S h -=⨯△(h 为三棱锥P BCD -的高),在ABC 中,2AB BC ==,120ABC ∠=︒,则AC =30BAC BCA ∠=∠=︒,设(0PD DA x x ==<<,则DC x =-,1sin 22BCD xS BC CD BCA =⨯⋅∠=△.在ABD △中,由余弦定理,有2222cos BD AD AB AD AB BAC =+-⋅∠.代入整理得BD =PBD △中,由余弦定理,有222cos 2PB BD PD PBD PB BD+-∠=⋅,代值整理得cos PBD ∠∴sin PBD ∠=.过P 作PM BD ⊥,垂足为M ,则PM 为四面体P BCD -的高.∴sin h PM PB PBM ==∠故111336P BCDBCD V S h -===△,t =,∵0x <<12t ≤<,∴224x t -=-.2141466P BCDt V t t t--⎛⎫=⨯=- ⎪⎝⎭在[)1,2t ∈上单调递减.∴当1t =,即x =P BCD -的体积最大为1411612P BCD V --=⨯=.4.1213234PP PP P P ===,3【分析】由12APB CBP ≌△△,分析可得123PP P 是边长为4的正三角形,再由13P ABC ABC S PO V -=⋅ 结合题干数据求解即可.【详解】由题图可知1P 、B 、2P 三点共线,∴12APBCBP ≌△△.∵60ABC ∠=︒,∴1260ABP CBP ∠=∠=︒,1APB △和2CBP △都是正三角形.∴124PP =.同理可知其他两边长也是4,∴123PP P 是边长为4的正三角形.折叠后是棱长为2的正四面体-P ABC ,如图所示.设顶点P 在底面内的投影为O ,连结BO 并延长,交AC 于点D ,则D 为AC 的中点,O 为ABC 的重心,PO ⊥底面ABC .AO AB ==,PO ==.故133P ABC ABC V S PO -=⋅=△.5.2【分析】过AB 作与SC 垂直的截面ABM .通过13S ABC ABM V SC S -=⋅△,分析即得解.【详解】过AB 作平面ABM SC ⊥且SC 平面ABM M =,如图所示,由题意知SAC 、SBC △均为直角三角形.∵4SC =,30ASC BSC ∠=∠=︒,故SAC SBC ≅ ,∴SA =,2CA =,∴SA ACAM BM SC⋅==.∴2141sin 2sin 2332S ABCABM V SC S AMB AMB -=⋅=⨯⨯∠=∠≤△.∴三棱锥S ABC -体积的最大值为2.故答案为:26.(1)证明见解析;(2)112B D =【分析】(1)方法二:通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直;(2)方法一:建立空间直角坐标系,利用空间向量求出二面角的平面角的余弦值最大,进而可以确定出答案;【详解】(1)[方法一]:几何法因为1111,//BF AB AB AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,过E 作AB 的平行线分别与AG BC ,交于其中点,M N ,连接11,AM BN ,因为E ,F 分别为AC 和1CC 的中点,所以N 是BC 的中点,易证1Rt Rt BCF B BN ≅ ,则1CBF BBN ∠=∠.又因为1190BBN BNB ∠+∠=︒,所以1190CBF BNB BF BN ∠+∠=︒⊥,.又因为111111,BF AB BN AB B ⊥= ,所以BF ⊥平面11A MNB .又因为ED ⊂平面11A MNB ,所以BF DE ⊥.[方法二]【最优解】:向量法因为三棱柱111ABC A B C -是直三棱柱,1BB ∴⊥底面ABC ,1B B AB ∴⊥11//A B AB ,11BF A B ⊥,BF AB ∴⊥,又1BB BF B ⋂=,AB ∴⊥平面11BCC B .所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.()()()0,0,0,2,0,0,0,2,0,B A C ∴()()()1110,0,2,2,0,2,0,2,2B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤).因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-=,所以BF DE ⊥.[方法三]:因为11BF A B ⊥,11//A B AB ,所以BF AB ⊥,故110BF A B ⋅= ,0BF AB ⋅=,所以()11BF ED BF EB BB B D ⋅=⋅++ ()11=BF B D BF EB BB ⋅+⋅+ 1BF EB BF BB =⋅+⋅ 11122BF BA BC BF BB ⎛⎫=--+⋅ ⎪⎝⎭11122BF BA BF BC BF BB =-⋅-⋅+⋅ 112BF BC BF BB =-⋅+⋅111cos cos 2BF BC FBC BF BB FBB =-⋅∠+⋅∠1=2202-⨯⨯,所以BF ED ⊥.(2)[方法一]【最优解】:向量法设平面DFE 的法向量为(),,m x y z =,因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩ ,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =,设平面11BCC B 与平面DEF 的二面角的平面角为θ,则cos m BA m BA θ⋅=⋅==当12a =时,2224a a -+取最小值为272,此时cos θ=所以()minsin θ=112B D =.[方法二]:几何法如图所示,延长EF 交11A C 的延长线于点S ,联结DS 交11B C 于点T ,则平面DFE 平面11B BCC FT =.作1BH FT ⊥,垂足为H ,因为1DB ⊥平面11BB C C ,联结DH ,则1D H B ∠为平面11BB C C 与平面DFE 所成二面角的平面角.设1,B D t =[0,2],t ∈1B T s =,过1C 作111//CG AB 交DS 于点G .由111113C S C G SA A D ==得11(2)3C G t =-.又1111B D BT C G C T=,即12(2)3t s s t =--,所以31t s t =+.又111B H BT C F FT =,即11B H =,所以1B H =所以DH ==则11sin B D DHB DH∠===所以,当12t =时,()1min 3sin 3DHB ∠=.[方法三]:投影法如图,联结1,FB FN,DEF 在平面11BB C C 的投影为1BN F ,记面11BB C C 与面DFE 所成的二面角的平面角为θ,则1cos B NF DEFS S θ=.设1(02)BD t t =≤≤,在1Rt DB F中,DF ==在Rt ECF中,EF =D 作1B N 的平行线交EN 于点Q .在Rt DEQ △中,DE ==在DEF 中,由余弦定理得222cos 2DF EF DE DFE DF EF+-∠=⋅=,sin DFE ∠1sin 2DFE S DF EF DFE =⋅∠ =13,2B NF S = 1cos B NF DFES S θ==,sin θ,当12t =,即112B D =,面11BB C C与面DFE 所成的二面角的正弦值最小,最小值为3.【整体点评】第一问,方法一为常规方法,不过这道题常规方法较为复杂,方法二建立合适的空间直角坐标系,借助空间向量求解是最简单,也是最优解;方法三利用空间向量加减法则及数量积的定义运算进行证明不常用,不过这道题用这种方法过程也很简单,可以开拓学生的思维.第二问:方法一建立空间直角坐标系,利用空间向量求出二面角的平面角是最常规的方法,也是最优方法;方法二:利用空间线面关系找到,面11BB C C 与面DFE 所成的二面角,并求出其正弦值的最小值,不是很容易找到;方法三:利用面DFE 在面11BB C C 上的投影三角形的面积与DFE △面积之比即为面11BB C C 与面DFE 所成的二面角的余弦值,求出余弦值的最小值,进而求出二面角的正弦值最小,非常好的方法,开阔学生的思维.7.C【分析】设正四棱锥的高为h ,根据题意求出正四棱锥的底面边长与高的关系,再利用导数求解即可.【详解】设球体的半径为R ,由题知:34363R ππ=,所以球的半径3R =.设正四棱锥的底面边长为2a ,高为h ,则222222l h a h =+=+,22232(3)a h =+-,所以26h l =,2222a l h =-所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭,设()641=936x f x x ⎛⎫- ⎪⎝⎭,3x ≤≤,所以()5233112449696x x f x x x ⎛⎫⎛⎫-'=-= ⎪⎝⎭⎝⎭,当3x ≤≤()0f x ¢>,()f x 为增函数,当x <≤()0f x '<,()f x 为减函数,所以当l =时,正四棱锥的体积V 取最大值,最大值为643,又3l =时,274V =,l =814V =,所以正四棱锥的体积V 的最小值为274,所以该正四棱锥体积的取值范围是276443⎡⎤⎢⎥⎣⎦,.故选:C 8.C【分析】令四棱锥底面四边形外接圆半径为r ,用r 表示四棱锥的高及底面四边形面积最大值,再借助导数求解作答.【详解】设该四棱锥底面四边形为ABCD ,平面ABCD 截球O 所得小圆半径为r ,则球心O到平面ABCD 的距离h =设四边形ABCD 对角线,AC BD 的夹角为α,则1sin 2ABCD S AC BD α=⋅,于是得该四棱锥的体积:12sin 22sin 36623ABCD V S h BD r r rπα=⋅=⋅≤⋅⋅=当且仅当对角线,AC BD 是截面小圆互相垂直的两条直径,即四边形ABCD 为正方形时取等号,令2(0,1)r x =∈,有23r =23(),(0,1)f x x x x =-∈,求导得:22()233()3f x x x x x '=-=-,当203x <<时,()0f x '>,当213x <<时,()0f x '<,因此函数()f x 在2(0,)3上单调递增,在2(,1)3上单调递减,当23x =时,23max 224()(()3327f x =-=,从而当223r =时,max 222(333r =⨯⨯max V =,此时3h ==,故选:C9.(1)证明见解析;【分析】(1)利用线面垂直的判定定理可得AC ⊥平面BED ,然后根据面面垂直的判定定理可得平面BED ⊥平面ACD ;(2)首先判断出三角形AFC 的面积最小时F 点的位置,然后求得F 到平面ABC 的距离,从而求得三棱锥F ABC -的体积或利用等积法及锥体的体积公式即得.【详解】(1)AD CD = ,ADB BDC ∠=∠,BD BD =,ADB CDB ∴≅ ,AB BC ∴=,又E 为AC 的中点.AC BE ∴⊥,AD CD = ,E 为AC 的中点.AC DE ∴⊥,又BE DE E = ,BE ⊂平面BED ,DE ⊂平面BED ,AC ∴⊥平面BED ,又AC ⊂ 平面ACD ,∴平面BED ⊥平面ACD ;(2)方法一:依题意2AB BD BC ===,60ACB ∠=︒,三角形ABC 是等边三角形,所以2,1,AC AE CE BE ====由于,AD CD AD CD =⊥,所以三角形ACD 是等腰直角三角形,所以1DE =,所以222DE BE BD +=,即DE BE ⊥,由于AC BE E ⋂=,,AC BE ⊂平面ABC ,所以DE ⊥平面ABC ,由于ADB CDB ≅△△,所以FBA FBC ∠=∠,由于BF BFFBA FBC AB CB =⎧⎪∠=∠⎨⎪=⎩,所以FBA FBC ≅ ,所以AF CF =,所以EF AC ⊥,由于12AFC S AC EF =⋅⋅ ,所以当EF 最短时,三角形AFC 的面积最小,过E 作EF BD ⊥,垂足为F ,在Rt BED △中,1122BE DE BD EF ⋅⋅=⋅⋅,解得2EF =,所以13,222DF BF DF ===-=,所以34BF BD =,过F 作FH BE ⊥,垂足为H ,则//FH DE ,又DE ⊥平面ABC ,所以FH ⊥平面ABC ,且34FH BF DE BD ==,所以34FH =,所以111323324F ABC ABC V S FH -=⋅⋅=⨯⨯=方法二:AB BC = ,60ACB ∠=︒,2AB =ABC ∴ 是边长为2的等边三角形,BE ∴=连接EF ,由于ADB CDB ≅△△,所以FBA FBC ∠=∠,由于BF BFFBA FBC AB CB =⎧⎪∠=∠⎨⎪=⎩,所以FBA FBC ≅ ,所以AF CF =,所以EF AC ⊥,由于12AFC S AC EF =⋅⋅ ,所以当EF 最短时,三角形AFC 的面积最小,即EF BD ⊥时,AFC △的面积最小,,,2AD CD AD CD AC ⊥== ,E 为AC 的中点,∴1DE =,222DE BE BD +=,BE ED ∴⊥,在Rt BED △中,1122BE DE BD EF ⋅⋅=⋅⋅,解得2EF =,∴32BF ,113222BEF S BF EF ∴=⋅=⋅11233F ABC A BEF C BEF BEF V V V S AC ---∴=+=⋅=⋅= .10.6【分析】取AC 中点O ,连接OB ,过点O 作Oz ⊥平面ABC ,以点O 为原点建立空间直角坐标系,设二面角D AC B '--的大小为α,把直线A C 与BD '所成角的余弦表示为α的函数,求出函数最大值作答.【详解】在ACD 中,90ADC ∠= ,1,CD AD ==则AC =,过D 作DH AC ⊥于H ,连接D H ',如图,显然D H AC '⊥,ACD 绕直线AC 旋转过程中,线段DH 绕点H 在垂直于直线AC 的平面γ内旋转到D H ',取AC 中点O ,连接OB ,因3AB BC ==,有OB AC ⊥,OB =,,663CD ADD H DH CH OH AC⋅'=====,过点O 作Oz ⊥平面ABC ,以点O 为原点,射线,,OB OA Oz 分别为,,x y z 轴非负半轴,建立空间直角坐标系,则A ,B ,(0,2C -,显然有//Oz 平面γ,设二面角D AC B '--的大小为[0,]απ∈,有(,,sin )636D αα'-,则有(,sin )6236BD αα=--' ,CA的方向向量为(0,1,0)n = ,设直线AC 与BD '所成的角为θ,于是得||cos |cos ,|||||n BD n BD n BD θ'⋅'=〈〉=='因[0,]απ∈,则1cos 1α-≤≤,于是得cos 6θ=,当且仅当cos 1α=取等号,所以直线AC 与BD '11.A【分析】取BD 中点O ,连接AO ,CO ,以O 为原点建立空间直角坐标系,利用二面角A BD C --的大小θ的正余弦表示,AB CD的坐标,利用空间向量建立函数关系求解作答.【详解】取BD 中点O ,连接AO ,CO ,而AB =BD =DA =2,BC =CD,则CO ⊥BD ,AO ⊥BD ,且CO =1,AOAOC ∠是二面角A BD C --的平面角,令5[,]66AOC ππθ∠=∈,显然有BD ⊥平面AOC ,BD ⊂平面BCD ,则平面AOC ⊥平面BCD ,在平面AOC 内过O 作Oz OC ⊥,而平面AOC I 平面BCD OC =,因此Oz ⊥平面BCD ,即射线,,OC OD Oz 两两垂直,以O 为原点,射线,,OC OD Oz 分别为,,x y z轴非负半轴,建立空间直角坐标系,如图,则(0,1,0),(1,0,0),(0,1,0)B C D -,)A θθ,,1,),(1,1,0)BA CD θθ==-,设直线AB 与CD 所成的角为α,则||cos |cos ,|||||AB CD AB CD AB CD α⋅=〈〉==,由5[,66ππθ∈得:cos [,]22θ∈,15122θ-≤≤,则5|1|[0,2θ∈,于是得cos[0,]α∈,8.所以直线AB与CD 所成角的余弦值取值范围是[0,]8故选:A答案第18页,共18页。

初中数学一题多变一题多解(二)

一题多解一题多变(二)1、一题多解,培养思维的发散性一题多解实际上是解题或证明定理、公式的变式,因为它的实质是以不同的论证方式反映条件和结论问的同一必然的本质联系,运用这种变式教学,可以引导学生对同一材料,从不同角度、从不同方位、用各种途径、多种方法思考问题,探求不同的解答方案,这样,既可暴露学生解题的思维过程,增加教学透明度,又能够拓广学生思路,使学生熟练掌握知识的内在联系,使思维向多方向发展,培养思维的发散性。

这方面的例子很多,尤其是几何证明题。

已知:点O是等边△ABC内一点,OA=4,OB=5,OC=3求∠AOC的度数。

练习:把此题适当变式:变式在△ABC中,AB=AC,∠BAC=90°OA=4,OB=6,OC=2求∠AOC的度数。

变式2:如图,点O是等边△ABC内一点,∠AOB=110°, ∠BOC=135°试问:(1)以OA、OB、OC为边能否构成一个三角形?若能,请求出三角形各内角的度数;若不能,请说明理由.(2)如果∠AOB的大小保持不变,那么当∠BOC等于多少度时, 以OA、OB、OC为边的三角形是一个直角三角形?2、一题多变,培养思维的灵活性一题多变是题目结构的变式,是指变换题目的条件或结论,或者变换题目的形式,而题目的实质不变,以便从不同角度,不同方面揭示题目的本质,用这种方式进行教学,能使学生随时根据变化了的情况积极思索,设法想出解决的办法,从而防止和消除呆板和僵化,培养思维的灵活性。

一题多变可以改变条件,保留结论;也可以保留条件,改变结论;或者同时改变条件和结论;也可以将某项条件与结论对换等等。

例如:已知:C 为AB 上一点,△ACM 和△CBN 为等边三角形(如图所示)求证:AN=BM(分析:如对此题多做一些引申,既可以培养学生的探索能力,又可培养学生的创新素质)探索一:设CM 、CN 分别交AN 、BM 于P 、Q ,AN 、BM 交于点R 。

不定积分一题多解问题的常见方法

㊀㊀㊀㊀㊀数学学习与研究㊀2021 33不定积分一题多解问题的常见方法不定积分一题多解问题的常见方法Һ杨㊀涛1㊀付㊀裕2㊀(1.四川工程职业技术学院基础部,四川㊀德阳㊀618009;2.四川工商学院数理教研室,四川㊀成都㊀611745)㊀㊀ʌ摘要ɔ不定积分求解的技巧性很强,常用方法有换元积分法和分部积分法.本文主要对添项法㊁万能公式㊁线性方程组求解不定积分等多种方法归纳和总结,以培养学生不定积分计算的发散思维.ʌ关键词ɔ不定积分;添项法;万能公式;线性方程组ʌ基金项目ɔ四川省民办教育协会2020年科研课题(MBXH20YB393)1㊀引㊀言不定积分计算是高等数学中的重难点之一,其常用计算方法有:换元积分法和分部积分法.然而许多学生在计算不定积分时总感到束手无策㊁无从下手:一方面是因为不定积分的题目类型较多,求解方法因问题的不同而变化多端;另一方面,在学习过程中学生疏于对计算方法的归纳和总结.因此,为帮助学生较好地理解和掌握不定积分的计算㊁熟练运用所学知识求解不定积分,本文对不定积分常见的计算方法进行归纳和总结,帮助学生理解和掌握不定积分求解方法.2㊀准备知识定义1㊀(原函数)设函数f(x)和F(x)在区间I上有定义.若满足Fᶄ(x)=f(x),xɪI,则称F(x)为f(x)在区间I上的一个原函数.定义2㊀函数f(x)在区间I上的全体原函数称为f(x)在区间I上的不定积分,记作ʏf(x)dx.其中,ʏ为积分号,f(x)为被积函数,f(x)dx为被积表达式,x为积分变量.根据定义1㊁定义2知,ʏf(x)dx=ʏFᶄ(x)dx=ʏdF(x)=F(x)+C.不为零的常数因子可以移到积分号前,即性质1㊀ʏaf(x)dx=aʏf(x)dx(aʂ0).两个函数的代数和的积分等于函数积分的代数和,即性质2㊀ʏ[f(x)ʃg(x)]dx=ʏf(x)dxʃʏg(x)dx.3㊀不定积分计算常用方法3.1㊀换元积分法计算不定积分换元积分法是计算不定积分的常用方法,然而不定积分题目类型较多,不同类型的不定积分求解方法并不相同,这就需要我们对不定积分求解方法进行归纳和总结,并将其灵活运用于不定积分求解过程中.本文从实际出发,对一些不易求解的不定积分设置多种求解方法(换元积分法㊁添项法1㊁添项法2及万能公式计算方法),以帮助同学们熟练掌握不定积分的计算方法,拓展计算思维.例1㊀计算不定积分ʏ1asinx+bcosxdx.分析:记I=ʏ1asinx+bcosxdx.因为asinx+bcosx=a2+b2sin(x+α),其中cosα=aa2+b2,sinα=ba2+b2,所以I=ʏ1asinx+bcosxdx=1a2+b2ʏ1sin(x+α)d(x+α).此时,令t=x+α,则dx=dt,即I=1a2+b2ʏ1sintdt.解法1:(换元法,此方法技巧性较高)I=1a2+b2ʏ1sintdt=1a2+b2ʏ12sint2cost2dt=1a2+b2ʏ12cos2t2tant2dt2=1a2+b2ʏ1tant2dtant2=1a2+b2lntant2+C=1a2+b2lntanx+α2+C.或I=1a2+b2ʏ1sintdt=1a2+b2ʏ12sint2cost2dt=1a2+b2ʏ12sin2t2cott2dt2=-1a2+b2ʏ1cott2dcott2=-1a2+b2lncott2+C=-1a2+b2lncotx+α2+C.解法2:(万能公式,常规法)令u=tant2,则sint=2u1+u2,cost=1-u21+u2,dt=21+u2du.那么. All Rights Reserved.㊀㊀㊀㊀数学学习与研究㊀2021 33ʏ1asinx+bcosxdx=1a2+b2ʏ1+u22u㊃21+u2du=1a2+b2ʏ1udu=1a2+b2ln|u|+C=1a2+b2lntanx+α2+C.又因为d(csct-cott)=1sint㊃1-costsintdt,所以,例1还可以运用添项法来计算不定积分.3.2㊀添项法计算不定积分不定积分计算过程中,若运用添项法,则需要学生具有很高的技巧性且对三角函数公式要足够的熟悉,也需要学生平时对不定积分计算方法进行归纳和总结.例1中运用添项法计算不定积分可以有如下两种思考.解法3:(添项法1)I=1a2+b2ʏ1sintdt=1a2+b2ʏcsct(csct-cott)csct-cottdt=1a2+b2ʏ1csct-cottd(csct-cott)=1a2+b2ln|csct-cott|+C=1a2+b2ln1-costsint+C=1a2+b2ln2sin2t22sint2cost2+C=1a2+b2lntant2+C=1a2+b2lntanx+α2+C.解法4:(添项法2)I=1a2+b2ʏ1sintdt=1a2+b2ʏsintsin2tdt=-1a2+b2ʏ1sin2tdcost=-1a2+b2ʏ11-cos2tdcost=-12a2+b2ʏ11+cost+11-cost()dcost=12a2+b2ln1-cost1+cost+C.由万能公式可知(方法2),cost=1-u21+u2,于是12a2+b2ln1-cost1+cost=12a2+b2ln|u2|=1a2+b2ln|u|=1a2+b2lntant2=1a2+b2ln|tanx+α2|.从而,验证方法4所得结果与方法1 方法3求得结果是等价的.3.3㊀线性方程组计算不定积分换元积分法和添项法是求不定积分的有效方法之一,对于某些不定积分的计算,可运用解线性方程组的方法求解.例2㊀求不定积分ʏsinxasinx+bcosxdx.解:(线性方程组求解不定积分,此方法需要平时对方法的积累)记I=ʏsinxasinx+bcosxdx,R=ʏcosxasinx+bcosxdx,则bI-aR=ʏbsinxasinx+bcosxdx-ʏacosxasinx+bcosxdx=ʏbsinx-acosxasinx+bcosxdx=-ʏ1asinx+bcosxd(asinx+bcosx)=-ln|asinx+bcosx|+C2.(1)aI+bR=ʏasinxasinx+bcosxdx+ʏbcosxasinx+bcosxdx=x+C1.(2)联立(1)(2)可得:I=axa2+b2-ba2+b2ln|asinx+bcosx|+C.例2推广:求不定积分In+1=ʏsinx(asinx+bcosx)n+1dx(nȡ1).解:(线性方程组求解不定积分,且要求熟悉递推和三角函数关系)记Rn+1=ʏcosx(asinx+bcosx)n+1dx,则bIn+1-aRn+1=ʏbsinx(asinx+bcosx)n+1dx-ʏacosx(asinx+bcosx)n+1dx=ʏbsinx-acosx(asinx+bcosx)n+1dx=-ʏ1(asinx+bcosx)n+1d(asinx+bcosx)=1n(asinx+bcosx)n+C1.(3)aIn+1+bRn+1=ʏasinx(asinx+bcosx)n+1dx+ʏbcosx(asinx+bcosx)n+1dx=ʏasinx+bcosx(asinx+bcosx)n+1dx. All Rights Reserved.㊀㊀㊀㊀㊀数学学习与研究㊀2021 33=ʏ1(asinx+bcosx)ndx.(4)记Qn=ʏ1(asinx+bcosx)ndx,asinx+bcosx=a2+b2sin(x+α),式中sinα=ba2+b2,cosα=aa2+b2,于是Qn=ʏ1(asinx+bcosx)ndx=(a2+b2)-n2ʏ1sinn(x+α)dx(令t=x+α)=-(a2+b2)-n2ʏ1sinn-2tdcott=-(a2+b2)-n2cottsinn-2t-(n-2)(a2+b2)n2ʏcottcostsinn-1tdx=bsinx-acosx(a2+b2)(asinx+bcosx)n-1-n-2(a2+b2)n2ʏ1-sin2tsinntdx=bsinx-acosx(a2+b2)(asinx+bcosx)n-1+(2-n)Qn+n-2a2+b2Qn-2.于是Qn=bsinx-acosx(n-1)(a2+b2)(asinx+bcosx)n-1+n-2(n-1)(a2+b2)Qn-2.联立(3)(4)可得:In+1=1(a2+b2)2[absinx-a2cosx(n-1)(asinx+bcosx)n-1+b(a2+b2)n(asinx+bcosx)n+a(n-2)(n-1)Qn-2].3.4㊀分部积分法和线性方程组在不定积分计算中的综合运用分部积分法是求解不定积分最常见方法,分部积分法和线性方程组在不定积分计算中的综合运用可以很好地锻炼学生的思维能力和计算能力.例3㊀计算不定积分ʏexsin2xdx.解:设I=ʏexsin2xdx,R=ʏexcos2xdx,则R-I=ʏexcos2dx-ʏexsin2xdx=ʏexcos2x-sin2x()dx=ʏexcos2xdx.记Q=ʏexcos2xdx,则Q=ʏexcos2xdx=excos2x+2ʏexsin2xdx=excos2x+2exsin2x-4Q.于是Q=15(excos2x+exsin2x)+C1.即R-I=15(excos2x+2exsin2x)+C1,(1)R+I=ʏexcos2xdx+ʏexsin2xdx=ʏex(cos2x+sin2x)dx=ʏexdx=ex+C2.(2)联立(1)(2)可得:I=ex2-110(excos2x+2exsin2x)+C.虽然分部积分法是求不定积分中最常用㊁最基本的方法,但存在不适用的情形,如以下实例.3.5㊀一些特殊函数的积分法某些不定积分看似简单,其实并不简单,必须把分式分解才行,此时分解一般用待定系数法求出系数.例4㊀计算不定积分ʏ1x3+1dx.解:记I=ʏ1x3+1dx.设1x3+1=Ax+1+Bx+Cx2-x+1,等式右边通分后不难解得:A=13,B=-13,C=23.于是I=ʏ1x3+1dx=ʏ1(x+1)(x2-x+1)dx=ʏ13(x+1)-x-23(x2-x+1)éëêùûúdx=16ln(x+1)2x2-x+1+13arctan2x-13+C.4㊀结束语上述实例表明,同一不定积分计算求解方法并不唯一(如例1),有时某些不定积分的计算可以运用求解线性方程组的方式计算(如例2㊁例3).因此,在计算不定积分时,选取合适的㊁合理的求解方法是快速解决问题的关键.针对同一问题,应从不同的角度思考问题,从已有的方法中发现新颖的解题方法,这不仅能够提高学生学习数学的兴趣,而且能够更好地提升自身的数学素养,进一步挖掘将数学知识运用于实际生活中的潜在能力.所以,在授课的过程中,教师不仅需要讲解不定积分求解的基本方法,而且要求学生熟练掌握知识点之间的联系和综合运用.ʌ参考文献ɔ[1]华东师范大学数学系.数学分析(上):第3版[M].北京:高等教育出版社,2001.[2]裴礼文.数学分析中的典型问题与方法[M].北京:高等教育出版社,2006.[3]杨涛.数学分析中几种常见的不等式证明方法[J].四川工商学院学术新视野,2019,04(01):29-33.[4]陈芳,任必聪.关于不定积分的一题多解问题[J].西南师范大学学报(自然科学版),2019(10):127-131.[5]李傅山.数学分析中的问题与方法[M].北京:科学出版社,2016.[6]刘欣欣.常用的不定积分计算方法及解析[J].数学学习与研究,2017(13):16,18.[7]王振福.不定积分换元法分类运算方法研究[J].数学学习与研究,2017(01):24.[8]杨涛.极限的几种常用求解方法[J].四川工商学院学术新视野,2018,03(04):36-39.. All Rights Reserved.。

解几最值求有妙法,构造函数多方出击-高考数学一题多解

解几最值求有妙法,构造函数多方出击一、攻关方略与圆锥曲线有关的最值或范围问题大都是综合性问题,解法灵活,技巧性强,涉及代数函数、三角函数、平面几何等方面的知识,求最值常见的解法有几何法和代数法两种,若题目的条件和结论能明显体现几何特征及意义,如与圆锥曲线的定义相关或涉及过焦点的弦长、焦半径、焦点三角形等,则考虑利用图形性质来解决;若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,圆锥曲线中的最值问题的载体是直线与圆锥曲线的关系,特别是相交所引出的图形的最值问题,大致可分为两类:①涉及距离、面积的最值以及与之相关的一些问题;②求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.本讲重点放在用目标函数法求最值的策略.建立目标函数解与圆锥曲线有关的最值问题是一种常规方法,其关键是选取适当的变量建立目标函数,然后运用求函数最值的方法确定最值.运用目标函数法解此类题的难点体现在两个方面:①如何建立目标函数.关键要把相关图形的特点吃透,变量可以是直线的斜截、截距、曲线上的动点坐标、变动的线段等等,通常所得到的解析式的形式不会太简单,对下一步的求解会带来困难.②对所求得的目标函数如何求其最值,常常需要进行再次构造为常见函数并运用相应的解题策略解之,比如转化为二次函数或三角函数的最值问题,然后利用配方法、基本不等式、函数的单调性或三角函数的有界性等,尤其是对复杂函数解析式的再构造,其方法并非唯一,不同的构造必有多种不同的解法,或繁或简,通过解题经验的积累,尽可能找到最为巧妙的构造,得到最为简捷的解法,真可谓:解几最值求有妙法,构造函数多方出击.思维发散或繁或简,纵横联结枝繁叶茂.【典例】已知点()0,2A -,圆2222:1x y E a b +=(0a b >>F 是椭圆E的右焦点,直线AF O 为坐标原点.(1)求E 的方程;(2)设过点A 的直线l 与椭圆E 相交于P ,Q 两点,当OPQ △的面积最大时,求l 的方程.解题策略解析几何是用代数方法研究几何问题的一门数学学科,代数方法当然离不开比较复杂的计算,高考命题特别提出“多考想,少考算”,突出考查学生分析推理、转化的数学逻辑思维能力,如何在解析几何中避免繁杂、冗长的计算,即简化计算,也就成了处理这类问题的难点与关键,解析几何题目中常用的简化运算的技巧有:圆锥曲线的概念、条件等价转化、以形助数、设而不求以及通过构造以巧妙的方法减少运算量等,本例第(1)问,根据已知条件,利用基本量求椭圆方程;第(2)问,先建立OPQ △面积的函数表达式,再求最值,其中函数变量的选取尤为重要,不同的解析式有不同的求最值的方法.策略一由弦长公式求PQ ,由点到直线距离公式求d ,由12=⋅S PQ d 得解析式,换元法转化为用基本不等式求最值和l 的方程策略二由POQ AOQ AOP S S S =-△△△得函数解析式再进一步求解策略三利用坐标法求解析式再进一步求解(1)解:设(c,0)F ,由条件知,23c =,得c =又2c a =,∴2a =,2221b a c =-=,故E 的方程为2214x y +=.(2)解法一当l x ⊥轴时,不合题意,故设:2l y kx =-,()11,P x y 、()22,Q x y ,将2y kx =-代入椭圆方程,整理得()224116120k x kx +-+=.则()()222(16)48411643k k k ∆=-+=-当0∆>,即234k >时由弦长公式得12||PQ x =-==.又由点到直线的距离公式得点O 到直线l的距离d =∴OPQ △的面积221||24141S PQ k k d ===++⨯.t =,244144t S t t t ==++.则2243k t =+且0t >,当4t t =,即2t =时,OPQ △2=,解得2k =.故所求直线l的方程为2y =-或2y =-.解法二设直线:2l y kx =-交椭圆E 于()11,P x y ,()22,Q x y .且P 在线段AQ 上.由222,440y kx x y =-⎧⎨+-=⎩得()224116120k x kx +-+=,1221641k x x k +=+,1221241x x k =+.由0∆>得234k ≥.则21122POQ AOQ AOP S S S x x =-=⨯-==△△△同解法一得所求直线l 的方程为2y =-或2y =-.解法三设l 的方程为2y kx =-,与椭圆方程联立得222,44,y kx x y =-⎧⎨+=⎩消去y 整理得()224116120k x kx +-+=.则1221641k x x k +=+,1221241x x k =+,且由0∆>,得234k >.设点P 、Q 的坐标分别为()11,x y ,()22,x y .点O 的坐标为(0,0),用坐标法求OPQ △的面积S 可表示为11221112001x y S x y =.即()()1221122112112222S x y x y x kx x kx x x =-=---=-⎡⎤⎣⎦241k k ==+.同解法一得所求直线l 的方程为2y =-或2y =-.【点评】运用目标函数法解此类题的难点体现在两个方面:①如何建立目标函数.关键要把相关图形的特点吃透,变量可以是直线的斜截、截距、曲线上的动点坐标、变动的线段等等,通常所得到的解析式的形式不会太简单,对下一步的求解会带来困难.②对所求得的目标函数如何求其最值,常常需要进行再次构造为常见函数并运用相应的解题策略解之,【针对训练】1.已知椭圆的方程为22143x y +=,1F ,2F 分别为椭圆的左、右焦点,线段PQ 是椭圆上过点2F 的弦,则1PFQ △内切圆面积的最大值为______.2.已知抛物线2:4C y x =上一点()4,4M -,A ,B 是抛物线C 上的两动点,且0MA MB ⋅= ,则点M 到直线AB 距离的最大值是______.(2021全国乙卷理11)3.设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是()A .,12⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .2⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦(2021全国新高考Ⅰ卷5)4.已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A .13B .12C .9D .65.已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.6.已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB 面积的最大值.(2022·浙江)7.如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(1)若116=p ,求抛物线2C 的焦点坐标;(2)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.(2022·浙江)8.如图,已知F 是抛物线()220y px p =>的焦点,M 是抛物线的准线与x 轴的交点,且2MF =,(1)求抛物线的方程;(2)设过点F 的直线交抛物线与A 、B 两点,斜率为2的直线l 与直线,,MA MB AB ,x 轴依次交于点P ,Q ,R ,N ,且2RN PN QN =⋅,求直线l 在x 轴上截距的范围.(2019年高考数学浙江卷第21题)9.如图所示,已知点()1,0F 为抛物线22y px =(0p >)的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧,记AFG 、CQG 的面积分别为1S ,2S.(1)求p 的值及抛物线的准线方程;(2)求的12S S 最小值及此时点G 的坐标.10.如图,已知抛物线2x y =.点A 1139-2424B ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,抛物线上的点P (x,y )13-x 22⎛⎫ ⎪⎝⎭<<,过点B 作直线AP 的垂线,垂足为Q(I)求直线AP斜率的取值范围;PA PQ的最大值(II)求·参考答案:1.9π16【分析】()111142PF Q S PF QF PQ r r =++⋅=△,∴14PF Q S r =△,解法一:112PF Q S PQ d =⋅ ,点1F 到直线PQ 的距离为d .由弦长公式和点到直线距离公式,求最大值.解法二:1121212PF Q S F F y y =- ,由弦长公式和基本不等式求最大值.【详解】解法一如图所示,1PFQ △的()111142PF Q S PF QF PQ r r =++⋅=△,∴14PF Q S r =△.当直线PQ 的斜率不存在时,易得||3PQ =,此时1121||32PF Q S F F PQ =⋅⋅=△,∴34r =;当直线PQ 的斜率为k 时,直线PQ 的方程为(1)y k x =-.将(1)y k x =-代入22143x y +=,并整理得:()22224384120k x k x k +-+-=.设()11,P x y 、()22,Q x y ,则2122843k x x k +=+,212241243k x x k -=+.||PQ ==()2212143k k +==+.∵点1F 到直线PQ 的距离d =.则12112|||243PF Qd k S PQ k ==⋅+△,则()()()()222222222211124331PFQ k k k k S k k k ++⎛⎫== ⎪⎡⎤⎝⎭+++⎣⎦△,设21u k =+,2v k =,则122112(3)96PF Q S uv u v u v v u⎛⎫== ⎪+⎝⎭⨯++△,且2211u k v k +=>,设(1)u t t v=>,设1()96f t t t =++,则21()9f t t '=-,当1t >时,()0f t '>,∴96(1)16u v f v u ⋅++>=,则1212116PF Q S ⎛⎫ ⎪⎝<⎭△,∴13PF Q S <△,∴34r <.综上,当直线PQ 垂直于x 轴时,1PFQ △的内切圆半径r 取得最大值34,∴1PFQ △的内切圆面积的最大值为9π16.解法二显然直线PQ 的斜率不为0,故可设其方程为1x my =+,将1x my =+代入22143x y+=,并整理得()2234690m y my ++-=,设()11,P x y ,()22,Q x y ,则122634m y y m +=-+,122934y y m =-+,∴1121221234PF Q S F F y y m =-===+△121,令1t ≥.设1()3f t t t =+,则21()3f t t'=-,则当1t >时,()0f t '>[]1,+∞,∴(1)4f =≥(当0m =时等号成立),∴1PF Q S △的最大值为3.此时1344PF Q S r ==△,即r 的最大值为34.∴1PFQ △的内切圆面积的最大值为9π16.故答案为:9π162.【分析】解法一:首先利用坐标表示直线MA ,MB 和直线AB 的斜率,并利用坐标表示1MA MB k k ⋅=-,代入直线AB 的方程,化简求直线所过定点,利用几何法表示点M 到直线AB距离的最大值;解法二:利用1MA MB k k ⋅=-得()()12124324y y y y y x +-++=,利用换元得直线AB 的方程为44320x ty t -+-=,列出点到直线距离公式d ==关系求函数最大值;解法三:首先设直线AB 的方程为x ky b =+,与抛物线方程联立,并利用韦达定理表示0MA MB ⋅=,得22123616164b b k k -+=-+,化简后表示,k b 的关系,可求得定点坐标,再利用两点距离表示点到直线距离的最大值.【详解】解法一:如图所示,设()11,A x y ,()22,B x y ,则直线MA 的斜率为()()()11111144444444MA y y k x y y y ++===-+--.同理可得直线MB 的斜率为244MB k y =-.直线AB 的斜率为12122212121244AB y y y y k y y x x y y --===--+.由1244144MA MB k y y k =⨯=---⋅,得()1212432y y y y -+=-.又直线AB 的方程为()11124y y x x y y -=-+,故()12124y y y y y x +-=.∴()()12124324y y y y y x +-++=.即()12(4)4(8)y y y x +-=-,∴直线AB 过定点()8,4P .点M 到直线AB距离的最大值为||MP ==解法二:同解法一得()()12124324y y y y y x +-++=.令12y y t +=,则直线AB 的方程为44320x ty t -+-=.点M 到直线AB的距离d ==令2t s -=,则有d =,当10s =-时等号成立,即点M 到直线AB距离的最大值为解法三:设直线AB 的方程为x ky b =+,211,4y A y ⎛⎫⎪⎝⎭,222,4y B y ⎛⎫ ⎪⎝⎭.由24x ky by x=+⎧⎨=⎩,得2440y ky b --=.∴()2160k b ∆=+>,124y y k +=,124y y b =-.∴0MA MB ⋅= ,即2212124,44,4044y y y y ⎛⎫⎛⎫-+⋅-+= ⎪ ⎪⎝⎭⎝⎭,∴()()22212121212122432016y y y y y y y y y y ⎡⎤-+-++++=⎣⎦.①把121244y y ky y b+=⎧⎨=-⎩代入(1)式整理得22123616164b b k k -+=-+.即22(6)(42)b k -=-,∴48b k =-+或44b k =+.当44b k =+时,直线AB 的方程为(4)4x k y =++,恒过点(4,4)-M ,不符合题意;当48b k =-+时,直线AB 的方程为(4)8x k y =-+,恒过点()8,4P ,符合题意.∴点M 到直线AB的距离的最大值是||MP =故答案为:3.C【分析】设()00,P x y ,由()0,B b ,根据两点间的距离公式表示出PB ,分类讨论求出PB 的最大值,再构建齐次不等式,解出即可.【详解】设()00,P x y ,由()0,B b ,因为2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32b b c-≤-,即22b c ≥时,22max 4PB b =,即max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即0e <≤当32b b c->-,即22b c <时,42222max b PB a b c =++,即422224b a b b c ++≤,化简得,()2220c b -≤,显然该不等式不成立.故选:C .【点睛】本题解题关键是如何求出PB 的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值.4.C【分析】法一:根据椭圆定义得到1226MF MF a +==,结合基本不等式进行求解;法二:设出()00,M x y ,使用焦半径结合033x -≤≤进行求解.【详解】法一:由题意,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立).法二:设()00,M x y ,033x -≤≤,由焦半径公式可得:1002003,3MF a ex MF a ex =+=+=-=-,故21200053399MF MF x x ⎛⎫⎛⎫⋅=+⋅=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,因为033x -≤≤,所以2009x ≤≤,当200x =,即00x =时,12MF MF ⋅取得最大值,最大值为9.故选:C .5.(1)24y x =(2)13【分析】(1)由抛物线焦点与准线的距离即可得解;(2)设()00,Q x y ,由平面向量的知识可得()00109,10P x y -,代入抛物线方程,进而可得20025910y x +=,可得点Q 的轨迹,再由斜率公式及基本不等式即可得解.【详解】(1)抛物线2:2(0)C y px p =>的焦点,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,由题意,该抛物线焦点到准线的距离为222p p p ⎛⎫--== ⎪⎝⎭,所以该抛物线的方程为24y x =;(2)设()00,Q x y ,则()00999,9PQ QF x y ==--,所以()00109,10P x y -,由P 在抛物线上可得()()200104109y x =-,即20025910y x +=,据此整理可得点Q 的轨迹方程为229525=-y x ,所以直线OQ 的斜率000220001025925910OQ y y y k y x y ===++,当00y =时,0OQ k =;当00y ≠时,0010925OQ k y y =+,当00y >时,因为0092530y y +≥=,此时103OQ k <≤,当且仅当00925y y =,即035y =时,等号成立;当00y <时,0OQ k <;综上,直线OQ 的斜率的最大值为13.6.(1)2p =(2)()max = PAB S 【分析】(1)方法一利用两点间距离公式求得FN 关于圆M 上的点()00,N x y 的坐标的表达式,进一步转化为关于0y 的表达式,利用二次函数的性质得到最小值,进而求得p 的值;方法二,利用圆的性质,F 与圆22:(4)1M x y ++=上点的距离的最小值,简洁明快,为最优解;(2)方法一设点()11,A x y 、()22,B x y 、()00,P x y ,利用导数求得两切线方程,由切点弦方程思想得到直线AB 的坐标满足方程00220x x y y --=,然手与抛物线方程联立,由韦达定理可得1202x x x +=,1204x x y =,利用弦长公式求得AB 的长,进而得到面积关于()00,P x y 坐标的表达式,利用圆的方程转化得到关于0y 的二次函数最值问题;方法二,同方法一得到1202x x x +=,1204x x y =,过P 作y 轴的平行线交AB 于Q ,则2000,2⎛⎫- ⎪⎝⎭x Q x y .由121||2PAB S PQ x x =⋅- 求得面积关于()00,P x y 坐标的表达式,并利用三角函数换元求得面积最大值,方法灵活,计算简洁,为最优解;方法三直接设直线:AB l y kx b =+,联立直线AB 和抛物线方程,利用韦达定理判别式得到20k b +>,且12124,4x x k x x b +==-.利用点P 在圆M 上,求得,k b 的关系,然后利用导数求得两切线方程,解方程组求得P 的坐标(2,)P k b -,进而利用弦长公式和点到直线距离公式求得面积关于b 的函数表达式,然后利用二次函数的性质求得最大值;【详解】(1)[方法一]:利用二次函数性质求最小值由题意知,0,2p F ⎛⎫ ⎪⎝⎭,设圆M 上的点()00,N x y ,则()22041++=x y .所以()()22001453=-+-≤≤-x y y .从而有||=FN =因为053y -≤≤-,所以当03y =-时,min ||4==FN .又0p >,解之得2p =,因此2p =.[方法二]【最优解】:利用圆的几何意义求最小值抛物线C 的焦点为0,2p F ⎛⎫ ⎪⎝⎭,42pFM =+,所以,F 与圆22:(4)1M x y ++=上点的距离的最小值为4142p+-=,解得2p =;(2)[方法一]:切点弦方程+韦达定义判别式求弦长求面积法抛物线C 的方程为24x y =,即24x y =,对该函数求导得=2xy ',设点()11,A x y 、()22,B x y 、()00,P x y ,直线PA 的方程为()1112x y y x x -=-,即112x xy y =-,即11220x x y y --=,同理可知,直线PB 的方程为22220x x y y --=,由于点P 为这两条直线的公共点,则10102020220220x x y y x x y y --=⎧⎨--=⎩,所以,点A 、B 的坐标满足方程00220x x y y --=,所以,直线AB 的方程为00220x x y y --=,联立0022204x x y y x y --=⎧⎪⎨=⎪⎩,可得200240x x x y -+=,由韦达定理可得1202x x x +=,1204x x y =,所以,AB ==,点P 到直线AB的距离为d =,所以,()3220011422PABS AB d x y =⋅=-△,()()2222000000041441215621x y y y y y y -=-+-=---=-++ ,由已知可得053y -≤≤-,所以,当05y =-时,PAB的面积取最大值321202⨯=[方法二]【最优解】:切点弦法+分割转化求面积+三角换元求最值同方法一得到1201202,4+==x x x x x y .过P 作y 轴的平行线交AB 于Q ,则2000,2⎛⎫- ⎪⎝⎭x Q x y.()32221200001111||242222⎛⎫=⋅-=-=- ⎪⎝⎭PABS PQ x x x y x y .P 点在圆M 上,则00cos ,4sin ,x y αα=⎧⎨=-+⎩()()333222222001114cos 4sin 16(sin 2)21222ααα⎡⎤=-=-+=-++⎣⎦ PABS x y .故当sin 1α=-时PAB 的面积最大,最大值为[方法三]:直接设直线AB 方程法设切点A ,B 的坐标分别为211,4x A x ⎛⎫ ⎪⎝⎭,222,4x B x ⎛⎫ ⎪⎝⎭.设:AB l y kx b =+,联立AB l 和抛物线C 的方程得2,4,y kx b x y =+⎧⎨=⎩整理得2440x kx b --=.判别式2Δ16160=+>k b ,即20k b +>,且12124,4x x k x x b +==-.抛物线C 的方程为24x y =,即24x y =,有2x y '=.则()2111:42-=-PA x x l y x x ,整理得21124x x y x =⋅-,同理可得222:24=⋅-PB x x l y x .联立方程211222,24,24x x y x x xy x ⎧=⋅-⎪⎪⎨⎪=⋅-⎪⎩可得点P 的坐标为1212,24x x x x P +⎛⎫ ⎪⎝⎭,即(2,)P k b -.将点P 的坐标代入圆M 的方程,得22(2)(4)1+-+=k b ,整理得221(4)4b k --=.由弦长公式得12||=-=AB x=点P 到直线AB的距离为d =所以21||222==+== PABS AB d k b=其中[5,3]=-∈--P y b ,即[3,5]∈b .当5b =时,()max = PAB S 7.(1)1(,0)32(2)max p 【分析】(1)根据抛物线的焦点坐标公式求解即可;(2)设直线:l x y m λ=+,与椭圆联立,结合韦达定理得到中点M 的坐标,代入抛物线,再将直线与抛物线联立,结合韦达定理用参数表示点A 坐标,再将椭圆与抛物线联立得到点A 坐标,结合均值不等式,分析即得解.【详解】(1)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32;(2)由题意,直线l 的斜率不为0,设()()()112200,,,,,,:A x y B x y M x y l x y m λ=+,由()22222222220x y y my m x y mλλλ⎧+=⇒+++-=⎨=+⎩,1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++,由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++,又22222()220y pxy p y m y p y pm x y m λλλ⎧=⇒=+⇒--=⎨=+⎩,012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222mx p m λλ∴=+-+.由2222142,22x y x px y px ⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒=-+222221822228162p p p m p p p λλλλλ+⇒-++⋅=++≥+,18p ≥,21160p ≤,p ≤所以,p,此时A .8.(1)24y x=(2)(,7[7(1,)-∞---++∞ .【分析】(1)根据2MF =,求p ,再求抛物线方程;(2)方法一:主要是用()()1122,,,A x y B x y 坐标表示直线,MA MB ,利用弦长公式将线段长度关系转为纵坐标关系,再将所求构建出函数关系式,再利用换元法等把复杂函数的范围问题转化为常见函数的范围;方法二:利用焦点弦的性质求得直线,MA MB 的斜率之和为0,再利用线段长度关系即为纵坐标关系,再将所求构建出函数关系式,再利用换元法等把复杂函数的范围问题转化为常见函数的范围.方法三:利用点,A B 在抛物线上,巧妙设点坐标,借助于焦点弦的性质求得点,A B 横坐标的关系,这样有助于减少变元,再将所求构建出函数关系式,再利用换元法等把复杂函数的范围问题转化为常见函数的范围.【详解】(1)因为2MF =,故2p =,故抛物线的方程为:24y x =.(2)[方法一]:通式通法设:1AB x ty =+,()()1122,,,A x y B x y ,(),0N n ,所以直线:2yl x n =+,由题设可得1n ≠且12t ≠.由214x ty y x=+⎧⎨=⎩可得2440y ty --=,故12124,4y y y y t =-+=,因为2RN PN QN =⋅,故2R P Q ⎫=⎪⎪⎭,故2R P Q y y y =⋅.又()11:11y MA y x x =++,由()11112y y x x y x n⎧=+⎪+⎪⎨⎪=+⎪⎩可得()1112122P n y y x y +=+-,同理()2222122Q n y y x y +=+-,由12x ty yx n =+⎧⎪⎨=+⎪⎩可得()2121R n y t -=-,所以()()()2212211212121=212222n n y n y t x y x y -++⎡⎤⨯⎢⎥-+-+-⎣⎦,整理得到()()()2212221112112222y y n t n x y x y -⎛⎫=- ⎪++-+-⎝⎭,()22221214212222t y y y y -=⎛⎫⎛⎫+-+- ⎪⎪⎝⎭⎝⎭()()()()2222222121212112214212134+++2+442t t t y y y y y y y y y y y y --==+--⨯-+故()222134121n t n t ++⎛⎫= ⎪-⎝⎭-,令21s t =-,则12s t +=且0s ≠,故()22222234242411331+444421t s s s s s s t +++⎛⎫==+=++≥ ⎪⎝⎭-,故213141n n n ⎧+⎛⎫≥⎪ ⎪-⎨⎝⎭⎪≠⎩即214101n n n ⎧++≥⎨≠⎩,解得7n ≤--71n -+≤<或1n >.故直线l 在x 轴上的截距的范围为7n ≤--71n -+<或1n >.[方法二]:利用焦点弦性质设直线AB 的方程为11x k y =+,直线MA 的方程为21x k y =-,直线MB 的方程为31x k y =-,直线l 的方程为221212,,,,,(,0)244y y y x m A y B y N m ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,由题设可得1m ≠且112k ≠.由121,4x k y y x=+⎧⎨=⎩得21440y k y --=,所以121124,4y y k y y +==-.因为2112231121114,44y y y k k y y y +==+=+,12121223111212110444y y y y y y k k k k y y y y ++∴+=++++=-=,()21221212231121212111111441642y y y y y y k k k y y y y y y +⎛⎫⎛⎫=++=+⋅+-=-- ⎪⎪⎝⎭⎝⎭.由21,2x k y y x m =-⎧⎪⎨=+⎪⎩得2112p m y k +=-.同理3112Q m y k +=-.由11,2x k y y x m =+⎧⎪⎨=+⎪⎩得1112R m y k -=-.因为2||||||RN PN QN =⋅,所以2R P Q y y y -⋅=即222211231(1)(1)13112422m m m k k k k ⎛⎫ ⎪-++== ⎪⎛⎫⎛⎫ ⎪-+--- ⎪⎪⎝⎭⎝⎭⎝⎭.故22121314112k m m k ++⎛⎫= ⎪-⎝⎭⎛⎫- ⎪⎝⎭.令112t k =-,则222221111113311244m t t m t t t t +++⎛⎫⎛⎫==++=++≥ ⎪ ⎪-⎝⎭⎝⎭.所以210,1410,m m m -≠⎧⎨++≥⎩,解得7m ≤--71m -+≤<或1m>.故直线l 在x轴上的截距的范围为(,7[7)(1,)-∞---++∞ .[方法三]最优解设()()22,2(0),,2A a a a B b b >,由,,A F B 三点共线得22222221b a ab a a b a -==-+-,即1ab =-.所以直线MA 的方程为22(1)1a y x a =++,直线MB 的方程为2222(1)(1)11b ay x x b a -=+=+++,直线AB 的方程为22(1)1ay x a =--.设直线l 的方程为2(2)y x m m =+≠-,则222(2)(2)(2),,,1112P Q R N m a m a m a my y y x a a a a a a ----====--+++--.所以()()2222222222(2)(2)||||||11m a m a RN PN QN aa aa +-=⋅⇔=--+-.故()()2222222222221112(1)2140,2133111a a a m t t t a m t t a a a a ⎛⎫-- ⎪--+--+⎛⎫⎡⎤⎝⎭====∈ ⎪⎢⎥-++⎝⎭⎣⎦⎛⎫+-+- ⎪⎝⎭(其中1t a a =-∈R ).所以(,14[14)m ∈-∞-++∞ ,且2m ≠-,因此直线l 在x轴上的截距为(,7[7(1,)2m-∈-∞---++∞ .9.(1)2p =,=1x -(2)最小值为1(2,0).【分析】(1)根据焦点坐标求解p ,再根据准线方程公式求解即可;(2)直线AB 的方程为(1)y k x =-,与抛物线联立,得到关于y 的韦达定理,用坐标表示12S S ,求得取得最小值时t 的值,再由()()22212312311312G x x x x y y y =++=++,结合韦达定理,求解即可.【详解】(1)由题意得12p=,即2p =,∴抛物线的准线方程为=1x -.(2)设()11,A x y ,()22,B x y ,()33,,C x y 不妨设12y y >,又Q 在点F 的右侧,故1230y y y >>>,又直线AB 的方程为(1)y k x =-.联立2(1)4y k x y x =-⎧⎨=⎩,得2440y y k --=,∴124y y =-.1112AGB AGB AF y S S S AB y y ==-△△,3231AGC AGC CQ y S S S CA y y -==-+△△,由G 为ABC 的重心,有AGB AGC S S =△△,且1230y y y ++=.故2424211311121111122422421231212121121224242416S y y y y y y y y y y y S y y y y y y y y y y y y y -++---=⋅=⋅===---+---.令12S n S =,21y t =,则222416t t n t -=-,即2(2)4160n t t n --+=.①当2n =时,122S S =,此时8t =;②当2n ≠时,二次方程至少有一个正根,故0∆≥,解得22n ≥,若方程有两个非正根,此时12124021602x x n n x x n ⎧+=≤⎪⎪-⎨⎪=≥⎪-⎩,不等式组无解,故22n +≥,即12min1S S ⎛⎫=+ ⎪⎝⎭8t =+.()()()222222123123121211131212G x x x x y y y y y y y ⎡⎤=++=++=+++⎣⎦()22121216y y y y =++.而218y t ==+2221168y y ==-,故G 点坐标为(2,0).10.(I )(-1,1);(II )2716.【详解】(Ⅰ)设直线AP 的斜率为k ,2114122x k x x -==-+,因为1322x -<<,所以直线AP 斜率的取值范围是(1,1)-.(Ⅱ)联立直线AP 与BQ 的方程110,24930,42kx y k x ky k ⎧-++=⎪⎪⎨⎪+--=⎪⎩解得点Q 的横坐标是22432(1)Q k k x k -++=+.因为|PA12x +1)k +,|PQ|=2)Q x x -=-,所以3(1)(1)k k PA PQ ⋅--+=.令3()(1)(1)f k k k =--+,因为2'()(42)(1)f k k k =--+,所以f (k )在区间1(1,2-上单调递增,1(,1)2上单调递减,因此当k =12时,||||PA PQ ⋅取得最大值2716.【点睛】本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力,通过表达||PA 与||PQ 的长度,通过函数3()(1)(1)f k k k =--+求解||||PA PQ ⋅的最大值.。

初等数学问题中“一题多解”的高观点透视

初等数学问题中“一题多解”的高观点透视
徐苏苏;张永;胡芳芳
【期刊名称】《教育进展》
【年(卷),期】2023(13)1
【摘要】本文以一道初等数学问题的解题思路为例,从此问题的多种解法出发,探讨了学生了解高等数学知识提高分析问题和解决问题能力的必要性,并就如何培养学生“一题多解”意识给出一些建议。

【总页数】5页(P192-196)
【作者】徐苏苏;张永;胡芳芳
【作者单位】伊犁师范大学伊宁;伊犁师范大学伊宁
【正文语种】中文
【中图分类】G63
【相关文献】
1.例谈“一题多问一题多解”在高三物理习题中的应用
2.研究一题多解,沟通初等数学与高等数学的联系
3.非Felix Klein意义上的高(等数学)观点下的初等数学——观点与案例(“中国高等教育学会〈教育数学〉2019年学术年会”大会报告)
4.一题多解思想在高中物理解题中的应用
5.论一题多解在高中物理解题中的应用
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

龙源期刊网 http://www.qikan.com.cn
一问多解,一题多问
作者:杨冬梅
来源:《试题与研究·教学论坛》2017年第19期

《新课程标准(2011版)》提出了数学思考:“经历借助图形思考问题的过程,初步建立
几何直观。”在教学中,我们应积极体现数学思考的理念,去看待问题与提出问题。高效的习
题教学不仅能帮助学生梳理旧知、形成网络,还能提高学生分析问题、解决问题和提出问题的
能力。通过适当改“编”(变)习题,深入解题思路,提出新问题,让学生跳出题海,提高教学
效率。在“双基”落实的同时,逐渐提升到“四基”的落实。

本文,笔者就一道习题,从“一问多解”,“一题多问”两个角度,浅谈如何提高习题功能。
龙源期刊网 http://www.qikan.com.cn

相关文档
最新文档