从“一题多解”转变为“多题一解”

从“一题多解”转变为“多题一解”
从“一题多解”转变为“多题一解”

从 一题多解 到 “ ”

多题一解 “ ” 【摘要】一题多解是训练学生发散思维的好方法,然而仅仅停留在 一题多解 的层面上远远 “ ”

不够的,即让学生的思维无限发散,不注意 收(及时归纳总结方法),那将不利于学生对数 “ ”

学思想方法的掌握和运用。因此,一题多解要关注考纲和考试说明、关注学生的 学情 “ ” 、关 注解法的选择,最终变为多解归一,升华为解一类题的方法。

【关键词】一题多解 多题一解 求异思维 发散思维

文[1]说: “一题多解应该关注考纲和考试说明、 关注学生的 ‘学情’ 、 关注解法的选择。 ” 这一点笔者在高三教学感触颇深。

让我们先看一例:

例 1.已知点 ( ) ( ) ( ) 3,0,0,33,3,0, A B C ABC - D 外接圆为 D e

(1)求 D e 的方程;

(2)设直线 ( ) 1 :33 l y m x =+ 与直线 ( )

2 :31 l y nx =- 的交点为P ,且点P 在 D e 上①若 D e 关于直线 1 l 对称,求n 的值;②若 0,0 m n >> ,求证:mn m n +- 为常数。 解法一: (标准答案提供方法)将直线 1 l 与 2 l 的方程联立方程组

( ) ( ) 33 31 y m x y nx ì =+ ? í =- ? ? 解得 ( )

31 331 m x n m m n y n m + ì = ? - ? í + ? = ? - ?

代入圆D 的方程得: ( ) 2 2 31 31 ()3112 m n m n m n m + éù + +-= êú -- ??

化简得 ( ) ( ) ( )

222

3133212 m mn m n n m +++-=- 移项因式分解得 ( ) ( ) ( ) ( ) ( ) 2 313232232 m n m mn m n n m mn m n +=-++---+- éùéù ????

化简得 ( ) ( )( )

2 31331334 m n m n mn m +=+-- 因为 0 m > ,所以 ( ) ( )

313334 m n n mn m +=-- 移项分解因式得 ( )( ) 31313(31)(1)

n n m n n -+=++ 因为 0 n > ,所以 1

3

mn m n +-=-

【评注】此法是参考答案提供的方法,对照题意思路清晰——入口宽,但要想真正化到最 终结果,却不太容易——运算量大。然而这一点符合《考试说明》考查学生运算求解能力的 要求,毕竟此法是通性通法。 解法二:设直线 1 l 与圆D 的交点 ( ) 00 , Q x y ,则将直线 1 l 与圆D 的方程联立方程组

( ) 22 33 2390 y m x x y y ì =+ ? í +--= ? ? 消去 y 得

( ) ( ) 2222 31186271890

m x m m x m m ++-+--= 因为 2 0 2 618 (3) 31

m m x m - +-= + 所以 点 ( ) 2 22 631 693 (,) 3131

m m m m Q m m + -+ ++ , 因为点Q 也在直线 2 l 上,所以 ( ) 2 22 631 693 3(1) 3131

m m m m n m m + -+ =×- ++ 化简得 ( ) 2 2 31693 m mn m n n +=-+ 即 ( ) ( )( ) 2 313133 m m mn n +=-+- , 所以 1 3

mn m n +-=- 【评注】本题是两直线与圆共三个元素的交点,如何选择两者先求交点,再代入第三者 当中,要有所取舍,否则运算极大,甚至无功而返。此法在解法一的基础上做了适当调整, 减化了运算量。

解法三:因为直线 1 l 过定点 (

) 3,0 M - ,直线 2 l 过定点 ( ) 0,3 N - 所以 23 MN = ,又因为圆D 的半径 23

r = 直线 1 l 到直线 2 l 的角为30 o ,所以 333 tan 30 133 n m mn - =

= + o 故 1

3

mn m n +-=- 【评注】解法三挖掘题目中隐含条件——过定点,利用到角公式巧

妙,运算量小。然则,所用知识不在苏教版《考试说明》所要求

的范围中,虽巧,最好不要向学生介绍。

解法四:因为直线 1 l 过定点 (

) 3,0 M - ,直线 2 l 过定点 ( )

0,3 N - , 所以 23 MN = ,

又因为圆D 的半径 23 r = ,所以如图 30 a b =+ o ,因为 tan 3,tan 3 n m

a b == 故 ( ) 3

tan tan 30 3

a b -== o 所以 333 133 n m mn - = + ,得 1 3

mn m n +-=- 。 【评注】解法四同样注意到过定点这一隐含条件,利用几何性质,从倾斜角这一角度 加以解决,避免了用 到角公式 这一考纲不要求掌握的内容,构思精巧,值得提倡。但是要 “ ”

根据具体学情加以引导。解决解析问题时,注意用几何性质。

一题多解是训练学生求异思维的一种很好的教学方法,对学生思维的流畅性和灵活性有 很大发展,同时让他们能运用多种方法思考问题, 能用多种法则、公式、原理去解决新问题, 思维过程更加灵活,迁移能力强,能举一反三,触类旁通,产生新想法的数量多,种类多。 然而,仅仅停留在“一题多解”的层面上远远不够的,即让学生的思维无限发散,不注 意“收” (及时归纳总结方法),那将不利于学生对数学思想方法的掌握和运用。上述例题四 种解法分为两类,解法一与解法二运用联立方程组的思想,这是我们在解决直线与圆锥曲线 相关问题的主要思想方法,应重点介绍。解法四是挖掘图形内在的几何特征,运用几何条件 简化运算量,值得提倡。至于解法三所用的知识根本不作要求,所以此法就不要讲了。 因此,教者在备课时对这些问题如不加思考,甚至于对照参考书罗列各种解法直接抛给 学生,那么课堂就成了教师个人的“解题秀” ,毫无好处。

其实,一题多解的想法,本身并没有什么不好,历史上对p 的计算可以说是最著名的一 题多解,然而正是这样的一题多解给我们带来了五彩缤纷的数学知识,给了我们无尽的精神 财富。 那么如何克服一题多解的弊端呢?笔者认为在一题多解的基础上通过教师及时点评和 变式训练,将其解题的思想方法进行整理提炼,升华为解一类题的方法,变为多题一解。

例 2.已知数列{ } n a 和{ } n b 都是等差数列, n S 和 n T 分别是它们的前n 项之和

43 25 n n S n T n + = + ,求 8 8

a b 的值。 解法一:因为 ( ) ( ) 115 815 815 115 15 2 15 2

a a a S

b T b b + == + ,所以 8 8 9 5 a b = 解法二:因为 43 25

n n S n T n + = + ,所以 设 ( ) ( ) 43,25 n n S kn n T kn n =+=+ 则由 1 n n n a S S - =- ,得 (

) ( ) 81,43 n n a k n b k n =-=+ 故 8 8 8819 4835

a b ′- == ′+ 【评注】解法一运用等差中项的性质,但这不是一般方法,只能作为一种技巧。 如要求 8 9

a b 的值,此法就不灵了。解法二从函数的角度研究等差数列的前n 的和 n S 的特征, 表面上看比法一稍繁,但此法可以解决一类问题,如下变式。 变式题: 设等差数列{ } n a 的前n 项和为 n S , 若m n 1 , 22 , m n S n S m == , 则 m n S + =

。 解:设 2 n S n n a b =+ ,则由 22 , m n S n S m == 得

22 n m m a b =+ …①, 22 m n n a b =+ …②,将①-②得

( ) ( ) m n m n b a =-+-+ …(*)

因为 ( ) ( ) 2

m n S m n m n a b + =+++ ,所以将(*)代入得 ( ) ( ) ( ) ( )

2222 m n S m n m n m n m n a a + =+-+-+=-+ 例 3.(1)设 22 1 x xy y -+= ( , x y ?R ),求 22 x y + 的取值范围。

(2)已知 22

3sin 5sin cos 2cos 0 q q q q --= ,则tan q = 。

分析:此两题背景不同,分别是不等式、三角,高三教师在复习都有很多的解题 方法,但仔细品味,其实它们涉及到对二次三项式的处理。 解:(1) 22 1 x xy y -+= Q , 22

22

22

x y x y x xy y + \+= -+ ∴当 0 x = 时, 2 1 y = ,则 22 1

x y += 当 0 x 1 时, 2 22 2 1() 1() y x x y y y x x

+ += -+ ,令 y t x = ,则 2 22 22 1 1 11 t t x y t t t t + +==+ -+-+ 利用函数知识得 22 2[,3] 3

x y +? (2)因为 22 sin cos 1 q q += ,

所以 22 22 3sin 5sin cos 2cos 0 sin cos q q q q q q

-- = + ,分子分母同除 2 cos q 2 2 3tan 5tan 2 0 tan 1 q q q -- = + ,解得 tan 2 q = 或 1 3

- 。 综上所述, 一题多解如能加上教师思维智慧, 将分散在各章不同题型的共同处理方法, 进行整理加工形成多题一解,将会使“一题多解”这一亮点更亮。

参考文献

文[1]指《一题多解 是 亮点 还是 败笔》 “ ” “ ” “ ” 吕增锋 《中学数学教学参考》2010 年第10 期上旬

初中数学一题多解与一题多变详解

初中数学一题多解与一题多变 时代在变迁,教育在进步,理念在更新。前两年提出考试要改革,有了《指导意见》,于是一批批探索性、开放性和应用性试题不断涌现;如今又提出课程要改革,有了《课程标准》,其中突出了学生自主探索的学习过程,强调应用数学和创新能力的培养,鼓励教师创造性教学,学生学会学习。 面临这种崭新的教育形势,我们会思考这样一些问题:教学要如何从静态转为动态?怎样有效地指导学生独立地分析问题、解决问题,形成有效的学习策略,提高效益?该如何引导和组织学生从事观察、实验、猜想、验证、推理与交流等数学活动,激发学生的学习兴趣和创新意识,培养创新能力?等等。我个人在实际教学过程中,对这些问题作过一些深思和一些尝试,其中比较突出的是引导学生进行一题多解和一题多变的训练。下面,我提出几个实例来分析其引导过程与方法,抛砖引玉,仅供参考。 一、一题多解,多解归一 对于"一题多解",我是从两个方面来认识和解释的:其一,同一个问题,用不同的方法和途径来解决;其二,同一个问题,其结论是多元的,即结论开放性问题。一题多解,有利于沟通各知识的内涵和外延,深化知识,培养发散性和创造性思维;多解归一,有利于提炼分析问题和解决问题的通性、通法,从中择优,培养聚合思维。 例1:如图,已知D 、E 在BC 上,AB=AC ,AD=AE , 求证:BD=CE. E D C B A

(本题来自《几何》第2册69页例3) 思路与解法一:从△ABC和△ADE是等腰三角形这一角度出发,利用"等腰三角形底边上的三线合一"这一重要性质,便得三种证法,即过点A作底边上的高,或底边上的中线或顶角的平分线。其通法是"等腰三角形底边上的三线合一",证得BH=CH. 思路与解法二:从证线段相等常用三角形全等这一角度出发,本题可设法证△ABD≌△ACE或证△ABE≌△ACD,于是又得两种证法,而证这两对三角形全等又都可用AAS、ASA、SAS进行证明,所以实际是六种证法。其通性是"全等三角形对应边相等"。 思路与解法三:从等腰三角形的轴对称性这一角度出发,于是用叠合法可证。 例2:已知,如图,在⊙O中,AD是直径,BC是弦,AD⊥BC,E 添加字母,不写推理过程) D 思路与解法一:从相等的线段这一角度出发,可得如下结论: 1.OA=OD; 2.BE=CE; 3.AB=AC; 4.BD=CD.

基本不等式练习题

3.4基本不等式 重难点:了解基本不等式的证明过程;会用基本不等式解决简单的最大(小)值问题. 考纲要求:①了解基本不等式的证明过程。 ②会用基本不等式解决简单的最大(小)值问题. 经典例题:若a,b,c都是小于1的正数,求证:,,不可能同时大于. 当堂练习: 1.若,下列不等式恒成立的是() A。B。 C。 D. 2. 若且,则下列四个数中最大的是() A. B.C.2ab D。a 3。设x>0,则的最大值为 ( )A.3 B. C。 D.-1 4.设的最小值是( ) A. 10 B. C. D。 5. 若x, y是正数,且,则xy有( ) A.最大值16B.最小值C.最小值16 D.最大值 6. 若a, b,c∈R,且ab+bc+ca=1, 则下列不等式成立的是 ( ) A. B. C.D。 7。若x〉0, y>0,且x+y4,则下列不等式中恒成立的是 ( )

A. B。 C。 D。 8。a,b是正数,则三个数的大小顺序是() A.B。 C.D. 9.某产品的产量第一年的增长率为p,第二年的增长率为q,设这两年平均增长率为x,则有( ) A.B. C.D。 10.下列函数中,最小值为4的是 ( ) A。B. C. D. 11. 函数的最大值为。 12. 建造一个容积为18m3, 深为2m的长方形无盖水池,如果池底和池壁每m2 的造价为200元和150元,那么池的最低造价为元. 13。若直角三角形斜边长是1,则其内切圆半径的最大值是。 14。若x, y为非零实数,代数式的值恒为正,对吗?答。 15.已知:, 求mx+ny的最大值. 16。已知.若、, 试比较与的大小,并加以证明. 17。已知正数a, b满足a+b=1(1)求ab的取值范围;(2)求的最小值. 18. 设.证明不等式对所有

从“一题多解”转变为“多题一解”

从 一题多解 到 “ ” 多题一解 “ ” 【摘要】一题多解是训练学生发散思维的好方法,然而仅仅停留在 一题多解 的层面上远远 “ ” 不够的,即让学生的思维无限发散,不注意 收(及时归纳总结方法),那将不利于学生对数 “ ” 学思想方法的掌握和运用。因此,一题多解要关注考纲和考试说明、关注学生的 学情 “ ” 、关 注解法的选择,最终变为多解归一,升华为解一类题的方法。 【关键词】一题多解 多题一解 求异思维 发散思维 文[1]说: “一题多解应该关注考纲和考试说明、 关注学生的 ‘学情’ 、 关注解法的选择。 ” 这一点笔者在高三教学感触颇深。 让我们先看一例: 例 1.已知点 ( ) ( ) ( ) 3,0,0,33,3,0, A B C ABC - D 外接圆为 D e (1)求 D e 的方程; (2)设直线 ( ) 1 :33 l y m x =+ 与直线 ( ) 2 :31 l y nx =- 的交点为P ,且点P 在 D e 上①若 D e 关于直线 1 l 对称,求n 的值;②若 0,0 m n >> ,求证:mn m n +- 为常数。 解法一: (标准答案提供方法)将直线 1 l 与 2 l 的方程联立方程组 ( ) ( ) 33 31 y m x y nx ì =+ ? í =- ? ? 解得 ( ) 31 331 m x n m m n y n m + ì = ? - ? í + ? = ? - ? 代入圆D 的方程得: ( ) 2 2 31 31 ()3112 m n m n m n m + éù + +-= êú -- ?? 化简得 ( ) ( ) ( ) 222 3133212 m mn m n n m +++-=- 移项因式分解得 ( ) ( ) ( ) ( ) ( ) 2 313232232 m n m mn m n n m mn m n +=-++---+- éùéù ???? 化简得 ( ) ( )( ) 2 31331334 m n m n mn m +=+-- 因为 0 m > ,所以 ( ) ( ) 313334 m n n mn m +=-- 移项分解因式得 ( )( ) 31313(31)(1) n n m n n -+=++ 因为 0 n > ,所以 1 3 mn m n +-=- 【评注】此法是参考答案提供的方法,对照题意思路清晰——入口宽,但要想真正化到最 终结果,却不太容易——运算量大。然而这一点符合《考试说明》考查学生运算求解能力的 要求,毕竟此法是通性通法。 解法二:设直线 1 l 与圆D 的交点 ( ) 00 , Q x y ,则将直线 1 l 与圆D 的方程联立方程组 ( ) 22 33 2390 y m x x y y ì =+ ? í +--= ? ? 消去 y 得

八年级数学经典错题分析

八年级错题集 1、如图11-1,,12,,ABE ACD B C ???∠=∠∠=∠指出对应边和另外一组对应角。 错解:对应边是AB 与AD ,AC 与AE ,BD 与CE ,另一组对应角是∠BAD 与∠CAE 。 错误原因分析:对全等三角形的表示理解不清,在全等三角形的表示中对应顶点的位置需 要对齐,不能根据对应顶点来确定对应角和对应边。同时对全等三角形中对应角与对应边之间的对应关系也没有理解,对应角所对的边应该是对应边,如∠2所对的边是AB ,∠1所对的边是AC ,因为∠1=∠2,即∠1与∠2是对应角,所以AB 与AC 是对应边。 正解:对应边是AB 与AC ,AE 与AD ,BE 与CD ,另一组对应角是∠BAD 与∠CAE 。 2、如图11-2,在ABD ACE ??和中,AB=AC ,AD=AE ,欲证ABD ACE ???,须补充的条 件是( )。 A 、∠B=∠C ; B 、∠D=∠E ; C 、∠BAC=∠DAE ; D 、∠CAD=∠DA E 。 错解:选A 或B 或D 。 错误原因分析:对全等三角形的判定定理(SAS )理解不清,运用SAS 判定定理来证明两 三角形全等时,一定要看清角必须是两条对应边的夹角,边必须是夹相等角的两对应边。上题中AB 与AC ,AD 与AE 是对应边,并且AB 与AD 的夹角是∠BAD ,AC 与AE 的夹角是∠CAE,而∠B 与∠C ,∠D 与∠E 不是AB 与AC ,AD 与AE 的夹角,故不能选择A 或B 。∠CAD 与∠DAE 不是ABD ?和ACE ?中的内角,故不能选择D 。所以只有选择C ,因为∠BAC+∠CAD=∠DAE+∠CAD ,即:∠BAD=∠CAE 。 正解:选C 。 3、如图11-3所示,点0为码头,A ,B 两个灯塔与码头的距离相等,0A 、OB 为海岸线,一轮船离开码头,计划沿∠AOB 的平分线航行,在航行途中,测得轮船与灯塔A 和灯塔B 的距离相等,试问轮船航行是否偏离指定航线? 错解:不能判断,因为应该是到角两边距离相等(即垂线段相等)的点才在角平分线上。 错误原因分析:生搬硬套“角的内部到角的两边的距离相等的点在角的平分线上”,而忽 略了角平分线的实质是所分得的两个角相等,本题由OA=OB ,轮船到两灯塔的距离相等,再加上已行的航线,可构造出一对全等三角形,从而可得到已行航线把∠AOB 分成相等的两个角,即没有偏离指定航线。 正解:没有偏离指定航线,如图11-4,依题意可得:OA=OB ,AC=BC ,OC=OC ,AOC BOC ???, ∴∠AOC=∠BOC ,即OC 平分∠AOB ,∴没有偏离指定航线。 4、如图11-5,,CAB DBA C D ∠=∠∠=∠,E 为AC 和BD 的交点,ADB ?与BCA ?全等吗?说明理由。 错解:ADB BCA ???。理由如下: ,, , () CAB DBA C D CBA DBA ADB BCA AAA ∠=∠∠=∠∴∠=∠∴???Q

解三角形应用举例练习高考试题练习

解三角形应用举例练习 班级 姓名 学号 得分 一、选择题 1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α、β的关系为…………………( ) A.α>β B.α=β C.α+β=90° D.α+β=180° 2.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为…..( ) A. 3 400 B. 33400米 C. 2003米 D. 200米 3.在?ABC 中, 已知sinA = 2 sinBcosC, 则?ABC 一定是…………………………………….( ) A. 直角三角形; B. 等腰三角形; C.等边三角形; D.等腰直角三角形. 4.如图,△ABC 是简易遮阳棚,A 、B 是南北方向上两个定点,正东方向射出的太阳光线与地面 成40°角,为了使遮阴影面ABD 面积最大,遮阳棚ABC 与地面所成的角为……………….( ) A C D B 阳光地面 A.75° B.60° C.50° D.45° 5.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危险区,城市B 在A 的正东40 km 处,B 城市处于危险区内的时间为…………………………………..( ) A.0.5 h B.1 h C.1.5 h D.2 h 6.在△ABC 中,已知b = 6,c = 10,B = 30°,则解此三角形的结果是 …………………( ) A 、无解 B 、一解 C 、两解 D 、解的个数不能确定 二、填空题 7. 甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是 8.我舰在敌岛A 南50°西相距12nmile 的B 处,发现敌舰正由岛沿北10°西的方向以10nmile/h 的速度航行,我舰要用2小时追上敌舰,则需要速度的大小为 9.有一两岸平行的河流,水速为1,小船的速度为2,为使所走路程最短,小船应朝_______方 向行驶. C D 12 A B D 6045 0 m o o 10..在一座20 m 高的观测台顶测得地面一水塔塔顶仰角为60°,塔底俯角为45°,那么这座塔的 高为_______.

一题多解之五种方法解一道经典数学题

1 O B C D ① A 一题多解之五种方法解一道经典数学题 江苏海安紫石中学 黄本华 一题多解是我们学习数学的特好方法!通过一题多解,我们可以多角度、多方位地去思考解题的方案,这样不仅能加强知识间的联系,同时也增添新颖性和趣味性,优化我们的思维结构,提升我们的思维能力。更重要的是,一题多解让我们不仅只满足解题目标的实现,而是让我们拥有了研究学问的态度! 例题 如图,在平面直角坐标系中,点A (-1,0),B (0,3),直线BC 交坐标轴于B , C 两点,且∠CBA =45°.求直线BC 的解析式. 【分析】要求BC 解析式,现在已经知道了B 点坐标,所以只要求到C 点坐标就好了。这就要用到条件∠CBA =45°。但这个条件如何用呢?这是本题的难点,也是关键点。考虑到这个角是45°,我们可以尝试做垂线,构造等腰直角三角形。如图①,作AD ⊥BC 于D ,由A 、B 的坐标可知1OA =,3OB =,根据勾股定理2 2 10AB OA OB =+=, 5BD AD ==AC x =,则1OC x =+,25DC x =-255BC x =-,在 RT OBC ?中, 根据勾股定理得出222OC OB BC +=,即()2 222 13(55)x x ++=-,解得15 2 x =- (舍去),25x =,求得6OC =,得出C (﹣6,0),然后根据待定系数法即可求得BC 的解析式. 解法一:如图①,作AD ⊥BC 于D , ∵点A (﹣1,0),B (0,3), ∴1OA =,3OB =,∴2 2 10AB OA OB =+=, ∵∠CBA =45°,∴△ABD 是等腰直角三角形, ∴5BD AD == 设AC x =,则1OC x =+, ∴25DC x =-,∴BC=+255BC x = -+, 在152 x =- 中,222OC OB BC +=2 ,即()222213(55)x x ++=-), 解得x 1=﹣ (舍去),25x =, ∴5AC =,6OC =,∴C (﹣6,0), 设直线BC 的解析式为3y kx =+,

初中数学一题多解题

初中数学一题多解题 例题一、两个连续奇数的积是323,求出这两个数 方法一、 设较小的奇数为x,另外一个就是x+2 x(x+2)=323 解方程得:x1=17,x2=-19 所以,这两个奇数分别是: 17、19,或者-17,-19 方法二、 设较大的奇数x,则较小的奇数为323/x 则有:x-323/x=2 解方程得:x1=19,x2=-17 同样可以得出这两个奇数分别是: 17、19,或者-17,-19 方法三、 设x为任意整数,则这两个连续奇数分别为: 2x-1,2x+1 (2x-1)(2x+1)=323 即4x^2-1=323 x^2=81 x1=9,x2=-9 2x1-1=17,2x1+1=19 2x2-1=-19,2x2+1=-17 所以,这两个奇数分别是: 17、19,或者-17,-19 方法四、 设两个连续奇数为x-1,x+1 则有x^2-1=323 x^2=324=4*81 x1=18,x2=-18 x1-1=17,x1+1=19 x2-1=-19,x2+1=-17 所以,这两个奇数分别是: 17、19,或者-17,-19 例题二、某人买13个鸡蛋、5个鸭蛋、9个鹌鹑蛋,共用去9.25元;如果买2个鸡蛋,4个鸭蛋,3个鹌鹑蛋,则共用去3.20元,试问只买鸡蛋、鸭蛋、鹌鹑蛋各一个,共需多少

钱? 解:设鸡、鸭、鹌鹑三种蛋的单价分别为x 、y 、z 元,则根据题意,得 1359925 1243320 2x y z x y z ++=<> ++=<> ?? ?.. 分析:此方程组是三元一次方程组,由于只有两个三元一次方程,因而要分别求出x 、y 、z 的值是不可能的,但注意到所求的是x y z ++的代数和,因此,我们可通过变形变换得到多种解法。 1. 凑整法 解1: <>+<> 123 ,得5344153x y z ++=<>. <>+<>23,得7735().x y z ++= ∴++=x y z 105. 答:只买鸡蛋、鸭蛋、鹌鹑蛋各一个,共需1.05元(下面解法后的答均省略) 解2:原方程组可变形为 1342925 22320 ()().()().x y z y z x y z y z ++-+=++++=?? ? 解之得:x y z ++=105. 2. 主元法 解3:视x 、y 为主元,视z 为常数,解<1>、<2> 得x z =-0505..,y z =-05505.. ∴++=+-+=x y z z z 05505105... 解4:视y 、z 为主元,视x 为常数,解<1>、<2> 得y x z x =+=-00512., ∴++=+-+=x y z x x x 1052105.. 解5:视z 、x 为主元,视y 为常数,解<1>、<2> 得x y z y =-=-00511 2.., ∴++=-++-=x y z y y y 005112105... 3. “消元”法 解6:令x =0,则原方程组可化为 599254332005 1 y z y z y z +=+=?? ??==?? ?... ∴++=x y z 105. 解7:令y =0,则原方程组可化为 1399252332000511x z x z x z +=+=????=-=?? ? .... ∴++=x y z 105.

高中数学-解三角形应用举例练习及答案

高中数学-解三角形应用举例练习 一、选择题 1. △ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为………………………………………………( ) A.直角三角形 B.等腰直角三角形 C.等边三角形 D.等腰三角形 2.海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是……………………………………………………….( ) A.103海里 B.3610海里 C. 52海里 D.56海里 3. 有一长为1公里的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要伸长( ) A. 1公里 B. sin10°公里 C. cos10°公里 D. cos20°公里 4. .已知平行四边形ABCD 满足条件0)()(=-?+→ -→-→-→-AD AB AD AB ,则该四边形是………( ) A.矩形 B.菱形 C.正方形 D.任意平行四边形 5. 一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°, 另一灯塔在船的南偏西75°,则这只船的速度是每小时………………………………………………………………………………………… . ( ) A.5海里 B.53海里 C.10海里 D.103海里 6.某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则第一辆车与第二辆车的距离1d 与第二辆车与第三辆车的距离d 2之间的关系为 ………………………………………………………………………..( ) A. 21d d > B. 21d d = C. 21d d < D. 不能确定大小 二、 填空题

不等式的证明及著名不等式知识梳理及典型练习题

不等式的证明及着名不等式 一、知识梳理 1.三个正数的算术—几何平均不等式 (1)定理 如果a ,b ,c 均为正数,那么a +b +c 3____3abc ,当且仅当________时, 等号成立. 即三个正数的算术平均________它们的几何平均. (2)基本不等式的推广 对于n 个正数a 1,a 2,…,a n ,它们的算术平均________它们的几何平均,即a 1+a 2+…+a n n ____n a 1a 2…a n ,当且仅当______________时,等号成立. 2.柯西不等式 一、二维形式的柯西不等式 二维形式的柯西不等式的变式: .,,,,, )( 1等号成立时当且仅当则都是实数若二维形式的柯西不等式定理bc ad d c b a =22222) ())((bd ac d c b a +≥++bd ac d c b a +≥+?+2222)1(bd ac d c b a +≥+?+2222)2 ( .,,,,, )( 2等号成立时使或存在实数是零向量当且仅当是两个向量设柯西不等式的向量形式定理βαββαk k =≤.,:1221等号成立时当且仅当式得二维形式的柯西不等平面向量坐标代入b a b a ,=2 221122212221)()()(b a b a b b a a +≥++式: 得三维形式的柯西不等将空间向量的坐标代入,2 332211232221232221)()()(b a b a b a b b b a a a ++≥++++.)3,2,1(,,,,等号成立时使得或存在一个数即共线时当且仅当 ,i kb a k i i ===221221222221212211)()(R,y ,x ,y , )( 3y y x x y x y x x -+-≥+++∈那么设二维形式的三角不等式定理

初中数学几何:一题多解

初中数学培优专题:一题多解 一题多解是数学学科的奇妙所在,尤其体现在几何的学习过程之中. 很多学生会从喜 欢上几何从而喜欢上数学的原因,就在于几何图形的变换中,对“多解”的追求给他们带来思 维创造的快乐. 数学教师在解题教学中也会通过“多解”的呈现和对比来调动学生思维的积极 性、激发学生思维的灵活性. 笔者在教学过程中,通过对几何的“多解”探索,使笔者 又有了新的认识. C 1 题目呈现 如图1,在等腰直角三角形ABC 中,点P 为斜边AB 上一个动点( 不 与A 、B 两点重合) ,以CP 为斜边在直线CP 的左侧作等腰直角D CDP ,判断ADP 的形状并证明. A P B 2 教学过程简录 方法一:如图2,过C 点作CQ 图1 AB ,连接DQ . 易证DQ 平分CQA ,∴CQD DQA 45 ∴CQD ≌AQD (SAS ),∴AD CD , 又∵CD PD ∴AD DP ∴ADP 是等腰三角形 图2方法二:如图3,过C 点作CQ AB ,连接DQ . 易证CDQ ∽CPB ,∴DQC B 45 ∴CQD ≌AQD (SAS )以下同方法一. 方法三:如图4,过C 点作CQ 图3 CP 交PD 的延长线于点Q , 连接AQ . 易证CQA ≌CPB ∴AQ PB ,CAQ CBP 45 ∴QAP90 . 在等腰直角CPQ 中,D 点是PQ 的中点,图4 ∴在Rt PAQ 中,AD 1 PQ ,∴AD 2 DP ∴ADP 是等腰三角形. 方法四:如图5,过点C 作CM CD ,过P 点作PM PD 交CM 于点M ,过C 点作CQ AB 交AB 于点Q , 连接QM ,BM . 易证四边形CDPM 为正方形,

高中数学解三角形的实际应用举例综合测试题(含答案)

高中数学解三角形的实际应用举例综合测 试题(含答案) 解三角形的实际应用举例同步练习 1.在△ABC中,下列各式正确的是() A. ab =sinBsinA B.asinC=csinB C.asin(A+B)=csinA D.c2=a2+b2-2abcos(A+B) 2.已知三角形的三边长分别为a、b、a2+ab+b2 ,则这个三角形的最大角是() A.135 B.120 C.60 D.90 3.海上有A、B两个小岛相距10 nmile,从A岛望B岛和C 岛成60的视角,从B岛望A岛和C岛成75角的视角,则B、C间的距离是() A.52 nmile B.103 nmile C. 1036 nmile D.56 nmile 4.如下图,为了测量隧道AB的长度,给定下列四组数据,测量应当用数据 A.、a、b B.、、a C.a、b、 D.、、 5.某人以时速a km向东行走,此时正刮着时速a km的南风,那么此人感到的风向为,风速为. 6.在△ABC中,tanB=1,tanC=2,b=100,则c=. 7.某船开始看见灯塔在南偏东30方向,后来船沿南偏东60 的方向航行30 nmile后看见灯塔在正西方向,则这时船与灯

塔的距离是. 8.甲、乙两楼相距20 m,从乙楼底望甲楼顶的仰角为60,从甲楼顶望乙楼顶的俯角为300,则甲、乙两楼的高分别是. 9.在塔底的水平面上某点测得塔顶的仰角为,由此点向塔沿直线行走30米,测得塔顶的仰角为2,再向塔前进103 米,又测得塔顶的仰角为4,则塔高是米. 10.在△ABC中,求证:cos2Aa2 -cos2Bb2 =1a2 -1b2 . 11.欲测河的宽度,在一岸边选定A、B两点,望对岸的标记物C,测得CAB=45,CBA=75,AB=120 m,求河宽.(精确到0.01 m) 12.甲舰在A处,乙舰在A的南偏东45方向,距A有9 nmile,并以20 nmile/h的速度沿南偏西15方向行驶,若甲舰以28 nmile/h的速度行驶,应沿什么方向,用多少时间,能尽快追上乙舰? 答案 1.C 2.B 3.D 4.C 5.东南2 a 6.40 7.103 8.203 ,203 3 9.15 10.在△ABC中,求证:cos2Aa2 -cos2Bb2 =1a2 -1b2 . 提示:左边=1-2sin2Aa2 -1-2sin2Bb2 =(1a2 -1b2 )-2(sin2Aa2 -sin2Bb2 )=右边. 11.欲测河的宽度,在一岸边选定A、B两点,望对岸的标

初中数学一题多解精彩题集

初中数学一题多解精彩题集 1.(2009年中山市)正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直, (1)证明:Rt Rt ABM MCN △∽△; (2)设BM x =,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并 求出最大面积; (3)当M 点运动到什么位置时Rt Rt ABM AMN △∽△,求x 的值. 解:(1)在正方形ABCD 中,490AB BC CD B C ===∠=∠=,°, AM MN ⊥, 90AMN ∴∠=°, 90CMN AMB ∴∠+∠=°. 在Rt ABM △中,90MAB AMB ∠+∠=°, CMN MAB ∴∠=∠, Rt Rt ABM MCN ∴△∽△. · ·········································· 2分 (2)Rt Rt ABM MCN △∽△, 44AB BM x MC CN x CN ∴ =∴= -,, 244 x x CN -+∴=, ···························································································· 4分 2221411 4428(2)102422ABCN x x y S x x x ??-+∴==+=-++=--+ ??? 梯形, 当2x =时,y 取最大值,最大值为10. ································································· 6分 (3)方法一: 90B AMN ∠=∠=°, ∴要使ABM AMN △∽△,必须有AM AB MN BM = , ··················································· 7分 由(1)知AM AB MN MC = , BM MC ∴=, ∴当点M 运动到BC 的中点时,ABM AMN △∽△,此时2x =.····························· 9分 方法二:作ME 垂直AN 于E ,可证MB=ME,MC=ME ,则MB=MC 。 方法三:延长NM 与直线AB 交于点E,利用全等三角形,可证MB=MC 。 方法四:设MB=x ,列方程。 2.(2009年烟台市)如图,AB ,BC 分别是O ⊙的直径和弦,点D 为BC 上一点,弦DE 交O ⊙于点E , 交AB 于点F ,交BC 于点G ,过点C 的切线交ED 的延长线于H ,且HC HG =,连接BH ,交O ⊙于点M ,连接MD ME ,. N D A C B M 第1题图

解三角形应用举例最新衡水中学自用精品教学设计

解三角形应用举例 主标题:解三角形应用举例 副标题:为学生详细的分析解三角形应用举例的高考考点、命题方向以及规律总结。 关键词:距离测量,高度测量,仰角,俯角,方位角,方向角 难度:3 重要程度:5 考点剖析: 能够运用正弦定理、余弦定理等知识解决一些与测量和几何计算有关的实际问题. 命题方向: 1.测量距离问题是高考的常考内容,既有选择、填空题,也有解答题,难度适中,属中档题. 2.高考对此类问题的考查常有以下两个命题角度: (1)测量问题; (2)行程问题. 规律总结: 1个步骤——解三角形应用题的一般步骤 2种情形——解三角形应用题的两种情形 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 2个注意点——解三角形应用题应注意的问题 (1)画出示意图后要注意寻找一些特殊三角形,如等边三角形、直角三角形、等腰三角形等,这样可以优化解题过程. (2)解三角形时,为避免误差的积累,应尽可能用已知的数据(原始数据),少用间接求出的量.

知识梳理 1.距离的测量 背景可测元素图形目标及解法 两点均可到达a,b,α 求AB:AB= a2+b2-2ab cos α 只有一点可到达b,α,β 求AB:(1)α+β+B=π; (2) AB sin β= b sin B 两点都不可到达a,α,β, γ,θ 求AB:(1)△ACD中,用 正弦定理求AC; (2)△BCD中,用正弦定理 求BC; (3)△ABC中,用余弦定理 求AB 2.高度的测量 背景可测元素图形目标及解法 底部可 到达 a,α求AB:AB=a tan_α 底部不可到达a,α,β 求AB:(1)在△ACD中用正弦 定理求AD;(2)AB=AD sin_β 3.实际问题中常见的角 (1)仰角和俯角 在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角(如图1).

最新解三角形应用举例练习题

解三角形应用举例练习题 一、选择题 1.某人向正东方向走x km后,他向右转150°,然后朝新方向走3 km,结果他离出发点恰好 3 km,那么x的值为() A.3B.2 3 C.23或 3 D.3 2.已知船A在灯塔C北偏东85°且到C的距离为2km,船B在灯塔C西偏北25°且到C的距离为3km,则A,B两船的距离为() A.23km B.32km C.15km D.13km 3.已知△ABC的三边长a=3,b=5,c=6,则△ABC的面积是() A.14 B.214 C.15 D.215 4.两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为() A.a km B.3a km C.2a km D.2a km 5.已知△ABC中,a=2、b=3、B=60°,那么角A等于() A.135°B.90° C.45°D.30° 6.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是每小时() A.5海里B.53海里 C.10海里D.103海里 二、填空题 7.(2010~2011·醴陵二中、四中期中)已知A、B两地的距离为10km,BC两地的距离

为20km,经测量∠ABC=120°,则AC两地的距离为________km. 8.如图,为了测量河的宽度,在一岸边选定两点A,B,望对岸的标记物C,测得∠CAB=30°,∠CBA=75°,AB=120 m,则河的宽度是__________. 9. (2011·北京朝阳二模)如图,一艘船上午在A处测得灯塔S在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午到达B处,此时又测得灯塔S在它的北偏东75°处,且与它相距42n mile,则此船的航行速度是________n mile/h. 三、解答题

不等式的证明测试题与答案

不等式的证明 班级 _____ _____ 一、选择题(本大题共10小题,每小题5分,共50分) 1.若a >0, b >0,则)11)((b a b a ++ 的最小值是 ( ) A .2 B .22 C .24 D .4 2.分析法证明不等式中所说的“执果索因”是指寻求使不等式成立的 ( ) A .必要条件 B .充分条件 C .充要条件 D .必要或充分条件 3.设a 、b 为正数,且a + b ≤4,则下列各式中正确的一个是 ( ) A . 111<+b a B . 111≥+b a C . 21 1<+b a D . 21 1≥+b a 4.已知a 、 b 均大于1,且log a C ·log b C=4,则下列各式中,一定正确的是 ( ) A .a c ≥b B .a b ≥c C .bc ≥a D .a b ≤c 5.设a =2,b=37-,26-= c ,则a 、b 、c 间的大小关系是 ( ) A .a >b>c B .b>a >c C .b>c>a D .a >c>b 6.已知a 、b 、m 为正实数,则不等式 b a m b m a >++ ( ) A .当a < b 时成立 B .当a > b 时成立 C .是否成立与m 无关 D .一定成立 7.设x 为实数,P=e x +e -x ,Q=(sin x +cos x )2,则P 、Q 之间的大小关系是 ( ) A .P ≥Q B .P ≤Q C .P>Q D . P b 且a + b <0,则下列不等式成立的是 ( ) A . 1>b a B . 1≥b a C . 1

人教版数学八年级上册代数经典集锦---一题多解(含答案)

2019--2020人教版数学八年级代数经典集锦---一题多解 在初中几何的证明和求解中,需要培养学生严密推理论证能力、灵动转化变换思维等方面素养,而在初中代数的计算过程中,需要培养学生多角度、多维度思考问题,掌握整体与局部、特例分析等全方位能力,从而寻求结果,下面以一道经典例题的不同解法,展开思维训练。 1、已知:x y = - 2,则x 2-2xy-3y 2 x 2-6xy-7y 2 = . 解法一: 令x=2,y=-1, 则x 2-2xy-3y 2=22-2*2*(-1)-3*(-1)2=4+4-3=5, X 2-6xy-7y 2=22-6*2*(-1)-7*(-1)2=4+12-7=9, 所以,原式=59 . 李老师点评: 本解法是最简单却学生最不容易想到的解法。原式看起来很复杂,x,y 只给出了比例关系,没有给出具体数值,那么取特例也是满足题设要求的,所以,当没有寻找到更好的解决办法时,可以取特殊值进行计算。 解法二: 由已知比例x y = - 2变形有:x=-2y ┅┅① 将①带入原式有:x 2-2xy-3y 2=(-2y)2-2*(-2y)*y-3y 2=5y 2, X 2-6xy-7y 2=(-2y)2-6*(-2y)*y-7y 2=9y 2, x 2-2xy-3y 2x 2-6xy-7y 2 =59 . 李老师点评:

本解法使用了带入消元法进行解题,带入消元法是解决含有未知数类求值问题最基本的解题方法之一。 解法三: ∵x y = - 2, ∴x ≠0,y ≠0 则将原式分子和分母同时除以y 2得到: x 2-2xy-3y 2x 2-6xy-7y 2 = = 59 = 李老师点评: 本解法是一种技巧型解法,首先通过观察x,y 的取值情况以及原式中分子分母所含式子,我们会发现:x,y 都不等于0,同时分子分母其实每一项都是二次项(将x,y 都看作未知数),所以分子分母同时除以y2,便可以轻松的将原式化成已知条件中的样子,从而得解。老师这里分子分母同时除以y2,同学们可以自行除以x2试试看。 下面,我们来看另外一道题的不同解法,再次体会其中的奥妙之处: 2、已知x 2 -3x+1=0,则x 2 x 4+x 2+1= . 解法一: 1-2*x y -3*x 2y 21-6*x y -7*x 2y 21-2*(-2)-3*(-2)2 1-6*(-2)-7*(-2)2

解三角形应用举例

第7节 解三角形应用举例 最新考纲 能够运用正弦定理、余弦定理等知识方法解决一些与测量、几何计算有关的实际问题. 知 识 梳 理 1.仰角和俯角 在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1). 2.方向角 相对于某正方向的水平角,如南偏东30°,北偏西45°等. 3.方位角 指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图2). 4.坡度:坡面与水平面所成的二面角的正切值. [常用结论与微点提醒] 1.不要搞错各种角的含义,不要把这些角和三角形内角之间的关系弄混. 2.在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易出现错误. 诊 断 自 测 1.思考辨析(在括号内打“√”或“×”) (1)东北方向就是北偏东45°的方向.( ) (2)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.( ) (3)俯角是铅垂线与视线所成的角,其范围为? ?????0,π2.( ) (4)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( )

解析 (2)α=β;(3)俯角是视线与水平线所构成的角. 答案 (1)√ (2)× (3)× (4)√ 2.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( ) A.北偏东15° B.北偏西15° C.北偏东10° D.北偏西10° 解析 如图所示,∠ACB =90°, 又AC =BC , ∴∠CBA =45°,而β=30°, ∴α=90°-45°-30°=15°. ∴点A 在点B 的北偏西15°. 答案 B 3.(教材习题改编)如图所示,设A ,B 两点在河的两岸,一测量 者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m , ∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的 距离为( ) A.50 2 m B.50 3 m C.25 2 m D.2522 m 解析 由正弦定理得AB sin ∠ACB =AC sin B , 又∵B =30°,∴AB =AC sin ∠ACB sin B =50×2212 =502(m). 答案 A 4.轮船A 和轮船B 在中午12时同时离开海港C ,两船航行方向的夹角为120°,两船的航行速度分别为25 n mile/h ,15 n mile/h ,则下午2时两船之间的距离是______n mile. 解析 设两船之间的距离为d , 则d 2=502+302-2×50×30×cos 120°=4 900, ∴d =70,即两船相距70 n mile.

解三角形应用举例

东方中学教案 1.知识与技能: 会在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法;搞清利用解斜三角形可解决的各类应用问题的基本图形和基本等量关系;理解各种应用问题中的有关名词、术语,如:坡度、俯角、仰角、方向角、方位角等;通过解三角形的应用的学习,提高解决实际问题的能力 2.过程与方法: 通过巧妙的设疑,顺利的引导新课,为下节课做好铺垫。结合学生的实际情况,采用“提出问题—引发思考—探索猜想—总结规律—反馈练习”的教学过程,根据大纲要求以及教学内容之间的内在联系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法。 3.情感、态度与价值观: 实际问题中抽象出一个或几个三角形,然后逐个解三角形,得到实际问题的解。

修改简记教学过程: 一、复习引入: 二、讲解范例: 例1 自动卸货汽车的车箱采用液压结构,设计时需要计算 油泵顶杆BC的长度已知车箱的最大仰角为60°,油泵顶点 B与车箱支点A之间的距离为1.95m,AB与水平线之间的夹角 为6°20′,AC长为1.40m,计算BC的长(保留三个有效数字) 分析:求油泵顶杆BC的长度也就是在△ABC内,求边长BC的问题,而根据已知条件, AC=1.40m,AB=1.95 m,∠BAC=60°+6°20′=66°20′相当于已知△ABC 的两边和它们的夹角,所以求解BC可根据余弦定理解:由余弦定理,得 BC2=AB2+AC2-2AB·AC cos A =1.952+1.402-2×1.95×1.40×cos66°20′=3.571 ∴BC≈1.89 (m) 答:油泵顶杆B C约长1.89 m 评述:此题虽为解三角形问题的简单应用,但关键是把未知边所处的三角形找到,在转 换过程中应注意“仰角”这一概念的意义,并排除题目中非数学因素的干扰,将数量关系 从题目准确地提炼出来 例2某渔船在航行中不幸遇险,发出求救信号,我海军舰艇在A处获悉后,立即测出该渔 船在方位角为45°、距离A为10海里的C处,并测得渔船正沿方位角为105°的方向, 以9海里/h的速度向某小岛B靠拢,我海军舰艇立即以21海里/h的速度前去营救, 试问舰艇应按照怎样的航向前进?并求出靠近渔船所用的时间

数学解题之一题多解与多题一解

摘要 本文意在明确一题多解和多题一解与学生思维能力发展之间的关系,从而使教师在数学解题教学过程中更加重视解题方法对学生思维能力的培养。本文通过两种典型例题即一题多解型和多题一解型的讲解,阐述了通过不同的例题可以达到对学生思维能力的训练培养的目的。通过一题多解,可以开阔学生思路、发散学生思维,让学生学会多角度分析和解决问题;通过多题一解,能够加深学生的思维深度,分析事物时学会由表及里,抓住事物的本质,找出事物间内在的联系。与此同时,对一题多解和多题一解的运用,要注意相互结合,灵活运用,不可只求一技,失之偏颇。 关键词:一题多解多题一解思维能力

Abstract A multi solution with multi-title, a solution is a monly used method in the teaching of mathematical problem solving. To a given problem, can mathematical knowledge has been an organic gathering of students' divergent thinking is a good opportunity for its exercise; a solution of the multi-title, students can digest the knowledge, but also training the students of the Idea. In this paper, two typical example that is a question to the multi-solution and multi-title solution-based explanation on the purpose of training the training of the students' thinking abilities can be achieved through different examples. To a given problem, you can broaden the horizons of the students 'thinking, divergent thinking of the students, for students to learn multi-angle analysis and problem solving; a solution more than the question, can enhance students' depth of thinking, learn to analyze things from outside to inside, to seize the the nature of things, find things intrinsically linked. This article is intended relationship between the development of the ability to clear a given problem and a solution of the multi-title, with students thinking, so that teachers pay more attention to the culture of problem-solving approach to students' thinking ability in mathematical problem solving teaching process. Key words:Multiple solutions for one question A solutions of the multi-title Thinking ability

相关文档
最新文档