三次函数切线专题
三次函数的性质及在高考中的应用(附解答)

三次函数的性质及在高考中的应用一、三次函数的常用性质性质1:函数y ax bx cx d a =+++320()≠,若a >0,当∆≤0时,y =f(x)是增函数;当∆>0时,其单调递增区间是(][)-∞+∞,,x x 12,单调递增区间是[]x x 12,;若a <0,当∆≤0时,y f x =()是减函数;当∆>0时,其单调递减区间是(]-∞,x 2,[)x 1,+∞,单调递增区间是[]x x 21,。
推论:函数y ax bx cx d a =+++320()≠,当∆≤0时,不存在极大值和极小值;当∆>0时,有极大值f x ()1、极小值f x ()2。
根据a 和∆的不同情况,其图象特征分别为:性质2:函数y ax bx cx d a =+++320()≠是中心对称图形,其对称中心是(--b a f b a33,())。
二、三次函数的性质在高考中的应用高考试题对三次函数主要考查:函数图象的切线方程,函数的单调性,函数的极值,函数的最值,证明不等式,函数零点的个数等。
1.(2004重庆卷)设函数()(1)(),(1)f x x x x a a =--> (1)求导数/()f x ; 并证明()f x 有两个不同的极值点12,x x ; (2)若不等式12()()0f x f x +≤恒成立,求a 的取值范围。
2. (2008福建卷)已知函数321()23f x x x =+-. (1)设{a n }是正数组成的数列,前n 项和为S n ,其中a 1=3.若点211(,2)n n n a a a ++-(n ∈N*)在函数y =f ′(x )的图象上,求证:点(n ,S n )也在y =f ′(x )的图象上; (2)求函数f (x )在区间(a -1,a )内的极值.3.(2006天津卷)已知函数()θθcos 163cos 3423+-=x x x f ,其中θ,R x ∈为参数,且πθ20≤≤. (1)当时0cos =θ,判断函数()x f 是否有极值;(2)要使函数()x f 的极小值大于零,求参数θ的取值范围; (3)若对(2)中所求的取值范围内的任意参数θ,函数()x f 在区间()a a ,12-内都是增函数,求实数a 的取值范围.4.(2007全国二理)已知函数3()f x x x =-.(1)求曲线()y f x =在点(())M t f t ,处的切线方程;(2)设0a >,如果过点()a b ,可作曲线()y f x =的三条切线,证明:()a b f a -<<.5. (2007湖南文)已知函数3211()32f x x ax bx =++在区间[11)-,,(13],内各有一个极值点. (1)求24a b -的最大值;(2)当248a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A 处穿过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点A 时,从l 的一侧进入另一侧),求函数()f x 的表达式.6.(2009福建卷理)已知函数321()3f x x ax bx =++,且'(1)0f -= (1)试用含a 的代数式表示b,并求()f x 的单调区间;(2)令1a =-,设函数()f x 在1212,()x x x x <处取得极值,记点M (1x ,1()f x ),N(2x ,2()f x ),P(,()m f m ),12x m x <?,请仔细观察曲线()f x 在点P 处的切线与线段MP 的位置变化趋势,并解答以下问题:(I )若对任意的m ∈(t, x 2],线段MP 与曲线f(x)均有异于M ,P 的公共点,试确定t 的最小值,并证明你的结论; (II )若存在点Q(n ,f(n)), 1x nm ?,使得线段PQ 与曲线f(x)有异于P 、Q 的公共点,请直接写出m 的取值范围(不必给出求解过程)例题解答1.解:(I ).)1(23)(2a x a x x f ++-=')(,;0)(,;0)(,:)())((3)(,,,04)1(4.0)1(230)(221121212122>'><'<<<'<'--='<>≥+-=∆=++-='x f x x x f x x x x f x x x f x x x x x f x x x x a a a a x a x x f 时当时当时当的符号如下可判断由不妨设故方程有两个不同实根因得方程令因此1x 是极大值点,2x 是极小值点.(II )因故得不等式,0)()(21≤+x f x f.0)(]2))[(1(]3))[((.0)())(1(212122121221212122213231≤++-++--++≤++++-+x x a x x x x a x x x x x x x x a x x a x x 即又由(I )知⎪⎪⎩⎪⎪⎨⎧=+=+.3),1(322121a x x a x x 代入前面不等式,两边除以(1+a ),并化简得.0)()(,2,)(212.0252212成立不等式时当因此舍去或解不等式得≤+≥≤≥≥+-x f x f a a a a a2. (Ⅰ)证明:因为321()2,3f x x x =+-所以f ′(x )=x 2+2x , 由点211(,2)(N )n n n a a a n +++-∈在函数y =f ′(x )的图象上,又0(N ),n a n +>∈所以11()(2)0,n n n n a a a a -+---= 所以2(1)32=22n n n S n n n -=+⨯+,又因为f ′(n )=n 2+2n ,所以()n S f n '=, 故点(,)n n S 也在函数y=f ′(x )的图象上.(Ⅱ)解:2()2(2)f x x x x x '=+=+, 由()0,f x '=得02x x ==-或.当x 变化时,()f x '﹑()f x 的变化情况如下表:注意到(1)12a a --=<,从而①当212,21,()(2)3a a a f x f -<-<-<<--=-即时的极大值为,此时()f x 无极小值; ②当10,01,()a a a f x -<<<<即时的极小值为(0)2f =-,此时()f x 无极大值; ③当210a a a f x ≤--≤≤≥或或时既无极大值又无极小值.3.(2006年天津卷)无极值;311(,)(,)6226ππππ;(,0]-∞ 4.(2007全国二理 本小题满分12分)解:(1)求函数()f x 的导数;2()31x x f '=-. 曲线()y f x =在点(())M t f t ,处的切线方程为: ()()()y f t f t x t '-=-,即23(31)2y t x t =--.(2)如果有一条切线过点()a b ,,则存在t ,使23(31)2b t a t =--.于是,若过点()a b ,可作曲线()y f x =的三条切线,则方程32230t at a b -++=有三个相异的实数根. 记 32()23g t t at a b =-++, 则 2()66g t t at '=-6()t t a =-.当t 变化时,()()g t g t ',变化情况如下表:由()g t 的单调性,当极大值0a b +<或极小值()0b f a ->时,方程()0g t =最多有一个实数根; 当0a b +=时,解方程()0g t =得302at t ==,,即方程()0g t =只有两个相异的实数根; 当()0b f a -=时,解方程()0g t =得2at t a =-=,,即方程()0g t =只有两个相异的实数根. 综上,如果过()a b ,可作曲线()y f x =三条切线,即()0g t =有三个相异的实数根,则0()0.a b b f a +>⎧⎨-<⎩,即 ()a b f a -<<.5.(2007湖南文 本小题满分13分)解:(I )因为函数3211()32f x x ax bx =++在区间[11)-,,(13],内分别有一个极值点,所以2()f x x ax b '=++0=在[11)-,,(13],内分别有一个实根,设两实根为12x x ,(12x x <),则21x x -=,且2104x x <-≤.于是04,20416a b <-≤,且当11x =-,23x =,即2a =-,3b =-时等号成立.故24a b -的最大值是16.(II )解法一:由(1)1f a b '=++知()f x 在点(1(1))f ,处的切线l 的方程是 (1)(1)(1)y f f x '-=-,即21(1)32y a b x a =++--,因为切线l 在点(1())A f x ,处空过()y f x =的图象, 所以21()()[(1)]32g x f x a b x a =-++--在1x =两边附近的函数值异号,则 1x =不是()g x 的极值点.而()g x 321121(1)3232x ax bx a b x a =++-++++,且 22()(1)1(1)(1)g x x ax b a b x ax a x x a '=++-++=+--=-++.若11a ≠--,则1x =和1x a =--都是()g x 的极值点.所以11a =--,即2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--. 解法二:同解法一得21()()[(1)]32g x f x a b x a =-++-- 2133(1)[(1)(2)]322a x x x a =-++-+. 因为切线l 在点(1(1))A f ,处穿过()y f x =的图象,所以()g x 在1x =两边附近的函数值异号,于是存在12m m ,(121m m <<).当11m x <<时,()0g x <,当21x m <<时,()0g x >; 或当11m x <<时,()0g x >,当21x m <<时,()0g x <.设233()1222a a h x x x ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭,则 当11m x <<时,()0h x >,当21x m <<时,()0h x >; 或当11m x <<时,()0h x <,当21x m <<时,()0h x <. 由(1)0h =知1x =是()h x 的一个极值点,则3(1)21102ah =⨯++=, 所以2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--.6.(Ⅰ)依题意,得2'()2f x x ax b =++ 由'(1)12021f a b b a -=-+==-得.从而321()(21),'()(1)(21).3f x x ax a x f x x x a =++-=++-故令'()0,112.f x x x a ==-=-得或 ①当a>1时, 121a -<-当x 变化时,'()f x 与()f x 的变化情况如下表:由此得,函数()f x 的单调增区间为(,12)a -∞-和(1,)-+∞,单调减区间为(12,1)a --。
三次函数及其切割线的关系

三次函数及其切割线的关系曾文远中国/北京市/北京十一学校指导教师:***摘要本文共七章,主要研究了三次函数上一点的切线,割线和三次函数的关系;三次函数上一点切线,割线斜率的性质;三次函数图像的性质和分类;以及三次函数的一种新定义。
全文结构安排如下:第一章介绍了文章的研究背景,基本记号,一些基本定义,引理和定理。
第二章研究了三次函数上一点处的切线和该三次函数相交的问题。
包括切点,交点的坐标关系和切线与三次函数围成图形的面积。
第三章中类比圆锥曲线的极坐标形式,研究了三次函数上一点到一定直线距离的问题,并给出了三次函数新的定义形式。
第四章研究了三次函数图像的对称问题。
第五章研究了三次函数零点处切线斜率的性质,并利用范德蒙德行列式将部分结论推广到n次函数。
第六章研究了平面上一点和三次函数三个零点连线的斜率问题,并推广到n次函数。
第七章研究了三次函数的图像类型与其对应的三次方程的解之间的关系。
关键词:三次函数三次函数图像零点极值点拐点斜率切线割线对称中心面积n次函数范德蒙德行列式目录摘要1第一章4 1.1 4 第二章82.1 8第三章123.1 123.2 13第四章154.1 15附录参考文献致谢第一章…2.1 …3.1 …4.1 …附录参考文献[1]人教版高中数学必修1. 人民教育出版社,2007.[2]人教版高中数学选修1-1. 人民教育出版社,2007.[3]刘玉琏傅沛仁林玎苑德馨刘宁数学分析讲义(第五版)上册.高等教育出版社,2008.[4]卢刚线性代数第三版. 高等教育出版社,2009.[5]Wikipedia致谢感谢指导老师对我的鼓励与帮助.感谢我的家长和同学们,是他们的支持和鼓励给了我勇气和信心来完成这篇论文.。
4.1 切线方程(精讲)(提升版)(原卷版)

4.1 切线方程(精讲)(提升版)思维导图考点呈现考点一 斜率和倾斜角【例1-1】(2022·江苏淮安)已知函数()cos2(0,πf x x x =∈,)在0x x =处的切线斜率为85,则00co sin s x x -=( ) A .35 B .35C .355-D .355【例1-2】(2022·重庆一中)已知偶函数()f x ,当0x >时,()()212f x x f x '=-+,则()f x 的图象在点()()2,2f --处的切线的斜率为( ) A .3- B .3 C .5- D .5【一隅三反】1.(2022·辽宁)已知曲线()3cos1f x x =-在点()()1,1f 处的切线与直线:30l ax y --=垂直,则实数a 的值为______.2.(2022·湖南·长沙县第一中学模拟预测)函数()2ln 1sin y x x =++的图象在0x =处的切线对应的倾斜角为α,则sin2α=( ) A .310B .±310 C .35D .±35例题剖析3.(2022·湖南)已知P 是曲线)2:ln C y x x a x =++上的一动点,曲线C 在P 点处的切线的倾斜角为θ,若32ππθ≤<,则实数a 的取值范围是( )A .)⎡⎣B .)⎡⎣C .(,-∞ D .(-∞考点二 “在型”的切线方程【例2-1】(2022·广西)曲线31y x =+在点()1,a -处的切线方程为( ) A .33y x =+ B .31y x C .31y x =-- D .33y x =--【例2-2】(2022·广西·贵港市)已知曲线e ln x y ax x =+在点()1,e a 处的切线方程为3y x b =+,则( ) A .e a =,2b =- B .e a =,2b = C .1e a -=,2b =- D .1e a -=,2b =【一隅三反】1.(2022·河南)已知函数()()423f x x m =++的图象经过坐标原点,则曲线()y f x =在点()()1,1f --处的切线方程是( )A .872y x =-B .476y x =-C .872y x =+D .476y x =+2.(2022·安徽)已知()f x 为奇函数,且当0x >时()211e xf x x-=+,则曲线()y f x =在点11,22f ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭处的切线方程为( ) A .240x y ++= B .240x y -+= C .220x y -+= D .220x y ++=3.(2022·安徽·巢湖市)曲线22x ay x +=+在点()1,b 处的切线方程为60kx y -+=,则k 的值为( ) A .1- B .23-C .12D .14.(2022·湖北·武汉二中模拟预测)已知函数()1ln f x x x=-,直线y mx n =+是曲线()y f x =的一条切线,则2m n +的取值范围是( ) A .[)3,∞-+ B .2e 3,e -⎛⎤-∞ ⎥⎝⎦C .[)2ln 24,--+∞D .5ln 2,4⎡⎫-+∞⎪⎢⎣⎭考点三 “过型”的切线方程【例3】(2022·河南洛阳)已知函数()3221f x x x x =-++,则曲线()y f x =过坐标原点的切线方程为( ) A .y x = B .2y x =C .3y x =D .4y x =【一隅三反】1.(2022·广东·新会陈经纶中学)(多选)已知曲线3()21f x x =+.则曲线过点P (1,3)的切线方程为.( ) A .630x y --= B .3230x y -+=C .690x y +-=D .3290x y +-=2(2022·北京·汇文中学)228y x =+过点()12P ,的切线方程是__________.3.(2022·四川·广安二中)函数()2e x f x x =过点()0,0的切线方程为考点四 切线或切点数量问题【例4-1】(2022·河南洛阳)若过点()1,0P 作曲线3y x =的切线,则这样的切线共有( ) A .0条 B .1条C .2条D .3条【例4-2】(2022·全国·高三专题练习)若过点(,)a b 可以作曲线ln y x =的两条切线,则( ) A .ln a b < B .ln b a <C .ln b a <D .ln a b <【一隅三反】1.(2022·河南洛阳)若过点()1,0P 作曲线3y x =的切线,则这样的切线共有( ) A .0条 B .1条 C .2条 D .3条2.(2022·湖北·宜城市第一中学)若过点(),a b 可以作曲线()10y x x x=->的两条切线,则( ) A .0b a >> B .10a b a a-<<< C .10a b a a<-<< D .1a b a a>>-且0a >3.(2022·河南洛阳)若过点()1,P t 可作出曲线3y x =的三条切线,则实数t 的取值范围是( ) A .(),1-∞ B .()0,∞+ C .()0,1 D .{}0,14.(2022·全国·高考真题)若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是________________.考点五 公切线【例5-1】(2022·安徽省舒城中学)已知直线l 是曲线e 1x y =-与ln 1y x =+的公共切线,则l 的方程为_____.【例5-2】(2022·江苏·南京外国语学校模拟预测)若两曲线y =x 2-1与y =a ln x -1存在公切线,则正实数a 的取值范围为( ) A .(]0,2e B .(]0,e C .[)2,e +∞ D .(],2e e【一隅三反】1.(2022·全国·模拟预测)若直线l 与曲线2y x 和2249x y +=都相切,则l 的斜率为______.2.(2022·河北保定·二模)(多选)若直线3y x m =+是曲线()30y x x =>与曲线()260y x nx x =-+->的公切线,则( ) A .2m =-B .1m =-C .6n =D .7n =3.(2022·安徽·合肥一六八中学)若直线y kx m =+是曲线ln(1)y x =-的切线,也是曲线3e x y -=的切线,则k =__________.考点六 切线与其他知识的运用【例6-1】(2022·湖北·黄冈中学)已知a ,b 为正实数,直线y x a =-与曲线ln()y x b =+相切,则14a b+的最小值为( )A .8B .9C .10D .13【例6-2】(2022·广东·深圳市光明区高级中学)已知函数()()2ln f x x x ax x a =-+∈R ,则曲线()y f x =在点()()1,1f 处的切线l 恒过定点_____________.【一隅三反】1.(2022·河北衡水)已知函数2ln ()2xf x x x=-在1x =处的切线为l ,第一象限内的点(,)P a b 在切线l 上,则1111a b +++的最小值为( )A B C D 2.(2022·安徽)对于三次函数()f x ,若曲线()y f x =在点(0,0)处的切线与曲线()y xf x =在点(1,2)处点的切线重合,则(2)f '=( )A .34-B .14-C .4-D .143.(2022·黑龙江·哈尔滨三中)若曲线e x y =过点(2,0)-的切线恒在函数212()e 31e e x f x a x x ⎛⎫=-+-+- ⎪⎝⎭的图象的上方,则实数a 的取值范围是__________.考点七 切线方程的运用【例7-1】(2022·全国·高三专题练习)设点P 在曲线y x =上,点Q 在曲线()ln 2y x =上,则PQ 的最小值为( )A .1ln 22- B )1ln 2- C .1ln 22+ D .)1ln 22+【例7-2】(2022·山东烟台·三模)已知函数()2ln ,021,0x x f x x x x ⎧>=⎨+-≤⎩,若方程()1f x ax =-有且仅有三个实数解,则实数a 的取值范围为( ) A .01a << B .02a << C .1a > D .2a >【一隅三反】1.(2022·江苏徐州)过平面内一点P 作曲线|ln |y x =的两条互相垂直的切线12,l l ,切点分别为12,P P (12,P P 不重合),设直线12,l l 分别与y 轴交于点A ,B ,则ABP △面积的取值范围为( ) A .10,2⎛⎤⎥⎝⎦B .()0,1C .1,12⎡⎫⎪⎢⎣⎭D .(0,2]2.(2022·全国·高三专题练习)已知函数()()e ln xf x x a x x =-+有两个零点,则实数a 的取值范围是______.3.(2022·云南曲靖·二模)设()'f x 是函数()f x 的导函数,()f x ''是函数()'f x 的导函数,若对任意R ()0,()0x f x f x '''∈><,恒成立,则下列选项正确的是( ) A .0(3)(3)(2)(2)f f f f ''<<-< B .0(3)(2)(2)(3)f f f f ''<-<< C .0(3)(2)(3)(2)f f f f ''<<<- D .0(2)(3)(3)(2)f f f f ''<<<-4.(2022·江西·新余市)若点A 在曲线ln 1y x =-上运动,点B 在直线2y x =+上运动,,A B 两点距离的最小值为______。
【高考数学】《函数切线问题》微专题

【高中数学】《函数的切线问题》微专题第一讲 函数切线及其应用1.导数的几何意义:函数)(x f 在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率.注:(()tan k f x α'==)2.在点00(,)A x y 处的切线方程:()000()()y f x f x x x '-=-抓住关键:000()()y f x k f x =⎧⎨'=⎩;3.过点11(,)A x y 的切线方程:设切点为00(,)P x y ,则斜率0()k f x '=,过切点的切线方程为:∵过点11(,)A x y ,∴10010()()y y f x x x '-=-然后解出0x 的值.(0x 有几个值,就有几条切线,三次函数多解)考点1 切线及斜率问题【例1.1】已知函数()f x 是偶函数,定义域为()()00-∞⋃+∞,,,且0x >时, ()1x x f x e-=,则曲线()y f x =在点()()11f --,处的切线方程为 . 析】()()()21','1,10,xx f x f f e e-=∴==∴曲线y , 是偶函数, ∴曲线()y f x =在点((1,f --相切,则切点的横坐标为( )A .1B .-1C .2D .e -1[解析] 设切点为(x 0,e 2x 0-1),∵f ′(x )=2e 2x -1,∴2e 2x 0-1=e 2x 0-1+ex 0,化简得2x 0-1=e2-2x 0.令y =2x -1-e 2-2x ,则y ′=2+2e 2-2x >0.∵x =1时,y =0,∴x 0=1.故选A.[答案] A【例1.3】设点P 是曲线335y x =+上的任意一点,点P 处切线的倾斜角为α,则角α的范围是( )A .203π⎡⎤⎢⎥⎣⎦,B .2023πππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭,, C .223ππ⎛⎤⎥⎝⎦,D .233ππ⎡⎤⎢⎥⎣⎦,233x -,为第一象限角).设函数f =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x解析:选D 法一:∵f (x )=x 3+(a -1)x 2+ax , ∴f ′(x )=3x 2+2(a -1)x +a .又∵f (x )为奇函数,∴f (-x )=-f (x )恒成立, 即-x 3+(a -1)x 2-ax =-x 3-(a -1)x 2-ax 恒成立, ∴a =1,∴f ′(x )=3x 2+1,∴f ′(0)=1, ∴曲线y =f (x )在点(0,0)处的切线方程为y =x .法二:易知f (x )=x 3+(a -1)x 2+ax =x [x 2+(a -1)x +a ],因为f (x )为奇函数,所以函数g (x )=x 2+(a -1)x +a 为偶函数,所以a -1=0,解得a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D.【练习2】若P 是函数()()()1ln 1f x x x =++图象上的动点,点()1,1A --,则直线AP 斜率的取值范围为( ) A .[)1,+∞ B .[]0,1C .(1,e e -⎤⎦D .(1,e -⎤-∞⎦【解析】由题意可得: ()()'ln 11f x x =++ ,结合函数的定义域可知,函数在区间11,1e ⎛⎫--+ ⎪⎝⎭上单调递减,在区间11,e⎛⎫-++∞ ⎪⎝⎭上单调递增,且1111f e e⎛⎫-+=->- ⎪⎝⎭,绘制函数图象如图所示,当直线与函数图象相切时直线的斜率取得最小值,设切点坐标为()()()000,1ln 1x x x ++ ,该点的斜率为()0ln 11k x =++ ,切线方程为: ()()()()00001ln 1ln 11y x x x x x ⎡⎤-++=++-⎣⎦,切线过点()1,1-- ,则: ()()()()000011ln 1ln 111x x x x ⎡⎤--++=++--⎣⎦ ,解得:00x = ,切线的斜率()0ln 111k x =++= ,综上可得:则直线AP 斜率的取值范围为[)1,+∞.00点P (x 0,f (x 0))的坐标为________.[解析] ∵f (x )=x ln x ,∴f ′(x )=ln x +1,由题意得f ′(x 0)·(-1)=-1,即f ′(x 0)=1,∴ln x 0+1=1,ln x 0=0,∴x 0=1,∴f (x 0)=0,即P (1,0).[答案] (1,0) 【练习4】设P 是函数()1y x x =+图象上异于原点的动点,且该图象在点P 处的切线的倾斜角为θ,则θ的取值范围是 .【解析】由题意知313131tan 23222222y x x x xx x θ=+∴=+≥⋅=' [)30,,2ππθπθ⎡⎫∈∴∈⎪⎢⎣⎭. 考点2 切线条数问题【例2】过点(),A m m 与曲线()ln f x x x =相切的直线有且只有两条,则m 的取值范围是( )A .()e -∞,B .()+e ∞,C .10e ⎛⎫⎪⎝⎭,D .()1+∞,【练习】设函数233)(x x x f -=,若过点),2(n 可作三条直线与曲线)(x f y =相切,则实数n 的取值范围是( )A .)4,5(--B .)0,5(-C .)0,4(-D .]3,5(--【解析】法一:()323f x x x =-,则()236f x x x '=-,设切点为()32000,3x x x -,则()200036f x x x '=-.∴过切点处的切线方程为()()32200000336y x x x x x x -+=--,把点()2n ,代入得: ()()322000003362n x x x x x -+=--.整理得:3200029120x x x n -++=.若过点()2n ,可作三条直线与曲线()y f x =相切,则方程3200029120x x x n -++=有三个不同根(左图)令()322912g x x x x =-+,则()()()261812612g x x x x x '=-+=--,∴当()()12+x ∈-∞⋃∞,,时,()0g x '>;当()12x ∈,时,()0g x '<, ∴()g x 的单调增区间为()1-∞,和()2+∞,;单调减区间为()12,. ∴当1x =时,()g x 有极大值为()15g =;当2x =时,()g x 有极小值为()24g =.由45n <-<,得54n -<<-. ∴实数n 的取值范围是()54--,.故选A .法二:()323f x x x =-关于点()1,2-中心对称,()()23613f x x x f ''=-⇒=-,在对称中心的切线方程为31,25y x x y =-+==-时,,()24f =-,故当点()2,n 位于区域Ⅰ,有三条切线时,54n -<<-.(如右图)考点3 零点、交点、极值点问题【例3.1】已知函数()()ln f x x x ax =-有两个极值点,则实数a 的取值范围是( )A .()0∞-,B .10,2⎛⎫⎪⎝⎭C .()0,1D .(0,)+∞【解析】函数()()ln f x x x ax =-,则()1'ln ln 21f x x ax x a x ax x⎛⎫=-+-=-+ ⎪⎝⎭,令()'ln 210f x x ax =-+=得ln 21x ax =-,函数()()ln f x x x ax =-有两个极值点,等价于()'ln 21f x x ax =-+有两个零点,等价于函数ln y x =与21y ax =-的图象有两个交点,在同一坐标系中作出它们的图象(如图),当12a =时,直线21y ax =-与ln y x = 的图象相切,由图可知,当102a <<时, ln y x =与21y ax =-的图象有两个交点,则实数a 的取值范围是10,2⎛⎫⎪⎝⎭,故选B .例3.1图 例3.2图【例3.2】设()ln f x x =,若函数()()g x f x ax =-在区间()20,e 上有三个零点,则实数a 的取值范围( )A .10,e ⎛⎫⎪⎝⎭B .211,e e ⎛⎫⎪⎝⎭ C .222,e e ⎛⎫⎪⎝⎭ D .221,e e ⎛⎫⎪⎝⎭ 【解析】令()()0g x f x ax =-=,可得()f x ax =.在坐标系内画出函数()ln f x x =的图象(如图1所示).当1x >时, ()ln f x x =.由ln y x =得1y x'=.设过原点的直线y ax =与函数y xln =的图象切于点()00,ln A x x ,则有0001lnx ax a x =⎧⎪⎨=⎪⎩,解得0 1x ea e =⎧⎪⎨⎪⎩=.所以当直线y ax =与函数ln y x =的图象切时1a e =.又当直线y ax =经过点()2B ,2e 时,有22a e =⋅,解得22a e =.结合图象可得当直线y ax =与函数()ln f x x =的图象有3个交点时,实数a 的取值范围是221,e e ⎛⎫⎪⎝⎭.即函数()()g x f x ax =-在区间()20,e 上有三个零点时,实数a 的取值范围是221,e e ⎛⎫⎪⎝⎭.故选D . 0x >()lg 0f x a x x=--≤a A .()(lg lg lg e e ⎤-∞-⎦, B .(]1-∞,C .()1lg lg lg e e ⎡⎤-⎣⎦,D .()lg lg lg e e ⎡⎤-+∞⎣⎦,【解析】原问题即lg x x a ≥-+在区间()0,+∞上恒成立,考查临界情况, 即函数()lg g x x =与()h x x a =-+相切时的情形,如图, 很明显切点横坐标位于区间()0,1内,此时,()()1lg ,'ln10g x x g x x =-=,由()'1g x =-可得:1lg ln10x e =-=-,则切点坐标为:()()lg ,lg lg e e --,切线方程为: ()lg lg lg y e x e +=+,令0x =可得纵截距为: ()lg lg lg e e -, 结合如图所示的函数图象可得则a 的取值范围是()(lg lg lg e e ⎤-∞-⎦,.故选A .考点4 参数范围问题【例4】已知函数()ln f x x x x =+,若k Z ∈,且()()2k x f x -<对任意的2x >恒成立,则k 的最大值为( )(参考数据:ln20.6931,ln3 1.0986==) A .3B .4C .5D .6【练习】已知,a b 为正实数,直线yx a =-与曲线()ln y x b =+相切,则2a b+的取值范围为 .考点5 距离问题和平行切线问题【例5.1】设点P 在曲线12x y e =上,点Q 在曲线()ln 2y x =上,则PQ 最小值为( )A .1ln2- B)1ln 2- C .1ln2+D )1ln 2+【例5.2】直线y m =分别与曲线()21y x =+,与ln y x x =+交于点,A B ,则AB的最小值为( ) A B .2 C .3D .32【练习1】已知函数()()02x f x f e x '=-+,点P 为曲线()y f x =在点()()00f ,处的切线l 上的一点,点Q 在曲线x y e =上,则PQ 的最小值为 .【解析】由()()02x f x f e ''=-+,令0x =可得()01f '=,所以()2x f x e x =-+,所以切线的斜率()01k f '==,又()01f =-,故切线方程为10x y --=.由题意可知与直线10x y --=平行【练习2】函数()21x f x e x x =+++与()g x 的图象关于直线230x y --=对称,P Q 、分别是函数()()f x g x 、图象上的动点,则PQ 的最小值为( )ABC D .【解析】由题意得当P 点处切线平行直线230x y --=,Q 为P 关于直线230x y --=对称取最小值.()f x e '=12+=⇒考点6 两点间距离平方问题【例6】已知实数a b 、满足225ln 0a a b c R --=∈,,则()()22a c b c -++的最小值为( )A .12BC .2D .92225ln 0x x y --=,即()225ln 0y x x x =->,以x 代换c,可得点()x x -,,满足0y x +=.因此【练习】已知()()()22ln S x a x a a R =-+-∈,则S 的最小值为( ) AB .12C D .2【解析】设()()ln A x x B a a ,,,,则问题化为求平面上两动点()()ln A x x B a a ,,,之间距离的第二讲函数公切线问题与是否有公切线,决定它们公切线条数的是由函数凹凸性和共单调区间交点。
关于一元三次函数上的点的切线的求法

第2 期
余章文 : 关于一元三次函数上的点的切线 的求法
。l9。 l
3 重视开放性 问题组织教学 。 培养 学生 创造性思维 创造性思维是发散式思维 与聚合式思维的统一 , 在创造思维活动中, 发散式思维起主导作用。利用 , “ 一题 多解”、“ 一题多变”的开 放性问题训练思维 的独创性和变通性。如. ・
5 5>o H )
f
广 I
L 5 x5 o ok × 5 0 ̄ 0 l - (- > -3+ 5 l 2> = > )・ 2) - - 1 - + k
0 . 1 . <i / } 4 ≤
— J l
方法一样 , 答案不 同, 问题在哪里 ?经讨论发现 甲的解法 中 ・ 处不可逆推 , 因此乙的做法正确 。 丙 同学 : 用换元法 , y x 5 则有 xy 5 代人原方程得 叫 = , 设 =一 , =+ , O 则此方程应有两个正根 , 立即得到 : < 0 ≤1 , / 比前一种方法更为 4
X > - t 5 - -
。
,- -X - l  ̄ +
.
> X2
1 0
娩 > 2
一3
>2
卜
、
y t _ ‘ : \ /
_
.
5 七 . < ≤
图 2
乙同学由 >5 1 >0 >5 ->0 — . , 5 5 ,
f r
-
A= 2 3+ ) l k =k / 1 1 O k= - ≥O o ≤1 4 4
了数形结合的思想。
教师通过启发学生探讨 不同的解法 , 留给学 生深入探究的余地 , 培养了学生多角度思考 问题的思维习惯 , 培养 了学生多角度思考问 题的思维习惯 , 了思维的灵活性 、 培养 独创性 。
用《几何画板》实现三次函数的切线的条数

《几何画板》小妙招判断三次函数的切线的条数于非洲山东临沂第一中学 2760001引言过平面内任意一点P 作一个三次函数图象的切线,可能有一条,二条或三条. 可是,当点P 落在怎样的一个区域内时可以作一条,二条或三条呢?本文拟用《几何画板》软件实现对这一问题的直观化.2探索由于一般的三次函数32()(0)g x ax bx cx d a =+++≠都是中心对称曲线,其对称中心为(,())33b bg a a--,所以其函数解析式可化为: 23()()()()3333b b b b y a x c x g a a a a=++-++-.于是通过变换:2,3(),()3,.3b x x a b y y g a m a b n c a ⎧'=+⎪⎪⎪'=--⎪*⎨⎪=⎪⎪=-⎪⎩就可以把问题转化为研究最简单的三次函数3()(0)f x mx nx m =+≠的切线问题了.设点00(,)M x y 为平面上任一点,过点M 作函数3()f x mx nx =+的切线,设切点坐标为11(,)x y ,则切线方程为:2111(3)().y y mx n x x -=+-把点00(,)M x y 的坐标代入上式,并整理得关于1x 的方程:3210100230mx mx x y nx -+-=.于是,过点M 有几条切线,就等价于这个关于1x 的三次方程有几个不同的零点.设32000()23(0)h x mx mx x y nx m =-+-≠,则由200()666()0,h x mx mx x mx x x '=-=-=得到00,.x x x ==当00x =时,30()2(0)h x mx y m =+≠在R 上是单调函数,()h x 只有一个零点,这时过点M 只有一条切线. 特别的,当点(0,0)M 为3()f x mx nx =+的对称中心时,其切线方程为y nx =.当00x ≠时,()h x 有两个极值,一个是极大值,一个是极小值,其函数值分别是00(0)h y nx =-,30000()h x y mx nx =--. ()h x 的零点的个数就与这两个极值的符号有关:若(0)h 与0()h x 同号,即0(0)()0h h x ⋅>时()h x 只有一个零点,这时过点M 只有一条切线;若(0)h 与0()h x 中有且只有一个为0,即0(0)()0h h x ⋅=时()h x 有两个零点,这时过点M 有两条切线;若(0)h 与0()h x 异号,即0(0)()0h h x ⋅<时,()h x 有三个零点,这时过点M 有三条切线.3规律及图解:注意到当00(0)0h y nx =-=时,点M 恰在过对称中心的切线y nx =上;当30000()0h x y mx nx =--=时,点M 恰在函数3()f x mx nx =+的图像上. 如果把函数3()f x mx nx =+的图像想象成一条直线的话,那么y nx =与3()f x mx nx =+的图像相交于对称中心,它们把平面分成如下几部分(如图1):一个交点(三次函数的对称中心),四条射线,四个两两对顶的区域. 通过以上的研究,我们不仅很容易知道过一个点能够作多少条切线,而且也使得用《几何画板》图解这一有趣的现象成为可能的了:当点M 为3()f x mx nx =+的对称中心(0,0)时,过点M 有且只有一条切线y nx =(如图2);图1 图2当点M 落在两个对顶区域且满足300000()()0y nx y mx nx --->时,过点M 有且只有一条切线(如图3和图4);图3 图4当点落M 在四条射线上(不含对称中心)即满足300000()()0y nx y mx nx ---=时,过点M 有且只有两条切线(如图5和图6);图5 图6当点M 落在两个对顶区域且满足300000()()0y nx y mx nx ---<时,过点M 有且只有三条切线(如图7和图8);图7 图84应用掌握了这一规律,我们不仅能够准确的判断出过一个点能够作多少条切线,而且还可以利用这一规律轻松解题呢!例1 已知曲线C :3()2f x x x =-+,试问:分别过点(1)(0,54)-,(2)(2,0), (3)16(,2)11作曲线C 的切线有几条? 解:这里1,0,1,2a b c d ===-=,20,()2,1,1333b b b f m n c a a a-=-===-=-, 所以通过变换()*即,2,1,1.x x y y m n '=⎧⎪'=-⎪⎨=⎪⎪=-⎩可以把原函数转化为3y x x =-,三个点分别转化为16(0,56),(2,2),(,0)11--.(1)300000()()31360y nx y mx nx ---=>Q ,∴过点(0,56)-作3y x x =-的切线只有一条;(2) 300000()()0y nx y mx nx ---=Q ,∴过点(2,2)-作3y x x =-的切线有两条;(3) 300000()()y nx y mx nx ---=Q 24161601111⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭,∴过点16(,0)11作3y x x =-的切线有三条.于是原问题获解.例2(2008南昌一模)已知3()3,f x x x =-过点(1,)(2)A a a ≠-可作曲线()y f x =的三条切线,则a 的取值范围是( )A.(1,-1)B.(-2,3)C.(-1,-2)D.(-3,-2)解:这里的1,3m n ==-,001,x y a ==,所以当 []3(3)11310a a ⎡⎤--⋅-+⨯<⎣⎦即32a -<<-时为所求. 答案为D.例3(2007全国II 卷)已知函数3()f x x x =-. (1)求曲线()y f x =在点(())M t f t ,处的切线方程;(2)设0a >,如果过点()a b ,可作曲线()y f x =的三条切线,证明:()a b f a -<<.解:(1)求函数()f x 的导数;2()31x x f '=-.曲线()y f x =在点(())M t f t ,处的切线方程为:()()()y f t f t x t '-=-,即23(31)2y t x t =--.(2)过点()a b ,可作曲线()y f x =的三条切线,其充要条件为 ()(())0b a b f a +⋅-<, 注意到30,(),a f a a a a >=->- 所以有()a b f a -<<.。
一元三次函数图像的中心切线及切线问题
其 心 。的 线。做 的 心 线其 程 Y ^) / 麦( 麦 + (麦. 中 z 切 £ C 中 切 , 是 一 ( 一 ( )+ ) 厂 ) 处 叫 方 z 一 一
・ 收稿 日期 :0 7 0 z 20 — 6一 7
维普资讯
5 4
高 等 数 学 研 究
抄 录 20 0 7年高 考全 国数 学卷 Ⅱ 第 2 2题 于下 : 已知 函数 / z ( )一 - 一 . I) 曲线 Y一 , )在点 M( , () 处 的切线 方 程 ; Ⅱ) “> z 。 ( 求 ( t厂 £) ( 设
0 如 果 过 点 ( ,)可 作 曲 线 一 厂 )的 三 条 切 线 , 明 : 口< b< 厂 口 . . 口6 ( 证 一 ()
(麦) 中 对 .测 成 的证 如 一 ) 心 称推 是 立 ,明 呈
设 M( 厂 ) 是 三次 函数 Y— f ) z, ( ) ( 图像 上任 一点 , 关 于点 z ( , ( M 。一 f - ) )的对称 点 是
M 一 b 2
2一 )厂 )( ) n ) 6 麦。 ( ) 一 + f 麦 ( .一 一( 。 ( ) + 誊一 ( 一 厂 一 +~ +一 厂 一) ̄ 銎 z+一 一)c -) =一 一 -x ) ( -( 一) 6婺 z+一 X ( 等 22  ̄ 一 。 ( (b + 筹 - - t 2 b一 十等十 z 妇 一 c d 2。 cd (。如+ +) 2一 ) ( 等 十 一 + 一. b ) a+ 。凹 一f 一 ) x 。 -x 2 + b 3 。 (
一
3 t 十 “ b一 0 求 得 g ()一 6。 6 t 6( 一 口 . a。 + . t 一 a = tt )
过 点 ( ,)可作 曲线 Y一 ( 。厶 )的三条 切线 铮 方 程 g()一 0有三 个不 等实 根 ∞ 函数 g £ t () 的两个 极值 异 号 ㈢g( ) ( )< O ( + 6 ( Og 口 甘 “ ) “十b 。 < 0 又 因 “> 0 则 口+b —n ) . , 一“ < 口十b 必 。 , 有 n+ b “ < 0 “+b> 0 进而 一 “< b< 厂 “ . 一 。 , , () 这 是 一道 典 型的 承大 学之 上启 中学 之下 的 问题 , 此启 发 , 出下面 的 问题 并探 索解 决 . 受 提 问题 : 曲线 C是一 元三 次 函数 ,( )一 。 b + 十 d a≠ O + x。 ( )的图像 , 曲线 C的过 已知 点 P( 。y )的切线 有几 条 ? x ,。 能找 到决定 切 线 条数 的充要条 件 吗?
过一点作三次函数图像切线条数的完备结论
综上 ,定理获证.
参考文献 :
[1 ] 贺斌 ,黄福. 过哪些点可以作三次函数图像的 三条切线. 数学通讯 , 2007 (21) .
[2 ] 管宏斌. 三次函数对称中心初探. 数学通讯 ,
2004 (15) . [3 ] 刘国杰. 三次函数图像对称性的探索. 数学通
讯 ,2006 (20) .
-
b 3a
)
<0,
x0
≠-
b 3a
,
即 [ y0 - f ( x 0) ]·[ y0 - f ( - 3ba)
-
f ′( -
3ba)
(
x0
+
b 3a
)
]
<
0.
通过与 1) 类似的分析 ( 或参见文 [ 1 ])
知 :满足上述不等式组的点 M ( x 0 , y0) 位于
C 和 l 所夹的左 、右两个区域内 (边界除外) .
仅有一个实数根. 即过直线
x
=
-
b 上的任 3a
一点能且仅能作 y = f ( x ) 图像的一条切线.
若
x0
≠-
b 3a
,
则
g′(
t)
在
点
x0
附近的
函数值异号 , 在点 -
b 附近的函数值也异 3a
收稿日期 :2007 - 10 - 25 作者简介 :贺斌 (1961 —) ,男 ,湖北随州人 ,湖北省谷城县第三中学高级教师.
函数对称中心
N(
-
b 3a
,
f
(
-
b 3a
)
)
处的切线
l 上 (点 N 除外) 时 ,可作 y = f ( x ) 的两条切
专题17 三次函数的图像与性质(解析版)
专题17 三次函数的图像与性质一、例题选讲题型一 运用三次函数的图像研究零点问题遇到函数零点个数问题,通常转化为两个函数图象交点问题,进而借助数形结合思想解决问题;也可转化为方程解的个数问题,通过具体的解方程达到解决问题的目的.前者由于是通过图形解决问题,故对绘制的函数图象准确度和细节处要求较高,后者对问题转化的等价性和逻辑推理的严谨性要求较高.下面的解法是从解方程的角度考虑的.例1,(2017某某,某某,某某,某某三调)已知函数3()3 .x x a f x x x x a ⎧=⎨-<⎩≥,,,若函数()2()g x f x ax =-恰有2个不同的零点,则实数a 的取值X 围是.【答案】3(2)2-,【解析】:函数()2()g x f x ax =-恰有2个不同的零点,即方程2()0f x ax -=恰有2个不相等的根,亦即方程(Ⅰ)20x ax ax ≥⎧⎨-=⎩和(Ⅱ)3260x a x x ax <⎧⎨--=⎩共有2个不相等的根. 首先(Ⅰ)中20x ax -=,即(2)0a x -=,若2a =,则2x ≥都是方程20x ax -=的根,不符合题意,所以2a ≠,因此(Ⅰ)中由20x ax -=解得0x =,下面分情况讨论(1)若0x =是方程(Ⅰ)的唯一根,则必须满足0a ≥,即0a ≤,此时方程(Ⅱ)必须再有唯一的一个根,即30260x a x x ax <≤⎧⎨--=⎩有唯一根,因为0x ≠,由3260x x ax --=,得226x a =+必须有满足0x a <≤的唯一根,首先60a +>,其次解得的负根需满足0a <≤,从而解得302a -<≤,(2)若0x =不是方程(Ⅰ)的唯一根,则必须满足0a <,即0a >,此时方程(Ⅱ)必须有两个不相等的根,即30260a x ax x ax ⎧>⎪<⎨⎪--=⎩有两个不相等的根,由3260x x ax --=,得0x a =<适合,另外226x a =+还有必须一满足,0x a a <>的非零实根,首先60a +>,a≥,从而解得02a <≤,但前面已经指出2a ≠,故02a <<,综合(1),(2),得实数a 的取值X 围为3(,2)2-.例2,(2017某某学情调研)已知函数f (x )=⎩⎪⎨⎪⎧12x -x3,x ≤0,-2x ,x >0.)当x ∈(-∞,m ]时,f (x )的取值X 围为[-16,+∞),则实数m 的取值X 围是________.【答案】 [-2,8]【解析】思路分析 由于f (x )的解析式是已知的,因此,可以首先研究出函数f (x )在R 上的单调性及相关的性质,然后根据f (x )的取值X 围为[-16,+∞),求出它的值等于-16时的x 的值,借助于函数f (x )的图像来对m 的取值X 围进行确定.当x ≤0时,f (x )=12x -x 3,所以f ′(x )=12-3x 2.令f ′(x )=0,则x =-2(正值舍去),所以当x ∈(-∞,-2)时,f ′(x )<0,此时f (x )单调递减;当x ∈(-2,0]时,f ′(x )>0,此时f (x )单调递增,故函数f (x )在x ≤0时的极小值为f (-2)=-16.当x >0时,f (x )=-2x 单调递减,f (0)=0,f (8)=-16,因此,根据f (x )的图像可得m ∈[-2,8].解后反思 根据函数的解析式来得到函数的相关性质,然后由此画出函数的图像,借助于函数的图像可以有效地进行解题,这就是数形结合的魅力.题型二 三次函数的单调性问题研究三次函数的单调性,往往通过导数进行研究.要特别注意含参的讨论.例3,已知函数32()3f x x x ax =-+()a ∈R ,()|()|g x f x =.(1)求以(2,(2))P f 为切点的切线方程,并证明此切线恒过一个定点;(2)若()g x kx ≤对一切[0,2]x ∈恒成立,求k 的最小值()h a 的表达式;(3)设0a >,求()y g x =的单调增区间.解析 (1)2()36f x x x a '=-+,(2)f a '=,过点P 的切线方程为()224y a x a =-+-,即4y ax =-,它恒过点(0,- 4);(2)()g x kx ≤即32|3|x x ax kx -+≤. 当0x =时,上式恒成立;当(0,2]x ∈时,即2|3|x x a k -+≤对一切(0,2]x ∈恒成立,设2max ()|3|,[0,2]h a x x a x ∈=-+, ①当94a ≥时,2max |3|x x a -+在0x =时取得,∴()h a a =;②当94a <时,2max 99(),984|3|max{,}994()48a a x x a a a a a ⎧<<⎪⎪-+=-=⎨⎪-⎪⎩≤; 由①②,得9(),8()99()48a a g a a a ⎧>⎪⎪=⎨⎪-⎪⎩≤; (3)32()3f x x x ax =-+,22()363(1)3f x x x a x a '=-+=-+-,令()0f x =,得0x =或230x x a -+=,当94a <时,由230x x a -+=,解得132x =232x =令()0f x '=,得23(1)30x a -+-=,当3a <时,由23(1)30x a -+-=,解得31x =41x =+1)当3a ≥时,()y g x =的单调增区间为(0,)+∞;2)当934a <≤时,()y g x =的单调增区间为3(0,)x 和4(,)x +∞;3)当904a <<时,()y g x =的单调增区间为3(0,)x 和14(,)x x 和2(,)x +∞.例4,(2018某某期末) 若函数f(x)=(x +1)2|x -a|在区间[-1,2]上单调递增,则实数a 的取值X 围是________.【答案】 (-∞,-1]∪⎣⎢⎡⎭⎪⎫72,+∞思路分析 由于条件中函数的解析式比较复杂,可以先通过代数变形,将其化为熟悉的形式,进而利用导数研究函数的性质及图像,再根据图像变换的知识得到函数f(x)的图像进行求解.函数f(x)=(x +1)2|x -a|=|(x +1)2(x -a)|=|x 3+(2-a)x 2+(1-2a)x -a|.令g(x)=x 3+(2-a)x 2+(1-2a)x -a,则g ′(x)=3x 2+(4-2a)x +1-2a =(x +1)(3x +1-2a).令g ′(x)=0得x 1=-1,x 2=2a -13.①当2a -13<-1,即a<-1时,令g ′(x)>0,即(x +1)(3x +1-2a)>0,解得x<2a -13或x>-1;令g ′(x)<0,解得2a -13<x<-1.所以g(x)的单调增区间是⎝ ⎛⎭⎪⎫-∞,2a -13,(-1,+∞),单调减区间是⎝ ⎛⎭⎪⎫2a -13,-1. 又因为g(a)=g(-1)=0,所以f(x)的单调增区间是⎝ ⎛⎭⎪⎫a ,2a -13,(-1,+∞),单调减区间是(-∞,a),⎝ ⎛⎭⎪⎫2a -13,-1,满足条件,故a<-1(此种情况函数f(x)图像如图1). ,图1)②当2a -13=-1,即a =-1时,f(x)=|(x +1)3|,函数f(x)图像如图2,则f(x)的单调增区间是(-1,+∞),单调减区间是(-∞,-1),满足条件,故a =-1.,图2)③当2a -13>-1,即a>-1时,令g ′(x)>0,即(x +1)(3x +1-2a)>0,解得x<-1或x>2a -13;令g ′(x)<0,解得-1<x<2a -13.所以g(x)的单调增区间是(-∞,-1),⎝ ⎛⎭⎪⎫2a -13,+∞,单调减区间是⎝ ⎛⎭⎪⎫-1,2a -13. 又因为g(a)=g(-1)=0,所以f(x)的单调增区间是⎝ ⎛⎭⎪⎫-1,2a -13,(a,+∞),单调减区间是(-∞,-1),⎝ ⎛⎭⎪⎫2a -13,a ,要使f(x)在[-1,2]上单调递增,必须满足2≤2a -13,即a ≥72,又因为a>-1,故a ≥72(此种情况函数f(x)图像如图3).综上,实数a 的取值X 围是(-∞,-1]∪⎣⎢⎡⎭⎪⎫72,+∞.,图3)例5,(2018某某期末)已知函数f(x)=⎩⎪⎨⎪⎧-x3+x2,x<0,ex -ax ,x ≥0,其中常数a ∈R .(1) 当a =2时,求函数f (x )的单调区间;(2) 若方程f (-x )+f (x )=e x -3在区间(0,+∞)上有实数解,某某数a 的取值X 围;规X 解答 (1) 当a =2时,f(x)=⎩⎪⎨⎪⎧-x3+x2,x<0,ex -2x ,x ≥0.①当x<0时,f ′(x)=-3x 2+2x<0恒成立,所以f(x)在(-∞,0)上递减;(2分)②当x ≥0时,f ′(x)=e x -2,可得f(x)在[0,ln 2]上递减,在[ln 2,+∞)上递增.(4分)因为f(0)=1>0,所以f(x)的单调递减区间是(-∞,0)和[0,ln 2],单调递增区间是[ln 2,+∞).(5分)(2) 当x>0时,f(x)=e x -ax,此时-x<0,f(-x)=-(-x)3+(-x)2=x 3+x 2.所以可化为a =x 2+x +3x在区间(0,+∞)上有实数解.(6分) 记g(x)=x 2+x +3x ,x ∈(0,+∞),则g ′(x)=2x +1-3x2=(x -1)(2x2+3x +3)x2.(7分) 可得g(x)在(0,1]上递减,在[1,+∞)上递增,且g(1)=5,当x →+∞时,g(x)→+∞.(9分)所以g(x)的值域是[5,+∞),即实数a 的取值X 围是[5,+∞).(10分)题型三 三次函数的极值与最值问题①利用导数刻画函数的单调性,确定函数的极值;② 通过分类讨论,结合图象,实现函数的极值与零点问题的转化.函数,方程和不等式的综合题,常以研究函数的零点,方程的根,不等式的解集的形式出现,大多数情况下会用到等价转化,数形结合的数学思想解决问题,而这里的解法是通过严谨的等价转化,运用纯代数的手段来解决问题的,对抽象思维和逻辑推理的能力要求较高,此题也可通过数形结合的思想来解决问题,可以一试.例6,(2018苏锡常镇调研)已知函数32()1f x x ax bx a b =+++∈,,R . (1)若20a b +=,① 当0a >时,求函数()f x 的极值(用a 表示);② 若()f x 有三个相异零点,问是否存在实数a 使得这三个零点成等差数列?若存在,试求出a 的值;若不存在,请说明理由;规X 解答 (1)①由2()32f x x ax b '=++及02=+b a ,得22()32f x x ax a '=+-,令()0f x '=,解得3ax =或a x -=.由0>a 知,(,)()0x a f x '∈-∞->,,)(x f 单调递增,(,)()03a x a f x '∈-<,,)(x f 单调递减,(,)()03ax f x '∈+∞>,,)(x f 单调递增,因此,)(x f 的极大值为3()1f a a -=+,)(x f 的极小值为35()1327a a f =-. ② 当0a =时,0b =,此时3()1f x x =+不存在三个相异零点; 当0a <时,与①同理可得)(x f 的极小值为3()1f a a -=+,)(x f 的极大值为35()1327a a f =-. 要使)(x f 有三个不同零点,则必须有335(1)(1)027a a +-<,即332715a a <->或.不妨设)(x f 的三个零点为321,,x x x ,且321x x x <<,则123()()()0f x f x f x ===,3221111()10f x x ax a x =+-+=, ①3222222()10f x x ax a x =+-+=, ②3223333()10f x x ax a x =+-+=, ③②-①得222212121212121()()()()()0x x x x x x a x x x x a x x -+++-+--=, 因为210x x ->,所以222212121()0x x x x a x x a ++++-=, ④ 同理222332232()0x x x x a x x a ++++-=, ⑤⑤-④得231313131()()()()0x x x x x x x a x x -+-++-=,因为310x x ->,所以2310x x x a +++=,又1322x x x +=,所以23ax =-.所以()03af -=,即22239a a a +=-,即327111a =-<-,因此,存在这样实数a =满足条件.例7,(2017⋅某某)已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数'()f x 的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域;(2)证明:33b a >;(3)若(),'()f x f x 这两个函数的所有极值之和不小于72-,求a 的取值X 围.解析(1)2'()32f x x ax b =++有零点,24120a b ∆=->,即23a b >,又''()620f x x a =+=,解得3a x =-,根据题意,()03a f -=,即3210333a a a a b ⎛⎫⎛⎫⎛⎫-+-+-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,化简得2239b a a =+,又203a a b >⎧⎨>⎩,所以3a >,即223(3)9b a a a =+>;(2)设2433224591()3(427)(27)81381g a b a a a a a a a =-=-+=--,而3a >,故()0g a >,即23b a >;(3)设12,x x 为()f x 的两个极值点,令'()0f x =得12122,33b ax x x x =+=-, 法一:332212121212()()()()2f x f x x x a x x b x x +=++++++ 22121212121212()[()3][()2]()2x x x x x x a x x x x b x x =++-++-+++3324242232()202732739a ab a a a a =-+=-++=.记()f x ,()f x '所有极值之和为()S a ,12()()0f x f x +=,2'()33a a f b -=-, 则221237()()()'()3392a a a S a f x f x f b a =++-=-=--≥, 而23()()3a S a a =-在(3,)a ∈+∞上单调递减且7(6)2S =-,故36a <≤.法二:下面证明()f x 的图像关于(,())33a af --中心对称,233232()1()()()1333327a a a ab a f x x ax bx x b x =+++=++-++-+23()()()()3333a a a ax b x f =++-++-,所以()()2()0333a a a f x f x f --+-+=-=,所以12()()0f x f x +=,下同法一.例8,(2018某某学情调研)已知函数f(x)=2x 3-3(a +1)x 2+6ax,a ∈R .(1) 曲线y =f (x )在x =0处的切线的斜率为3,求a 的值;(2) 若对于任意x ∈(0,+∞),f (x )+f (-x )≥12ln x 恒成立,求a 的取值X 围;(3) 若a >1,设函数f (x )在区间[1,2]上的最大值,最小值分别为M (a ),m (a ),记h (a )=M (a )-m (a ),求h (a )的最小值.思路分析 第(3)问,欲求函数f(x)在区间[1,2]上的最值M(a),m(a),可从函数f(x)在区间[1,2]上的单调性入手,由于f ′(x)=6(x -1)(x -a),且a >1,故只需分为两大类:a ≥2,1<a <2.当1<a <2时,函数f(x)在区间[1,2]上先减后增,进而比较f(1)和f(2)的大小确定函数最大值,由f(1)=f(2)得到分类的节点a =53.规X 解答 (1) 因为f(x)=2x 3-3(a +1)x 2+6ax,所以f ′(x)=6x 2-6(a +1)x +6a,所以曲线y =f(x)在x =0处的切线的斜率k =f ′(0)=6a,所以6a =3,所以a =12.(2分)(2) f(x)+f(-x)=-6(a +1)x 2≥12ln x对任意x ∈(0,+∞)恒成立,所以-(a +1)≥2lnxx2.(4分)令g(x)=2lnx x2,x >0,则g ′(x)=2(1-2lnx )x3.令g ′(x)=0,解得x = e.当x ∈(0,e)时,g ′(x)>0,所以g(x)在(0,e)上单调递增;当x ∈(e,+∞)时,g ′(x)<0,所以g(x)在(e,+∞)上单调递减.所以g(x)max =g(e)=1e,(6分)所以-(a +1)≥1e ,即a ≤-1-1e,所以a 的取值X 围为⎝⎛⎦⎥⎤-∞,-1-1e .(8分)(3) 因为f(x)=2x 3-3(a +1)x 2+6ax,所以f ′(x)=6x 2-6(a +1)x +6a =6(x -1)(x -a),令f ′(x)=0,则x =1或x =a.(10分)f(1)=3a -1,f(2)=4.由f(1)=f(2)得到分类的节点a =53.①当1<a ≤53时,当x ∈(1,a)时,f ′(x)<0,所以f(x)在(1,a)上单调递减;当x ∈(a,2)时,f ′(x)>0,所以f(x)在(a,2)上单调递增.又因为f(1)≤f(2),所以M(a)=f(2)=4,m(a)=f(a)=-a 3+3a 2,所以h(a)=M(a)-m(a)=4-(-a 3+3a 2)=a 3-3a 2+4.因为h ′(a)=3a 2-6a =3a(a -2)<0,所以h(a)在⎝ ⎛⎦⎥⎤1,53上单调递减,所以当a ∈⎝ ⎛⎦⎥⎤1,53时,h(a)的最小值为h ⎝ ⎛⎭⎪⎫53=827.(12分)②当53<a <2时,当x ∈(1,a)时,f ′(x)<0,所以f(x)在(1,a)上单调递减;当x ∈(a,2)时,f ′(x)>0,所以f(x)在(a,2)上单调递增.又因为f(1)>f(2),所以M(a)=f(1)=3a -1,m(a)=f(a)=-a 3+3a 2,所以h(a)=M(a)-m(a)=3a -1-(-a 3+3a 2)=a 3-3a 2+3a -1.因为h ′(a)=3a 2-6a +3=3(a -1)2>0.所以h(a)在⎝ ⎛⎭⎪⎫53,2上单调递增,所以当a ∈⎝ ⎛⎭⎪⎫53,2时,h(a)>h ⎝ ⎛⎭⎪⎫53=827.(14分)③当a ≥2时,当x ∈(1,2)时,f ′(x)<0,所以f(x)在(1,2)上单调递减,所以M(a)=f(1)=3a -1,m(a)=f(2)=4,所以h(a)=M(a)-m(a)=3a -1-4=3a -5,所以h(a)在[2,+∞)上的最小值为h(2)=1.综上,h(a)的最小值为827.(16分)二、达标训练1,(2017某某暑假测试) 已知函数f (x )=⎩⎪⎨⎪⎧1x,x >1,x3,-1≤x ≤1,)若关于x 的方程f (x )=k (x +1)有两个不同的实数根,则实数k 的取值X 围是________.【答案】 ⎝ ⎛⎭⎪⎫0,12【解析】思路分析 方程f (x )=k (x +1)的实数根的个数可以理解为函数y =f (x )与函数y =k (x +1)交点的个数,因此,在同一个坐标系中作出它们的图像,由图像来观察它们的交点的个数.在同一个直角坐标系中,分别作出函数y =f (x )及y =k (x +1)的图像,则函数f (x )max =f (1)=1,设A (1,1),B (-1,0),函数y =k (x +1)过点B ,则由图可知要使关于x 的方程f (x )=k (x +1)有两个不同的实数根,则0<k <k AB =12.2,(2017苏北四市期末) 已知函数f (x )=⎩⎪⎨⎪⎧sinx ,x <1,x3-9x2+25x +a ,x ≥1,)若函数f (x )的图像与直线y =x 有三个不同的公共点,则实数a 的取值集合为________.【答案】 {-20,-16}【解析】当x <1时,f(x)=sin x,联立⎩⎪⎨⎪⎧y =sinx ,y =x ,得x -sin x =0,令u(x)=x -sin x(x <1),则u ′(x)=1-cos x ≥0,所以函数u(x)=x -sin x(x <1)为单调增函数,且u(0)=0,所以u(x)=x -sin x(x <1)只有唯一的解x=0,这表明当x <1时,函数f(x)的图像与直线y =x 只有1个公共点.因为函数f(x)的图像与直线y =x 有3个不同的公共点,从而当x ≥1时,函数f(x)的图像与直线y =x 只有2个公共点.当x ≥1时,f(x)=x 3-9x 2+25x +a,联立⎩⎪⎨⎪⎧y =x3-9x2+25x +a ,y =x ,得a =-x 3+9x 2-24x,令h(x)=-x 3+9x 2-24x(x ≥1),则h ′(x)=-3x 2+18x -24=-3(x -2)(x -4).令h ′(x)=0得x =2或x =4,列表如下:32数a =-20或a =-16.综上所述,实数a 的取值集合为{-20,-16}.3,(2019某某,某某二模)已知函数f(x)=⎪⎩⎪⎨⎧>+-≤+0,3120,33x x x x x 设g(x)=kx +1,且函数y =f(x)-g(x)的图像经过四个象限,则实数k 的取值X 围为________.【答案】 ⎝⎛⎭⎪⎫-9,13【解析】解法1 y =⎩⎪⎨⎪⎧|x +3|-(kx +1),x ≤0,x 3-(k +12)x +2,x>0,若其图像经过四个象限.①当x>0时,y =x 3-(k +12)x +2,当x =0时,y =2>0,故它要经过第一象限和第四象限,则存在x>0,使y=x 3-(k +12)x +2<0,则k +12>x 2+2x ,即k +12>⎝ ⎛⎭⎪⎫x2+2x min .令h(x)=x 2+2x (x>0),h ′(x)=2x -2x2=2(x3-1)x2,当x>1时,h ′(x)>0,h(x)在(1,+∞)上递增;当0<x<1时,h ′(x)<0,h(x)在(0,1)上递减,当x =1时取得极小值,也是最小值,h(x)min =h(1)=3,所以k +12>3,即k>-9.②当x ≤0时,y =|x +3|-(kx +1),当x =0时,y =2>0,故它要经过第二象限和第三象限,则存在x<0,使y =|x +3|-(kx +1)<0,则k<|x +3|-1x,即k<⎝⎛⎭⎪⎫|x +3|-1x max .令φ(x)=|x +3|-1x=⎩⎪⎨⎪⎧-1-4x ,x ≤-3,1+2x ,-3<x<0,易知φ(x)在(-∞,-3]上单调递增,在(-3,0)上单调递减,当x =-3时取得极大值,也是最大值,φ(x)max =φ(-3)=13,故k<13.综上,由①②得实数k 的取值X 围为⎝⎛⎭⎪⎫-9,13.解法2 可根据函数解析式画出函数图像,当x>0时,f(x)=x 3-12x +3,f ′(x)=3x 2-12=3(x +2)(x -2),可知f(x)在区间(0,2)上单调递减,在区间(2,+∞)上单调递增,且 f(2)=-13<0,当x ≤0时,f(x)=|x +3|.g(x)=kx +1恒过(0,1),若要使y =f(x)-g(x)经过四个象限,由图可知只需f(x)与g(x)在(-∞,0)和(0,+∞)上分别有交点即可(交点不可为(-3,0)和切点).①当k>0时,在(0,+∞)必有交点,在(-∞,0)区间内,需满足0<k<13.②当k<0时,在(-∞,0)必有交点,在(0,+∞)内,只需求过定点(0,1)与函数f(x)=x 3-12x +3(x>0)图像的切线即可,设切点为(x 0,x30-12x 0+3),由k =3x20-12=x30-12x 0+3-1x 0,解得x 0=1,切线斜率k =-9,所以k∈(-9,0).③当k =0也符合题意.综上可知实数k 的取值X 围为⎝⎛⎭⎪⎫-9,13.4,(2018苏中三市,苏北四市三调)已知函数310() 2 0ax x f x x ax x x -≤⎧⎪=⎨-+->⎪⎩, ,,的图象恰好经过三个象限,则实数a 的取值X 围是 ▲ .【答案】a <0或a >2【解析】当a <0时,10y ax x =-,≤的图象经过两个象限,3|2|0y x ax x =-+->在 (0,+∞)恒成立,所以图象仅在第一象限,所以a <0时显然满足题意; 当a ≥0时,10y ax x =-,≤的图象仅经过第三象限,由题意 3|2|0y x ax x x =-+->,的图象需经过第一,二象限.【解法1】(图像法)3|2|y x x =+-与y ax =在y 轴右侧的图象有公 共点(且不相切).如图,3|2|y x x =+-=332,022,2x xx x xx,设切点坐标为3000(,2)x x x ,231yx,则有32000231x x x x ,解得01x ,所以临界直线l 的斜率为2,所以a >2时,符合.综上,a <0或a >2.【解法2】(函数最值法)由三次函数的性质知,函数图象过第一象限,则存()g x 在0x,使得3|2|0,yxax x即2|2|x a xx 设函数22221,02|2|()21,2x x x x g x x xx x x,当02x,322222()2x g x xx x()g x 在(0,1)单调递减,在(1,2)单调递增,又2x时,函数为增函数,所以函数的最小值为2,所以a >2,则实数a 的取值X 围为a <0或a >2.5,(2019某某期末)已知函数f(x)=ax 3+bx 2-4a(a,b ∈R ).(1) 当a =b =1时,求f (x )的单调增区间;(2) 当a ≠0时,若函数f (x )恰有两个不同的零点,求b a的值;(3) 当a =0时,若f (x )<ln x 的解集为(m ,n ),且(m ,n )中有且仅有一个整数,某某数b 的取值X 围.解后反思 在第(2)题中,也可转化为b a =4x2-x 恰有两个不同的实数解.另外,由g(x)=x 3+kx 2-4恰有两个不同的零点,可设g(x)=(x -s)(x -t)2.展开,得x 3-(s +2t)x 2+(2st +t 2)x -st 2=x 3+kx 2-4,所以⎩⎪⎨⎪⎧-(s +2t )=k ,2st +t2=0,-st2=-4,解得⎩⎪⎨⎪⎧s =1,t =-2,k =3.解:(1)当a =b =1时,f(x)=x 3+x 2-4,f ′(x)=3x 2+2x.(2分)令f ′(x)>0,解得x>0或x<-23,所以f(x)的单调增区间是⎝⎛⎭⎪⎫-∞,-23和(0,+∞).(4分)(2)法一:f ′(x)=3ax 2+2bx,令f ′(x)=0,得x =0或x =-2b3a,(6分)因为函数f(x)有两个不同的零点,所以f(0)=0或f ⎝ ⎛⎭⎪⎫-2b 3a =0.当f(0)=0时,得a =0,不合题意,舍去;(8分)当f ⎝ ⎛⎭⎪⎫-2b 3a =0时,代入得a ⎝ ⎛⎭⎪⎫-2b 3a +b ⎝ ⎛⎭⎪⎫-2b 3a 2-4a =0,即-827⎝ ⎛⎭⎪⎫b a 3+49⎝ ⎛⎭⎪⎫b a 3-4=0,所以ba =3.(10分)法二:由于a ≠0,所以f(0)≠0,由f(x)=0得,b a =4-x3x2=4x2-x(x ≠0).(6分)设h(x)=4x2-x,h ′(x)=-8x3-1,令h ′(x)=0,得x =-2, 当x ∈(-∞,-2)时,h ′(x)<0,h(x)递减;当x ∈(-2,0)时,h ′(x)>0,h(x)递增,当x ∈(0,+∞)时,h ′(x)>0,h(x)单调递增,当x>0时,h(x)的值域为R ,故不论b a取何值,方程b a=4-x3x2=4x2-x 恰有一个根-2,此时函数f (x )=a (x +2)2(x -1)恰有两个零点-2和1.(10分)(3)当a =0时,因为f (x )<ln x ,所以bx 2<ln x ,设g (x )=ln x -bx 2,则g ′(x )=1x-2bx =1-2bx2x(x >0),当b ≤0时,因为g ′(x )>0,所以g (x )在(0,+∞)上递增,且g (1)=-b ≥0,所以在(1,+∞)上,g (x )=ln x -bx 2≥0,不合题意;(11分)当b >0时,令g ′(x )=1-2bx2x=0,得x =12b,所以g (x )在⎝ ⎛⎭⎪⎪⎫0,12b 递增,在⎝⎛⎭⎪⎪⎫12b ,+∞递减, 所以g (x )max =g ⎝⎛⎭⎪⎪⎫12b =ln12b -12,要使g (x )>0有解,首先要满足ln12b -12>0,解得b <12e. ①(13分)又因为g (1)=-b <0,g (e 12)=12-b e>0,要使f (x )<ln x 的解集(m ,n )中只有一个整数,则⎩⎪⎨⎪⎧g (2)>0,g (3)≤0,即⎩⎪⎨⎪⎧ln2-4b>0,ln3-9b ≤0,解得ln39≤b <ln24. ②(15分)设h (x )=lnx x,则h ′(x )=1-lnx x2,当x ∈(0,e)时,h ′(x )>0,h (x )递增;当x ∈(e,+∞)时,h ′(x )<0,h (x )递减.所以h (x )max =h (e)=1e>h (2)=ln22,所以12e >ln24,所以由①和②得,ln39≤b <ln24.(16分)(注:用数形结合方法做只给2分)6,(2019某某,某某一模)若函数y =f(x)在x =x 0处取得极大值或极小值,则称x 0为函数y =f(x)的极值点.设函数f(x)=x 3-tx 2+1(t ∈R ).(1) 若函数f (x )在(0,1)上无极值点,求t 的取值X 围;(2) 求证:对任意实数t ,函数f (x )的图像总存在两条切线相互平行;(3) 当t =3时,函数f (x )的图像存在的两条平行切线之间的距离为4,求满足此条件的平行线共有几组.规X 解答 (1)由函数f(x)=x 3-tx 2+1,得f ′(x)=3x 2-2tx.由f ′(x)=0,得x =0,或x =23t.因为函数f(x)在(0,1)上无极值点,所以23t ≤0或23t ≥1,解得t ≤0或t ≥32.(4分)(2)令f ′(x)=3x 2-2tx =p,即3x 2-2tx -p =0,Δ=4t 2+12p.当p >-t23时,Δ>0,此时3x 2-2tx -p =0存在不同的两个解x 1,x 2.(8分)设这两条切线方程为分别为y =(3x21-2tx 1)x -2x31+tx21+1和y =(3x22-2tx 2)x -2x32+tx22+1.若两切线重合,则-2x31+tx21+1=-2x32+tx22+1,即2(x21+x 1x 2+x22)=t(x 1+x 2),即2=t(x 1+x 2).而x 1+x 2=2t 3,化简得x 1·x 2=t29,此时(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=4t29-4t29=0,与x 1≠x 2矛盾,所以,这两条切线不重合.综上,对任意实数t,函数f(x)的图像总存在两条切线相互平行.(10分)(3)当t =3时f(x)=x 3-3x 2+1,f ′(x)=3x 2-6x.由(2)知x 1+x 2=2时,两切线平行.设A(x 1,x31-3x21+1),B(x 2,x32-3x22+1),不妨设x 1>x 2,则x 1>1.过点A 的切线方程为y =(3x21-6x 1)x -2x31+3x21+1.(11分)所以,两条平行线间的距离 d =|2x32-2x31-3(x22-x21)|1+9(x21-2x 1)2=|(x2-x1)|1+9(x21-2x 1)2=4,化简得(x 1-1)6=1+92,(13分)令(x 1-1)2=λ(λ>0),则λ3-1=9(λ-1)2,即(λ-1)( λ2+λ+1)=9(λ-1)2,即(λ-1)( λ2-8λ+10)=0.显然λ=1为一解,λ2-8λ+10=0有两个异于1的正根,所以这样的λ有3解.因为x 1-1>0,所以x 1有3解,所以满足此条件的平行切线共有3组.(16分)7,(2018某某,某某一调)已知函数g(x)=x 3+ax 2+bx(a,b ∈R )有极值,且函数f (x )=(x +a )e x 的极值点是g (x )的极值点,其中e 是自然对数的底数.(极值点是指函数取得极值时对应的自变量的值)(1) 求b 关于a 的函数关系式;(2) 当a >0时,若函数F (x )=f (x )-g (x )的最小值为M (a ),证明:M (a )<-73.思路分析 (1) 易求得f(x)的极值点为-a -1,则g ′(-a -1)=0且g ′(x)=0有两个不等的实数解,解之得b 与a 的关系.(2) 求导得F ′(x)=(x +a +1)(e x -3x +a +3),解方程F ′(x)=0时,无法解方程e x -3x +a +3=0,构造函数h(x)=e x -3x +a +3,证得h(x)>0,所以-a -1为极小值点,而且得出M(a),利用导数法证明即可.规X 解答 (1) 因为f ′(x)=e x +(x +a)e x =(x +a +1)e x ,令f ′(x)=0,解得x =-a -1.列表如下:所以x =-a -1时,f(x)取得极小值.(2分)因为g ′(x)=3x 2+2ax +b,由题意可知g ′(-a -1)=0,且Δ=4a 2-12b>0,所以3(-a -1)2+2a(-a -1)+b =0,化简得b =-a 2-4a -3.(4分)由Δ=4a 2-12b =4a 2+12(a +1)(a +3)>0,得a ≠-32.所以b =-a 2-4a -3⎝⎛⎭⎪⎫a ≠-32.(6分)(2) 因为F(x)=f(x)-g(x)=(x +a)e x -(x 3+ax 2+bx),所以F ′(x)=f ′(x)-g ′(x)=(x +a +1)e x -[3x 2+2ax -(a +1)(a +3)]=(x +a +1)e x -(x +a +1)(3x -a -3)=(x +a +1)(e x -3x +a +3).(8分)记h(x)=e x -3x +a +3,则h ′(x)=e x -3,令h ′(x)=0,解得x =ln 3.列表如下:所以x =ln 3时,h(x)取得极小值,也是最小值,此时,h(ln 3)=e ln 3-3ln 3+a +3=6-3ln 3+a=3(2-ln 3)+a=3ln e23+a>a>0.(10分)所以h(x)=e x -3x +a +3≥h(ln 3)>0,令F ′(x)=0,解得x =-a -1.列表如下:所以x =-a -1时,F(x)取得极小值,也是最小值.所以M(a)=F(-a -1)=(-a -1+a)e -a -1-[(-a -1)3+a(-a -1)2+b(-a -1)]=-e -a -1-(a +1)2(a +2).(12分)令t =-a -1,则t<-1,记m(t)=-e t -t 2(1-t)=-e t +t 3-t 2,t<-1,则m ′(t)=-e t +3t 2-2t,t<-1.因为-e -1<-e t <0,3t 2-2t>5,所以m ′(t)>0,所以m(t)单调递增.(14分)所以m(t)<-e -1-2<-13-2=-73,即M(a)<-73.(16分)。
高考中三次函数图像的切线问题
当-一 时Байду номын сангаас,: 以 点 有 条 同 麦 , 所 过 P 2不 ≠ , ≠
的切线. 其切线方程 为
Y— I 3 + bl c ( I , Y =( 2x + ) — )
( 若。一 且(g一 >则 P 2 ,g。( 0 过 ) ≠ ) , )
点恰 有 1条切线 0
次 函数 图像 中i 对称. 所以斜率为 k的切线有 2条.
维普资讯
・
3 6・
中学教研 ( 数学)
( )若 = 一 b 1
,
20 年第8 06 期
合 , 以过 点 P 有 且 只 有 1 切 线 . 所 条
则 过点 P恰有一条切线 ;
0 图像 上任一 点, ) 则过点 P 定有直线与 Y , 的 一 = () 图像相切. 若点 P为三次 函数 图像 的对称 中心 , 过 则 点 P有且只有一条切线 ; 若点 P不 是 三次 函数 图像 的对称 中心 , 则过点 P有 2 条不 同的切线.
证明 设 P( ,。 , 。Y ) 过点 P 的切线可 以分 为两
・
高考 与 中考
r b
擘
教 研
山
高 考 中 三 次 函 数 图 像 的 切 线 问 题
●罗永高 程雪飞 ( 奉化 浙江 奉港中 35 0 学 1 0) 5
・
学
救 研
山
生
生
教
研
救
研
高 考与 中考
高考 与 中考 ・・ 高考 与 中考 ・ ・ 高考 与 中考 ・ ・ 考与 中考 ・ ・ 考 与中考 ・・ 考与 中考 ・ ・ 高 高 高 高考与 中考 ・・ 高考 与 中考
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 三次函数切线问题 一、过三次函数上一点的切线问题。 设点P为三次函数)0()(23adcxbxaxxf图象上任一点,则过点P一定有直线与)(xfy的图象相切。若点P为三次函数图象的对称中心,则过点P有且只有一条切线;若点P不是三次函数图象的对称中心,则过点P有两条不同的切线。
证明 设),(11yxP 过点P的切线可以分为两类。
1、 P为切点 cbxaxxfk1211/123)(, 切线方程为:))(23(11211xxcbxaxyy P不是切点,过P点作)(xfy图象的切线,切于另一点Q(22,yx)
12122122313212122xxcxcxbxbxaxaxxxyyk
cbxbxaxxaxax21212122
又 cbxaxxfk2222/223)( (1) cbxbxaxxaxax
21212122cbxax22223
即0)2)((1212abxxxx abxx22112代入(1)式
得 cabbxaxk4214
32
1212
讨论:当21kk时,cbxax12123cabbxax421432121,得abx31, 当abx31时,两切线重合,所以过点P有且只有一条切线。
当abx31时,21kk,所以过点P有两条不同的切线。 其切线方程为:))(23(11211xxcbxaxyy
))(42143(121211xxcabbxaxyy 由上可得下面结论: 过三次函数)0()(23adcxbxaxxf上异于对称中心的任一点),(111yxP作)(xfy图象的切 2
线,切于另一点),(222yxP,过),(222yxP作)(xfy图象的切线切于),(333yxP,如此继续,得到点列),(444yxP----),(nnnyxP----,则abxxnn2211,且当n时,点趋近三次函数图象的对称中心。
证明:设过),(nnnyxP与)(xfy图象切于点),(111nnnyxP的切线为1nnPP, cbxbxaxxaxaxxxyyknnnnnnnnnn12121
1
1
又 cbxaxxfknnn1211/23)(
cbxbxaxxaxaxnnnnnn12121=cbxaxnn12123
即 0)2)((11abxxxxnnnn abxxnn2211
设)(211nnxx 则ab3
数列}3{abxn是公比为21的等比数列,
11)21)(3(3n
nabxa
bx
即 abxnn3lim。
(2)过三次函数外一点的切线问题。 设点),(00yxP为三次函数)0()(23adcxbxaxxf图象外,则过点P一定有直线与
)(xfy图象相切。
(1)若,30abx则过点P恰有一条切线; (2) 若,30abx且)3()(0abgxg0,则过点P恰有一条切线; (3) 若,30abx且)3()(0abgxg=0,则过点P有两条不同的切线; (4)若,30abx且)3()(0abgxg0,则过点P有三条不同的切线。 其中).)(()()(0/0xxxfxfyxg 证明 设过点P作直线与)(xfy图象相切于点),,(11yxQ 则切线方程为 ),)(23(11211xxcbxaxyy 把点),(00yxP代入得: 02)3(2001021031cxdyxbxxaxbax, 3
设.2)3(2)(000203cxdyxbxxaxbaxxg ,2)3(26)(002/bxxaxbaxxg ,)3(448)3(420020baxabxaxb 令,0)(/xg则.3,0abxxx 因为0)(xg恰有一个实根的充要条件是曲线)(xgy与X轴只相交一次,即)(xgy在R上为单调函数或两极值同号,所以,30abx或,30abx且)3()(0abgxg0时,过点P恰有一条切线。 0)(xg有两个不同实根的充要条件是曲线)(xgy与X轴有两个公共点且其中之一为切点,所以
,30abx且)3()(0abgxg=0时,过点P有两条不同的切线。
0)(xg有三个不同实根的充要条件是曲线)(xgy与X轴有三个公共点,即)(xgy有一个极大值,
一个极小值,且两极值异号。所以,30abx且)3()(0abgxg0时,过点P有三条不同的切线。 例题讲解: 例1、已知函数3yxx,求过点1,0A的切线方程。
例2、(2010湖北文数)设函数321axxbxc32f(x)=,其中a>0,曲线xyf()在点P(0,0f())处的切线方程为y=1 (Ⅰ)确定b、c的值。
(Ⅱ)设曲线xyf()在点(11xxf,())及(22xxf,())处的切线都过点(0,2)证明:当12xx时,
12'()'()fxfx (Ⅲ)若过点(0,2)可作曲线xyf()的三条不同切线,求a的取值范围。
例3、已知函数321()3fxxaxbx,且'(1)0f (1) 试用含a的代数式表示b,并求()fx的单调区间; (2)令1a,设函数()fx在1212,()xxxx处取得极值,记点M (1x,1()fx),N(2x,2()fx),P(,()mfm), 12xmx,请仔细观察曲线()fx在点P处的切线与线段MP的位置变化趋势,并解释以下问题:
(I)若对任意的m (1x, x2),线段MP与曲线f(x)均有异于M,P的公共点,试确定t的最小值,并证明你的结论; 4
(II)若存在点Q(n ,f(n)), x n< m,使得线段PQ与曲线f(x)有异于P、Q的公共点,请直接写出m的取值范围(不必给出求解过程)
三次函数切线作业 1、曲线33yxx在点(2,14)P处的切线方程是 。 2、已知曲线C:3()2fxxx,则经过点(1,2)P的曲线C的切线方程是 。 3、已知曲线C:32()32fxxxxa的一条切线方程为2yx,则实数a的值等于 。 4、已知函数323fxaxbxx在1x处取得极值。 (Ⅰ)求函数f(x)的解析式; (Ⅱ)求证:对于区间[-1,1]上任意两个自变量的值12,xx,都有124fxfx; (Ⅲ)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围. 5、已知函数.3()2fxxax与2()gxbxcx的图象都过点P(2,0),且在点P处有公共切线. (1)求f(x)和g(x)的表达式及在点P处的公切线方程; (2)设()()ln(1)8mgxFxxx,其中0m,求F(x)的单调区间. 5
三次函数切线问题参考答案 例1、解:231fxx, 若A是切点,则切线方程为02122yxyx
若A不是切点,设切点为3,ttt,则切线方程为3231ytttxt,将1,0A代入得23232223102211210ttttttt,所以切点为13,28,则切线方程为410xy。
小结:求切线方程步骤,先判断点是否在曲线上,如不在曲线上,则参照第二小步设切点坐标,若在曲线上,讨论已知点是否为切点,若为切点,由导数可直接求得斜率。
例2、 6 例3、解法一: (Ⅰ)依题意,得2'()2fxxaxb
由'(1)12021fabba得.
从而321()(21),'()(1)(21).3fxxaxaxfxxxa故
令'()0,112.fxxxa得或 ①当a>1时, 121a 当x变化时,'()fx与()fx的变化情况如下表:
x (,12)a (12,1)a (1,) '()fx + - + 7
()fx 单调递增 单调递减 单调递增
由此得,函数()fx的单调增区间为(,12)a和(1,),单调减区间为(12,1)a。 ②当1a时,121a此时有'()0fx恒成立,且仅在1x处'()0fx,故函数()fx的单调增区间为R ③当1a时,121a同理可得,函数()fx的单调增区间为(,1)和(12,)a,单调减区间为
(1,12)a 综上: 当1a时,函数()fx的单调增区间为(,12)a和(1,),单调减区间为(12,1)a;
当1a时,函数()fx的单调增区间为R; 当1a时,函数()fx的单调增区间为(,1)和(12,)a,单调减区间为(1,12)a.
(Ⅱ)由1a得321()33fxxxx令2()230fxxx得121,3xx 由(1)得()fx增区间为(,1)和(3,),单调减区间为(1,3),所以函数()fx在处12
1,3xx
取得极值,故M(51,3)N(3,9)。 观察()fx的图象,有如下现象: ①当m从-1(不含-1)变化到3时,线段MP的斜率与曲线()fx在点P处切线的斜率()fx之差Kmp-'()fm的值由正连续变为负。 ②线段MP与曲线是否有异于H,P的公共点与Kmp-'()fm的m正负有着密切的关联;
③Kmp-'()fm=0对应的位置可能是临界点,故推测:满足Kmp-'()fm的m就是所求的t最小值,下面给出证明并确定的t最小值.曲线()fx在点(,())Pmfm处的切线斜率2'()23fmmm;
线段MP的斜率Kmp2453mm 当Kmp-'()fm=0时,解得12mm或 直线MP的方程为22454()33mmmmyx
令22454()()()33mmmmgxfxx