圆周运动专题.doc

圆周运动专题.doc
圆周运动专题.doc

.

圆周运动专题

1.如图所示,为一皮带传动装置,右轮的半径为

r ,a 是它的边缘上的一点,左侧是一轮轴,大轮的半径

为 4r ,小轮的半径为 2r ,b 点在小轮上,到小轮中心距离为 r ,c 点和 d 点分别位于小轮和大轮的边缘上,

若在传动过程中,皮带不打滑,则( )

( A ) a 点与 b 点线速度大小相等( B )a 点与 c 点角速度大小相等

( C )a 点与 d 点向心加速度大小相等(

D ) a 、b 、 c 、 d 四点,加速度最小的是 b 点

2 、如图所示,小物块 A 与圆盘保持相对静止,跟着圆盘一起作匀速圆周运动,则下列关于 A 的受力情况说法

正确的是(

A .受重力、支持力

B .受重力、支持力和指向圆心的摩擦力

C .受重力、支持力、摩擦力和向心力

D .受重力、支持力和与运动方向相同的摩擦力

3 、如图所示,为一在水平面内做匀速圆周运动的圆锥摆,关于摆球 A 的受力情况,下列说法中正确的是(

A .摆球 A 受重力、拉力和向心力的作用

B .摆球 A 受拉力和向心力的作用

C .摆球 A 受拉力和重力的作用

D .摆球 A 受重力和向心力的作用

4 .一个内壁光滑的圆锥筒的轴线是竖直的,圆锥筒固定,有质量相同的两个小球 A 和 B 贴着筒的内壁在水

平面内做匀速圆周运动,如图所示,

A 的运动半径较大,则 (

)

A .A 球的角速度必小于

B 球的角速度 B . A 球的线速度必小于 B 球的线速度

C . A 球运动的周期必大于 B 球运动的周期

D . A 球对筒壁的压力必大于

B 球对筒壁的压力

5 .(2012 ·西安联)考如图 4- 3 -12 所示, 质量为 m 的物块从半径为 R 的半球形碗边向碗底滑动,滑到最低点 时的速度为 v ,若物块滑到最低点时受

图 4- 3- 12 到的摩擦力是

f ,则物块与碗的动摩擦因数为 ()

f

f

f

f

A.

B.

v

2

C.

D.

mg

v

2

v 2

mg + m R

mg -m R m R

6.如图 1

1

()

所示,某物体沿 光滑圆弧轨道由最高点滑到最低点过程中,物体的速率逐渐增大,则

4 A .物体的合外力为零

B .物体的合力大小不变,方向始终指向圆心O

C .物体的合外力就是向心力

D .物体的合力方向始终与其运动方向不垂直(最低点除外)

图 7.(2012

·兰州检)测如图 4- 3 -13 所示,一根细线下端拴一个金属小球 ,细线的上端固定在金属块

Q

P 上, Q 放在带小孔的水平桌面上。小球在某一水平面内做匀速圆周运动。现使小球改到一个更高一些的水

平面上做匀速圆周运动 ( 图上未画出 ) ,两次金属块 Q 都保持在桌面上静止。则后一种情况与原来相比较,下面的判断中正确的是 (

)

A .Q 受到桌面的支持力变大

B . Q 受到桌面的静摩擦力变大

C .小球 P 运动的角速度变大

D .小球 P 运动的周期变大

8.如图 9 所示,放置在水平地面上的支架质量为 M ,支架顶端用细绳拴着的摆球质量为 m ,现将摆球拉至水平位置,而后释放,

.

摆球运动过程中,支架始终不动,以下说法正确的是

( )

A .在释放前的瞬间,支架对地面的压力为

(m +M )g B .在释放前的瞬间,支架对地面的压力为

Mg

C .摆球到达最低点时,支架对地面的压力为

(m +M )g

D .摆球到达最低点时,支架对地面的压力为(3 m +M )g

图 9

9 .两个质量相同的小球用轻绳系住,并悬挂在天花板上的同一点,现让两小球在同一水平面内做匀速圆周 运动,如图所示,其中

A 的半径比

B 大,则下列说法中正确的是 ( )

A .A 的向心力比

B 的大

B . A 对绳的拉力等于 B 对绳的拉力

C . A 的角速度比 B 的大

D . A 的角速度等于 B 的角速度 10 .小球 m 用长为 L 的悬线固定在

O 点,在 O 点正下方 L/2 处有一个光滑钉子

C ,如图所示,今把小球拉到悬线成水平后无初

速度地释放,当悬线成竖直状态且与钉子相碰时

( A )小球的速度突然增大( B )小球的角速度突然增大

( C )小球的向心加速度突然增大( D )悬线的拉力突然增大

11 .如图所示,两根长度相同的细绳,连接着相同的两个小球,让它们在光滑水平面内做匀速圆周运动,其中 O 为圆心,两段绳

子在同一直线上,此时,两段绳子受到的拉力之比 T 1∶T 2 为(

A .1∶1

B . 2∶1

C .3 ∶2

D .3∶1

12

O

12 .甲、乙两名滑冰运动员, m 甲=80 kg , m 乙 =40 kg ,面对面拉着弹簧秤做匀速圆周运动的滑冰表演, 如图 5 所示,两人相距 0.9 m ,弹簧秤的示数为 9.2 N ,下列判断中正确的是 ()

A .两人的线速度相同,约为

40 m/s

B .两人的角速度相同,为 6 rad/s

C .两人的运动半径相同,都是 0.45 m

D .两人的运动半径不同,甲为

0.3 m ,乙为 0.6 m

13 .如下图所示,将完全相同的两个小球

A 、

B ,用长 L =0.8 m 的细绳悬于以 v =4 m / s 向右匀速运动

的小车顶部, 两球与小车前后壁接触, 由于某种原因, 小车突然停止运动, 此时悬线的拉力之比 B ∶ A 为(

g =10 m

F F

/ s 2) () A.1 ∶1

B.1∶2

C.1∶3

D.1∶4

14 .在光滑平面中,有一转动轴垂直于此平面,交点 O 的上方 h 处固定一细绳的一端,绳的另一端固定一质量为

m 的小球 B ,绳长 AB = l > h ,小球可随转动轴转动并在光滑水平面上做匀速圆周运动,如图

2 -10 所示,要使球

不离开水平面,转动轴转速的最大值是 (

)

1

g

1

g l A. B .π gh

C. l

D . 2 π

2 πh

2 π

g

15 .质量不计的轻质弹性杆 P 插在桌面上,杆上套有一个质量为 m 的小球,今使小球沿水平方向做半径为R

的匀速圆周运动,角速度为 ω,如图 2 - 13 所示,则杆的上端受到的作用力大小为(

)

A .m ω 2R B. m 2g 2-m 2 ω4R 2 C.

m 2 g 2 + m 2 ω4R 2

D .不能确定

16. 小球 A 和 B 用细线连接, 可以在光滑的水平杆上无摩擦地滑动, 已知它们的质量之比

m 1∶m 2 =3∶

1 ,当这一装置绕着竖直轴做匀速转动且 A 、 B 两球与水平杆子达到相对静止时

(如图 37-4 所示 ),A 、

B 两球做匀速圆周运动的( )

A .线速度大小相等

B .角速度相等

.

C .向心力的大小之比为

F 1∶F 2= 3 ∶1

D .半径之比为 r 1∶r 2=1 ∶3

17 .半径为 R 的光滑半圆球固定在水平面上,顶部有一小物体,如图所示.今给小物体一个水平初

速度 v 0 = gR ,则物体将 (

)

A .沿球面滑至 M 点

B .先沿球面滑至某点

N 再离开球面做斜下抛运动

C .按半径大于 R 的新圆形轨道运动

D .立即离开半圆球做平抛运动

18 (2013 ·江苏高考)如图 1 - 3- 12 所示,“旋转秋千”中的两个座椅 A 、B 质量相等,通过相同长度

的缆绳悬挂在旋转圆盘上。不考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说 法正确的是 ()

A .A 的速度比

B 的大

B .A 与 B 的向心加速度大小相等

C .悬挂 A 、B 的缆绳与竖直方向的夹角相等

D .悬挂 A 的缆绳所受的拉力比悬挂

B 的小 19 、有一运输西瓜的汽车,以 5m/s

的速率通过一个半径为 R =10m 的凹形桥, 车经凹形桥最低点时, 车中间一个质量为 6kg 的 大西瓜受到周围西瓜对它的作用力大小为

(g 取 10m/s

2

)(

A.60N

B.75N

C.45N

D.0N

20 、如图 4 所示, a 、b 、c 三物体放在旋转水平圆台上 ,它们与圆台间的动摩擦因数均相同,已知

a 的质量为

2 m , b 和 c 的质量均为

m , a 、b 离轴距离为

R ,c 离轴距离为 2 。当圆台转动时 ,三物均没有打滑,则: (设

R

最大静摩擦力等于滑动摩擦力)( )

A .这时 c 的向心加速度最大

B .这时 b 物体受的摩擦力最小

C .若逐步增大圆台转速, c 比 b 先滑动

D .若逐步增大圆台转速, b 比 a 先滑动

21 、一物体做匀速圆周运动的半径为

r ,线速度大小为 v ,角速度为 ω,周期为 T 。关于这些物理量的关系, 下列说法正确的是 (

A .v = ω/r

B . v =

C .ω=

D .v = ωr

22 .如图 7 所示,一只光滑的碗水平放置,其内放一质量为 m 的小球,开始时小球相对于碗静止于碗底,

图 7

则下列哪些情况能使碗对小球的支持力大于小球的重力

A .碗竖直向上作加速运动

B .碗竖直向下作减速运动.

C .当碗突然向上减速瞬间

D .当碗由水平匀速运动而突然静止时

23 如图所示,已知半圆形碗半径为 R ,质量为 M ,静止在地面上,质量为

m 的滑块滑到圆弧最底端速率

为 v ,碗仍静止,此时地面受到碗的压力为(

A .mg+mv 2

2

C.Mg+mg

D.Mg+mg- mv

2

/R

/R B.Mg+mg+ mv /R

长为 L 的细绳,一端系一质量为 m 的小球,另一端固定于某点,当绳竖直时小球静止,再给小球一水平初速度 v 0 ,使小球在竖直

平面内做圆周运动,并且刚好能过最高点,则下列说法中正确的是()

A .小球过最高点时速度为零

B .小球开始运动时绳对小球的拉力为

m v 0 2

L

C .小球过最高点时绳对小球的拉力为

mg D .小球过最高点时速度大小为

Lg

图 10

.

以速度 v 匀速向右运动,当滚轮碰到固定挡板 B 突然停止瞬间,物体m 的速度为,绳子拉力的大小为。

25 、一辆质量m =2.0t的小轿车,驶过半径R=100m的一段圆弧形桥面。

(南) (1) 若桥面为凹形,汽车以20m/s通过桥面最低点时,对桥面的压力是多大?

(中) (2) 若桥面为凸形,汽车以10m/s通过桥面最高点时,对桥面的压力是多大?

(北) (3) 汽车以多大速度凸形桥面顶点时,对桥面刚好没有压力?

25 如图 1 所示,质量分别为

M 和

m

的两个小球

A

、套在光滑水平直杆

P

上.整个直杆被固定于竖直转轴上,并保持水平.两B

球间用劲度系数为 k、原长为 L 的轻质弹簧连接在一起.左边小球被轻质细绳拴在竖直转轴上,细绳长度也为L.现使横杆 P 随竖直转轴一起在水平面内匀速转动,转动角速度为ω,则当弹簧长度稳定后,细绳的拉力大小和弹簧的总长度各为多少?

26 .(2009 ·广东高考) 如图所示,一个竖直放置的圆锥筒可绕其中心OO ′转动,筒内壁粗糙,筒口半径和筒高分别为R 和 H ,筒内壁 A 点的高度为筒高的一半.内壁上有一质量为m 的小物块 .求

( 1)当筒不转动时,物块静止在筒壁 A 点受到的摩擦力和支持力的大小;

( 2)当物块在 A 点随筒做匀速转动,且其受到的摩擦力为零时,筒转动的角速度.

如图所示,半径为R 的半球形碗内,有一个具有一定质量的物体A,A 与碗壁间的动摩擦因数为,当碗绕竖直轴 OO 匀速转动时,物体A刚好能紧贴在碗口附近随碗一起匀速转动而不发生相对滑动,求碗转动的角速度.

.

一辆载重汽车的质量为4m,通过半径为R 的拱形桥,若桥顶能承受的最大压力为F3mg ,为了安全行驶,汽车应以多大速度通过桥顶?

呼和浩特圆周运动专题练习(word版

一、第六章 圆周运动易错题培优(难) 1.如图所示,用一根长为l =1m 的细线,一端系一质量为m =1kg 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=30°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T ,取g=10m/s 2。则下列说法正确的是( ) A .当ω=2rad/s 时,T 3+1)N B .当ω=2rad/s 时,T =4N C .当ω=4rad/s 时,T =16N D .当ω=4rad/s 时,细绳与竖直方向间夹角 大于45° 【答案】ACD 【解析】 【分析】 【详解】 当小球对圆锥面恰好没有压力时,设角速度为0ω,则有 cos T mg θ= 2 0sin sin T m l θωθ= 解得 053 2 rad/s 3 ω= AB .当02rad/s<ωω=,小球紧贴圆锥面,则 cos sin T N mg θθ+= 2sin cos sin T N m l θθωθ-= 代入数据整理得 (531)N T = A 正确, B 错误; CD .当04rad/s>ωω=,小球离开锥面,设绳子与竖直方向夹角为α,则 cos T mg α= 2sin sin T m l αωα= 解得

16N T =,o 5 arccos 458 α=> CD 正确。 故选ACD 。 2.如图所示,水平圆盘可绕竖直轴转动,圆盘上放有小物体A 、B 、C ,质量分别为m 、2m 、3m ,A 叠放在B 上,C 、B 离圆心O 距离分别为2r 、3r 。C 、B 之间用细线相连,圆盘静止时细线刚好伸直无张力。已知C 、B 与圆盘间动摩擦因数为μ,A 、B 间摩擦因数为3μ,设最大静摩擦力等于滑动摩擦力,重力加速度为g ,现让圆盘从静止缓慢加速,则( ) A .当23g r μω=时,A 、B 即将开始滑动 B .当2g r μω=32 mg μ C .当g r μω=C 受到圆盘的摩擦力为0 D .当25g r μω=C 将做离心运动 【答案】BC 【解析】 【详解】 A. 当A 开始滑动时有: 2033A f mg m r μω==?? 解得: 0g r μω= 当23g g r r μμω=

匀速圆周运动专题

A 从动轮做顺时针转动 B.从动轮做逆时针转动 匀速圆周运动专题 从现行高中知识体系来看,匀速圆周运动上承牛顿运动定律,下接万有引力,因此在高一物理中占 据极其重要的地位,同时学好这一章还将为高二的带电粒子在磁场中的运动及高三复习中解决圆周运动 的综合问题打下良好的基础。 (一)基础知识 1. 匀速圆周运动的基本概念和公式 (1) 线速度大小,方向沿圆周的切线方向,时刻变化; (2) 角速度,恒定不变量; (3)周期与频率; (4) 向心力,总指向圆心,时刻变化,向心加速度 ,方向与向心力相同; (5) 线速度与角速度的关系为 ,、、、的关系为。所以在、、中若一个量确定,其余两个量 也就确定了, 而还和有关。 2. 质点做匀速圆周运动的条件 (1) 具有一定的速度; (2) 受到的合力(向心力)大小不变且方向始终与速度方向垂直。合力(向心力)与速度始终在一个确 定不变的平面内且一定指向圆心。 3. 匀速圆周运动的动力学特征 (1) 始终受合外力作用, 且合外力提供向心力, 其大小不变,始终指向圆心,因合力始终与速度垂直, 所以合力不做功. (2) 匀速圆周运动的动力学方程 根据题意,可以选择相关的运动学量如 v ,3, T , f 列出动力学方程;,,, 熟练掌握这些方程,会给解题带来方便. 4. 变速圆周运动的动力学特征 (1)受合外力作用,但合力并不总是指向圆心, 且合力的大小也是可以变化的, 故合力可对物体做功, 物体的速率也在变化. (2)合外力的分力(在某些位置上也可以是合外力 )提供向心力. 例题1?在图1中所示为一皮带传动装置,右轮的半径为 r , a 是它边缘上的一点,左侧是一轮轴,大轮 的半径为4r ,小轮的半径为2r 。b 点在小轮上,到小轮中心的距离为 的边缘上。若在传动过程中,皮带不打滑。则( ) A . a 点与b 点的线速度大小相等 B . a 点与b 点的角速度大小相等 C . a 点与c 点的线速度大小相等 D. a 点与d 点的向心加速度大小相等 说明:在分析传动装置的各物理量时,要抓住等量和不等量之间 如同轴各点的角速度相等,而线速度与半径成正比;通过皮带传 虑皮带打滑的前提下)或是齿轮传动,皮带上或与皮带连接的两轮边缘的各点及 齿轮上的各点线速度大小相等、角速度与半径成反比。 练习 1.如图所示的皮带转动装置,左边是主动轮,右边是一个轮轴, ,。假设在传动过 程中皮带不打滑,则皮带轮边缘上的 A 、B C 三点的角速度之比是 ___________ ;线 r 。 c 点和d 点分别于小轮和大轮 的关系。 动(不考 a r 4r d - 'Jr 图1

高考专题复习:圆周运动(精选.)

圆周运动 1.物体做匀速圆周运动的条件: 匀速圆周运动的运动条件:做匀速圆周运动的物体所受合外力大小不变,方向总是和速度方向垂直并指向圆心。 2.描述圆周运动的运动学物理量 (1)圆周运动的运动学物理量有线速度v 、角速度ω、周期T 、转速n 、向心加速度a 等。它们之间的关系大多是用半径r 联系在一起的。如:T r r v πω2= ?=,2 2224T r r r v a πω===。要注意转速n 的单位为r/min ,它与周期的关系为n T 60=。 (2)向心加速度的表达式中,对匀速圆周运动和非匀速圆周运动均适用的公式有: ωωv r r v a ===22 ,公式中的线速度v 和角速度ω均为瞬时值。只适用于匀速圆周运动 的公式有:2 24T r a π= ,因为周期T 和转速n 没有瞬时值。 例题1.在图3-1中所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧是一轮轴,大轮的半径为4r ,小轮的半径为2r 。 b 点在小轮上,到小轮中心的距离为r 。 c 点和 d 点分别于小轮和大轮的边缘上。若在传动过程中,皮带不打滑。则( ) A .a 点与b 点的线速度大小相等 B .a 点与b 点的角速度大小相等 C .a 点与c 点的线速度大小相等 D .a 点与d 点的向心加速度大小相等 练习 1.如图3-4所示的皮带转动装置,左边是主动轮,右边是一个轮轴,2:1:=c A R R ,3:2:=B A R R 。假设在传动过程中皮带不打滑,则皮带轮边缘上的A 、B 、C 三点的角速度之比是 ;线速度之比是 ;向心加速度之比是 。 2.图示为某一皮带传动装置。主动轮的半径为r 1,从动轮的半径为r 2。已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打 图3-1 4r 2r r r a b c d 图3-4

圆周运动专题汇编(必须掌握经典题目)

r m 高一期末考试题目 圆周运动专题汇编 ——高一必须掌握的经典题目 一、选择题[共53题] .............................................................................................................. 1 二、填空题[共9题] ................................................................................................................ 9 三、实验题[共2题] .............................................................................................................. 11 四、计算题[共6题] .............................................................................................................. 12 [编者按]高一不可能一步达到高三的水平,到底需要掌握哪些题型?打开历年的高一中考、末考题目,就可以心中有数了。这是笔者从138套历年全国各地高一期末考试题目中挑选的题目,选择题[共53题],填空题[共9题],实验题[共2题],计算题[共6题],共70道,不涉及与机械能联系的题目,汇编成一体,供讲新课的老师参考。 一、选择题[共53题] 1、如图所示,用长为L 的细绳拴着质量为m 的小球在竖直平面内做圆周运动,则( ) A .小球在最高点时所受向心力一定为重力 B .小球在最高点时绳子的拉力不可能为零 C .若小球刚好能在竖直面内做圆周运动,则其在最高点速率是gL D .小球在圆周最低点时拉力可能等于重力 2、在质量为M 的电动机的飞轮上,固定着一个质量为m 的重物,重物到转轴的距离为r , 如图所示,为了使放在地面上的电动机不会跳起,电动机飞轮的角速度不能超过( ) A . g mr m M + B .g mr m M + C .g mr m M - D . mr Mg 3.关于匀速圆周运动的向心加速度,下列说法正确的是: A .大小不变,方向变化 B .大小变化,方向不变 C .大小、方向都变化 D .大小、方向都不变 4.同一辆汽车以同样大小的速度先后开上平直的桥和凸形桥,在桥的中央处有: A .车对两种桥面的压力一样大 B .车对平直桥面的压力大 C .车对凸形桥面的压力大 D .无法判断 5、洗衣机的脱水筒在转动时有一衣物附在筒壁上,如图所示,则此时: A .衣物受到重力、筒壁的弹力和摩擦力的作用 B .衣物随筒壁做圆周运动的向心力是由摩擦力提供的

2019届高考物理二轮复习专题一力与运动考点四抛体运动与圆周运动真题汇编

考点四 抛体运动与圆周运动 1.(2018·全国卷Ⅲ ·T17) 在一斜面顶端,将甲、乙两个小球分别以v 和2 v 的速度沿同一方向水平抛出,两球都落在该斜面上。甲球落至斜面时的速率是乙球落至斜面时速率的 ( ) A.2倍 B.4倍 C.6倍 D.8倍 【解析】选A 。两球都落在该斜面上,其位移与水平方向夹角相等设为α,其速度与水平方向夹角设为β,据tan β=2tan α,可知两球速度夹角相等,据cos x v v β=可得=22 v v v v =甲乙,故选A 。 2.(2018·北京高考·T8)根据高中所学知识可知,做自由落体运动的小球,将落在起始位置的正下方位置。但实际上,赤道上方200 m 处无初速下落的小球将落在正下方位置偏东约6 cm 处,这一现象可解释为,除重力外,由于地球自转,下落过程小球还受到一个水平向东的“力”,该“力”与竖直方向的速度大小成正比,现将小球从赤道地面竖直上抛,考虑对称性,上升过程该“力”水平向西,则小球 ( ) A.到最高点时,水平方向的加速度和速度均为零 B.到最高点时,水平方向的加速度和速度均不为零 C.落地点在抛出点东侧 D.落地点在抛出点西侧 【解析】选D 。上升过程水平方向向西加速,在最高点竖直方向上速度为零,水平方向上有向西的水平速度,且根据题意知,其水平加速度为0,故A 、B 错;下降过程向西减速,按照对称性落至地面时水平速度为0,整个过程都在向西运动,所以落地点在抛出点的西侧,故C 错,D 正确。 3.(2018·江苏高考 ·T3)某弹射管每次弹出的小球速度相等。在沿光滑竖直轨道自由下落过程中,该弹射管保持水平,先后弹出两只小球。忽略空气阻力,两只小球落到水平地面的 ( ) A.时刻相同,地点相同 B.时刻相同,地点不同 C.时刻不同,地点相同 D.时刻不同,地点不同 【解析】选B 。小球不论是在管内还是在管外,它们竖直方向的加速度都等于g ,因此,落地时间与离开弹射管的先后无关,所以落地时刻相同。先弹出的小球做平抛运动的时间长,后弹出的小球做平抛运动的时间短,因此,两球的水平位移不同,落地点不同。因此选项B 正确。 4.(2018·江苏高考 ·T6)火车以60 m/s 的速率转过一段弯道, 某乘客发现放在桌面上的指南针在10 s 内匀速转过了约10°。在此10 s 时间内,火 车 ( ) A.运动路程为600 m B.加速度为零 C.角速度约为1 rad/s D.转弯半径约为3.4 km

(完整版)高考第二轮复习专题:圆周运动

高考第二轮复习专题: ——物体的圆周运动 圆周运动 1.物体做匀速圆周运动的条件: 匀速圆周运动的运动条件:做匀速圆周运动的物体所受合外力大小不变,方向总是和速度方 向垂直并指向圆心。 2.描述圆周运动的运动学物理量 (1)圆周运动的运动学物理量有线速度v 、角速度ω、周期T 、转速n 、向心加速度a 等。 它们之间的关系大多是用半径r 联系在一起的。如:T r r v πω2=?=,2 2224T r r r v a πω===。要注意转速n 的单位为r/min ,它与周期的关系为n T 60=。 (2)向心加速度的表达式中,对匀速圆周运动和非匀速圆周运动均适用的公式有: ωωv r r v a ===22 ,公式中的线速度v 和角速度ω均为瞬时值。只适用于匀速圆周运动的公式有:2 24T r a π= ,因为周期T 和转速n 没有瞬时值。 例题1.在图3-1中所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧 是一轮轴,大轮的半径为4r ,小轮的半径为2r 。b 点在小轮上,到小轮中心的距离为r 。c 点和d 点分别于小轮和大轮的边缘上。若在传动过程中,皮带不打滑。则( ) A .a 点与b 点的线速度大小相等 B .a 点与b 点的角速度大小相等 C .a 点与c 点的线速度大小相等 D .a 点与d 点的向心加速度大小相等 解析:本题的关键是要确定出a 、b 、c 、d 四点之间的等量关系。因为a 、c 两点在同一皮带 上,所以它们的线速度v 相等;而c 、b 、d 三点是同轴转动,所以它们的角速度ω相等。 所以选项C 正确,选项A 、B 错误。 设C 点的线速度大小为v ,角速度为ω,根据公式v=ωr 和a=v 2/r 可分析出:A 点的向心加速度大小为r v a A 2=;D 点的向心加速度大小为:r v r r r a D 2 22)2(4=?=?=ωω。所以选图3-1

高一物理下,圆周运动复习知识点全面总结

匀速圆周运动专题 从现行高中知识体系来看,匀速圆周运动上承牛顿运动定律,下接万有引力,因此在高一物理中占据极其重要的地位,同时学好这一章还将为高二的带电粒子在磁场中的运动及高三复习中解决圆周运动的综合问题打下良好的基础。 (一)基础知识 1. 匀速圆周运动的基本概念和公式 (1)线速度大小,方向沿圆周的切线方向,时刻变化; (2)角速度,恒定不变量;(3)周期与频率; (4)向心力,总指向圆心,时刻变化,向心加速度,方向与向心力相同; (5)线速度与角速度的关系为,、、、的关系为。所以在、、中若一个量确定,其余两个量也就确定了,而还和有关。 2. 质点做匀速圆周运动的条件 (1)具有一定的速度; (2)受到的合力(向心力)大小不变且方向始终与速度方向垂直。合力(向心力)与速度始终在一个确定不变的平面内且一定指向圆心。 3. 向心力有关说明 向心力是一种效果力。任何一个力或者几个力的合力,或者某一个力的某个分力,只要其效果是使物体做圆周运动的,都可以认为是向心力。做匀速圆周运动的物体,向心力就是物体所受的合力,总是指向圆心;做变速圆周运动的物体,向心力只是物体所受合外力在沿着半径方向上的一个分力,合外力的另一个分力沿着圆周的切线,使速度大小改变,所以向心力不一定是物体所受的合外力。 (二)解决圆周运动问题的步骤 1. 确定研究对象; 2. 确定圆心、半径、向心加速度方向; 3. 进行受力分析,将各力分解到沿半径方向和垂直于半径方向; 4. 根据向心力公式,列牛顿第二定律方程求解。基本规律:径向合外力提供向心力 (三)常见问题及处理要点 1. 皮带传动问题 例1:如图1所示,为一皮带传动装置,右轮的半径为r,a是它边缘上的一点,左侧是一轮轴,大轮的半径为4r,小轮的半径为2r,b点在小轮上,到小轮中心的距离为r,c点和d点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则() A. a点与b点的线速度大小相等 B. a点与b点的角速度大小相等 C. a点与c点的线速度大小相等 D. a点与d点的向心加速度大小相等

圆周运动专题训练(含答案)

圆周运动专题训练(含答案) 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

圆周运动专题训练<含答案) (时间:45分钟,满分:100分> 一、单项选择题(本题共6小题,每小题7分,共计42分,每小题只有一个选项符合题意> 1.发射人造卫星是将卫星以一定的速度送入预 定轨道.发射场一般选择在尽可能靠近赤道的地 方,如图1所示.这样选址的优点是,在赤道附近 (>b5E2RGbCAP A.地球的引力较大 B.地球自转线速度较大图1 C.重力加速度较大 D.地球自转角速度较大 解读:为了节省能量,而沿自转方向发射,卫星绕地球自转而具有的动能在赤道附近最大,因而使发射更节能.故选 B.p1EanqFDPw 答案:B 2.某同学设想驾驶一辆由火箭作动力的陆地太空两用汽车,沿赤道行驶并且汽车相对于地球速度可以任意增加,不计空气阻力,当汽车速度增加到某一值时,汽车将离开地球成为绕地球做圆周运动的“航天汽车”,对此下列说法正确的是(R=6400 km,取g=10 m/s2>(>DXDiTa9E3d A.汽车在地面上速度增加时,它对地面的压力增大 B.当汽车离开地球的瞬间速度达到28 440 km/h C.此“航天汽车”环绕地球做圆周运动的最小周期为1 h D.在此“航天汽车”上弹簧测力计无法测量力的大小

解读:汽车受到的万有引力提供向心力和重力,在速度增加时,向心力增大,则重力减小,对地面的压力则减小,选项A错误.若要使汽车离开地球,必须使汽车的速度达到第一宇宙速度7.9 km/s=28 440 km/h,选项B正确.此时汽车的最小周期为T=2π错误!=2π错误!=2π错误!=5 024 s=83.7 min,选项C错误.在此“航天汽车”上弹簧产生形变仍然产生弹力,选项D错误.RTCrpUDGiT 答案:B 3.(2018·上海高考>月球绕地球做匀速圆周运动的向心加速度大小为a.设月球表面的重力加速度大小为g1,在月球绕地球运行的轨道处由地球引力产生的加速度大小为g2,则5PCzVD7HxA (> A.g1=aB.g2=a C.g1+g2=aD.g2-g1=a 解读:月球因受地球引力的作用而绕地球做匀速圆周运动.由牛顿第二定律可知地球对月球引力产生的加速度g2就是向心加速度a,故B选项正确.jLBHrnAILg 答案:B 4.某星球的质量约为地球质量的9倍,半径约为地球半径的一半,若从地球表面高h处平抛一物体,射程为60 m,则在该星球上,从同样高度以同样的初速度平抛同一物体,射程应为 (>xHAQX74J0X A.10 mB.15 m C.90 mD.360 m 解读:由平抛运动公式可知,射程x=v0t=v0错误!,

匀速圆周运动临界问题专题

匀速圆周运动临界专题 任务一:水平面内的圆周运动:物体在水平面内做的一般是匀速圆周运动.这样的物体在竖直方向上受力平衡,在水平方向上受的合外力提供它做圆周运动所需的向心 力. 同学们通过下面的练习,体会下面在水平面内的匀速圆周运动特点。 1.如图所示,水平转盘上放一小木块。转速为60rad/ min时,木块离轴8cm恰 好与转盘无相对滑动,当转速增加到120rad/min时,为使小木块刚好与转盘保 持相对静止,那么木块应放在离轴多远的地方?(注:汽车在水平面上转弯类 ............. 似这种情况) ...... 任务二:竖直平面内的圆周运动:物体在竖直面内作圆周运动的情况关键在于:最高点和最低点的状态分析。依据物体在圆周最高点的受力状态可以大致分为:物体最高点无支撑力的情况(例:绳球模型)和物体最高点有支撑力的情况(例:杆球模型) 图1绳球模型图3轻杆模型图4圆管轨道 1.如图1、2 所示,没有支撑物的小球在竖直平面作圆周运动过最高点的情况 ○1临界条件 ○2能过最高点的条件,此时绳或轨道对球分别产生______________ ○3不能过最高点的条件 2.如图3、4所示,为有支撑物的小球在竖直平面做圆周运动过最高点的情况 竖直平面内的圆周运动,往往是典型的变速圆周运动。对于物体在竖直平面内的变速圆周运 动问题,中学阶段只分析通过最高点和最低点的情况,并且经常出现临界状态,下面对这类 问题进行简要分析。 ○1能过最高点的条件,此时杆对球的作用力 ○2当0gr时,杆对小球的力为其大小为____________ 讨论:绳与杆对小球的作用力有什么不同? (第1题)

匀速圆周运动的多解问题专题辅导不分版本

匀速圆周运动的多解问题 匀速圆周运动的多解问题常涉及两个物体的两种不同的运动,其一做匀速圆周运动,另一个物体做其他形式的运动。因此,依据等时性建立等式求解待求量是解答此类问题的基本思路。特别需要提醒同学们注意的是,因匀速圆周运动具有周期性,使得前一个周期中发生的事件在后一个周期中同样可能发生,这就要求我们在表达做匀速圆周运动物体的运动时间时,必须把各种可能都考虑进去,以下几例运算结果中的自然数“n ”正是这一考虑的数学外化。 例1:如图1所示,直径为d 的圆筒绕中心轴做匀速圆周运动,枪口发射的子弹速度为v ,并沿直径匀速穿过圆筒。若子弹穿出后在圆筒上只留下一个弹孔,则圆筒运动的角速度为多少 解析:子弹穿过圆筒后作匀速直线运动,当它再次到达圆筒壁时,若原来的弹孔也恰好运动到此处,则圆筒上只留下一个弹孔。在子弹运动位移为d 的时间内,圆筒转过的角度为2n ππ+,其中n =0123,,,…,即 d v n =+2ππω 解得角速度为:ωππ= +=20123n d v n (),,,… 例2:质点P 以O 为圆心做半径为R 的匀速圆周运动,如图2所示,周期为T 。当P 经过图中D 点时,有一质量为m 的另一质点Q 受到力F 的作用从静止开始作匀加速直线运动。为使P 、Q 两质点在某时刻的速度相同,则F 的大小应满足什么条件 解析:速度相同包括大小相等和方向相同。由质点P 的旋转情况可知,只有当P 运动到圆周上的C 点时P 、Q 速度方向才相同。即质点P 应转过()n + 34周(n =0123,,,…),经历的时间 t n T n =+=()()()3 401231,,,… 质点P 的速度v R T = 22π() 在同样的时间内,质点Q 做匀加速直线运动,速度应达到v ,由牛顿第二定律及速度公式得 v =F m t ()3 联立以上三式,解得:F mR n T n = +=84301232π()(),,,… 例3:如图3所示,在同一竖直面内A 物体从a 点做半径为R 的匀速圆周运动,同时B 物体从圆心O 处自由落下,

福建省三明市第一中学下册圆周运动专题练习(word版

一、第六章圆周运动易错题培优(难) 1.如图所示,一个竖直放置半径为R的光滑圆管,圆管内径很小,有一小球在圆管内做圆周运动,下列叙述中正确的是() A.小球在最高点时速度v gR B.小球在最高点时速度v由零逐渐增大,圆管壁对小球的弹力先逐渐减小,后逐渐增大C.当小球在水平直径上方运动时,小球对圆管内壁一定有压力 D.当小球在水平直径下方运动时,小球对圆管外壁一定有压力 【答案】BD 【解析】 【分析】 【详解】 A.小球恰好通过最高点时,小球在最高点的速度为零,选项A错误; < B.在最高点时,若v gR 2 v -= mg N m R 可知速度越大,管壁对球的作用力越小; > 若v gR 2 v N mg m += R 可知速度越大,管壁对球的弹力越大。 选项B正确; C.当小球在水平直径上方运动,恰好通过最高点时,小球对圆管内外壁均无作用力,选项C错误; D.当小球在水平直径下方运动时,小球受竖直向下的重力,要有指向圆心的向心力,则小球对圆管外壁一定有压力作用,选项D正确。 故选BD。 2.如图所示,在水平圆盘上沿半径方向放置用细线相连的质量均为m的A、B两个物块(可视为质点)。A和B距轴心O的距离分别为r A=R,r B=2R,且A、B与转盘之间的最大静摩擦力都是f m,两物块A和B随着圆盘转动时,始终与圆盘保持相对静止。则在圆盘转动的角速度从0缓慢增大的过程中,下列说法正确的是()

A . B 所受合力一直等于A 所受合力 B .A 受到的摩擦力一直指向圆心 C .B 受到的摩擦力先增大后不变 D .A 、B 两物块与圆盘保持相对静止的最大角速度ωm = 2m f mR 【答案】CD 【解析】 【分析】 【详解】 当圆盘角速度比较小时,由静摩擦力提供向心力。两个物块的角速度相等,由2F m r ω=可知半径大的物块B 所受的合力大,需要的向心力增加快,最先达到最大静摩擦力,之后保持不变。当B 的摩擦力达到最大静摩擦力之后,细线开始提供拉力,根据 2 m 2T f m R ω+=? 2A T f m R ω+= 可知随着角速度增大,细线的拉力T 增大,A 的摩擦力A f 将减小到零然后反向增大,当A 的摩擦力反向增大到最大,即A m =f f -时,解得 m 2f mR ω= 角速度再继续增大,整体会发生滑动。 由以上分析,可知AB 错误,CD 正确。 故选CD 。 3.如图所示,一个边长满足3:4:5的斜面体沿半径方向固定在一水平转盘上,一木块静止在斜面上,斜面和木块之间的动摩擦系数μ=0.5。若木块能保持在离转盘中心的水平距离为40cm 处相对转盘不动,g =10m/s 2,则转盘转动角速度ω的可能值为(设最大静摩擦力等于滑动摩擦力)( )

圆周运动专题训练(含答案)

圆周运动专题训练(含答案) (时间:45分钟,满分:100分) 一、单项选择题(本题共6小题,每小题7分,共计42分,每小题只有一个选项符合题意) 1.发射人造卫星是将卫星以一定的速度送入预定轨道.发射场一 般选择在尽可能靠近赤道的地方,如图1所示.这样选址的优点是, 在赤道附近() A.地球的引力较大 B.地球自转线速度较大图1 C.重力加速度较大 D.地球自转角速度较大 解析:为了节省能量,而沿自转方向发射,卫星绕地球自转而具有的动能在赤道附近最大,因而使发射更节能.故选B. 答案:B 2.某同学设想驾驶一辆由火箭作动力的陆地太空两用汽车,沿赤道行驶并且汽车相对于地球速度可以任意增加,不计空气阻力,当汽车速度增加到某一值时,汽车将离开地球成为绕地球做圆周运动的“航天汽车”,对此下列说法正确的是(R=6400 km,取g=10 m/s2)() A.汽车在地面上速度增加时,它对地面的压力增大 B.当汽车离开地球的瞬间速度达到28 440 km/h C.此“航天汽车”环绕地球做圆周运动的最小周期为1 h D.在此“航天汽车”上弹簧测力计无法测量力的大小 解析:汽车受到的万有引力提供向心力和重力,在速度增加时,向心力增大,则重力减小,对地面的压力则减小,选项A错误.若要使汽车离开地球,必须使汽车的速度达到 第一宇宙速度7.9 km/s=28 440 km/h,选项B正确.此时汽车的最小周期为T=2π r3 GM= 2πR3 gR2=2π R g=5 024 s=83.7 min,选项C错误.在此“航天汽车”上弹簧产生形变仍 然产生弹力,选项D错误. 答案:B 3.(2010·上海高考)月球绕地球做匀速圆周运动的向心加速度大小为a.设月球表面的重力加速度大小为g1,在月球绕地球运行的轨道处由地球引力产生的加速度大小为g2,则 () A.g1=a B.g2=a C.g1+g2=a D.g2-g1=a

匀速圆周运动的多解问题 专题辅导 不分版本

匀速圆周运动的多解问题 郭建 白头然 匀速圆周运动的多解问题常涉及两个物体的两种不同的运动,其一做匀速圆周运动,另一个物体做其他形式的运动。因此,依据等时性建立等式求解待求量是解答此类问题的基本思路。特别需要提醒同学们注意的是,因匀速圆周运动具有周期性,使得前一个周期中发生的事件在后一个周期中同样可能发生,这就要求我们在表达做匀速圆周运动物体的运动时间时,必须把各种可能都考虑进去,以下几例运算结果中的自然数“n ”正是这一考虑的数学外化。 例1:如图1所示,直径为d 的圆筒绕中心轴做匀速圆周运动,枪口发射的子弹速度为v ,并沿直径匀速穿过圆筒。若子弹穿出后在圆筒上只留下一个弹孔,则圆筒运动的角速度为多少? 解析:子弹穿过圆筒后作匀速直线运动,当它再次到达圆筒壁时,若原来的弹孔也恰好运动到此处,则圆筒上只留下一个弹孔。在子弹运动位移为d 的时间内,圆筒转过的角度为2n ππ+,其中n =0123,,,…,即 d v n =+2ππω 解得角速度为:ωππ= +=20123n d v n (),,,… 例2:质点P 以O 为圆心做半径为R 的匀速圆周运动,如图2所示,周期为T 。当P 经过图中D 点时,有一质量为m 的另一质点Q 受到力F 的作用从静止开始作匀加速直线运动。为使P 、Q 两质点在某时刻的速度相同,则F 的大小应满足什么条件? 解析:速度相同包括大小相等和方向相同。由质点P 的旋转情况可知,只有当P 运动到圆周上的C 点时P 、Q 速度方向才相同。即质点P 应转过()n +34周(n =0123,,,…),经历的时间 t n T n =+=()()()3401231,,,… 质点P 的速度v R T = 22π() 在同样的时间内,质点Q 做匀加速直线运动,速度应达到v ,由牛顿第二定律及速度公式得 v =F m t ()3 联立以上三式,解得:F mR n T n = +=84301232π()(),,,…

圆周运动专题汇编

Ⅰ Ⅱ Ⅲ 圆周运动专题汇编 一、线速度和角速度问题 1.图中所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点.左侧是一轮轴, 大轮的半径为4r ,小轮的半径为2r .b 点在小轮上,到小轮中心的距离为r .c 点和d 点分别位于小轮和大轮的边缘上.若在传动过程中,皮带不打滑.则( ) A. a 点与b 点的线速度大小相等 B. a 点与b 点的角速度大小相等 C. a 点与c 点的线速度大小相等 D. a 点的向心加速度小于d 点的向心加速度 2.下图是自行车传动机构的示意图,其中Ⅰ是半径为r 1的大齿轮,Ⅱ是半径为r 2的小齿轮, Ⅲ是半径为r 3的后轮,假设脚踏板的转速为n r/s ,则自行车前进的速度为 ( ) A . 2 3 1r r nr π B . 1 3 2r r nr π C . 1 3 22r r nr π D . 2 3 12r r nr π 3.如图为常见的自行车传动示意图。A 轮与脚登子相连,B 轮 与车轴相连,C 为车轮。当人登车匀速运动时,以下说法中正确的是 A.A 轮与B 轮的角速度相同 B.A 轮边缘与B 轮边缘的线速度相同 C.B 轮边缘与C 轮边缘的线速度相同

D.A 轮与C 轮的角速度相同 4.图3所示是自行车的轮盘与车轴上的飞轮之间的链条传动装置。P 是轮盘的一个齿,Q 是飞轮上的一个齿。下列说法中正确的是( ) A .P 、Q 两点角速度大小相等 B .P 、Q 两点向心加速度大小相等 C .P 点向心加速度小于Q 点向心加速度 D .P 点向心加速度大于Q 点向心加速度 5.如图所示为一种“滚轮——平盘无极变速器”的示意图, 它由固定于主动轴上的平盘和可随从动轴移动的圆柱形滚轮组成.由于摩擦的作用,当平盘转动时,滚轮就会跟随转动.如果认为滚轮不会打滑,那么主动轴转速n 1、从动轴转速n 2、 滚轮半径r 以及滚轮中心距离主动轴轴线的距离x 之间的关系是 ( ) A . n 2=n 1x r B.n 2=n 1r x C.n 2=n 1x 2 r 2 D.n 2=n 1 x r 6.图中所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点。左侧是一轮轴, 大轮的半径为4r ,小轮的半径为2r 。b 点在小轮上,到小轮中心的距离为r ,c 点和d 点 分别位于小轮和大轮的边缘上。若在传动过程中,皮带不打滑。则下列中正确的是: ( ) A. a 点与b 点的线速度大小相等 B. a 点与b 点的角速度大小相等 C. a 点与c 点的线速度大小相等 D. a 点向心加速度大小是d 点的4倍 7.如图所示,自行车的传动是通过连接前、后齿轮的金属链条来实现的。下列关于自行车 Q 图 3 P Q

匀速圆周运动专题整理.doc

常见的圆周运动模型 物体做匀速圆周运动时,向心力才是物体受到的合外力.物体做非匀速圆周运动时,向心力是合外力沿半径方 向的分力 ( 或所有外力沿半径方向的分力的矢量和). 具体运动类型如下。 一、匀速圆周运动模型及处理方法 1.随盘匀速转动模型(无相对滑动,二者有共同的角速度) 例 4.如图所示,质量为m 的小物体系在轻绳的一端,轻绳的另一端固定在转轴上。轻绳长度为L 。现在使物体在光滑水平支持面上与圆盘相对静止地以角速度做匀速圆周运动,求: ( 1)物体运动一周所用的时间T ; ω ( 2)绳子对物体的拉力。O 2。火车转弯模型(或汽车拐弯外侧高于内侧时) 汽车做匀速圆周运动,向心力由重力与斜面对汽车的支持力的合力提供,且向心力的方向水平,向心力大小 F 向= mg tan θ,根据牛顿第 二定律: F v2 向= m R, h tanθ=d, 例 . 在高速公路的拐弯处,通常路面都是外高内低.如图所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的 路面低一些.汽车的运动可看作是做半径为R的圆周运动.设内外路面高度差为h,路基的水平宽度为d,路面的宽度为 L.已知重力加速度为g.要使车轮与路面之间的横向摩擦力( 即垂直于前进方向) 等于零,则汽车转弯时的车速应等于 () A. gRh B. gRh C. gRL D. gRd L d h h B对. 3。圆锥摆模型 小球在水平面内是匀速圆周运动,重力和拉力合力提供向心力mg tan 例 6. 如图所示,用细绳系着一个小球,使小球在水平面内做匀速圆周运动,不计空气阻 力,关于小球受力有以下说法,正确的是() A. 只受重力 B.只受拉力 C. 受重力 . 拉力和向心力 D.受重力和拉力 4.双星模型 练习.如图所示,长为 L 的细绳一端固定,另一端系一质量为m的小球。给小球一个合适的初速度,小球便可在水平面内做匀速圆周运动,这样就构成了一个圆锥摆,设细 绳与竖直方向的夹角为θ。下列说法中正确的是θ A.小球受重力、绳的拉力和向心力作用L m

高一物理圆周运动专题训练(附解析)

高一物理圆周运动专题训练(附解析) 高中物理是高中理科(自然科学)基础科目之一,小编准备了高一物理圆周运动专题训练,具体请看以下内容。 一、选择题 1.下列有关洗衣机中脱水筒的脱水原理的说法正确的是() A.水滴受离心力作用而背离圆心方向甩出 B.水滴受到向心力,由于惯性沿切线方向甩出 C.水滴受到的离心力大于它受到的向心力,而沿切线方向甩出 D.水滴与衣服间的附着力小于它所需要的向心力,于是水滴沿切线方向甩出 2.关于铁道转弯处内外铁轨间的高度关系,下列说法中正确的是() A.内、外轨一样高,以防列车倾倒造成翻车事故 B.因为列车在转弯处有向内倾倒的可能,故一般使内轨高于外轨,以防列车翻倒 C.外轨比内轨略高,这样可以使列车顺利转弯,减少车轮与铁轨的挤压 D.以上说法均不正确 3.在世界一级方程式锦标赛中,赛车在水平路面上转弯时,常常在弯道上冲出跑道,其原因是() A.是由于赛车行驶到弯道时,运动员未能及时转动方向盘造

成的 B.是由于赛车行驶到弯道时,没有及时加速造成的 C.是由于赛车行驶到弯道时,没有及时减速造成 D.是由于在弯道处汽车受到的摩擦力比在直道上小造成的 4.在光滑的轨道上,小球滑下经过圆弧部分的最高点A时,恰好不脱离轨道,此时小球受到的作用力是() A.重力、弹力和向心力 B.重力和弹力 C.重力和向心力 D.重力 5.用长为L的细绳拴着质量为m的小球在竖直平面内做圆周运动,正确的说法是() A.小球在圆周最高点时所受的向心力一定为重力 B.小球在最高点时绳子的拉力有可能为零 C.若小球刚好能在竖直平面内做圆周运动,则其在最高点的速率为0 D.小球过最低点时绳子的拉力一定大于小球的重力 6.在高速公路的拐弯处,路面建造得外高内低,即当车向右拐弯时,司机左侧的路面比右侧的要高一些,路面与水平面间的夹角为,设拐弯路段是半径为R的圆弧,要使车速为v 时车轮与路面之间的横向(即垂直于前进方向)摩擦力等于零,应等于()

圆周运动知识要点、受力分析和题目精讲(张晓整理)

高中圆周运动知识要点、受力分析和题目精讲(复习大全) 一、基础知识 匀速圆周运动问题是学习的难点,也是高考的热点,同时它又容易和很多知识综合在一起,形成能力性很强的题目,如除力学部分外,电学中“粒子在磁场中的运动”涉及的很多问题仍然要用到匀速圆周运动的知识,对匀速圆周运动的学习可重点从两个方面掌握其特点,首先是匀速圆周运动的运动学规律,其次是其动力学规律,现就各部分涉及的典型问题作点滴说明。 匀速圆周运动的加速度、线速度的大小不变,而方向都是时刻变化的,因此匀速圆周运动是典型的变加速曲线运动。为了描述其运动的特殊性,又引入周期(T)、频率(f)、角速度( )等物理量,涉及的物理量及公式较多。因此,熟练理解、掌握这些概念、公式,并加以灵活选择运用,是我们学习的重点。 1. 匀速圆周运动的基本概念和公式 (1)线速度大小,方向沿圆周的切线方向,时刻变化; (2)角速度,恒定不变量; (3)周期与频率; (4)向心力,总指向圆心,时刻变化,向心加速度,方向与向心力相同; (5)线速度与角速度的关系为,、、、的关系为 。所以在、、中若一个量确定,其余两个量也就确定了,而还和有关。 【例1】关于匀速圆周运动,下列说确的是() A. 线速度不变 B. 角速度不变 C. 加速度为零 D. 周期不变 解析:匀速圆周运动的角速度和周期是不变的;线速度的大小不变,但方向时刻变化,故匀速圆周运动的线速度是变化的,加速度不为零,答案为B、D。

【例2】在绕竖直轴匀速转动的圆环上有A 、B 两点,如图1所示,过A 、B 的半径与竖直轴的夹角分别为30°和60°,则A 、B 两点的线速度之比为 ;向心加速度之比为 。 ω O 60°30° A B 解析:A 、B 两点做圆周运动的半径分别为 R R r A 21 30sin = ?= R R r B 2360sin =?= 它们的角速度相同,所以线速度之比3331= ===B A B A B A r r r r v v ωω 加速度之比3322 = =B B A A B A r r a a ωω 2. 质点做匀速圆周运动的条件 (1)具有一定的速度; (2)受到的合力(向心力)大小不变且方向始终与速度方向垂直。合力(向心力) 与速度始终在一个确定不变的平面且一定指向圆心。 3. 向心力有关说明 向心力是一种效果力。任何一个力或者几个力的合力,或者某一个力的某个分力,只要其效果是使物体做圆周运动的,都可以认为是向心力。做匀速圆周运动的物体,所需向心力就是该物体受的合外力,总是指向圆心;而做变速圆周运动的物体,所需向心力则是该物体受的合外力在指向圆心方向的分力,合外力的另一个分力沿着圆周的切线,使速度大小改变,所以向心力不一定是物体所受的合外力。因此,解答圆周运动的基本思路是:先分析物体的受力情况,然后把物体受的各外力沿指向圆心(即沿半径)方向与沿切线方向正交分解,最后用沿指向圆心的合外力等于向心力,即 列方程求解做答。 二、解决圆周运动问题的步骤

高中物理专题汇编生活中的圆周运动(一)含解析

高中物理专题汇编生活中的圆周运动(一)含解析 一、高中物理精讲专题测试生活中的圆周运动 1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数μ满足0.1≤μ≤0.3,g 取10m /s 2,求 (1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ; (3)A 在小车上滑动过程中产生的热量Q (计算结果可含有μ). 【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3 时, 22111 ()22A A m v m M v -+ 【解析】 【分析】 (1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ; (3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】 (1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律: 0=A A B B m v m v - 由能量关系:22 11=22 P A A B B E m v m v - 解得v A =2m/s ;v B =4m/s (2)设B 经过d 点时速度为v d ,在d 点:2d B B v m g m R = 由机械能守恒定律:22d 11=222 B B B B m v m v m g R +? 解得R=0.32m (3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律: =()A A A m v m M v +由能量关系:()2 211122 A A A A m gL m v m M v μ= -+ 解得μ1=0.2

匀速圆周运动重点知识总结

匀速圆周运动重点知识总结 一.基本概念: 1.匀速圆周运动 (1)定义:质点沿圆周运动,如果在相等 的时间内通过的弧长相等,就 称质点作匀速圆周运动 (2)条件: a.有一定的初速度 b.受到一个大小不变方向始终跟速度 垂直的力的作用(即向心力) (3)特点:速度大小不变,方向时刻改变(4)描述匀速圆周运动的物理量: a.线速度:大小不变,方向时刻改变, 单位是m/s, 是矢量。 b.角速度: 恒定不变,是矢量,(方向 可由右手螺旋定则确定,高中 不要求掌握)单位rad/s c.周期:标量,单位:s d.转速:①单位时间物体转过的圈数 ②标量,符号:n ③单位:r/s或r/min e.频率:①质点在单位时间完成圆周运 动的周数 ②标量,符号:f ③单位:Hz (5)注意: a.匀速圆周运动是非匀变速曲线运动 b.“匀速”应理解为“匀速率”不能理 解为“匀速度” c.合力不为零,不能称作平衡状态 2.向心力: (1)定义:做匀速圆周运动的物体所受到 的合力指向圆心,叫向心力。(2)特点:指向圆心,大小不变,方向时 刻改变,是变力。F向=F合(3)作用:只改变速度大小,不改变方向(4)注意: a.是一种效果力,它可以由重力、弹力、 摩擦力等单独提供,也可以由它们的 合力提供。 b.“向心力”只是说明做圆周运动的物 体需要一个指向圆心方向的力,而并 非物体又受到一个“新的性质”的力。 即在受力分析时,向心力不能单独作 为一种力。 c.变速圆周运动的向心力不等于合力, 合力也不一定指向圆心。 3.向心加速度 (1)定义:由向心力产生的加速度 (2)特点:指向圆心,大小不变,方向时 刻改变,是矢量。 4.提供的向心力: 通过受力分析求出来的,沿半径方向指向圆心的力,匀速圆周运动中F需向=F合5.需要的向心力: 根据物体实际运动时的质量m、半径r、线速度v(或角速度w)求出的向心力 F提=mrw2=mrv2/r 6.离心现象 (1)做圆周运动物体的运动特点: 做圆周运动的物体由于本身的惯性, 总有沿圆周切线飞出的倾向。 (2)概念: 在所受合力突然消失或不足以提供圆 周运动所需的向心力的情况下,就会 做靛渐远离圆心的运动,这种现象称 为离心现象。 (3)特别注意: a. 物体做离心运动并不是受到了什 么所谓的“离心力”作用(准确 讲没离心力这个概念) b. 产生离心运动的根本原因是由于 物体的惯性。 c. 离心现象既有利又有害,要注意利 用和防止。 二.基本公式 1.线速度:2 l r v t T π ? == ? n r? ? =π2 2.角速度:2 t T θπ ω ? == ? n? =π2 3.转速(n)频率(f)周期三者的关系:n=f 11 T f n == 4.线速度与角速度、半径r的关系:v=ωr 5.向心力: 2 2 2 2 n n v F ma m m r m r r T π ω?? ==== ? ??6.向心加速度: 2 2 2 2 n v a r r r T π ω?? === ? ?? ,

相关文档
最新文档