第一章 函数、极限与连续

合集下载

关于大学高等数学函数极限和连续

关于大学高等数学函数极限和连续

第一章 函数、极限和连续§ 函数一、 主要内容 ㈠ 函数的概念1. 函数的定义: y=fx, x ∈D定义域: Df, 值域: Zf.2.分段函数: ⎩⎨⎧∈∈=21)()(D x x g D x x f y 3.隐函数: Fx,y= 04.反函数: y=fx → x=φy=f -1y y=f -1 x定理:如果函数: y=fx, Df=X, Zf=Y 是严格单调增加或减少的; 则它必定存在反函数:y=f -1x, Df -1=Y, Zf -1=X且也是严格单调增加或减少的;㈡ 函数的几何特性1.函数的单调性: y=fx,x ∈D,x 1、x 2∈D 当x 1<x 2时,若fx 1≤fx 2,则称fx 在D 内单调增加 ;若fx 1≥fx 2,则称fx 在D 内单调减少 ;若fx 1<fx 2,则称fx 在D 内严格单调增加 ;若fx 1>fx 2,则称fx 在D 内严格单调减少 ;2.函数的奇偶性:Df 关于原点对称 偶函数:f-x=fx 奇函数:f-x=-fx3.函数的周期性:周期函数:fx+T=fx, x ∈-∞,+∞ 周期:T ——最小的正数4.函数的有界性: |fx|≤M , x ∈a,b ㈢ 基本初等函数1.常数函数: y=c , c 为常数2.幂函数: y=x n , n 为实数3.指数函数: y=a x , a >0、a ≠14.对数函数: y=log a x ,a >0、a ≠15.三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数1.复合函数: y=fu , u=φxy=f φx , x ∈X2.初等函数:由基本初等函数经过有限次的四则运算加、减、乘、除和复合所构成的,并且能用一个数学式子表示的函数§ 极 限一、 主要内容 ㈠极限的概念1. 数列的极限:Aynn =∞→lim称数列{}n y 以常数A 为极限; 或称数列{}n y 收敛于A.定理: 若{}n y 的极限存在⇒{}n y 必定有界.2.函数的极限:⑴当∞→x 时,)(x f 的极限:⑵当0x x →时,)(x f 的极限:左极限:Ax f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0⑶函数极限存的充要条件:定理:AxfxfAxfxxxxxx==⇔=+-→→→)(lim)(lim)(lim㈡无穷大量和无穷小量1.无穷大量:+∞=)(lim xf称在该变化过程中)(xf为无穷大量;X再某个变化过程是指:2.无穷小量:)(lim=xf称在该变化过程中)(xf为无穷小量;3.无穷大量与无穷小量的关系:定理:)0)((,)(1lim)(lim≠+∞=⇔=xfxfxf4.无穷小量的比较:lim,0lim==βα⑴若lim=αβ,则称β是比α较高阶的无穷小量;⑵若c=αβlimc为常数,则称β与α同阶的无穷小量;⑶若1lim=αβ,则称β与α是等价的无穷小量,记作:β~α;⑷若∞=αβlim ,则称β是比α较低阶的无穷小量; 定理:若:;,2211~~βαβα则:2121limlim ββαα=㈢两面夹定理1. 数列极限存在的判定准则:设:n n n z x y ≤≤ n=1、2、3…且: a z y n n n n ==∞→∞→lim lim则: a x n n =∞→lim2. 函数极限存在的判定准则: 设:对于点x 0的某个邻域内的一切点 点x 0除外有:且:Ax h x g x x x x ==→→)(lim )(lim 0则:A x f x x =→)(lim 0㈣极限的运算规则若:B x v A x u ==)(lim ,)(lim则:①B A x v x u x v x u ±=±=±)(lim )(lim )]()(lim[②B A x v x u x v x u ⋅=⋅=⋅)(lim )(lim )]()(lim[③BA x v x u x v x u ==)(lim )(lim )()(lim )0)((lim ≠x v 推论:①)]()()(lim [21x u x u x u n ±±±②)(lim )](lim[x u c x u c ⋅=⋅③nnx u x u )]([lim )](lim [=㈤两个重要极限1.1sin lim 0=→xxx 或 1)()(sin lim 0)(=→x x x ϕϕϕ 2.e xxx =+∞→)11(lim e x xx =+→10)1(lim§ 连续一、主要内容㈠ 函数的连续性 1. 函数在0x 处连续:)(x f 在0x 的邻域内有定义,1o 0)]()([lim lim 000=-∆+=∆→∆→∆x f x x f y x x2o)()(lim 00x f x f x x =→左连续:)()(lim 00x f x f x x =-→右连续:)()(lim 00x f x f x x =+→2. 函数在0x 处连续的必要条件:定理:)(x f 在0x 处连续⇒)(x f 在0x 处极限存在3. 函数在0x 处连续的充要条件:定理:)()(lim )(lim )()(lim 000x f x f x f x f x f x x x x x x ==⇔=+-→→→4. 函数在[]b a ,上连续:)(x f 在[]b a ,上每一点都连续;在端点a 和b 连续是指:)()(lim a f x f ax =+→ 左端点右连续;)()(lim b f x f b x =-→ 右端点左连续;a + 0b - x 5. 函数的间断点:若)(x f 在0x 处不连续,则0x 为)(x f 的间断点;间断点有三种情况:1o)(x f在0x 处无定义;2o)(lim 0x f x x →不存在;3o)(x f在0x 处有定义,且)(lim 0x f x x →存在,但)()(lim 00x f x f x x ≠→;两类间断点的判断: 1o 第一类间断点:特点:)(lim 0x f x x -→和)(lim 0x f x x +→都存在;可去间断点:)(lim 0x f x x →存在,但)()(lim 00x f x f x x ≠→,或)(x f在0x 处无定义;2o 第二类间断点:特点:)(lim 0x f x x -→和)(lim 0x f x x +→至少有一个为∞,或)(lim 0x f x x →振荡不存在;无穷间断点:)(lim 0x f x x -→和)(lim 0x f x x +→至少有一个为∞㈡函数在0x 处连续的性质1.连续函数的四则运算:设)()(lim 00x f x f x x =→,)()(lim 00x g x g x x =→1o)()()]()([lim 000x g x f x g x f x x ±=±→2o)()()]()([lim 000x g x f x g x f x x ⋅=⋅→3o)()()()(lim 000x g x f x g x f x x =→ ⎪⎭⎫ ⎝⎛≠→0)(lim 0x g x x2. 复合函数的连续性:则:)]([)](lim [)]([lim 00x f x f x f x x x x ϕϕϕ==→→3.反函数的连续性:㈢函数在],[b a 上连续的性质1.最大值与最小值定理:)(x f 在],[b a 上连续⇒)(x f 在],[b a 上一定存在最大值与最小值;fx0 a b xm-M0 ab x2.有界定理:) (xf在],[ba上连续⇒)(x f在],[b a上一定有界;3.介值定理:) (xf在],[ba上连续⇒在),(b a内至少存在一点ξ,使得:cf=)(ξ,其中:Mcm≤≤y yCfx0 a ξm0 a ξ1 ξ2 b x 推论:)(x f 在],[b a 上连续,且)(a f 与)(b f 异号⇒在),(b a 内至少存在一点ξ,使得:0)(=ξf ;4.初等函数的连续性:初等函数在其定域区间内都是连续的; 第二章 一元函数微分学 § 导数与微分 一、主要内容 ㈠导数的概念1.导数:)(x f y =在0x 的某个邻域内有定义, 2.左导数:00)()(lim )(0x x x f x f x f x x --='-→- 右导数:00)()(lim )(0x x x f x f x f x x --='+→+ 定理:)(x f 在0x 的左或右邻域上连续在其内可导,且极限存在;则:)(lim )(00x f x f x x '='-→-或:)(lim )(00x f x f x x '='+→+3.函数可导的必要条件:定理:)(x f 在0x 处可导⇒)(x f 在0x 处连续4. 函数可导的充要条件:定理:)(00x f y x x '='=存在)()(00x f x f +-'='⇒,且存在;5.导函数: ),(x f y '=' ),(b a x ∈)(x f 在),(b a 内处处可导; y )(0x f '6.导数的几何性质: y ∆)(0x f '是曲线)(x f y =上点 ∆()00,y x M 处切线的斜率; o x 0㈡求导法则 1.基本求导公式: 2.导数的四则运算: 1o v u v u '±'='±)(2ov u v u v u '⋅+⋅'='⋅)(3o2v v u v u v u '⋅-⋅'='⎪⎭⎫⎝⎛ )0(≠v 3.复合函数的导数:dxdu du dy dx dy ⋅=,或 )()]([})]([{x x f x f ϕϕϕ'⋅'=' ☆注意})]([{'x f ϕ与)]([x f ϕ'的区别:})]([{'x f ϕ表示复合函数对自变量x 求导;)]([x f ϕ'表示复合函数对中间变量)(x ϕ求导;4.高阶导数:)(),(),()3(x f x f x f 或'''''函数的n 阶导数等于其n-1导数的导数; ㈢微分的概念 1.微分:)(x f 在x 的某个邻域内有定义,其中:)(x A 与x ∆无关,)(x o ∆是比x ∆较高阶的无穷小量,即:0)(lim 0=∆∆→∆x x o x 则称)(x f y =在x 处可微,记作:2.导数与微分的等价关系: 定理:)(x f 在x 处可微)(x f ⇒在x 处可导,且:)()(x A x f ='3.微分形式不变性:不论u 是自变量,还是中间变量,函数的微分dy 都具有相同的形式;§ 中值定理及导数的应用 一、主要内容 ㈠中值定理1.罗尔定理: )(x f 满足条件:y)(ξf ' )(x fa o ξb x a o x2.拉格朗日定理:)(x f 满足条件:㈡罗必塔法则:∞∞,型未定式 定理:)(x f 和)(x g 满足条件:1o)或)或∞=∞=→→(0)(lim (0)(lim x g x f ax ax ;2o 在点a 的某个邻域内可导,且0)(≠'x g ;3o)(或∞=''∞→,)()(lim )(A x g x f a x则:)(或∞=''=∞→∞→,)()(lim )()(lim )()(A x g x f x g x f a x a x☆注意:1o 法则的意义:把函数之比的极限化成了它们导数之比的极限; 2o若不满足法则的条件,不能使用法则;即不是型或∞∞型时,不可求导;3o 应用法则时,要分别对分子、分母 求导,而不是对整个分式求导; 4o 若)(x f '和)(x g '还满足法则的条件,可以继续使用法则,即: 5o 若函数是∞-∞∞⋅,0型可采用代数变形,化成或∞∞型;若是0,0,1∞∞型可采用对数或指数变形,化成或∞∞型;㈢导数的应用 1.切线方程和法线方程:设:),(),(00y x M x f y =切线方程:))((000x x x f y y -'=-法线方程:)0)((),()(10000≠'-'-=-x f x x x f y y 2. 曲线的单调性:⑴),(0)(b a x x f ∈≥'内单调增加;在),()(b a x f ⇒⑵),(0)(b a x x f ∈>'内严格单调增加;在),(b a ⇒3.函数的极值: ⑴极值的定义:设)(x f 在),(b a 内有定义,0x 是),(b a 内的一点;若对于x 的某个邻域内的任意点x x ≠,都有:则称)(0x f 是)(x f 的一个极大值或极小值,称x 为)(x f 的极大值点或极小值点;⑵极值存在的必要条件:定理:)()(.2)()(.1=⇒⎭⎬⎫'xfxfxfxf存在。

数学强化班(武忠祥)-高数第一章 函数、极限、连续

数学强化班(武忠祥)-高数第一章 函数、极限、连续

第 函数 极限 连续第一节 函 数1. 函数的概念(定义、定义域、对应法则、值域) 2. 函数的性态 1)单调性定义:单调增: ).()(2121x f x f x x <⇒< 单调不减: ).()(2121x f x f x x ≤⇒< 判定:(1)定义:(2)导数:设)(x f 在区间I 上可导,则 a) )(0)(x f x f ⇔≥'单调不减; b) )(0)(x f x f ⇒>'单调增; 2)奇偶性定义:偶函数 );()(x f x f =- 奇函数 ).()(x f x f -=- 判定:(1)定义:(2)设)(x f 可导,则:a))(x f 是奇函数⇒ )(x f '是偶函数;b))(x f 是偶函数⇒ )(x f '是奇函数; (3)连续的奇函数其原函数都是偶函数;连续的偶函数其原函数之一是奇函数。

3)周期性定义:)()(x f T x f =+ 判定:(1)定义;(2)可导的周期函数其导函数为周期函数; (3)周期函数的原函数不一定是周期函数; 4)有界性定义:若;)(,,0M x f I x M ≤∈∀>∃则称)(x f 在I 上有界。

判定:(1)定义:(2))(x f 在],[b a 上连续)(x f ⇒在],[b a 上有界;(3))(x f 在),(b a 上连续,且)0()0(-+b f a f 和存在)(x f ⇒在)(b a ,上有界;(4))(x f '在区间I (有限)上有界)(x f ⇒在I 上有界; 3.复合函数与反函数 (函数分解成简单函数的复合,分段函数的复合) 4.基本初等函数与初等函数 基本初等函数:常数,幂函数 ,指数,对数,三角,反三角。

了解它们定义域,性质,图形. 初等函数:由基本初等函数经过有限次的加、减、乘、除和复合所得到且能用一个 解析式表示的函数.题型一 复合函数例1.1已知)1(+x f 的定义域为),0(],,0[>a a ,则)(x f 的定义域为 (A) ]1,1[--a (B) ]1,1[+a(C) ]1,[+a a (D) ],1[a a - 解 应选 (B)例1.2已知,1)]([,)(2x x f e x f x -==ϕ且,0)(≥x ϕ求)(x ϕ及其定义域。

第一章 函数极限与连续

第一章 函数极限与连续


解 填1. 设xn =
4 x3 + x2 + 1 x3 + x2 + 1 = 0 , 所以 lim (sin x + cos x) = 0. x 3 x→∞ x→∞ 2 +x 2x + x3 lim
不定式的极限 arctan x − sin x (14) lim = . x→0 x3 x ln(1 + x) = (15) lim . x→0 1 − cos x 1 解 填2. 因为当x → 0时, ln(1 + x) ∼ x, 1 − cos x ∼ x2 . 于是 2

n→∞

lim
n − 2na + 1 n(1 − 2a)
n
n

= lim
n→∞
1 1+ n(1 − 2a)
n(1−2a)· 1 1−2a
= e 1−2a .
1
于是 lim ln
n→∞
n − 2na + 1 n(1 − 2a)
x→∞
=
1 . 1 − 2a .
(11) 极限 lim x sin
2x = x2 + 1
x→0
=
1 1 x2 · lim = · lim 4 x→0 ln(1 + x) − x 4 x→0 3 sin x + x2 cos
1 1+x
1 2x 1 = · lim (1 + x) = . 2 x→0 2 −1
1 x (18) lim = x→0 (1 + cos x) m zn = a, 则必有 lim yn = a.
n→∞ n→∞ n→∞
上述准则对于函数的情形也成立。

(完整版)函数、极限与连续习题及答案

(完整版)函数、极限与连续习题及答案

第一章 函数、极限与连续(A)1.区间[)+∞,a 表示不等式( )A .+∞<<x aB .+∞<≤x aC .x a <D .x a ≥ 2.若()13+=t t ϕ,则()=+13t ϕ( )A .13+tB .26+tC .29+tD .233369+++t t t 3.设函数()()x x x x f arcsin 2513ln +-++=的定义域是( )A .⎪⎭⎫ ⎝⎛-25,31B .⎪⎭⎫ ⎝⎛-25,1C .⎪⎭⎫⎝⎛-1,31 D .()1,1-4.下列函数()x f 与()x g 相等的是( )A .()2x x f =,()4x x g =B .()x x f =,()()2x x g =C .()11+-=x x x f ,()11+-=x x x g D . ()112--=x x x f ,()1+=x x g 5.下列函数中为奇函数的是( )A .2sin xx y = B .xxe y 2-= C .x x x sin 222-- D .x x x x y sin cos 2+= 6.若函数()x x f =,22<<-x ,则()1-x f 的值域为( ) A .[)2,0 B .[)3,0 C .[]2,0 D .[]3,0 7.设函数()x e x f =(0≠x ),那么()()21x f x f ⋅为( )A .()()21x f x f +B .()21x x f +C .()21x x fD .⎪⎪⎭⎫⎝⎛21x x f8.已知()x f 在区间()+∞∞-,上单调递减,则()42+x f 的单调递减区间是( ) A .()+∞∞-, B .()0,∞- C .[)+∞,0 D .不存在 9.函数()x f y =与其反函数()x fy 1-=的图形对称于直线( )A .0=yB .0=xC .x y =D .x y -=10.函数2101-=-x y 的反函数是( ) A .2lg-=x x y B .2log x y = C .xy 1log 2= D .()2lg 1++=x y 11.设函数()⎩⎨⎧=是无理数是有理数x x a x f x ,0,10<<a ,则( )A .当+∞→x 时,()x f 是无穷大B .当+∞→x 时,()x f 是无穷小C .当-∞→x 时,()x f 是无穷大D .当-∞→x 时,()x f 是无穷小 12.设()x f 在R 上有定义,函数()x f 在点0x 左、右极限都存在且相等是函数()x f 在点0x 连续的( )A .充分条件B .充分且必要条件C .必要条件D .非充分也非必要条件13.若函数()⎩⎨⎧<≥+=1,cos 1,2x x x a x x f π在R 上连续,则a 的值为( )A .0B .1C .-1D .-2 14.若函数()x f 在某点0x 极限存在,则( ) A . ()x f 在0x 的函数值必存在且等于极限值 B .()x f 在0x 函数值必存在,但不一定等于极限值 C .()x f 在0x 的函数值可以不存在 D .如果()0x f 存在的话,必等于极限值15.数列0,31,42,53,64,…是( )A .以0为极限B .以1为极限C .以n n 2-为极限 D .不存在在极限 16.=∞→xx x 1sin lim ( )A .∞B .不存在C .1D .017.=⎪⎭⎫ ⎝⎛-∞→xx x 211lim ( )A .2-eB .∞C .0D .21 18.无穷小量是( )A .比零稍大一点的一个数B .一个很小很小的数C .以零为极限的一个变量D .数零19.设()⎪⎩⎪⎨⎧≤≤-<≤<≤-=31,110,201,2x x x x x f x 则()x f 的定义域为 ,()0f = ,()1f = 。

第一章函数、极限与连续习题答案.doc

第一章函数、极限与连续习题答案.doc

第一章函数、极限与连续1 . 若」 t =t31,贝 U 「t 31 =( D )A. t 31 B. t62 C. t92 D. t 9 3t 6 3t322. 设函数 f x = In 3x ? 1 ? i 5 - 2x ? arcsin x 的定义域是 ( C )1 5C.-1,1 D. -1,13 ,233. 下列函数 f x 与 g x 相等的是 (A )— 2A. f x = x 2 , g x - x4B . fx=x ,gx= xC.fX gx「X 1x -14. 下列函数中为奇函数的是 (A )2x x八sin xf- c 2— 22 ?A. y2B .y - xe xCsin xD . y = x cosx xsin xx25 . 若函数 fxl=x , - 2:; x ::: 2,则 f x-1 的值域为 (B )A. 0,2B. 0,3C. 0,21D. 0,316 . 函数y =10x4 -2 的反函数是(D )xC .A . y =igB .log x 2x—2a X X 是有理数7.设函数 %是无理数°<a",则(B )1y =Iog 2_ D . y =1 lg x 2 x1A . 当 Xr J 时, f x 是无穷大B . 当 x- 工: 时, f x 是无穷小C. 当 Xr - ■时, f x 是无穷大 D . 当 x—. - ■时, f x 是无穷小8 . 设 f x 在R上有定义 ,f x 在点X。

连续的(A . 充分条件C.必要条件x2 a,cos x, 函数 f x 在点X。

左、右极限都存在且相等是函数B. 充分且必要条件D. 非充分也非必要条件x—1在 R 上连续,则 a 的值为(D)x::: 1C. -1D.-210.若函数 f x 在某点X。

极限存在,则(C )f x 在X o的函数值必存在且等于极限值B. f x 在X o函数值必存在,但不一定等于极限值C. f X 在X o的函数值可以不存在D. 如果f X o存在的话 ,11 . 数列0,3 ,2,4,是 (B )A.以0为极限B.以1为极限C . 以口为极限D . 不存在在极限n112 . lim xsin( CxB. 不存在C. 1D. 013.li=(A )C.0x2214?无穷小量是(C)A.比零稍大一点的一个数B. —个很小很小的数C. 以零为极限的一个变量 D . 数零[2X,-1 _ x :: 015. 设f(x)= 2, x ::: 1 则f x的定义域为[-1,3] , f 0 =x—1, 1 _x _32 __ , f 1 =0。

习题册第1章_函数、极限与连续解答

习题册第1章_函数、极限与连续解答

班级 姓名 学号 日期第1章 函数 极限与连续1.判断题(1)(1)直角坐标)3,1(和极坐标)3,2(π表示的点的位置相同. (√ )(2)平面上一点M 的极坐标是唯一的. (× )(3)(22)ln(x x y x -=+⋅是奇函数. ( √ )(4)定义在)(∞+-∞,上的常函数是周期函数. ( √ )(5)设)(x f 是定义在],[a a -上的函数,则)()(x f x f -+必是偶函数. (√ ) (6))(x f =1+x + +2x 是初等函数. ( ×) (6))(),(x g x f 都在区间I 上单调增加,则)()(x g x f ⋅也在I 上单调增加.( × ) 2.填空题(1)邻域=)5.0,3(U )5.3,5.2(U .(用开区间表示)(2)点M 的直角坐标是)1,3(M ,其对应的极坐标是 )6,2(πM .(3)点M 的极坐标是)6,3(πM ,其对应的直角坐标是)23,233(M . (4)极坐标方程2sin 2cos 0ρθθ-⋅=表示的曲线是抛物线x y 22=.(5)xx f +=11)(,x x sin )(=ϕ,则)]([ x f ϕ)]([ x f (6).2)1(x x f =-,则=)(x f 2221(1)x x x ++=+,=+)12(x f 24(1)x +.3.单项选择题(1)已知点M 的极坐标为⎪⎭⎫⎝⎛35π,,下列四个坐标中能表示点M 的坐标是(D ).A. 53,-⎛⎝ ⎫⎭⎪πB. 543,π⎛⎝ ⎫⎭⎪C. 523,-⎛⎝ ⎫⎭⎪πD. ⎪⎭⎫ ⎝⎛-355π,(2)设2)(x x f =,0)(>x ϕ,x x f 22)]([ =ϕ,则函数)(x ϕ是( B )(A )x 2lg (B )x2 (C )22log x (D )2x (3)函数1143)(2-++-=x x x x f 的定义域是( C ) (A )(,1)(1,3)-∞⋃ (B )(,1)(3.)-∞⋃+∞ (C )(,1)[3,)-∞⋃+∞ (D )(1,3] 4.把y 表示成x 的函数. (1)设x v v u u y sin ,2,2=+==.则x v u y 22sin 22+=+==. (2)设x e v v u u y ==+=,arcsin ,12.则2arcsin 12arcsin 1x y v e =+=+.5.求圆心为C 36,π⎛⎝ ⎫⎭⎪,半径为3的圆的极坐标方程.1、如下图,设圆上任一点为P (ρθ,),则((((2366OP POA OA πρθ=∠=-=⨯=,,((((cos Rt OAP OP OA POA ∆=⋅∠中,6c o s 6πρθ⎛⎫∴=- ⎪⎝⎭而点O )32,0(π A )6,0(π符合P另解:6,3πθρ==,23,233==y x班级 姓名 学号 日期 直角坐标方程9)23()233(=-+-y x ,代入⎩⎨⎧=='sin cos ϕρϕρy x 化简得6cos 6πρθ⎛⎫∴=- ⎪⎝⎭6.分解复合函数.(1))]1ln(21cos[2++=x y解 cos y u = 12ln u v =+ 12+=x v(2)2sin y =解 2y u = sin u v = ln v ω= ω=321t x =+。

(完整版)专升本高数数学第一章_函数、极限与连续

(完整版)专升本高数数学第一章_函数、极限与连续

例:求下列函数的定义域
[A](1) y
1

(x 1)(x 4)
(2) y x 1 1 x 1
解:(1)要使函数有意义,必须有分母 (x 1)(x 4) 0
x 1 0
即 x 4 0
x 1
x
4
所以定义域为(-∞,-4) ∪(-4,1)∪(1,+ ∞)
(2)要使函数有意义,必须有 x 1 0
单调增加和单调减少的函数统称为单调函数。
y y x 2 当 x 0 时为减函数;
当 x 0 时为增函数;
o
x
(3) 函数的有界性:
若X D, M 0,x X ,有 f ( x) M 成立, 则称函数f ( x)在X上有界.否则称无界.
y
y 1 x
在(,0)及(0,)上无界; 在(,1]及[1,)上有界.
1 2
4 2 2
f[f
(x)]
f[ x 3] x2
x3 3 x2 x3 2
2x 9 (x 3x 1
1) 3
x2
2、函数的性质
(1) 函数的奇偶性:
设D关于原点对称, 对于x D,有
f ( x) f ( x) 称f ( x)为偶函数;
f (x) f (x)
y
称f ( x)为奇函数;
y
y x
y x3
o
x
偶函数
o
x
奇函数
(2) 函数的单调性:
设函数f(x)的定义域为D,区间I D,如果对于区间I上
任意两点 x1及 x2,当 x1 x2时,恒有:
(1) f (x1) f (x2 ),则称函数 f (x) 在区间I上是单调增加的; 或(2) f (x1) f (x2 ), 则称函数 f (x)在区间I上是单调递减的;

同济大学高等数学教案第一章函数、极限与连续

同济大学高等数学教案第一章函数、极限与连续
2、集合的基本运算有四种:并、交、差、补.
特别地,若我们所讨论问题在某个集合(称为基本集或全集,一般记为 )中进行,集合 是 的子集,此时称 为 的余集(或补集),记作 或 .
3、设 是两个非空的集合,则由有序数对 组成的集合
称为 与 的直积.
4、设 和 都是实数,且 ,数集 称为开区间,记作 ,即
.
和 称为开区 的端点,其中 为左端点, 为右端点,且 , .
数集 称为闭区间,记作 ,即
.
和 也称为闭区间 的端点,且 , .
5、邻域
设 与 为两个实数,且 ,数集 称为点 的 邻域,记作 ,即

其中 称作 的中心, 称作 的半径.
6、基本初等函数
中学时我们已经学习过的许多函数,比如幂函数、指数函数、对数函数、三角函数及反三角函数等,它们统称为基本初等函数.我们把由常数和基本初等函数经过有限次的四则运算和有限次函数复合所构成的并可以用一个算式表示的函数统称为初等函数.
高等数学教学教案
第一章函数、连续与极限
授课序号01
教学基本指标
教学课题
第一章第一节集合与函数
课的类型
复习、新知识课
教学方法
讲授、课堂提问、讨论、启发、自学
教学手段
黑板多媒体结合
教学重点
函数的定义域,函数的性质,复合函数性质,分段函数,三角函数性质与公式
教学难点
分段函数图形
参考教材
同济版、人大版《高等数学》;同济版《微积分》武汉大学同济大学《微积分学习指导》
教学手段
黑板多媒体结合
教学重点
极限的性质
教学难点
用定义证明极限
参考教材
同济版、人大版《高等数学》;同济版《微积分》武汉大学同济大学《微积分学习指导》
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 函数 极限 连续知识点拔1.1 函数一、函数的概念设D 是一个非空数集,若存在一个对应法则f ,使得对D 内的每一个值x 都有唯一的y 值与之对应,则称这个对应法则f 是定义在数集D 上的一个函数,记作:)(x f y =,其中x 叫自变量,y 叫因变量或函数,数集D 称为函数的定义域,而数集}),(|{D x x f y y z ∈==叫函数的值域.如果D x ∈0,称函数)(x f 在0x 处有定义,函数)(x f 在0x 处的函数值记为0x x y =或)(0x f .注释:①函数定义的两个要素:定义域和对应法则;②两个函数相等条件:定义域和对应法则都相同的两个函数是相同函数,如:22)(2---=x x x x f 与1)(+=x x g 不同,因定义域不同;x x f 2sin )(=与x x g sin )(=不同,因对应法则不同;x x x x f 222cos sin )(++=与1)(2+=t t g 相同,也就是当两上函数的定义域和对应法则都相同时,即使其自变量所用的字母不同,但两个函数相同.③若定义域内的每一个x 只对应一个函数值y ,则称该函数为单值函数,若同一个x 值可对应于多于一个的函数值y ,这种函数称为多值函数.二、函数的基本性质1、函数的单调性:设函数在区间D 上有定义,如果对2121,x x D x x <∈∀且,恒有)()(21x f x f <(或)()(21x f x f >),则称)(x f 在区间D 上严格单调增加(或严格单调减少)的.如果对于D x x ∈∀21,21x x <且,有)()(21x f x f ≤ (或)()(21x f x f ≥)称)(x f 在区间D 上是单调增加(或单调减少)的.注释:(1)函数的有界性与单调性是与某个区间密切相关的,区间不同函数的有界性与单调性也不同.(2)增+增=增,增-减=增,减+减=减,减-增=减,增的倒数为减,减的倒数为增. (3)增函数与增函数或减函数与减函数的复合为单调增加函数. (4)增函数与减函数或减函数与增函数的复合为单调减少函数.2、函数的奇偶性:设D 是对称于原点的区间,若对D x ∈∀,)()(x f x f -=-有,则称)(x f 是奇函数;若有)()(x f x f =-,称)(x f 是偶函数.注释:①奇(偶)函数的定义域必须是关于原点对称的区间. ②奇函数)(x f 的图象关于原点对称,偶函数的图象关于y 轴对称. ③奇偶函数的运算性质1°奇函数的代数和仍为奇函数;偶函数的代数和仍为偶函数;奇函数与偶函数的代数和为非奇非偶函数;2°偶数个奇(或偶)函数的积为偶函数;奇数个奇函数的积为奇函数; 3°一奇一偶函数的积是奇函数;4°奇函数的导数是偶函数,偶函数的导数是奇函数;5°奇函数的原函数是偶函数;偶函数)(x f 的原函数⎰=xa dt t f x F )()(是奇函数的充要条件是0=a ,即在所有原函数中只有一个函数是奇函数.④任何一个定义域是关于原点对称的函数都可以表示成一个奇函数与一个偶函数和的形式,即=)(x f 2)()(2)()(x f x f x f x f -++--.3、函数的有界性:设)(x f 在区间D 上有定义,如果存在0>M ,使得对一切D x ∈都有M x f ≤)(,则称)(x f 在D 上有界,否则称为无界,即对0>∀M ,若存在D x ∈0,使得M x f >)(,称)(x f 在D 上是无界的.注释:函数的有界性与x 的取值区间有关. 若函数xy 1=在区间),1(+∞上有界,但在)1,0(内是无界的,因为在这个区间上函数满足定义的M 不存在,即函数的有界性与x 的取值区间有关.4、函数的周期性:设)(x f 的定义域为D ,若存在常数0>T ,伎得对D x ∈∀,必有D T x ∈±,并且有)()(x f T x f =+成立,则称)(x f 是以T 为周期的周期函数,T 称为函数)(x f 的周期,所有周期中的最小正周期叫函数)(x f 的周期.注释:①周期函数的定义域必须是无限点集,但不能是有限区间. 如:x y tan =的定义域是(+∞∞-,)且....,2,1,0,2=+≠k k x ππ②若)(x f 的周期为T ,则)(φω+x f 的周期为ωT(0≠ω);③周期函数的和、差、积仍为周期函数,且周期为各个函数周期的最小公倍数,如:x x y 3cos 4sin +=周期是32,42ππ的最小公倍数π2,但也有例外,如:x sin ,x cos 的周期为2π,但x x y cos sin +=的周期为π;④周期函数的导数仍为周期函数,且周期不变; ⑤设)(x f 是周期为T 的函数,则它的原函数⎰=xadt t f x F )()(为周期函数的充要条件是0)(0=⎰Tdx x f ,或者说,周期函数的原函数不一定是周期函数,如:x x f cos 1)(+=是以2π为周期的函数,但其任一个原函数C x x x F ++=sin )(不是周期函数.⑥不是每一个周期函数都有最小正周期的,如:狄利克雷函数⎩⎨⎧=无理数有理数x x y ,0,1任何有理数r 都是它的周期,即若x 为有理数, r x +也是有理数,故有)(1)(r x f x f +==;若x 为无理数, r x +也是无理数,故)(0)(r x f x f +==,可见r 为)(x f 的周期,但它没有最小的正周期. 又如:C y =,C 为常数,它是周期为任意实数且没有最小正周期的周期函数.三、反函数设函数)(x f y =,其定义域为D ,值域为M ,如果对于M 中的某一个y 值(M y ∈),都可以从关系式)(x f y =确定唯一的x (D x ∈)与之对应,这样就确定了一个以y 为自变量的新函数,记为:)(1y fx -=,称函数)(1y f x -=为函数)(x f y =的反函数,它的定义域为M ,值域为D .注释:①习惯上自变量用x 表示,函数用y 表示,因此函数)(x f y =的反函数)(1y f x -=通常表示为)(1x fy -=.②反函数的定义域就是其原来函数的值域;反函数的值域就是原来函数的定义域,且有)]([)]([11x f f x x f f --==.③原来函数)(x f y =与其反函数)(1x fy -=的图像关于x y =对称(前提是在同一坐标系中),)(x f y =的图像与其反函数)(y x φ=的图像重合.④只有一一对应的函数才有反函数.⑤若)(x f 在区间I 内单调⇒)(x f 在区间I 内一定存在单值反函数,反之不一定成立,即若)(x f 在区间I 内存在单值反函数但)(x f 在区间I 内不一定单调,如: ⎩⎨⎧≤≤+≤--=10,101,)(x x x <x x f 在区间]1,1[-内存在单值反函数,但它在]1,1[-上不单调.四、复合函数若函数)(x u φ=在0x 处有定义,而)(u f y =在)(00x u φ=处有定义,则)]([x f y φ=称为由)(u f y =和)(x u φ=复合而成的复合函数,u 称为中间变量.注释:①只有当函数)(x u φ=的值域与)(u f y =的定义域的交集不是空集时才构成复合数. ②函数的复合:先利用外层函数关系,再利用内层函数关系而构成,如:设x x f sin )(=,x e x =)(φ,则x e x x f sin )](sin[)]([==φφ.③复合函数的分解:先找到外层函数关系,设其内部整体为中间变量u ,再依次分解,如:21)]sin [arctan(x x y +=,可设)sin arctan(x x u +=,x x v sin +=,则原来函数是由21u y = , v u arctan =,x x v sin +=复合而成.五、初等函数1、基本初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数这五类函数统称为基本初等函数.2、初等函数:由常数和五类基本初等函数经过有限次的四则运算和有限次复合运算且可用一个数学解析式表示的函数叫初等函数.注释:初等函数必须用一个式子表示,不能用一个式表示的函数不能称为初等函数,故分段函数一般不是初等函数.3、分段函数:若函数在其定义域内的不同部分上,分别用不同的表达式表示,这类函数称为分段函数.如:符号函数⎪⎩⎪⎨⎧<-=>=.0,1,0,0,0,1sgn x x x x 是分段函数且是有界函数和奇函数.又如: x x x x x x x y sgn .0,,0,=⎩⎨⎧<-≥==是分段函数.注释:分段函数一般不是初等函数,但若)(x f 是初等函数,则⎩⎨⎧<-≥==.0)(),(,0)(),()()(2x f x f x f x f x f x f 是初等函数. 又如:取整函数[]x y =,即“不超过x 的最大整数”是分段函数. 又如:定义在R 上的狄利克雷(Dirichlet )函数⎩⎨⎧=.,0,1)(无理数有理数x ,x x D 是分段函数,且是有界的,)(x D 是周期函数,但没有最小的正周期,任何有理数都是它的周期,并且)(x D 还是偶函数.4、初等函数的几个特例设函数)(x f 和)(x g 都是初等函数,则(1))(x f 是初等函数,因为=)(x f []2)(x f ;(2)最大值函数max )(=x ϕ{})(),(x g x f 和最小值函数{})(),(min )(x g x f x =ψ都是初等函数,这是因为{}[])()()()(21)(),(max )(x g x f x g x f x g x f x -++==ϕ {}[])()()()(21)(),(min )(x g x f x g x f x g x f x --+==ψ (3)幂指函数)()]([x g x f y = (0)(>x f )是初等函数,因为)(ln )()](ln[)()()]([x f x g x f x g e e x f x g ==.1.2 极限一、数列极限的定义 1、数列极限的概念设}{n x 为数列,a 为定数,若对任给的正数ε,总存在正整数N ,使得当N n >时,有ε<-a x n ,则称数列}{n x 收敛于a ,而a 称为数列}{n x 的极限,记作:a x n n =∞→lim ,或a x n →(∞→n ).若数列}{n x 没有极限,则称数列}{n x 不收敛,或称}{n x 为发散数列. 若0lim =∞→n n x ,则称}{n x 为无穷小数列.定理 数列}{n x 收敛于a 的充要条件是:}{a x n -为无穷小数列. 2、有界数列的概念对于数列}{n x ,如果存在正数M ,使得对于一切的n x 都有不等式M x n ≤||成立,则称数列}{n x 是有界的;如果这样的正数M 不存在,则称数列}{n x 是无界的.注释:(1)若数列}{n x 收敛,则数列有界;(2)有界数列}{n x 不一定收敛,如:n n a )1(-=有界,但不收敛,所以数列有界是数列收敛的必要条件;(3)C C n =∞→lim (常数);01lim=∞→p n n (0>p );0lim =∞→nn q (1<q ); (4)等差数列的求和公式2)(1n n a a n S +=或d n n na S n 2)1(1-+=. (5)等比数列的前n 项和公式qq a S n n --=1)1(1.3、单调数列的概念对于数列}{n x ,如果满足条件 ≤≤≤≤≤+121n n x x x x ,则称数列}{n x 为单调增加数列;如果满足条件 ≥≥≥≥≥+121n n x x x x ,则称数列}{n x 为单调减少数列.单调增加数列和单调减少数列统称为单调数列. 定理(单调有界准则) 单调有界数列必有极限.二、函数极限1、∞→x 时,函数)(x f 的极限 (1)概念定义 如果当∞→x 时,函数)(x f 无限趋近于某个确定的常数A ,则称常数A 为函数)(x f 当∞→x 时的极限,记作:A x f x =∞→)(lim 或A x f →)((∞→x ).注释:(1)∞→x 是指x 的绝对值无限增大,它包含以下两种情况:x 取正值并无限增大,记作:+∞→x ;x 取负值且其绝对值无限增大,记作:-∞→x .(2)如果+∞→x 和-∞→x 两种情况都存在且函数的极限值相等时,则可合并写成∞→x . 定义 如果当+∞→x 时,函数)(x f 无限趋近于某个确定的常数A ,则称常数A 为函数)(x f 当+∞→x 时的极限,记作:A x f x =+∞→)(lim 或A x f →)((+∞→x ).如果当-∞→x 时,函数)(x f 无限趋近于某个确定的常数A ,则称常数A 为函数)(x f 当-∞→x 时的极限,记作:A x f x =-∞→)(lim 或A x f →)((-∞→x ).(2)函数)(x f 在∞→x 时极限存在的充要条件定理 极限A x f x =∞→)(lim 存在的充要条件是A x f x =+∞→)(lim 且A x f x =-∞→)(lim .如:由于2arctan lim π=+∞→x x ,2arctan lim π-=-∞→x x ,所以x x x x arctan lim arctan lim -∞→+∞→≠,故极限x x arctan lim ∞→不存在;又如:由于0lim =-∞→x x e ,+∞=+∞→x x e lim 即不存在,故极限xx e ∞→lim 不存在.2、0x x →时,函数)(x f 的极限 (1)函数)(x f 在0x x →时的极限概念定义 设函数)(x f 在0x 的某个去心邻域内有定义,如果当0x x →时,函数)(x f 无限地趋近于某一确定的常数A ,则称A 为函数)(x f 当0x x →时的极限,记作:A x f x x =→)(lim 0或Ax f →)((0x x →).注释:0x x →表示x 趋近于0x ,含以下两种情况:(1)x 从大于0x 的一侧(即右侧)趋近于0x ,记作:+→0x x ; (2)x 从大于0x 的一侧(即右侧)趋近于0x ,记作:-→0x x .(2)函数左极限与右极限的概念定义 设函数)(x f 在0x 的某个左侧邻域),(00x x δ-(0>δ)内有定义,如果当x 从0x 的左侧趋近于0x (记作:-→0x x )时,函数)(x f 无限地趋近于某一确定的常数A ,则称A 为函数)(x f 当-→0x x 时的极限,记作:A x f x x =-→)(lim 0或A x f =-)(0或A x f =-)0(0.设函数)(x f 在0x 的某个右侧邻域),(00δ+x x (0>δ)内有定义,如果当x 从0x 的右侧趋近于0x (记作:+→0x x )时,函数)(x f 无限地趋近于某一确定的常数A ,则称A 为函数)(x f 当+→0x x 时的极限,记作:A x f x x =+→)(lim 0或A x f =+)(0或A x f =+)0(0.(3)函数)(x f 在0x x →时极限存在的充要条件定理 极限A x f x x =→)(lim 0存在的充要条件是A x f x x =-→)(lim 0且A x f x x =+→)(lim 0.注释:该定理主要用来判定分段函数在分段点处极限是否存在的重要定理. (4)几个常用极限01lim=∞→x x ,C C x x =→0lim (常数),0sin lim 0=→x x ,1cos lim 0=→x x ,00lim x x x x =→. (5)初等函数的极限基本初等函数在定义域内任一点0x 的极限等于该点的函数值;初等函数在定义区间内任一点0x 的极限等于该点的函数值.3、函数极限的性质(1)唯一性:若极限)(lim 0x f x x →存在,则它的极限必唯一;(2)局部有界性:若)(li m 0x f x x →存在,则0>∃δ和0>M ,当δ<-<00x x 时,有M x f ≤)(;(3)保序性:设A x f x x =→)(lim 0,B x g x x =→)(lim 0,(Ⅰ)若B A >,则0>∃δ,当δ<-<00x x 时,有)()(x g x f >; (Ⅱ)若当δ<-<00x x 时,有)()(x g x f >,则B A ≥.(4)保号性:若0)(lim 0>=→A x f x x (或<0),则必0>∃δ,当δ<-<00x x 时,有0)(>x f (或0)(<x f )若0)(>x f (或0)(<x f ),且A x f x x =→)(lim 0,则0≥A (或0≤A ).注释:①上述的变化趋势0x x →,可以换成-→0x x ,+→0x x ,∞→x ,-∞→x ,+∞→x②若)0(0)(<>或x f ,且A x f x x =→)(lim 0,则0>A )0(<或是错误的,如)0(0)(2≠>=x x x f ,但0)(lim 0=→x f x1.3 极限的运算法则若)(lim x f ,)(lim x g 都存在,则(1)[])(lim )(lim )()(lim x g x f x g x f ±=±;(2)[])(lim )(lim )()(lim x g x f x g x f ±=,特别地)(lim )(lim x f C x Cf =; (3))(lim )(lim )()(limx g x f x g x f =,其中0)(lim ≠x g ; (4))]([lim )]([lim x g f x g f =; (5)[],)(lim )(lim )(lim )(x g x g x f x f =其中0)(lim >x f 且不等于1,特别地[]αα)(lim )](lim[x f x f =(α为实数). 注释:①法则(1)(2)可以推广到有限个函数.②0x x →时有理分式极限的求法设)(x R 是有理分式,01110111)()()(b x b x b x b a x a x a x a x Q x P x R n n n n n n n n m n ++++++++==---- ,其中0≠n a ,0≠n b .(1)若0)(0≠x Q m ,则)()()()(lim 0000x R x Q x P x R m n x x ==→;(2)若0)(0=x Q m ,而0)(0≠x P n ,则∞=→)(lim 0x R x x ;(3)若0)(0=x Q m 且0)(0=x P n ,则)(x P n 与)(x Q m 一定有公因子)(0x x -,将)(x P n 与)(x Q m 因式分解,约去公因式后再计算极限.③∞→x 时有理分式极限的求法⎪⎪⎩⎪⎪⎨⎧<∞=>=∞→.,.,.,0)(lim 时当时当时当n m n m b an m x R n n x 其中0≠n a ,0≠n b . ④无理分式极限的求法:先分子或分母有理化,在计算极限 ⑤“∞-∞”型有理分式的求法:先通分,再求极限.1.4 极限存在准则及两个重要极限一、极限存在准则夹逼定理:如果对于0x 的去心邻域内的一切x 都有)()()(x h x f x g ≤≤,且A x h x g x x x x ==→→)(lim )(lim 0,则有A x f x x =→)(lim 0.二、两个重要极限 1、1sin lim0=→xx x ,1sin lim 0=→x x x ,一般的1sin lim0=∆∆→∆,∆表示任一函数)(x u ,即1)()(sin lim 0)(=→x u x u x u ;2、e xxx =+∞→)11(lim ,e x x x =+→10)1(lim ,一般的e =∆+∆∞→∆)11(lim ,e =∆+∆→∆10)1(lim ,∆表示任一函数)(x u ,即e x u x u x u =+∞→)()())(11(li m ,e x u x u x u =+→)(1)())(1(lim .1.5 无穷小量与无穷大量、无穷小的比较一、无穷小量1、无穷小量的概念若0)(lim 0=→x f x x (或0)(lim =∞→x f x ),则称)(x f 是0x x →(或∞→x )时的无穷小量,简称无穷小;2、极限与无穷小量的关系α+=⇔=∞→→A x f A x f x x x )()(lim )(0,其中α是0x x →时的无穷小量.|)(|)(lim )(0A x f A x f x x x -⇔=∞→→是0x x →(或∞→x )时的无穷小量.3、无穷小量的性质(1)有限个无穷小量的和、差、积仍然是无穷小量,(2)有界函数与无穷小量的乘积是无穷小量。

相关文档
最新文档