全国高考文科数学试题分类汇编:集合
最新高考文科数学专题一:集合题型总结含解析说课讲解

第一章集合第一节集合的含义、表示及基本关系练习一组1.已知A={1,2},B=|x x A,则集合A 与B的关系为________.解析:由集合B=|x x A知,B={1,2}.答案:A=B2.若2,x x,则实数a的取值范围|a a R是________.解析:由题意知,2x a有解,故0a.答案:a3.已知集合A=2y y x x x R,集合B|21,=|28x x,则集合A与B的关系是________.解析:y=x2-2x-1=(x-1)2-2≥-2,∴A={y|y≥-2},∴B A.答案:B A4.已知全集U=R,则正确表示集合M={-1,0,1}和N=2|0x x x关系的韦恩(Venn)图是________.解析:由N=2|0x x x,得N={-1,0},则N M .答案:②5知集合A=|5x x,集合B=|x x a,若命题“x∈A”是命题“x∈B”的充分不必要条件,则实数a的取值范围是________.解析:命题“x∈A”是命题“x∈B” 的充分不必要条件,∴A B,∴a<5.答案:a<56.已知m∈A,n∈B,且集合A={x|x=2a,a∈Z},B={x|x=2a+1,a∈Z},又C={x|x=4a+1,a∈Z},判断m+n属于哪一个集合?解:∵m∈A,∴设m=2a1,a1∈Z,又∵n∈B,∴设n=2a2+1,a2∈Z,∴m+n=2(a1+a2)+1,而a1+a2∈Z,∴m+n∈B.练习二组1.设a,b都是非零实数,y=a|a|+b|b|+ab|ab|可能取的值组成的集合是________.解析:分四种情况:(1)a>0且b>0;(2)a>0且b<0;(3)a<0且b>0;(4)a<0且b<0,讨论得y=3或y=-1.答案:{3,-1}2.已知集合A={-1,3,2m-1},集合B={3,m2}.若B⊆A,则实数m=________.解析:∵B⊆A,显然m2≠-1且m2≠3,故m2=2m-1,即(m-1)2=0,∴m=1.答案:13.设P,Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},若P={0,2,5},Q={1,2,6},则P+Q中元素的个数是________个.解析:依次分别取a=0,2,5;b=1,2,6,并分别求和,注意到集合元素的互异性,∴P+Q={1,2,6,3,4,8,7,11}.答案:84.已知集合M={x|x2=1},集合N={x|ax =1},若N M,那么a的值是________.解析:M={x|x=1或x=-1},N M,所以N=∅时,a=0;当a≠0时,x=1a=1或-1,∴a=1或-1.答案:0,1,-15.满足{1}A⊆{1,2,3}的集合A的个数是________个.解析:A中一定有元素1,所以A有{1,2},{1,3},{1,2,3}.答案:36.已知集合A={x|x=a+16,a∈Z},B={x|x=b2-13,b∈Z},C={x|x=c2+16,c∈Z},则A、B、C之间的关系是________.解析:用列举法寻找规律.答案:A B=C7.集合A={x||x|≤4,x∈R},B={x|x<a},则“A⊆B”是“a>5”的________.解析:结合数轴若A⊆B⇔a≥4,故“A⊆B”是“a>5”的必要但不充分条件.答案:必要不充分条件8.设集合M={m|m=2n,n∈N,且m<500},则M中所有元素的和为________.解析:∵2n<500,∴n=0,1,2,3,4,5,6,7,8.∴M中所有元素的和S=1+2+22+…+28=511.答案:5119.设A是整数集的一个非空子集,对于k∈A,如果k-1∉A,且k+1∉A,那么称k 是A的一个“孤立元”.给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.解析:依题可知,由S的3个元素构成的所有集合中,不含“孤立元”,这三个元素一定是相连的三个数.故这样的集合共有6个.答案:610.已知A={x,xy,lg(xy)},B={0,|x|,y},且A=B,试求x,y的值.解:由lg(xy)知,xy>0,故x≠0,xy≠0,于是由A=B得lg(xy)=0,xy=1.从而y=-1.11.已知集合A={x|x2-3x-10≤0},(1)若B⊆A,B={x|m+1≤x≤2m-1},求实数m的取值范围;(2)若A⊆B,B={x|m-6≤x≤2m-1},求实数m的取值范围;(3)若A=B,B={x|m-6≤x≤2m-1},求实数m 的取值范围.解:由A ={x |x 2-3x -10≤0},得A ={x |-2≤x ≤5},(1)∵B ⊆A ,∴①若B =∅,则m +1>2m -1,即m <2,此时满足B ⊆A . ②若B ≠∅,则⎩⎪⎨⎪⎧ m +1≤2m -1,-2≤m +1,2m -1≤5.解得2≤m ≤3. 由①②得,m 的取值范围是(-∞,3].(2)若A ⊆B ,则依题意应有⎩⎪⎨⎪⎧ 2m -1>m -6,m -6≤-2,2m -1≥5.解得⎩⎪⎨⎪⎧ m >-5,m ≤4,m ≥3.故3≤m ≤4,∴m 的取值范围是[3,4].(3)若A =B ,则必有⎩⎪⎨⎪⎧ m -6=-2,2m -1=5,解得m ∈∅.,即不存在m 值使得A =B .12.已知集合A ={x |x 2-3x +2≤0},B ={x |x 2-(a +1)x +a ≤0}.(1)若A 是B 的真子集,求a 的取值范围;(2)若B 是A 的子集,求a 的取值范围;(3)若A =B ,求a 的取值范围.解:由x 2-3x +2≤0,即(x -1)(x -2)≤0,得1≤x ≤2,故A ={x |1≤x ≤2},而集合B ={x |(x -1)(x -a )≤0},(1)若A 是B 的真子集,即AB ,则此时B={x|1≤x≤ a},故a>2.(2)若B是A的子集,即B⊆A,由数轴可知1≤a≤2.(3)若A=B,则必有a=2第二节集合的基本运算练习一组1.设U=R,A=|0x x,B=|1x x,则A∩∁U B =____.解析:∁U B={x|x≤1},∴A∩∁U B={x|0<x≤1}.答案:{x|0<x≤1}2.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有________个.解析:A∩B={4,7,9},A∪B={3,4,5,7,8,9},∁U(A∩B)={3,5,8}.答案:33.已知集合M={0,1,2},N=|2,x x a a M,则集合M∩N=________.解析:由题意知,N={0,2,4},故M∩N ={0,2}.答案:{0,2}4.设A,B是非空集合,定义AⓐB={x|x ∈A∪B且x∉A∩B},已知A={x|0≤x≤2},B ={y|y≥0},则AⓐB=________.解析:A∪B=[0,+∞),A∩B=[0,2],所以AⓐB=(2,+∞).答案:(2,+∞)5.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.解析:设两项运动都喜欢的人数为x,画出韦恩图得到方程15-x+x+10-x+8=30x=3,∴喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12(人).答案:126.已知集合A={x|x>1},集合B={x|m≤x≤m+3}.(1)当m=-1时,求A∩B,A∪B;(2)若B⊆A,求m的取值范围.解:(1)当1m时,B={x|-1≤x≤2},∴A∩B={x|1<x≤2},A∪B={x|x≥-1}.(2)若B⊆A,则1m,即m的取值范围为(1,+∞)练习二1.若集合M={x∈R|-3<x<1},N={x∈Z|-1≤x≤2},则M∩N=________.解析:因为集合N={-1,0,1,2},所以M∩N={-1,0}.答案:{-1,0}2.已知全集U={-1,0,1,2},集合A ={-1,2},B={0,2},则(∁U A)∩B=________.解析:∁U A={0,1},故(∁U A)∩B={0}.答案:{0}3.若全集U=R,集合M={x|-2≤x≤2},N={x|x2-3x≤0},则M∩(∁U N)=________.解析:根据已知得M∩(∁U N)={x|-2≤x≤2}∩{x|x<0或x>3}={x|-2≤x<0}.答案:{x|-2≤x<0}4.集合A={3,log2a},B={a,b},若A∩B ={2},则A∪B=________.解析:由A∩B={2}得log2a=2,∴a=4,从而b=2,∴A∪B={2,3,4}.答案:{2,3,4}5.已知全集U=A∪B中有m个元素,(∁A)∪(∁U B)中有n个元素.若A∩B非空,则UA∩B的元素个数为________.解析:U=A∪B中有m个元素,∵(∁U A)∪(∁U B)=∁U(A∩B)中有n个元素,∴A∩B中有m-n个元素.答案:m-n6.设U={n|n是小于9的正整数},A={n∈U|n是奇数},B={n∈U|n是3的倍数},则∁U(A∪B)=________.解析:U={1,2,3,4,5,6,7,8},A ={1,3,5,7},B={3,6},∴A∪B={1,3,5,6,7},得∁U(A∪B)={2,4,8}.答案:{2,4,8}7.定义A⊗B={z|z=xy+xy,x∈A,y∈B}.设集合A={0,2},B={1,2},C={1},则集合(A⊗B)⊗C的所有元素之和为________.解析:由题意可求(A⊗B)中所含的元素有0,4,5,则(A⊗B)⊗C中所含的元素有0,8,10,故所有元素之和为18.答案:188.若集合{(x,y)|x+y-2=0且x-2y +4=0}{(x,y)|y=3x+b},则b=________.解析:由⎩⎪⎨⎪⎧ x +y -2=0,x -2y +4=0.⇒⎩⎪⎨⎪⎧x =0,y =2.点(0,2)在y =3x +b 上,∴b =2.9.设全集I ={2,3,a 2+2a -3},A ={2,|a +1|},∁I A ={5},M ={x |x =log 2|a |},则集合M 的所有子集是________.解析:∵A ∪(∁I A )=I ,∴{2,3,a 2+2a -3}={2,5,|a +1|},∴|a +1|=3,且a 2+2a -3=5,解得a =-4或a =2,∴M ={log 22,log 2|-4|}={1,2}.答案:∅,{1},{2},{1,2}10.设集合A ={x |x 2-3x +2=0},B ={x |x 2+2(a +1)x +(a 2-5)=0}.(1)若A∩B={2},求实数a的值;(2)若A∪B=A,求实数a的取值范围.解:由x2-3x+2=0得x=1或x=2,故集合A={1,2}.(1)∵A∩B={2},∴2∈B,代入B中的方程,得a2+4a+3=0⇒a=-1或a=-3;当a =-1时,B={x|x2-4=0}={-2,2},满足条件;当a=-3时,B={x|x2-4x+4=0}={2},满足条件;综上,a的值为-1或-3.(2)对于集合B,Δ=4(a+1)2-4(a2-5)=8(a+3).∵A∪B=A,∴B⊆A,①当Δ<0,即a<-3时,B=∅满足条件;②当Δ=0,即a=-3时,B={2}满足条件;③当Δ>0,即a>-3时,B=A={1,2}才能满足条件,则由根与系数的关系得矛盾.综上,a的取值范围是a≤-3.11.已知函数f(x)=6x+1-1的定义域为集合A,函数g(x)=lg(-x2+2x+m)的定义域为集合B.(1)当m=3时,求A∩(∁R B);(2)若A∩B={x|-1<x<4},求实数m的值.解:A={x|-1<x≤5}.(1)当m=3时,B={x|-1<x<3},则∁R B={x|x≤-1或x≥3},∴A∩(∁R B)={x|3≤x≤5}.(2)∵A={x|-1<x≤5},A∩B={x|-1<x<4},∴有-42+2×4+m=0,解得m=8,此时B={x|-2<x<4},符合题意.12.已知集合A={x∈R|ax2-3x+2=0}.(1)若A=∅,求实数a的取值范围;(2)若A是单元素集,求a的值及集合A;(3)求集合M={a∈R|A≠∅}.解:(1)A是空集,即方程ax2-3x+2=0无解.若a≠0,要方程ax2-3x+2=0无解,则综上可知,若A=∅,则a的取值范围应(2)当a=0时,方程ax2-3x+2=0只有要使方程有实数根,。
高考文科数学集合专题讲解及高考真题精选(含答案).doc

集合、简易逻辑(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.集合的基本运算1. 集合运算:交、并、补.{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C 2. 主要性质和运算律 (1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇C原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互(2) 等价关系:U A B A B A A B B AB U ⊆⇔=⇔=⇔=C (3) 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A == 分配律:.)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ===等幂律:.,A A A A A A ==求补律:A ∩C U A =φ A ∪C U A =U C U U =φ C U φ=U反演律:C U (A ∩B)= (C U A )∪(C U B ) C U (A ∪B)= (C U A )∩(C U B )简易逻辑1、命题的定义:可以判断真假的语句叫做命题。
高考文科数学集合专题讲解及高考真题精选(含答案)

集合、简易逻辑(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.集合的基本运算1. 集合运算:交、并、补.{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉I U U 交:且并:或补:且C 2. 主要性质和运算律 (1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇I I U U C(2) 等价关系:U A B A B A A B B A B U ⊆⇔=⇔=⇔=I U U C (3) 集合的运算律:交换律:.;A B B A A B B A Y Y I I ==结合律:)()();()(C B A C B A C B A C B A Y Y Y Y I I I I == 分配律:.)()()();()()(C A B A C B A C A B A C B A Y I Y I Y I Y I Y I == 0-1律:,,,A A A U A A U A U Φ=ΦΦ===I U I U 等幂律:.,A A A A A A ==Y I求补律:A ∩C U A =φ A ∪C U A =U C U U =φ C U φ=U 反演律:C U (A ∩B)= (C U A )∪(C U B ) C U (A ∪B)= (C U A )∩(C U B )简易逻辑1、命题的定义:可以判断真假的语句叫做命题。
高考文科数学集合专题讲解及高考真题精选含答案)

集合、简易逻辑(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一.(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).(6)子集、真子集、集合相等名称记号 意义性质示意图子集(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A(2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B =A(B)或B A真子集A ≠⊂B(或B ≠⊃A )B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂集合 相等A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B (2)B ⊆A(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.集合的基本运算1. 集合运算:交、并、补.2. 主要性质和运算律 (1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇C(2) 等价关系:U A B A B A A B B AB U ⊆⇔=⇔=⇔=C (3) 集合的运算律:原命题若p 则q 否命题若┐p 则┐q逆命题若q 则p逆否命题若┐q 则┐p互为逆否互逆否互为逆否互互逆否互交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A == 分配律:.)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ=== 等幂律:.,A A A A A A ==求补律:A ∩C U A =φ A ∪C U A =U C U U =φ C U φ=U 反演律:C U (A ∩B)= (C U A )∪(C U B ) C U (A ∪B)= (C U A )∩(C U B ) 简易逻辑1、命题的定义:可以判断真假的语句叫做命题。
全国高考数学真题分类汇编(2013-2022)——集合专题(附解析)

全国高考数学真题分类汇编(2013-2022)集合专题(附解析)1.【2022年全国甲卷理科·第3题】设全集{2,1,0,1,2,3}U =--,集合{}2{1,2},430A B xx x =-=-+=∣,则()U A B ⋃=ð()A.{1,3}B.{0,3}C.{2,1}-D.{2,0}-2.【2022年全国乙卷理科·第1题】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A.2M ∈B.3M ∈C.4M ∉D.5M∉3.【2022新高考全国II 卷·第1题】已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B = ()A.{1,2}-B.{1,2}C.{1,4}D.{1,4}-4.【2022新高考全国I 卷·第1题】若集合{4},{31}M x N x x =<=≥∣,则M N = ()A.{}02x x ≤<B.123x x ⎧⎫≤<⎨⎬⎩⎭C.{}316x x ≤<D.1163x x ⎧⎫≤<⎨⎬⎩⎭5.【2021年新高考全国Ⅱ卷·第2题】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A.{3}B.{1,6}C.{5,6}D.{1,3}6.【2021年新高考Ⅰ卷·第1题】设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ()A.{}2B.{}2,3C.{}3,4D.{}2,3,47.【2020年新高考I 卷(山东卷)·第1题】设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =()A.{x |2<x ≤3}B.{x |2≤x ≤3}C.{x |1≤x <4}D.{x |1<x <4}8.【2020新高考II 卷(海南卷)·第1题】设集合A={2,3,5,7},B ={1,2,3,5,8},则A B =()A.{1,3,5,7}B.{2,3}C.{2,3,5}D.{1,2,3,5,7,8}9.【2021年高考全国乙卷理科·第2题】已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T Ç=()A.∅B.S C.T D.Z 10.【2021年高考全国甲卷理科·第1题】设集合{}104,53M x x N xx ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N = ()A.103x x ⎧⎫<≤⎨⎬⎩⎭B.143x x ⎧⎫≤<⎨⎬⎩⎭C.{}45x x ≤<D.{}05x x <≤11.【2020年高考数学课标Ⅰ卷理科·第2题】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =()A.–4B.–2C.2D.412.【2020年高考数学课标Ⅱ卷理科·第1题】已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B ⋃=ð()A.{−2,3}B.{−2,2,3}C.{−2,−1,0,3}D.{−2,−1,0,2,3}13.【2020年高考数学课标Ⅲ卷理科·第1题】已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为()A.2B.3C.4D.614.【2019年高考数学课标Ⅲ卷理科·第1题】已知集合{}1,0,1,2A =-,2{|1}B x x =≤,则A B = ()A.{}1,0,1-B.{}0,1C.{}1,1-D.{}0,1,215.【2019年高考数学课标全国Ⅱ卷理科·第1题】设集合{}2560A x x x =-+>,{}10B x x =-<,则A B = ()A.(),1-∞B.()2,1-C.()3,1--D.()3,+∞16.【2019年高考数学课标全国Ⅰ卷理科·第1题】已知集合{42}M x =-<<,2{|60}N x x x =--<,则M N = ().{|43}A x x -<<.{|42}B x x -<<-.{|22}C x x -<<.{|23}D x x <<17.【2018年高考数学课标Ⅲ卷(理)·第1题】已知集合{}|10A x x =-≥,{}0,1,2B =,则A B = ()A.{}0B.{}1C.{}1,2D.{}0,1,218.【2018年高考数学课标Ⅱ卷(理)·第2题】已知集合(){}223A x y x y x y =+∈∈Z Z ,≤,,,则A 中元素的个数为()A.9B.8C.5D.419.【2018年高考数学课标卷Ⅰ(理)·第2题】己知集合{}220A x x x =-->,则R A =ð()A.{}12x x -<<B.{}12x x -≤≤C.{}{}12x x x x <-> D.{}{}12x x x x ≤-≥ 20.【2017年高考数学新课标Ⅰ卷理科·第1题】已知集合{}|1A x x =<,{}|31x B x =<,则()A.{|0}A B x x =< B.A B =R C.{|1}A B x x => D.A B =∅21.【2017年高考数学课标Ⅲ卷理科·第1题】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为().A.3B.2C.1D.022.【2017年高考数学课标Ⅱ卷理科·第2题】设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B = ,则B =()A.{}1,3-B.{}1,0C.{}1,3D.{}1,523.【2016高考数学课标Ⅲ卷理科·第1题】设集合{}(2)(3)0S x x x =--≥,{}0T x x =>,则S T = ()A.[]2,3B.(][),23,-∞+∞ C.[)3,+∞D.(][)0,23,+∞ 24.【2016高考数学课标Ⅱ卷理科·第2题】已知集合{1,2,3}A =,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B = ()A.{1}B.{12},C.{0123},,,D.{10123}-,,,,25.【2016高考数学课标Ⅰ卷理科·第1题】设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B = ()(A)3(3,)2--(B)3(3,2-(C)3(1,2(D)3(,3)226.【2015高考数学新课标2理科·第1题】已知集合21,0,1,2A =--{,},{}(1)(20B x x x =-+<,则A B = ()A.{}1,0A =-B.{}0,1C.{}1,0,1-D.{}0,1,227.【2014高考数学课标2理科·第1题】设集合0,1,2M ={},2{|320}N x x x =-+≤,则M N = ()A.{1}B.{2}C.{0,1}D.{1,2}28.【2014高考数学课标1理科·第1题】已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ⋂=()A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)29.【2013高考数学新课标2理科·第1题】已知集合=2{|(1)4,},N {1,0,1,2,3}M x x x R -<∈=-,则M N ⋂=()A.{0,1,2}B.{1,0,1,2}-C.{1,0,2,3}-D.{0,1,2,3}30.【2013高考数学新课标1理科·第1题】已知集合A=2{|20}x x x ->,B={|x x <<,则()A.A B =∅ B.A B R = C.B A ⊆D.A B ⊆参考解析1.【答案】D 解析:由题意,{}{}2=4301,3B x x x -+==,所以{}1,1,2,3A B ⋃=-,所以(){}U 2,0A B ⋃=-ð.故选:D.2.【答案】A 解析:由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误3.【答案】B 解析:{}|02B x x =≤≤,故{}1,2A B = .故选B.4.【答案】D 解析:1{16},{}3M xx N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫=≤<⎨⎬⎩⎭,故选:D 5.【答案】B 解析:由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选B.6.【答案】B 解析:由题设有{}2,3A B ⋂=,故选B.7.【答案】C 解析:[1,3](2,4)[1,4)A B ==U U 故选:C8.【答案】C 解析:因为{2,3,5,7},{1,2,3,5,8}A B ==,所以{2,3,5}A B = ,故选:C9.【答案】C 解析:任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆,因此,S T T = .故选:C.10.【答案】B 解析:因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:B.11.【答案】B 解析:求解二次不等式240x -≤可得:{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭.由于{}|21A B x x ⋂=-≤≤,故:12a -=,解得:2a =-.故选:B.12.【答案】A 解析:由题意可得:{}1,0,1,2A B ⋃=-,则(){}U 2,3A B =- ð.故选:A .13.【答案】C 解析:由题意,A B 中的元素满足8y x x y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4),故A B 中元素的个数为4.故选:C.14.【答案】A 解析:因为{}1,0,1,2A =-,{}11B x x =-≤≤,所以{}1,0,1A B =- ,故选A.15.【答案】A 解析:{}{25602A x x x x x =-+>=≤或}3x ≥,{}{}101B x x x x =-<=<,故{}1A B x x =< ,故选A.16.【答案】C 解析:2{|60}{|(2)(3)0}{|23},{|22}N x x x x x x x x M N x x =--<=+-<=-<<∴=-<< 故选C.17.【答案】C 解析:{}{}|10|1A x x x x =-≥=≥,{}0,1,2B =,故{}1,2A B = ,故选C.18.【答案】A 解析:(){}{}223(1,1),(1,0),(1,1),(0,1),(0,0),(0,1),(1,1),(1,0),(1,1)A x y x y x y =+∈∈=-------Z Z ,≤,,,故选A.19.【答案】B 解析:集合{}220A x x x =+->,可得{}12A x x x =<->或,则{}-12R A x x =≤≤ð,故选:B.20.【答案】A 解析:由31x <得033x <,所以0x <,故{|1}{|0}{|0}A B x x x x x x ⋂=<⋂<=<,故选A.21.【答案】B 解析:法1:集合中的元素为点集,由题意,结合A 表示以(0,0)为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有点组成的集合,联立圆与直线的方程,可得圆221x y +=与直线y x =相交于两点,22⎫⎪⎪⎝⎭,,22⎛⎫-- ⎪ ⎪⎝⎭,所以A B 中有两个元素.法2:结合图形,易知交点个数为2,即A B 的元素个数为2.故选B22.【答案】C 解析:法1:常规解法∵{}1A B = ∴1是方程240x x m -+=的一个根,即3m =,∴{}2430B x x x =-+=故{}1,3B =法2:韦达定理法∵{}1A B = ∴1是方程240x x m -+=的一个根,∴利用伟大定理可知:114x +=,解得:13x =,故{}1,3B =法3:排除法∵集合B 中的元素必是方程方程240x x m -+=的根,∴124x x +=,从四个选项A﹑B﹑C ﹑D看只有C 选项满足题意.23.【答案】D 解析:由(2)(3)0x x --≥解得3x ≥或2x ≤,所以{}23S x x x =或≤≥,所以{}023S T x x x =< 或≤≥,故选D.24.【答案】C 解析:{|(1)(2)0,}={0,1}B x x x x Z =+-<∈,又{1,}A =2,3,所以{0,1,2,3}A B =,故选C.25.【答案】D 解析:{}{}243013A x x x x x =-+<=<<,{}32302B x x x x ⎧⎫=->=>⎨⎩⎭.故332A B x x ⎧⎫=<<⎨⎬⎩⎭ .故选D.26.【答案】A 解析:由已知得{}21B x x =-<<,故{}1,0A B =- ,故选A.27.【答案】D 解析:因为N ={x|1x 2}≤≤,所以M N={12},⋂,故选D.28.【答案】A 解析:∵A={x |2230x x --≥}={}13x x x ≤-≥或,B={}22x x -≤<,∴A B ⋂={}21x x -≤≤,选A.29.【答案】A 解析:化简集合M 得{|13,}M x x x R =-<<∈,则{0,1,2}M N ⋂=.30.【答案】D 解析:(,0)(2,),A A B R =-∞+∞∴= ,故选B。
2011—2020年十年新课标全国卷高考数学分类汇编——1

2011—2020年十年新课标全国卷高考数学分类汇编——1.集合2011年至2020年的新课标全国卷数学试题共包含8套全国卷,包括全国Ⅰ卷、Ⅱ卷、Ⅲ卷、新高考Ⅰ卷和新高考Ⅱ卷。
本资料根据全国卷的特点编写,共包含14个专题,包括集合、复数、逻辑、数学文化、新定义、平面向量、不等式、数列、三角函数与解三角形、解析几何、概率与统计、程序框图、坐标系与参数方程、不等式选讲。
通过掌握各种题型,可以把握全国卷命题的灵魂。
集合与简易逻辑是数学试题中的一个重要专题。
以下是一些选择题的例子:2020年新高考Ⅰ卷第一题:设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3} B.{x|2≤x≤3} C.{x|1≤x<4} D.{x|1<x<4}2020年全国卷Ⅰ理科第二题:设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()A.–4 B.–2 C.2 D.42020年全国卷Ⅰ文科第一题:已知集合A={x|x23x40},B={4,1,3,5},则B={x|1<x<4}。
2020年全国卷Ⅱ理科第一题:已知集合U={−2,−1.1,2,3},A={−1.1},B={1,2},则CUAA.{−2,3} B.{−2,2,3} C.{−2,−1.3} D.{−2,−1.2,3}2020年全国卷Ⅱ文科第一题:已知集合A={x||x|1,x∈Z},则A∩B={–2,2}。
2020年全国卷Ⅲ理科第一题:已知集合A{(x,y)|x,y N*,y x},B{(x,y)|x y8},则A∩B中元素的个数为3.2020年全国卷Ⅲ文科第一题:已知集合A1,2,3,5,7,11,B x|3x15,则A∩B中元素的个数为4.2019·全国卷Ⅰ,理1)已知集合M={x|-4<x<2},N={x|x^2-x-6<0},则M的正确表示为A。
高考文科数学集合专题讲解及高考真题精选(含答案)

集合、简易逻辑(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅). (6)子集、真子集、集合相等 名称记号 意义性质示意图子集(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A(2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B =A(B)或B A真子集A ≠⊂B(或B ≠⊃A )B A ⊆,且B 中至少有一元素不属于 A(1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂集合 相等A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B (2)B ⊆A(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.集合的基本运算1. 集合运算:交、并、补.2. 主要性质和运算律 (1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇C(2) 等价关系:U A B A B A A B B AB U ⊆⇔=⇔=⇔=C (3) 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A == 分配律:.)()()();()()(C A B A C B A C A B A C B A ==原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互0-1律:,,,A A A U A A U A U Φ=ΦΦ===等幂律:.,A A A A A A ==求补律:A ∩C U A =φ A ∪C U A =U C U U =φ C U φ=U反演律:C U (A ∩B)= (C U A )∪(C U B ) C U (A ∪B)= (C U A )∩(C U B ) 简易逻辑1、命题的定义:可以判断真假的语句叫做命题。
集合-2013—2014年高考文科数学试题分类解析(研究版)

目录2014年全国新课标高考文科数学考试大纲 (1)2013年高考文科数学考试大纲(新课标) (1)一.列举法 (2)§11 交集 (2)§12 补集 (4)§1.3 交集、并集、补集混合运算 (5)二.描述法 (5)§21 交集 (5)§2.1 特例法 (8)§2.3 等价转化 (8)§2.4 列举法与描述法混合型 (8)三.创新综合性 (9)专题1 集合与常用逻辑用语2014年全国新课标高考文科数学考试大纲(1)集合的含义与表示①了解集合的含义、元素与集合的属于关系②能用自然语育、图形语言、集合语言(列举法或描述法)描述不同的具体问题(2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集②在具体情境中,了解全集写空集的含义(3)集合的基本运算①理解两个集合的并集和交集的含义,会求两个简单集合的并集和交集②理解在给定集合中一个子集的补集的含义,会求给定子集的补集③能使用韦恩(Venn)图表达集合的关系及运算2013年高考文科数学考试大纲(新课标)(1)集合的含义与表示①了解集合的含义、元素与集合的属于关系②能用自然语育、图形语言、集合语言(列举法或描述法)描述不同的具体问题(2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集②在具体情境中,了解全集写空集的含义(3)集合的基本运算①理解两个集合的并集和交集的含义,会求两个简单集合的并集和交集②理解在给定集合中一个子集的补集的含义,会求给定子集的补集③能使用韦恩(Venn)图表达集合的关系及运算一.列举法 §11 交集【例1】【2013年高考四川卷(文)】设集合,集合,则( )A .B .C .D .【答案】B 【解析】。
【练习1】【2013年高考福建卷(文)】若集合,则的子集个数为( )A .2B .3C .4D .16【答案】C【例2】【2014高考北京卷文第1题】若集合A={}0,1,2,4,B={}1,2,3,则AB =( )A {}0,1,2,3,4B {}0,4C {}1,2D {}3 【答案】C【曹亚云·解析1】AB ={0,1,2,4}{1,2,3}={1,2}【曹亚云·解析2】Mathematica90 In[1]:= Intersection[{0,1,2,4},{1,2,3}] Out[1]= {1,2}【曹亚云·解析3】Excel20131在A2:A5单元格输入0,1,2,4,在B2:B4单元格输入1,2,3;2在C2单元格输入=IF(AND(COUNTIF($A$2:$A$5,A1)>=1,COUNTIF($B$2:$B$4,A1)>=1),A1,""),向下填充结果如下图所示:“高中数学师生群”QQ 群号码:341383390,欢迎各位一线高中数学教师加入,欢迎各位在读高中学生加入“高中数学教师俱乐部”QQ 群号码:44359573,欢迎各位一线高中数学教师加入注:该群为教师群,拒绝学生申请【练习2】【2014高考广东卷文第1题】已知集合{}2,3,4M =,{}0,2,3,5N =,则MN =( ){1,2,3}A ={2,2}B =-AB =∅{2}{2,2}-{2,1,2,3}-{1,2,3}{2,2}{2}AB =-=A {}0,2B {}2,3C {}3,4D {}3,5 【答案】B【曹亚云·解析】MN ={}{}2,3,40,2,3,5{2,3}=【练习3】【2014高考大纲卷文第1题】设集合12{}468M =,,,, ,23{}567N =,,,, ,则M N 中元素的个数为( )A 2B 3C 5D 7 【答案】B【曹亚云·解析】{1,2,6)MN =故选B获取更多优质资源,请在百度文库输入“曹亚云”搜索【练习4】【2014高考江苏卷第1题】已知集合{}2,1,3,4A =--,{}1,2,3B =-,则A B ⋂= 【答案】{1,3}- 【解析】由题意得{1,3}AB =-.【练习5】【2014高考全国2卷文第1题】已知集合2,0,2A =-{} ,{}2|20B x x x =--=,则A B =( )A ∅B {2}C 0{}D 2-{} 【答案】B【曹亚云·解析1】代入检验法把2,0,2A =-{}中的数,代入等式,经检验2x =满足【曹亚云·解析2】先化简,后计算因为{}2|20B x x x =--={}|(2)(1)0x x x =-+={}1,2=-, 所以AB ={}2,0,21,2--{}{2}= 【曹亚云·解析3】EXCEL20131分别在A1,A2,A3单元格输入-2,0,2;2在B1单元格输入“=IF(A1^2-A1-2=0,A1,"")”,向下填充 最终结果如图所示:【曹亚云·解析4】Mathematica90 In[1]:= n={-2,0,2};mn={};Do[If[Part[n[[i]]]*Part[n[[i]]]-Part[n[[i]]]-2 0,mn=Append[mn,Part[n[[i]]]],""],{i,3}];mnOut[3]= {2}为助力学生学习,特为学生提供打印纸质文档服务,A4纸单面双面均01元,可提供“百度文库”或“中学学科网”下载后打印服务,详情联系QQ :6610243【练习6】【2014高考重庆卷文第11题】已知集合{3,4,5,12,13},{2,3,5,8,13}A B ==,则A B =_______ 【答案】{}3,5,13 【曹亚云·解析1】{}{}{}3,4,5,12,132,3,5,8,133,5,13AB ==【曹亚云·解析2】Mathematica90In[1]:=Intersection[{3,4,5,12,13},{2,3,5,8,13}] Out[1]={3,5,13}§12 补集【例3】【2013年高考大纲卷(文)】设集合( )A .B .C .D .【答案】B 【解析】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国高考文科数学试题分类汇编:集合
一、选择题
1 .(2013年上海高考数学试题(文科))
设常数aR,集合|10Axxxa,|1Bxxa.
若ABRU,则a的取值范围为( )
A.,2 B.,2 C.2, D.2,
【答案】
B
2 .(2013年高考重庆卷(文))
已知集合{1,2,3,4}U,集合={1,2}A,={2,3}B,则()UABUð( )
A.{1,3,4} B.{3,4} C.{3} D.{4}
【答案】
D
3 .(2013年高考浙江卷(文))
设集合S={x|x>-2},T={x|-4≤x≤1},则S∩T= ( )
A.[-4,+∞) B.(-2, +∞) C.[-4,1] D.(-2,1]
【答案】
D
4 .(2013年高考天津卷(文))
已知集合A = {x∈R| |x|≤2}, B= {x∈R| x≤1}, 则AB ( )
A.(,2] B.[1,2] C.[-2,2] D.[-2,1]
【答案】
D
5 .(2013年高考四川卷(文))
设集合{1,2,3}A,集合{2,2}B,则ABI ( )
A. B.{2} C.{2,2} D.{2,1,2,3}
【答案】
B
6 .(2013年高考山东卷(文))
已知集合BA、均为全集}4,3,2,1{U的子集,且
(){4}UABUð,{1,2}B,则UABIð
( )
A.{3} B.{4} C.{3,4} D.
【答案】
A
7 .(2013年高考辽宁卷(文))
已知集合1,2,3,4,|2,ABxxABI则 ( )
A.0 B.0,1 C.0,2 D.0,1,2
【答案】
B
8 .(2013年高考课标Ⅱ卷(文))
已知集合M={x|-3
【答案】
C
9 .(2013年高考课标Ⅰ卷(文))
已知集合{1,2,3,4}A,2{|,}BxxnnA,则ABI ( )
A.{0} B.{-1,,0} C.{0,1} D.{-1,,0,1}
【答案】
A
10.(2013年高考江西卷(文))
若集合A={x∈R|ax2+ax+1=0}其中只有一个元素,则a= ( )
A.4 B.2 C.0 D.0或4
【答案】
A
11.(2013年高考湖北卷(文))
已知全集{1,2,3,4,5}U,集合{1,2}A,{2,3,4}B,则UBAIð ( )
A.{2} B.{3,4} C.{1,4,5} D.{2,3,4,5}
【答案】
B
12.(2013年高考广东卷(文))
设集合2{|20,}SxxxxR,2{|20,}TxxxxR,则
STI
( )
A.{0} B.{0,2} C.{2,0} D.{2,0,2}
【答案】
A
13.(2013年高考福建卷(文))
若集合}4,3,1{},3,2,1{BA,则BA的子集个数为 ( )
A.2 B.3 C.4 D.16
【答案】
C
14.(2013年高考大纲卷(文))
设集合1,2,3,4,5,1,2,uUAA集合则ð ( )
A.1,2 B.3,4,5 C.1,2,3,4,5 D.
【答案】
B
15.(2013年高考北京卷(文))
已知集合1,0,1A,|11Bxx,则ABI ( )
A.0 B.1,0 C.0,1 D.1,0,1
【答案】
B
16.(2013年高考安徽(文))
已知|10,2,1,0,1AxxB,则()RCAB ( )
A.2,1 B.2 C.1,0,1 D.0,1
【答案】
A
二、填空题
17.(2013年高考湖南(文))
对于E={a1,a2,.a100}的子集X={a1,a2,,an},定义X的“特征数列”为x1,x2,x100,
其中x1=x10=xn=1.其余项均为0,例如子集{a2,a3}的“特征数列”为0,1,0,0,,0
(1) 子集{a1,a3,a5}的“特征数列”的前三项和等于____ _______;
(2) 若E的子集P的“特征数列”P1,P2,,P100 满足P1+Pi+1=1, 1≤i≤99;
E 的子集Q的“特征数列” q1,q2,q100 满足q1=1,q1+qj+1+qj+2=1,
1≤j≤98,则P∩Q的元素个数为_________.
【答案】
(1) 2 (2)17
18.(2013年高考湖南(文))
已知集合{2,3,6,8},{2,3},{2,6,8}UAB,则()CAB_____
【答案】
}862{,,
19.(2013年高考福建卷(文))
设TS,是R的两个非空子集,如果存在一个从S到T的函数)(xfy满足;
(i)}|)({SxxfT;(ii)对任意Sxx21,,当21xx时,恒有)()(21xfxf.
那么称这两个集合“保序同构”.现给出以下3对集合:
①*,NBNA;
②}108|{},31|{xxBxxA;
③RBxxA},10|{.
其中,“保序同构”的集合对的序号是____________(写出所有“保序同构”的集合对的序号)
【答案】
①②③