苏科版八年级上第3章勾股定理单元测试含答案解析
苏科版八年级上册数学第三章 勾股定理 含答案

苏科版八年级上册数学第三章勾股定理含答案一、单选题(共15题,共计45分)1、如图,△ABC是的内接等边三角形,AB=1.点D,E在圆上,四边形为矩形,则这个矩形的面积是()A. B. C. D.12、如图,Rt△ABC中,∠C=90°,∠B=30°,AC=.按以下步骤作图:①以A为圆心,以小于AC长为半径画弧,分别交AC,AB于点E、D;②分别以D,E为圆心,以大于DE长为半径画弧,两弧相交于点P;③连接AP交BC于点F.那么BF的长为()A. B.3 C.2 D.3、菱形的周长为20cm,两邻角的比为1:2,则较长的对角线长为().A.4.5cmB.4cmC. cmD. cm4、下列各组线段能构成直角三角形的一组是()A.5cm,9cm,12cmB.7cm,12cm,13cmC.30cm,40cm,50cm D.3cm,4cm,6cm5、在△ABC中,∠A=90°,对应三条边分别为a、b、c,则a、b、c满足的关系为()A.a 2+b 2=c 2B.a 2+c 2=b 2C.b 2+c 2=a 2D.b+c=a6、如图,在矩形ABCD中,E为AD的中点,∠BED的平分线交BC于点F,若AB=3,BC=8,则FC的长度为()A.6B.5C.4D.37、如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P 是AB上的动点,则PC+PD的最小值为()A.4B.5C.6D.78、直角三角形的两条边长为5和12,它的斜边长为()A.13B.C.13或D.13或129、如图,在Rt△ABC中,∠ACB=90°,AC=5 cm,BC=12 cm,则其斜边上的高为()A.6 cmB.8.5 cmC. cmD. cm10、如果顺次连接四边形的各边中点得到的四边形是矩形,那么原来四边形的对角线一定满足的条件是()A.互相平分B.相等C.互相垂直D.互相垂直平分11、如图①,在边长为2cm的正方形ABCD中,点P以每秒1cm的速度从点A出发,沿AB→BC的路径运动,到点C停止,过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动3秒时,PQ的长是()A. cmB. cmC. cmD. cm12、如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,过点D 作DF⊥AB于点E,交⊙O于点F,OE=1cm,DF=2cm,则CB的长为( )A.4-B.5-C.2D.413、如图,四边形ABCD中∠DAB=60°,∠B=∠D=90°,BC=1,CD=2,则对角线AC的长为()A. B. C. D.14、已知线段AB,按如下步骤作图:①作射线AC,使AC⊥AB;②作∠BAC的平分线AD;③以点A为圆心,AB长为半径作弧,交AD于点E;④过点E作EP⊥AB于点P,则AP:AB=()A. B. C. D.15、一棵大树在一次强台风中于离地面米处折断倒下,倒下部分与地面成夹角,这棵大树在折断前的高度为()A. 米B. 米C. 米D. 米二、填空题(共10题,共计30分)16、如图,已知在矩形中,,,沿着过矩形顶点的一条直线将折叠,使点的对应点落在矩形的边上,则折痕的长为________.17、如图,在平面直角坐标系xOy中,已知点A(0,),B(-1,0),菱形ABCD的顶点C在x轴的正半轴上,其对角线BD的长为________。
苏科版八年级上册数学第三章 勾股定理 含答案

苏科版八年级上册数学第三章勾股定理含答案一、单选题(共15题,共计45分)1、以下列长度的线段为边,能构成直角三角形的是()A.1,,2B.C.5,6,7D.7,8,92、△ABC中,∠BAC=60°,AD⊥BC于D,且AD= ,E、F、G分别为边BC、CA、AB上的点,则△EFG周长的最小值为()A. B.2 C.3 D.33、如图,平行四边形中,和的平分线交于AD边上一点E,且,,则AB的长是()A.2.5B.3C.4D.2.44、一个圆柱形铁桶的底面半径为12cm,高为32cm,则桶内所能容下的木棒最长为()A.20cmB.50cmC.40cmD.45cm5、如图,四边形中,,,,,点是上一动点,则的最小值是()A. B. C. D.6、如图,在水池的正中央有一根芦苇,池底长10尺,它高出水面1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,则这根芦苇的高度是()A.10尺B.11尺C.12尺D.13尺7、如图,一宽为2cm的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“1”和“4”(单位:cm),则该圆的半径为().A.5cmB. cmC. cmD. cm8、如图,已知,矩形ABCD中,AB=3 cm,AD=9 cm,将此矩形折叠,使点B与点D重合,折痕为EF,则AE的长为()A.3 cmB.4 cmC.5 cmD. cm9、如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A点沿纸箱爬到B 点,那么它所行的最短路线的长是( )A.9B.10C.4D.210、如图,在等边三角形ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F;若△CEF一边的长为2,则△CEF的周长为()A.4+2B.4+2 或2+C.2+2 或2+D.4+2或2+11、直角三角形的两条直角边长为3和4,则该直角三角形斜边上的高为()A.5B.7C.D.12、如图,牧童家在B处,A、B两处相距河岸的距离AC、BD分别为500m和300m,且C、D两处的距离为600m,天黑牧童从A处将牛牵到河边去饮水,在赶回家,那么牧童最少要走()A.800mB.1000mC.1200mD.1500m13、下列哪组数能作为直角三角形的三边长()A.9,12,15B.3,4,6C.1,2,3D.6,9,1114、如图,已知AB是⊙O的直径,CD是弦,AB⊥CD于点E,若AB=10,CD =6,则BE的长是()A.4B.3C.2D.115、如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cmB.4cmC.5cmD.6cm二、填空题(共10题,共计30分)16、等腰中,,,则________.17、如图,在Rt△ABC中,D是斜边AB的中点,若CD=2,则AC2+BC2=________.18、如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为________19、如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A,C为圆心,以AO的长为半径画孤分别与菱形ABCD的边相交,则图中阴影部分的面积为 ________ (结果保留π)20、如图,矩形纸片ABCD中,AB=3,BC=5,将纸片折叠,使点B落在边AD 的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③DK=HK;④当点F与点C重合时.其中正确的结论是________(填写序号).21、如图,已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,∠APB的度数是________°.22、如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=________cm.23、如图,直线与两坐标轴分别交于A、B两点,点C是的中点,点D、E分别是直线、y轴上的动点,则的周长最小值是________.24、在△ABC中,AC= ,∠A=30°,BC=1,则AB=________.25、如图,已知AB是半圆O的直径,CD⊥AB于D点,AD=4cm,DB=9cm,则弦CB的长为________.三、解答题(共5题,共计25分)26、如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.27、有一块菜地,形状如下,试求它的面积.(单位:米)28、如图,四边形ABCD中,∠ABC=90°,AB=4,BC=3,CD=12,AD=13.求四边形ABCD的面积.29、如图是一块地,已知AD=4m,CD=3m,AB=13m,BC=12m,且CD⊥AD,求这块地的面积.30、如图所示,有一个圆柱体,高为12cm,底面半径为3cm,在圆柱下底面A 处有一只蜘蛛.它想到上底面B处捉住一只苍蝇,则蜘蛛所走的最短路线长应为多少cm(π取3.0).参考答案一、单选题(共15题,共计45分)1、A2、C3、A4、C5、C6、D7、C8、B10、B11、C12、B13、A14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、。
苏科版八年级上册数学第三章 勾股定理 含答案

苏科版八年级上册数学第三章勾股定理含答案一、单选题(共15题,共计45分)1、已知在中,弦AB的长为8,圆心O到AB的距离为3,则的面积是()A. B. C. D.2、下列各组数不是勾股数的是()A.2、3、4B.3、4、5C.6、8、10D.5、12、133、下列长度的三条线段中,不可以构成直角三角形的是()A.5,12,14B.7,24,25C.8,15,17D.9,12,154、△ABC满足下列条件中的一个,其中不能说明△ABC是直角三角形的是()A.b 2=(a+c)(a﹣c)B.a∶b∶c=1∶∶2C.∠C=∠A﹣∠B D.∠A∶∠B∶∠C=3∶4∶55、已知直角三角形两边的长为3和4,则此三角形的周长为().A.12B.7+C.12或7+D.以上都不对6、若的三边长分别是,,,则下列条件:(1);(2);(3);(4)其中能判定是直角三角形的个数有().A.4个B.3个C.2个D.1个7、如图,在方格纸(每个小方格都是边长为1个单位长度的正方形)中,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形,图中的△ABC为格点三角形,它的三边a,b,c的大小关系是()A.b<c<aB.a<c<bC.c<b<aD.b<a<c8、如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要()A.4米B.5米C.6米D.7米9、如图,在数轴上点A所表示的数为a,则a的值为()A. B. C. D.10、如图,正方形小方格边长为1,则网格中的△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对11、在△ABC中,AB=15,AC=13,高AD=12,则BC等于()A.14B.4C.14或4D.9或512、如图,O为△ABC内任意一点,OD⊥AB,OE⊥AC,OF⊥BC,若OD=OE=OF,连接OA,OB,OC,下列说法不一定正确的是()A.△BOD≌△BOFB.∠OAD=∠OBFC.∠COE=∠COFD.AD=AE13、如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=()A. B. C. D.14、如图,正方形的边长为6,点分别在边上,若是的中点,且,则的长为()A. B. C. D.15、若△ABC中,AB=13,BC=5,AC=12,则下列判断正确的是()A.∠A=90°B.∠B=90°C.∠C=90°D.△ABC是锐角三角形二、填空题(共10题,共计30分)16、如图,池塘边有两点A,B,点C是与BA方向成直角的AC方向上的点,测得BC =25m,AC=15m,则A,B两点间的距离是________m.17、如图,点O为等腰三角形ABC底边BC的中点, , ,腰AC的垂直平分线EF分别交AB、AC于E、F点,若点P为线段EF上一动点,则△OPC周长的最小值为________.18、如图,在平面直角坐标系中,矩形ABOC的顶点O在坐标原点,边BO在x 轴的负半轴上,AC长为,若将边AC平移至A'C'处,此时A'坐标为(-4,2),分别连接A'B,C'O,反比例函数y= 的图象与四边形A'BOC'对角线A'O 交于D点,连接BD,则当BD取得最小值时,k的值是________ .19、在Rt△ABC中,∠BAC=90°,AD⊥BC,垂足为点D,如果AC=6,AB=8,那么AD的长度为________.20、如图,在中,,,.进行如下操作:①以点C为圆心,以的长为半径画弧交于点D;②以点A为圆心,以的长为半径画弧交于点E.则点E是线段的黄金分割点.根据以上操作,的长为________.21、一个直角三角形的两条直角边边长分别为10和24,则第三边长是________.22、已知A(-1,1),B(1,1),在直线y = - x+4上找一点P,使PA+PB最小,则点P坐标为________.23、如图所示,分别以直角三角形的三边为直径作三个半圆,则半圆的直径等于________.24、如图是拦水坝的横断面.斜坡AB的坡度为1:2,BC⊥AE,垂足为点C,AC 长为12米,则斜坡AB的长为________米.25、在三角形ABC中,∠C=90°,AB=7,BC=5,则AC的长为________.三、解答题(共5题,共计25分)26、如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.27、如图所示,有一个圆柱体,高为12cm,底面半径为3cm,在圆柱下底面A 处有一只蜘蛛.它想到上底面B处捉住一只苍蝇,则蜘蛛所走的最短路线长应为多少cm(π取3.0).28、已知:如图,四边形ABCD中,AB⊥BC,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。
八年级数学苏科版上册随堂测试第3单元《 3.2 勾股定理的逆定理》 练习试题试卷 含答案

随堂测试3.2勾股定理的逆定理一、选择题1.满足下列条件的△ABC,不是直角三角形的是()A.a:b:c=3:4:5B.∠A:∠B:∠C=9:12:15C.∠C=∠A﹣∠B D.b2﹣a2=c22.适合下列条件的△ABC中,∠A,∠B,∠C是三个内角,a,b,c分别是∠A,∠B,∠C的对边,直角三角形的个数是()①a=7,b=24,C=25;②a=1.5,b=2,c=7.5;③∠A:∠B:∠C=1:2:3;④a=1,b=,c=.A.1个B.2个C.3个D.4个3.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A.如果∠A﹣∠B=∠C,那么△ABC是直角三角形B.如果a2=b﹣2c2,那么△ABC是直角三角形且∠C=90°C.如果∠A:∠B:∠C=1:3:2,那么△ABC是直角三角形D.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形4.适合下列条件的△ABC中,直角三角形的个数为()①a=3,b=4,c=5;②a=6,∠A=45°;③a=2,b=2,c=2;④∠A=38°,∠B=52°.A.1个B.2个C.3个D.4个5.在下列以线段a、b、c的长为边,能构成直角三角形的是()A.a=3,b=4,c=6B.a=5,b=6,c=7C.a=6,b=8,c=9D.a=7,b=24,c=256.三角形的三边长a,b,c满足2ab=(a+b)2-c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形7.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A:∠B:∠C=l:2:3B.三边长为a,b,c的值为1,2,C.三边长为a,b,c的值为,2,4D.a2=(c+b)(c﹣b)8.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,下列判断错误的是()A.如果∠C-∠B=∠A,则△ABC是直角三角形B.如果a2+c2=b2,则△ABC不是直角三角形C.如果(c-a)(c+a)=b2,则△ABC是直角三角形D.如果∠A∶∠B∶∠C=5∶2∶3,则△ABC是直角三角形9.如图,在4×4的方格中,△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形10.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,如图,其中正确的是()二、填空题11.在△ABC中,三边长分别为8、15、17,那么△ABC的面积为.12.一个三角形的三边的比为5∶12∶13,它的周长为60cm,则它的面积是.13.在△ABC中,如果(a+b)(a﹣b)=c2,那么∠=90°.14.如果△ABC的三边长a,b,c满足关系式(a-24)2+∣b-18∣+∣c-30∣=0,则△ABC的形状是。
2020年苏科版初二数学上册第三章《勾股定理》单元测试题及答案

苏科版八年级数学上册第三章《勾股定理》单元测试卷一、选择题:1、将直角三角形的三边扩大相同的倍数后,得到的三角形是( )A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能判断2、一个直角三角形的两直角边长分别为7和24,下列说法正确的是( )A .斜边长为625B .三角形的周长为84C .斜边长为25D .三角形的面积为1683、如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a 的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )A. 12≤a≤13B. 12≤a≤15C. 5≤a≤12D. 5≤a≤134、若直角三角形的两边长分别为a ,b ﹣4|=0,则该直角三角形的第三边长为( )A. 5B. √7C. 4D. 5或√75、在Rt△ABC 中,∠C=90°,AC =9,BC =12,则点C 到AB 的距离是( )A .536B .2512C .49 D .以上均不正确 6、如图,在由边长均为1个单位长度的小正方形组成的网格中,A 、B 都是格点,则线段AB的长为 ( )A .5B .6C .7D .257、如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为 ( )A.0.7米 B.1.5米 C.2.2米 D.2.4米8、如图是一张直角三角形纸片,两直角边AC=3cm,BC=4cm.现将△ABC折叠,使点B 与点A重合,折痕为DE,则BE的长为()A.2cm B.2. 5cm C.3cm D.5cm9、如图,点A的正方体左侧面的中心,点B是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A沿其表面爬到点B的最短路程是()A. 3 +2 D. 410、如图,一艘轮船以16海里/时的速度从港口A出发向东北方向航行,同时另一艘轮船以12海里/时的速度从港口A出发向东南方向航行,离开港口3小时后,两船相距()A.36海里 B.48海里 C.60海里 D.84海里11、如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD的长为正整数,则点D共有()A .5个B .4个C .3个D .2个12、已知直角三角形纸片的两条直角边长分别为m 和n (n m <),过锐角顶点把该纸片剪成两个三角形.若这两个三角形都为等腰三角形,则 ( )A .0222=++n mn mB .0222=+-n mn mC .0222=-+n mn mD .0222=--n mn m二、填空题:13、已知在三角形ABC 中,∠C=90°,AC=15,BC=20,则AB 的长等于________.14、两只小鼹鼠在地下从同一处开始打洞,一只朝北面挖,每分钟挖8cm ,另一只朝东面挖,每分钟挖6cm ,10分钟之后两只小鼹鼠相距 .15、在△ABC 中,AB =5,BC =12,AC =13,则边AC 上的高是______________.16、已知三角形的三边长分别为a 、b 、c .如果(a-9)2+|b-15|+(12+c)2=0,那么△ABC (填是或不是)直角三角形17、如图,一架2.5米长的梯子AB ,斜靠在一竖直的墙AC 上,这时梯足B 到墙底端C 的距离为0.7米,如果梯子的顶端下滑0.4米,则梯足将向外移 .18、在平静的湖面上,有一枝红莲,高出水面1m ,一阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2m ,这里水深是 米。
苏科版八年级上册数学第三章 勾股定理 含答案

苏科版八年级上册数学第三章勾股定理含答案一、单选题(共15题,共计45分)1、在直角中,,如果,,那么的长是( )A.2B.5C.D.5或2、欧几里得的《原本》记载,形如x2+ax=b2的方程的图,解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是( )A.AC的长B.AD的长C.BC的长D.CD的长3、一个直角三角形“两边”的长分别为3和4,则“第三边”的长是().A.5B.6C.D.4、已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.35海里D.40海里5、下列图案给出了折叠一个直角边长为2的等腰直角三角形纸片(图1)的全过程:首先对折,如图2,折痕CD交AB于点D;打开后,过点D任意折叠,使折痕DE交BC于点E,如图3;打开后,如图4;再沿AE折叠,如图5;打开后,折痕如图6.则折痕DE和AE长度的和的最小值是( )A. B.1+ C.2 D.36、等腰三角形的腰长为,底长为,则其底边上的中线长为().A. B. C. D.7、如图,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D.则BD的长为()A. B. C. D.8、如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,那么线段OE 的长为()A.5B.4C.3D.29、以下列各数为边长,能构成直角三角形的是()A.1,2,2B.1,,2C.4,5,6D.1,1,10、七巧板是大家熟悉的一种益智玩具,用七巧极能拼出许多有趣的图案,小聪将一块等腰直角三角形硬纸板(如图①)切割成七块,正好制成一副七巧板(如图②),已知,则图中阴影部分的面积为().A.200B.C.50D.10011、“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A.3B.4C.5D.612、如图,点D是正△ABC内的一点,DB=3,DC=4,DA=5,则∠BDC的度数是()A.120°B.135°C.140°D.150°13、下列各组数中,可以构成勾股数的是()A.13,16,19B.5,13,15C.18,24,30D.12,20,3714、如图,菱形ABCD中,∠BAD=60°,M是AB的中点,P是对角线AC上的一个动点,若PM+PB的最小值是3,则AB长为()A.3B.C.6D.15、等边三角形的边长为2,则该三角形的面积为()A. B. C. D.3二、填空题(共10题,共计30分)16、如图,以直角△ABC的三边向外作正方形,其面积分别为S1, S2, S3且S 1=4,S2=8,则S3=________17、一个圆锥的底面半径r=5,高h=12,则这个圆锥的侧面积为________.18、求如图中直角三角形中未知的长度:b=________,c=________.19、在△ABC中,∠C=90°,若a+b=7,△ABC的面积等于6,则边长c=________.20、如图,在Rt△ABC中,D是斜边AB的中点,若CD=2,则AC2+BC2=________.21、直角三角形两直角边长为5和12,则此直角三角形斜边上的中线的长是________.22、已知AD是△ABC的中线,∠ABC=30°,∠ADC=45°,则∠ACB=________度.23、如图,正方体的棱长为a,沿着共一个顶点的三个正方形的对角线裁截掉一个几何体之后,截面△ABC的面积=________.24、如图,正方形ABCD的对角线AC,BD相交于点O,将BD向两个方向延长,分别至点E和点F,且使BE=DF.若AC=4,BE=1,则四边形AECF的周长为________.25、如图,在中,,,,,的平分线相交于点E,过点E作交AC于点F,则________ ;三、解答题(共5题,共计25分)26、如图,中,于D.求及的长.27、如图,有一个圆柱,它的高等于12 cm,底面半径等于3 cm,在圆柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点的食物,需要爬行的最短路程是多少?(π取3)28、在正方形ABCD中,E为BC的中点,F是CD上一点,且FC= 试说明:AE ⊥EF.29、如图,一根长度为120cm的木棒的两端A、B系者一根长度为180cm的绳子,现准备在绳子上找一点C,然后将绳子拉直。
苏科版八年级数学上册3勾股定理+单元检测卷含答案.docx
一、选择题(每小题3分,共30分)1.在△ABC中,∠A、∠B、∠C的对应边分别是a、b、c,若∠A+∠C=90°,则下列等式中成立的是( )A.a2+b2=c2B.b2+c2=a2C.a2+c2=b2D.c2-a2=b22.已知一个直角三角形的三边的平方和为1800 cm2,则斜边长为( )A.30 cm B.80 cm C.90 cm D.120 cm3.如果a、6、c是一个直角三角形的三边,则a:b:c等于( )A.1:2:4 B.1:3:5 C.3:4:7 D.5:12:134.如图,如果半圆的直径恰为直角三角形的一条直角边,那么半圆的面积为( ) A.4πcm2B.6πcm2C.12πcm2D.24πcm25.在△ABC中,∠C=90°,BD平分∠ABC,交AC于点D,若DC=3,BC=6,AD =5,则AB=( )A.9 B.10 C.11 D.126.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是( )A.4 B.3 C.5 D.4.57.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为7m,梯子的顶端B到地面的距离为24 m,现将梯子的底端A向外移动到A',使梯子的底端A'到墙根O的距离等于15 m.同时梯子的顶端B下降至B',那∠BB'等于( )A.3m B.4 m C.5 m D.6 m8.聪聪在广场上玩耍,他从某地开始,先向东走10米,又向南走40米,再向西20米,又向南走40米,最后再向东走70米,则聪聪到达的终止点与原出发点间的距离是( ) A.80米B.100米C.120米D.95米9.在Rt△ABC中,AC=6,BC-8,分别以它的三边为直径向上作三个半圆,则阴影部分面积为( )A.24 B.24πC.252D.252π10.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图(a)是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图(b)是由图(a)放人长方形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为( )A.90 B.100 C.110 D.121二、填空题(每小题3分,共24分)11.如图阴影部分正方形的面积是_______.12.若直角三角形中,一斜边比一直角边大2,且另一直角边长为6,则斜边为_______.13.如图,△ABC为等边三角形,AD为BC边上的高,且AB=2,则正方形ADEF的面积为_______.14.一长方形门框宽为1.5米,高为2米.安装门框时为了增强稳定性,在门框的对角线处钉上一根木条,这根木条至少_______米长.15.如图是一等腰三角形状的铁皮△ABC,BC为底边,尺寸如图,单位:cm,根据所给的条件,则该铁皮的面积为_______.16.如图是连江新华都超市一楼与二楼之间的手扶电梯示意图.其中AB、CD分别表示一楼、二楼地面的水平线,小马虎从点A到点C共走了12 m,电梯上升的高度h为6m,经小马虎测量AB=2 m,则BE=_______.17.如图,P是正△ABC内一点,且PA=6,PB=8,PC=10,若将△PAC绕点A逆时针旋转后,得到△P'AB,则点P与P'之间的距离为PP'=_______,∠APB=_______度.18.如图,正方形ABDE、CDFI、EFGH的面积分别为25、9、16,△AEH、△BDC、△GFI的面积分别为S1、S2、S3,则S1+S2+S3=_______.三、解答题(共46分)19.(6分)如图,△ABC中,∠ACB=90°,AC=7,BC=24,CD⊥AB于D.(1)求AB的长;(2)求CD的长.20.(6分)如图,已知AB=13,BC=14,AC=15,AD⊥BC于D,求AD长.21.(6分)某开发区有一空地ABCD,如图所示,现计划在空地上种草皮,经测量,∠B =90°,AB=3m,BC=4 m,AD=12 m,CD=13 m,若每种植1平方米草皮需要100元,问总共需要投入多少元?22.(6分)如图,两点A,B都与平面镜相距4米,且A,B两点相距6米,一束光由A 点射向平面镜,反射之后恰好经过B点,求B点与入射点间的距离.23.(10如图,一块长方体砖宽AN=5 cm,长ND=10 cm,CD上的点B距地面的高BD =8 cm,地面上A处的一只蚂蚁到B处吃食,需要爬行的最短路径是多少?24.(12探索与研究:方法1:如图(a),对任意的符合条件的直角三角形绕其锐角顶点旋转90°所得,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和,根据图示写出证明勾股定理的过程;方法2:如图(b),是任意的符合条件的两个全等的Rt△BEA和Rt△ACD拼成的,你能根据图示再写一种证明勾股定理的方法吗?初中数学试卷马鸣风萧萧。
苏科版八年级上册数学第三章 勾股定理 含答案
苏科版八年级上册数学第三章勾股定理含答案一、单选题(共15题,共计45分)1、下列能构成直角三角形三边长的是()A.1,2,3B.C.D.4,5,62、如图,在4×4的正方形网格中,所有线段的端点都在格点处,则这些线段的长度是无理数的有()A.1 条B.2条C.3条D.4条3、满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3B.三边长的平方之比为1:2:3C.三边长之比为3:4:5D.三内角之比为3:4:54、正方形网格中,△ABC如图放置,则sin∠BAC=()A. B. C. D.5、已知直角三角形两边的长为3和4,则第三边的长为()A.5B.C.5或﹣1D.以上都不对6、如图,在方格纸中,假设每个小正方形的面积为2,则图中的四条线段中长度是有理数的有()A.1条B.2条C.3条D.4条7、如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为( )A. B. C. D.8、如图,菱形ABCD中,,,M为AB的中点.动点P在菱形的边上从点B出发,沿的方向运动,到达点D时停止.连接MP,设点P运动的路程为x,,则表示y与x的函数关系的图象大致为()A. B. C. D.9、一个直角三角形,有两边长分别为6和8,下列说法正确的是()A.第三边一定为10B.三角形的周长为25C.三角形的面积为48 D.第三边可能为1010、如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为()A.6B.8C.12D.1011、如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC 交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为2,则线段CF 的最小值是()A.2B.1C. -1D. -212、如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A.3B.C.2+D.2+13、如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BCB.CEC.ADD.AC14、下列三边的长不能成为直角三角形三边的是()A.3,4,5B.4,5,6C.6,8,10D.5,12,1315、如图①,在边长为2cm的正方形ABCD中,点P以每秒1cm的速度从点A出发,沿AB→BC的路径运动,到点C停止,过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动3秒时,PQ的长是()A. cmB. cmC. cmD. cm二、填空题(共10题,共计30分)16、在△ABC中,AB=10,AC=17,BC边上的高为8,则△ABC的面积为________.17、如下图,已知四边形OABC为正方形,边长为6,点A,C分别在x轴、y轴的正半轴上,点D在OA上,且点D的坐标为(2,0),点P是OB上的一个动点,则PD+PA的最小值是________.18、如图所示,直线 y=x+2 与两坐标轴分别交于 A、B 两点,点 C 是 OB 的中点,D、E 分别是直线 AB、y 轴上的动点,则△CDE 周长的最小值是________.19、如图,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是________.20、如图,将等腰直角三角形ABC(∠B=90°)沿EF折叠,使点A落在BC边的中点A处,BC=8,那么线段AE的长度为________.121、在中,,,,则线段AC的长为________.22、如图,一个池塘,其底面是边长为10尺的正方形,一棵芦苇生长在它的中央,高出水面的部分为1尺.如果把这根芦苇沿与水池边垂直的方向拉向岸边,芦苇的顶部恰好碰到岸边的,则这根芦苇的长度是________尺.23、如图,在平行四边形ABCD中,AB=8,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=2,则AE的长为________.24、如图,在等腰△ABC中,底边BC=16,底边上的高AD=6,则腰AB=________.25、如图,BD为长方形ABCD的对角线,BD=10,∠ABD=30°,求长方形ABCD的面积________.三、解答题(共5题,共计25分)26、如图所示,△ABC和△AEF为等边三角形,点E在△ABC内部,且E到点A,B,C的距离分别为3,4,5,求∠AEB的度数.27、如图,长方形ABCD中,∠DAB=∠B=∠C=∠D=90°,AD=BC=16,AB=CD=34.点E为射线DC上的一个动点,△ADE与△AD′E关于直线AE对称,当△AD′B为直角三角形时,求DE的长.28、在四边ABCD中,∠D=90°,AD= ,CD=2,BC=3,AB=5,,求:四边形ABCD的面积.29、阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:其中m>n>0,m,n是互质的奇数.应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.30、由于大风,山坡上的一棵树甲被从点A处拦腰折断,如图,其树恰好落在另一棵树乙的根部C处,已知AB=1米,BC=5米,已知两棵树的水平距离为3米,请计算出这棵树原来的高度(结果保留根号)参考答案一、单选题(共15题,共计45分)1、C2、B4、D5、D6、B7、A8、B9、D10、D11、C12、D13、B14、B15、C二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)29、。
苏科版八年级上册数学第三章 勾股定理 含答案
苏科版八年级上册数学第三章勾股定理含答案一、单选题(共15题,共计45分)1、如图,在ABC中,AC=BC,∠ACB=90°,过点C作CD⊥AB交∠CAB的平分线AE于点O,点P是AC延长线上一点,OP=OB,现有下列结论:①∠OCP=∠OEB;②∠POB=90°;③CP=OD;④SCOP =SCOE;⑤PC2+BC2=OP2+OB2.其中正确的有()A.1个B.2个C.3个D.4个2、如图,直线l为等腰梯形ABCD的对称轴,点P在直线l上,且PC+PB最小,则点P应位于()A.点P1处 B.点P2处 C.点P3处 D.点P4处3、要登上某建筑物,靠墙有一架梯子,底端离建筑物3m,顶端离地面4m,则梯子的长度为()A.2mB.3mC.4mD.5m4、已知直角三角形的两边长是方程x2﹣7x+12=0的两根,则第三边长为()A.7B.5C.D.5或5、如图,四边形ABCD是正方形,直线a,b,c分别通过A、D、C三点,且a ∥b∥c.若a与b之间的距离是3,b与c之间的距离是5,则正方形ABCD的面积是()A.16B.30C.34D.646、设边长为3的正方形的对角线长为a,下列关于a的四种说法:① a是无理数;② a可以用数轴上的一个点来表示;③ 3<a<4;④ a是18的算术平方根.其中,所有符合题意说法的序号是A.①④B.②③C.①②④D.①③④7、a、b、c为△ABC三边,满足下列条件的三角形不是直角三角形的是()A.∠C=∠A-∠BB.a:b:c = 1 : :C.∠A∶∠B∶∠C=5∶4∶3D. ,8、直角三角形两直角边分别为5、12,则这个直角三角形斜边上的高为().A.6B.8.5C.D.9、三角形的三边长分别为6,8,10,它的最长边上的高为()A.6B.4.8C.2.4D.810、在边长为2的正方形ABCD中,P为AB上一动点,E为AD中点,PE交CD 延长线于Q,过E作EF⊥PQ交BC延长线于F,则下列结论:①△APE≅△DQE;②PQ=EF;③当P为AB中点时,CF= ;④若H为QC中点,当P从A移动到B 时,线段EH扫过的面积为.其中正确的是()A.①②B.①②④C.②③④D.①②③11、下列数组中,不是勾股数组的是 ( )A.8,12,15B.7,25,24C.5,12,13D.3k,4k,5k(k为正整数)12、已知一个直角三角形的两条边长分别是6和8,则第三边长是()A.10B.8C.2D.10或213、若直角三角形的两直角边长分别为5、12,则这个直角三角形的斜边长是()A.13B.C.169D.14、如图,菱形ABCD中,AB=2,∠A=120°,点P是直线BD上一动点,连接PC,当PC+ 的值最小时,线段PD的长是()A. B. C. D.15、如图,在四边形ABCD中,AB=BC=2 ,AD=2,∠B=∠D=90°,则CD 等于()A.2B.C.2D.二、填空题(共10题,共计30分)16、如图,AB是⊙O的直径,CD是⊙O的弦,AB⊥CD于点E,AE=CD,若⊙O的半径为5,则弦CD的长为________.17、如图,半径为且坐标原点为圆心的圆交轴、轴于点、、、,过圆上的一动点(不与重合)作,且在右侧)⑴连结,当时,则点的横坐标是________.⑵连结,设线段的长为,则的取值范围是________.18、如图,在中,,.将绕点B 逆时针旋转60°,得到,则边的中点D与其对应点的距离是________.19、如图,将矩形纸片ABCD沿直线AF翻折,使点B恰好落在CD边的中点E 处,点F在BC边上,若CD=6,则AD=________.20、如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要________元钱.21、如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为________.22、如图,已知直线AB∥CD,AB与CD之间的距离为,∠BAC=60°,则AC=________.23、如图,已知图中每个小方格的边长为1,则点C到AB所在直线的距离等于________.24、如图,在由12个边长都为1且有一个锐角为60°的小菱形组成的网格中,点P是其中的一个顶点,以点P为直角顶点作格点直角三角形(即顶点均在格点上的三角形),请你写出所有可能的直角三角形斜边的长________ .25、如图,AD是的中线,,把沿着直线AD对折,点C落在点E的位置,如果,那么线段BE的长度为________.三、解答题(共5题,共计25分)26、如图,在Rt△ABC中,∠C=90°,BC=8,tanB= ,点D在BC上,且BD=AD,求AC的长和cos∠ADC的值.27、如图(1),在∆ABC中,AB=BC=5,AC=6,∆ABC沿BC方向平移得到△ECD,连接AE、AC和BE相交于点O。
苏科版八年级上册数学第三章 勾股定理 含答案
苏科版八年级上册数学第三章勾股定理含答案一、单选题(共15题,共计45分)1、如图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的()A.点AB.点BC.点CD.点D2、如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方A、B、C、D的边长分别是3、5、2、3,则最大正方形E 的面积是()A.13B.26C.34D.473、在正方形网格中,△ABC的位置如图所示,则cosB的值为()A. B. C. D.4、满足下列条件的,不是直角三角形的是()A. B. C.D.5、若菱形两条对角线的长分别为6和8,则这个菱形的边长为( )A.5B.10C.20D.146、如图,一只蚂蚁从长宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B 点,那么它所行的最短路线的长是()A.(3 +8)cmB.10cmC.14cmD.无法确定7、已知如图,在正方形ABCD中,AD=4,E,F分别是CD,BC上的一点,且∠EAF=45°,EC=1,将△ADE绕点A沿顺时针方向旋转90°后与△ABG重合,连接EF,过点B作BM∥AG,交AF于点M,则以下结论:①DE+BF=EF,②BF= ,= 中正确的是()③AF= ,④S△MEFA.①②③B.②③④C.①③④D.①②④8、若直角三角形两直角边长分别为5,12,则斜边上的高为()A.6B.8C.D.9、在Rt△ABC中,∠C=90°,BC=1,AB=2,则tanA等于()A. B. C. D.10、如图,在正方形中,点在边上,且将沿对折至延长交边于点连接,下列结论:①;②;③.其中正确的是()A.①②B.①③C.②③D.①②③11、如图,在Rt△ABC中,∠C=90°,CDEF为内接正方形,若AE=2cm,BE=1cm,则图中阴影部分的面积为()A.1cm 2B. cm 2C. cm 2D.2cm 212、如图,在中,,,,将绕点逆时针旋转得到,使得点落在上,则的值为()A. B. C. D.13、在△ABC中,AB=10,AC=2 ,BC边上的高AD=6,则另一边BC等于()A.10B.8C.6或10D.8或1014、如图,已知在平面直角坐标系xOy中,抛物线y= 与y轴交于点A,顶点为B,直线l:y=- x+b经过点A,与抛物线的对称轴交于点C,点P 是对称轴上的一个动点,若AP+ PC的值最小,则点P的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,)15、如图,点D是正△ABC内的一点,DB=3,DC=4,DA=5,则∠BDC的度数是()A.120°B.135°C.140°D.150°二、填空题(共10题,共计30分)16、如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为________.17、如图,在中,,点在上,点为外一点,且为等边三角形,,若,,则的边长为________.18、四根小木棒的长分别是5,8,12,13,任选三根组成三角形,其中有________个直角三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《第3章勾股定理》
一、选择题
1.下列各组数为勾股数的是()
A.6,12,13 B.3,4,7 C.4,7.5,8.5 D.8,15,17
2.把直角三角形两直角边同时扩大到原来的2倍,则斜边扩大到原来的()
A.2倍B.4倍C.3倍D.5倍
3.下列说法中,不正确的是()
A.三个角的度数之比为1:3:4的三角形是直角三角形
B.三个角的度数之比为3:4:5的三角形是直角三角形
C.三边长度之比为3:4:5的三角形是直角三角形
D.三边长度之比为5:12:13的三角形是直角三角形
4.三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是()
A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形
5.如图在直角△ABC中,∠BAC=90°,AB=8,AC=6,DE是AB边的垂直平分线,垂足为D,交边BC 于点E,连接AE,则△ACE的周长为()
A.16 B.15 C.14 D.13
6.Rt△ABC两直角边的长分别为6cm和8cm,则连接这两条直角边中点的线段长为()
A.10cm B.3cm C.4cm D.5cm
二、填空题
7.若△ABC的三边长满足a2=b2+c2,则△ABC是三角形且∠=90°.
8.在Rt△ABC中,已知两边长为6和8,则第三边长为.
9.已知x、y为正数,且|x2﹣4|+(y2﹣16)2=0,如果以x、y的长为直角边作一个直角三角形,那么这个直角三角形的斜边长为.
10.在△ABC中,若三条边的长度分别为9,12、15,则以两个这样的三角形所拼成的四边形的面积是.
11.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别是8cm2,10cm2,14cm2,则正方形D的面积是cm2.
12.如图,将一根长12厘米的筷子置于底面直径为6厘米,高为8厘米的圆柱形杯子中,则筷子露在杯子外面的长度至少为厘米.
三、解答题
13.某直角三角形的周长为30,且一条直角边长为5,求另一条直角边的长.
14.如图1,是一个长方体盒子,长AB=4,宽BC=2,高CG=1.
(1)一只蚂蚁从盒子下底面的点A沿盒子表面爬到点G,求它所行走的最短路线的长.
(2)这个长方体盒子内能容下的最长木棒长度的为多少?
解:(1)蚂蚁从点A爬到点G有三种可能,展开成平面图形如图2所示,由勾股定理计算出AG2的值分别为、、,比较后得AG2最小为.即最短路线的长是.
(2)如图3,AG2=AC2+CG2=AB2+BC2+CG2=42+22+12=21.
15.一个三角形三条边的比为5:12:13,且周长为60cm,求它的面积.
16.如图,直线l上有三个正方形a、b、c,其中a、c的面积分别为5和11.求正方形b的面积.17.如图,在△ABC中,AB=AC=25,点D在BC上,AD=24,BD=7,试问AD平分∠BAC吗?为什么?18.某园艺公司对一块直角三角形的花圃进行改造,测得两直角边长为6m、8m.现要将其扩建成等腰三角形,且扩充部分是以8m为直角边的直角三角形.求扩建后的等腰三角形花圃的周长.
《第3章勾股定理》
参考答案与试题解析
一、选择题
1.下列各组数为勾股数的是()
A.6,12,13 B.3,4,7 C.4,7.5,8.5 D.8,15,17
【考点】勾股数.
【分析】三个正整数,其中两个较小的数的平方和等于最大的数的平方,则这三个数就是勾股数,据此判断即可.
【解答】解:A、62+122≠132,故错误;
B、32+42≠72,故错误;
C、7.5,8.5不是正整数,故错误;
D、82+152=172,故正确.
故选D.
【点评】本题考查了勾股数的概念,一般是指能够构成直角三角形三条边的三个正整数.验证两条较小边的平方和与最大边的平方之间的关系,从而作出判断.
2.把直角三角形两直角边同时扩大到原来的2倍,则斜边扩大到原来的()
A.2倍B.4倍C.3倍D.5倍
【考点】勾股定理.
【分析】根据勾股定理,可知:把直角三角形两直角边同时扩大到原来的2倍,则斜边扩大到原来的2倍.
【解答】解:设一直角三角形直角边为a、b,斜边为c.则a2+b2=c2;
另一直角三角形直角边为2a、2b,则根据勾股定理知斜边为=2c.
即直角三角形两直角边同时扩大到原来的2倍,则斜边扩大到原来的2倍.
故选A.
【点评】熟练运用勾股定理对式子进行变形.
3.下列说法中,不正确的是()
A.三个角的度数之比为1:3:4的三角形是直角三角形
B.三个角的度数之比为3:4:5的三角形是直角三角形
C.三边长度之比为3:4:5的三角形是直角三角形。