高三数学高考附加题专项练习套卷(10套)
【附加15套高考模拟试卷】东北三校(哈尔滨师大附中等)2020高三第一次联合考试数学(理)试题含答案

东北三校(哈尔滨师大附中等)2020高三第一次联合考试数学(理)试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在平面斜坐标系xOy 中,45xOy ∠=︒,点P 的斜坐标定义为“若0102OP x e y e =+u u u v(其中12,e e 分别为与斜坐标系的x 轴、y 轴同方向的单位向量),则点P 的坐标为()00,x y ”.若()11,0F -,()21,0F ,且动点(),M x y 满足12MF MF =u u u u v u u u u v,则点M 在斜坐标系中的轨迹方程为( )A.0x -= B.0x += C0y -= D0y +=2.已知函数()1ln ,111,122x x f x x x +≥⎧⎪=⎨+<⎪⎩,若12x x ≠,且()()122f x f x +=,则12x x +的取值范围是( ) A .[)2,+∞ B .[)1,e -+∞C .[]32ln 2,-+∞ D .[]32ln3,-+∞3.已知直线l :10()x ay a R +-=∈是圆22:4210C x y x y +--+=的对称轴.过点(4,)A a -作圆C 的一条切线,切点为B ,则||AB =( ) A .2B.C .6D.4.已知F 为抛物线2:4C y x =的焦点,过点F 的直线l 交抛物线C 于,A B 两点,若||8AB =,则线段AB的中点M 到直线10x +=的距离为( ) A .2B .4C .8D .165.若函数()2sin(2)cos (0)2f x x x πθθ=+⋅<<的图象过点(0,2),则( )A .点(,0)4π是()y f x =的一个对称中心 B .直线4x π=是()y f x =的一条对称轴C .函数()y f x =的最小正周期是2πD .函数()y f x =的值域是[0,2]6.设()f x 为定义在R 上的函数,当0x ≥时,()22()x f x x b b =++为常数,则(1)f -= A .-3B .-1C .1D .37.设直线0x y a -+=与圆222420x y x y ++-+=相交于A ,B 两点,若||2AB =,则a =( )A .-1或1B .1或5C .-1或3D .3或58.已知()()sin f x A B ωϕ=++ (0,0,)2A πωϕ>><部分图象如图,则()f x 的一个对称中心是( )A .5,16π⎛⎫- ⎪⎝⎭ B .,012π⎛⎫ ⎪⎝⎭ C .,112π⎛⎫- ⎪⎝⎭ D .5,06π⎛⎫⎪⎝⎭ 9.已知数列{}n a 的前n 项和为n S ,满足()121,223n n na S a n S =-++=≥,则下面选项为等差数列的是( ) A .{}1n S +B .{}1n S -C .11nS ⎧⎫⎨⎬+⎩⎭ D .11n S ⎧⎫⎨⎬-⎩⎭ 10.已知||()2x f x x =g ,3(log 5)a f =,31(log )2b f =,(3)c f ln =,则a ,b ,c 的大小关系为( )A .c b a >>B .b c a >>C .a b c >>D .c a b >>11.直线y =kx +3与圆(x -3)2+(y -2)2=4相交于M ,N 两点,若23MN ≥,则k 的取值范围是( ). A .3[,0]?4-B .(-∞,34-]∪[0,+∞) C .33[,]- D .2[,0]3-12.已知集合{}2lgsin 9A x y x x==+-,则()cos22sin f x x x x A =+∈,的值域为( )A .31,2⎡⎤⎢⎥⎣⎦B .31,2⎛⎤ ⎥⎝⎦C .11,2⎛⎤- ⎥⎝⎦ D .2,22⎛⎫ ⎪ ⎪⎝⎭ 二、填空题:本题共4小题,每小题5分,共20分。
高三招生考试20套模拟测试附加题数学试题(十二) Word版含解析

江苏省普通高等学校招生考试高三模拟测试卷(十二)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做两题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,AB 是圆O 的直径,D 为圆O 上一点,过D 作圆O 的切线交BA 的延长线于点C.若DB =DC ,求证:CA =AO.B. (选修4-2:矩阵与变换) 已知矩阵A =⎣⎢⎡⎦⎥⎤-10 0 2,B =⎣⎢⎡⎦⎥⎤120 6,求矩阵A -1B .C. (选修4-4:坐标系与参数方程)已知圆C 的极坐标方程为ρ2+22ρsin ⎝⎛⎭⎫θ-π4-4=0.求圆心的极坐标.D. (选修4-5:不等式选讲)已知a ,b 为非负实数,求证:a 3+b 3≥ab(a 2+b 2).【必做题】 第22、23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 一批产品共10件,其中3件是不合格品.用下列两种不同方式从中随机抽取2件产品检验:方式一:一次性随机抽取2件;方式二:先随机抽取1件,放回后再随机抽取1件. 记抽取的不合格产品数为ξ.(1) 分别求两种抽取方式下ξ的概率分布;(2) 比较两种抽取方式抽到的不合格品平均数的大小?并说明理由.23.在平面直角坐标系xOy 中,已知抛物线C :y 2=4x ,设点A(-t ,0),B(t ,0)(t >0),过点B 的直线与抛物线C 交于P ,Q 两点(P 在Q 上方).(1) 若t =1,直线PQ 的倾斜角为π4,求直线PA 的斜率;(2) 求证:∠PAO =∠QAO.(十二)21. A. 证明:连结OD ,AD.因为AB 是圆O 的直径,所以∠ADB =90°, AB =2AO.(3分) 因为DC 是圆O 的切线,所以∠CDO =90°.(6分) 因为DB =DC ,所以∠B =∠C ,于是△ADB ≌△ODC ,从而AB =CO , 即2OA =OA +CA ,得CA =AO.(10分)B. 解:设矩阵A 的逆矩阵为⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤-1 0 0 2⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 00 1,即⎣⎢⎡⎦⎥⎤-a -b 2c 2d =⎣⎢⎡⎦⎥⎤1 00 1,于是a =-1,b =c =0,d =12, 从而矩阵A 的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 12,(7分) 所以A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 12⎣⎢⎡⎦⎥⎤1 20 6=⎣⎢⎡⎦⎥⎤-1 -2 0 3.(10分) C. 解:以极坐标系的极点为直角坐标系的原点O ,极轴为x 轴的正半轴建立直角坐标系xOy.圆C 的极坐标方程为ρ2+2ρsin θ-2ρcos θ-4=0.(3分) 则圆C 的直角坐标方程为x 2+y 2-2x +2y -4=0, 即(x -1)2+(y +1)2=6.(6分)于是圆心的直角坐标为(1,-1),则其极坐标为⎝⎛⎭⎫2,7π4.(10分)D. 证明:由a ,b 为非负实数,作差得a 3+b 3-ab(a 2+b 2)=a 2a(a -b)+b 2b(b -a)=(a -b)[(a)5-(b)5].(4分)当a ≥b 时,a ≥b ,从而(a)5≥(b)5,得(a -b)[(a)5-(b)5]≥0; 当a <b 时,a <b ,从而(a)5<(b)5,得(a -b)[(a)5-(b)5]>0. 所以a 3+b 3≥ab(a 2+b 2).(10分)22. 解:(1) 方式一中随机变量ξ可取的值为0,1,2,且ξ服从超几何分布,ξ~H(2,3,10).于是P(ξ=0)=C 03C 27C 210=7×6210×92=715;P(ξ=1)=C 13C 17C 210=3×710×92=715;P(ξ=2)=C 23C 07C 210=310×92=115.因此ξ的概率分布可表示为下表:(3分)方式二中随机变量ξ可取的值为0,1,2,且ξ服从二项分布,ξ~B ⎝⎛⎭⎫2,310. 于是P(ξ=0)=C 02⎝⎛⎭⎫3100⎝⎛⎭⎫7102=49100; P(ξ=1)=C 12⎝⎛⎭⎫3101⎝⎛⎭⎫7101=2150;P(ξ=2)=C 22⎝⎛⎭⎫3102⎝⎛⎭⎫7100=9100. 因此ξ的概率分布可表示为下表:(6分)(2) 由(1)知,方式一中ξ的数学期望(平均数)为E(ξ)=2×310=35(个);方式二中ξ的数学期望(平均数)为E(ξ)=2×310=35(个).两种抽取方式抽到的不合格品的平均数相等,均为35个.(10分)23. (1) 解:若t =1,直线PQ 的倾斜角为π4,则直线PQ 的方程为y =x -1.解方程组⎩⎪⎨⎪⎧y =x -1,y 2=4x ,得P(3+22,2+22).因为A(-1,0),所以直线PA 的斜率k PA =2+223+22-(-1)=22.(3分)(2) 证明:因为直线PQ 经过点B(t ,0),且与抛物线相交于P ,Q 两点, 所以可设直线PQ 的方程为x =my +t.联立方程组⎩⎪⎨⎪⎧y 2=4x ,x =my +t ,消去x 得y 2-4my -4t =0,解得y =2m±2m 2+t ,于是P(2m 2+2m m 2+t +t ,2m +2m 2+t),Q(2m 2-2m m 2+t +t ,2m -2m 2+t).(7分)所以直线PA 的斜率k PA =2m +2m 2+t2m 2+2m m 2+t +t -(-t )=m +m 2+tm 2+m m 2+t +t =1m 2+t.同理,直线QA 的斜率k QA =2m -2m 2+t2m 2-2m m 2+t +t -(-t )=-1m 2+t.可见k PA=-k QA,结合图形,得∠PAO=∠QAO.(10分)。
高三数学 高考大题专项训练 全套 (15个专项)(典型例题)(含答案)

1、函数与导数(1)2、三角函数与解三角形3、函数与导数(2)4、立体几何5、数列(1)6、应用题7、解析几何8、数列(2)9、矩阵与变换10、坐标系与参数方程11、空间向量与立体几何12、曲线与方程、抛物线13、计数原理与二项式分布14、随机变量及其概率分布15、数学归纳法高考压轴大题突破练 (一)函数与导数(1)1.已知函数f (x )=a e xx+x .(1)若函数f (x )的图象在(1,f (1))处的切线经过点(0,-1),求a 的值;(2)是否存在负整数a ,使函数f (x )的极大值为正值?若存在,求出所有负整数a 的值;若不存在,请说明理由.解 (1)∵f ′(x )=a e x (x -1)+x 2x 2,∴f ′(1)=1,f (1)=a e +1.∴函数f (x )在(1,f (1))处的切线方程为 y -(a e +1)=x -1,又直线过点(0,-1),∴-1-(a e +1)=-1, 解得a =-1e.(2)若a <0,f ′(x )=a e x (x -1)+x 2x 2,当x ∈(-∞,0)时,f ′(x )>0恒成立,函数在(-∞,0)上无极值;当x ∈(0,1)时,f ′(x )>0恒成立,函数在(0,1)上无极值.方法一 当x ∈(1,+∞)时,若f (x )在x 0处取得符合条件的极大值f (x 0),则⎩⎪⎨⎪⎧x 0>1,f (x 0)>0,f ′(x 0)=0,则0000200201,e 0,e (1)0,x x x a x x a x x x ⎛> +> -+ = ⎝①②③由③得0e x a =-x 20x 0-1,代入②得-x 0x 0-1+x 0>0,结合①可解得x 0>2,再由f (x 0)=0e x a x +x 0>0,得a >-020e x x ,设h (x )=-x 2e x ,则h ′(x )=x (x -2)e x ,当x >2时,h ′(x )>0,即h (x )是增函数, ∴a >h (x 0)>h (2)=-4e2.又a <0,故当极大值为正数时,a ∈⎝⎛⎭⎫-4e 2,0, 从而不存在负整数a 满足条件.方法二 当x ∈(1,+∞)时,令H (x )=a e x (x -1)+x 2, 则H ′(x )=(a e x +2)x ,∵x ∈(1,+∞),∴e x ∈(e ,+∞), ∵a 为负整数,∴a ≤-1,∴a e x ≤a e ≤-e , ∴a e x +2<0,∴H ′(x )<0, ∴H (x )在(1,+∞)上单调递减.又H (1)=1>0,H (2)=a e 2+4≤-e 2+4<0, ∴∃x 0∈(1,2),使得H (x 0)=0, 且当1<x <x 0时,H (x )>0,即f ′(x )>0; 当x >x 0时,H (x )<0,即f ′(x )<0.∴f (x )在x 0处取得极大值f (x 0)=0e x a x +x 0.(*)又H (x 0)=0e x a (x 0-1)+x 20=0, ∴00e x a x =-x 0x 0-1,代入(*)得f (x 0)=-x 0x 0-1+x 0=x 0(x 0-2)x 0-1<0, ∴不存在负整数a 满足条件. 2.已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f (x ),f (x )≥g (x ),g (x ),f (x )<g (x ).(1)求函数f (x )的极值;(2)若g (x )=xf ′(x ),且∃x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围. 解 (1)∵函数f (x )=ax 3-3x 2+1, ∴f ′(x )=3ax 2-6x =3x (ax -2), 令f ′(x )=0,得x 1=0或x 2=2a ,∵a >0,∴x 1<x 2,当x 变化时,f ′(x ),f (x )的变化情况如下表:∴f (x )的极大值为f (0)=1,极小值为f ⎝⎛⎭⎫2a =8a 2-12a 2+1=1-4a 2. (2)g (x )=xf ′(x )=3ax 3-6x 2, ∵∃x ∈[1,2],使h (x )=f (x ),∴f (x )≥g (x )在[1,2]上有解,即ax 3-3x 2+1≥3ax 3-6x 2在[1,2]上有解, 即不等式2a ≤1x 3+3x 在[1,2]上有解,设y =1x 3+3x =3x 2+1x 3(x ∈[1,2]),∵y ′=-3x 2-3x 4<0对x ∈[1,2]恒成立,∴y =1x 3+3x 在[1,2]上单调递减,∴当x =1时,y =1x 3+3x 的最大值为4,∴2a ≤4,即a ≤2.高考中档大题规范练 (一)三角函数与解三角形1.(2017·江苏宿迁中学质检)已知函数f (x )=sin 2x +23sin x cos x +sin ⎝⎛⎭⎫x +π4sin ⎝⎛⎭⎫x -π4,x ∈R . (1)求f (x )的最小正周期和值域;(2)若x =x 0⎝⎛⎭⎫0≤x 0≤π2为f (x )的一个零点,求sin 2x 0的值. 解 (1)易得f (x )=sin 2x +3sin 2x +12(sin 2x -cos 2x )=1-cos 2x 2+3sin 2x -12cos 2x =3sin 2x -cos 2x +12=2sin ⎝⎛⎭⎫2x -π6+12, 所以f (x )的最小正周期为π,值域为⎣⎡⎦⎤-32,52. (2)由f (x 0)=2sin ⎝⎛⎭⎫2x 0-π6+12=0,得 sin ⎝⎛⎭⎫2x 0-π6=-14<0,又由0≤x 0≤π2,得-π6≤2x 0-π6≤5π6,所以-π6≤2x 0-π6<0,故cos ⎝⎛⎭⎫2x 0-π6=154, 此时sin 2x 0=sin ⎣⎡⎦⎤⎝⎛⎭⎫2x 0-π6+π6 =sin ⎝⎛⎭⎫2x 0-π6cos π6+cos ⎝⎛⎭⎫2x 0-π6sin π6 =-14×32+154×12=15-38.2.(2017·江苏南通四模)已知向量m =⎝⎛⎭⎫sin x 2,1,n =⎝⎛⎭⎫1,3cos x2,函数f (x )=m ·n . (1)求函数f (x )的最小正周期;(2)若f ⎝⎛⎭⎫α-2π3=23,求f ⎝⎛⎭⎫2α+π3的值. 解 (1)f (x )=m ·n =sin x 2+3cos x2=2⎝⎛⎭⎫12sin x 2+32cos x2=2⎝⎛⎭⎫sin x 2cos π3+cos x 2sin π3 =2sin ⎝⎛⎭⎫x 2+π3,所以函数f (x )的最小正周期为T =2π12=4π.(2)由f ⎝⎛⎭⎫α-2π3=23,得2sin α2=23,即sin α2=13. 所以f ⎝⎛⎭⎫2α+π3=2sin ⎝⎛⎭⎫α+π2=2cos α =2⎝⎛⎭⎫1-2sin 2α2=149. 3.(2017·江苏南师大考前模拟)已知△ABC 为锐角三角形,向量m =⎝⎛⎭⎫cos ⎝⎛⎭⎫A +π3,sin ⎝⎛⎭⎫A +π3,n =(cos B ,sin B ),并且m ⊥n . (1)求A -B ;(2)若cos B =35,AC =8,求BC 的长.解 (1)因为m ⊥n ,所以m ·n =cos ⎝⎛⎭⎫A +π3cos B +sin ⎝⎛⎭⎫A +π3sin B=cos ⎝⎛⎭⎫A +π3-B =0. 因为0<A ,B <π2,所以-π6<A +π3-B <5π6,所以A +π3-B =π2,即A -B =π6.(2)因为cos B =35,B ∈⎝⎛⎭⎫0,π2,所以sin B =45, 所以sin A =sin ⎝⎛⎭⎫B +π6=sin B cos π6+cos B sin π6 =45×32+35×12=43+310, 由正弦定理可得BC =sin A sin B×AC =43+3.4.(2017·江苏镇江三模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且(a -c )(sin A +sin C )=(b -3c )sin B . (1)求角A ;(2)若f (x )=cos 2(x +A )-sin 2(x -A ),求f (x )的单调递增区间. 解 (1)由(a -c )(sin A +sin C )=(b -3c )sin B 及正弦定理, 得(a -c )(a +c )=(b -3c )b ,即a 2=b 2+c 2-3bc . 由余弦定理,得cos A =32, 因为0<A <π,所以A =π6.(2)f (x )=cos 2(x +A )-sin 2(x -A ) =cos 2⎝⎛⎭⎫x +π6-sin 2⎝⎛⎭⎫x -π6 =1+cos ⎝⎛⎭⎫2x +π32-1-cos ⎝⎛⎭⎫2x -π32=12cos 2x , 令π+2k π≤2x ≤2π+2k π,k ∈Z , 得π2+k π≤x ≤π+k π,k ∈Z . 则f (x )的单调增区间为⎣⎡⎦⎤π2+k π,π+k π,k ∈Z .(二)函数与导数(2)1.设函数f (x )=2(a +1)x (a ∈R ),g (x )=ln x +bx (b ∈R ),直线y =x +1是曲线y =f (x )的一条切线. (1)求a 的值;(2)若函数y =f (x )-g (x )有两个极值点x 1,x 2. ①试求b 的取值范围; ②证明:g (x 1)+g (x 2)f (x 1)+f (x 2)≤1e 2+12.解 (1)设直线y =x +1与函数y =f (x )的图象相切于点(x 0,y 0), 则y 0=x 0+1,y 0=2(a +1)x 0,a +1x 0=1,解得a =0. (2)记h (x )=f (x )-g (x ),则h (x )=2x -ln x -bx .①函数y =f (x )-g (x )有两个极值点的必要条件是h ′(x )有两个正零点. h ′(x )=1x -1x-b =-bx +x -1x ,令h ′(x )=0,得bx -x +1=0(x >0). 令x =t ,则t >0.问题转化为bt 2-t +1=0有两个不等的正实根t 1,t 2,等价于⎩⎪⎨⎪⎧Δ=1-4b >0,t 1t 2=1b >0,t 1+t 2=1b>0,解得0<b <14.当0<b <14时,设h ′(x )=0的两正根为x 1,x 2,且x 1<x 2,则h ′(x )=-bx +x -1x =-b (x -x 1)(x -x 2)x =-b (x -x 1)(x -x 2)x (x +x 1)(x +x 2).当x ∈(0,x 1)时,h ′(x )<0; 当x ∈(x 1,x 2)时,h ′(x )>0; 当x ∈(x 2,+∞)时,h ′(x )<0.所以x 1,x 2是h (x )=f (x )-g (x )的极值点, ∴b 的取值范围是⎝⎛⎭⎫0,14. ②由①知x 1x 2=x 1+x 2=1b.可得g (x 1)+g (x 2)=-2ln b +1b -2,f (x 1)+f (x 2)=2b ,所以g (x 1)+g (x 2)f (x 1)+f (x 2)=12-b ln b -b .记k (b )=12-b ln b -b ⎝⎛⎭⎫0<b <14, 则k ′(b )=-ln b -2,令k ′(b )=0,得b =1e 2∈⎝⎛⎭⎫0,14, 且当b ∈⎝⎛⎭⎫0,1e 2时,k ′(b )>0,k (b )单调递增; 当b ∈⎝⎛⎭⎫1e 2,14时,k ′(b )<0,k (b )单调递减, 且当b =1e 2时,k (b )取最大值1e 2+12,所以g (x 1)+g (x 2)f (x 1)+f (x 2)≤1e 2+12.2.设函数f (x )=2ax +bx+c ln x .(1)当b =0,c =1时,讨论函数f (x )的单调区间;(2)若函数f (x )在x =1处的切线为y =3x +3a -6且函数f (x )有两个极值点x 1,x 2,x 1<x 2. ①求a 的取值范围; ②求f (x 2)的取值范围.解 (1)f (x )=2ax +bx +c ln x ,x >0,f ′(x )=2a -b x 2+c x =2ax 2+cx -bx 2.当b =0,c =1时,f ′(x )=2ax +1x. 当a ≥0时,由x >0,得f ′(x )=2ax +1x >0恒成立,所以函数f (x )在(0,+∞)上单调递增.当a <0时,令f ′(x )=2ax +1x >0,解得x <-12a ;令f ′(x )=2ax +1x <0,解得x >-12a,所以,函数f (x )在⎝⎛⎭⎫0,-12a 上单调递增,在⎝⎛⎭⎫-12a ,+∞上单调递减. 综上所述,①当a ≥0时,函数f (x )在(0,+∞)上单调递增;②当a <0时,函数f (x )在⎝⎛⎭⎫0,-12a上单调递增,在⎝⎛⎭⎫-12a ,+∞上单调递减. (2)①函数f (x )在x =1处的切线为y =3x +3a -6, 所以f (1)=2a +b =3a -3,f ′(1)=2a +c -b =3, 所以b =a -3,c =-a ,f ′(x )=2a -b x 2+c x =2ax 2-ax +3-ax 2,函数f (x )有两个极值点x 1,x 2,x 1<x 2,则方程2ax 2-ax +3-a =0有两个大于0的解,⎩⎨⎧Δ=(-a )2-8a (3-a )>0,a 2a >0,3-a2a >0,解得83<a <3.所以a 的取值范围是⎝⎛⎭⎫83,3. ②2ax 22-ax 2+3-a =0, x 2=a +9a 2-24a 4a =14⎝⎛⎭⎫1+9-24a ,由83<a <3,得x 2∈⎝⎛⎭⎫14,12, 由2ax 22-ax 2+3-a =0,得a =-32x 22-x 2-1.f (x 2)=2ax 2+a -3x 2-a ln x 2=a ⎝⎛⎭⎫2x 2+1x 2-ln x 2-3x 2 =-32x 2+1x 2-ln x 22x 22-x 2-1-3x 2. 设φ(t )=-32t +1t -ln t2t 2-t -1-3t,t ∈⎝⎛⎭⎫14,12, φ′(t )=-3⎝⎛⎭⎫2-1t 2-1t (2t 2-t -1)-⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2+3t2 =-31t 2(2t 2-t -1)2+3⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2+3t 2=3⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2. 当t ∈⎝⎛⎭⎫14,12时,2t +1t-ln t >0,4t -1>0,φ′(t )>0,所以φ(t )在⎝⎛⎭⎫14,12上单调递增, φ(t )∈⎝⎛⎭⎫163ln 2,3+3ln 2, 所以f (x 2)的取值范围是⎝⎛⎭⎫163ln 2,3+3ln 2. (二)立体几何1.(2017·江苏扬州调研)如图,在四棱锥P -ABCD 中,底面ABCD 为梯形,CD ∥AB ,AB =2CD ,AC 交BD 于O ,锐角△P AD 所在平面⊥底面ABCD ,P A ⊥BD ,点Q 在侧棱PC 上,且PQ =2QC .求证:(1)P A ∥平面QBD ; (2)BD ⊥AD .证明 (1)如图,连结OQ ,因为AB ∥CD ,AB =2CD ,所以AO =2OC . 又PQ =2QC ,所以P A ∥OQ . 又OQ ⊂平面QBD ,P A ⊄平面QBD , 所以P A ∥平面QBD .(2)在平面P AD 内过P 作PH ⊥AD 于点H ,因为侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD ,PH ⊂平面P AD ,所以PH ⊥平面ABCD .又BD ⊂平面ABCD ,所以PH ⊥BD .又P A ⊥BD ,P A ∩PH =P ,所以BD ⊥平面P AD . 又AD ⊂平面P AD ,所以BD ⊥AD .2.如图,在四棱锥P -ABCD 中,底面ABCD 是正方形,AC 与BD 交于点O ,PC ⊥底面ABCD ,E 为PB 上一点,G 为PO 的中点.(1)若PD∥平面ACE,求证:E为PB的中点;(2)若AB=2PC,求证:CG⊥平面PBD.证明(1)连结OE,由四边形ABCD是正方形知,O为BD的中点,因为PD∥平面ACE,PD⊂平面PBD,平面PBD∩平面ACE=OE,所以PD∥OE.因为O为BD的中点,所以E为PB的中点.(2)在四棱锥P-ABCD中,AB=2PC,因为四边形ABCD是正方形,所以OC=22AB,所以PC=OC.因为G为PO的中点,所以CG⊥PO.又因为PC⊥底面ABCD,BD⊂底面ABCD,所以PC⊥BD.而四边形ABCD是正方形,所以AC⊥BD,因为AC,PC⊂平面P AC,AC∩PC=C,所以BD⊥平面P AC,因为CG⊂平面P AC,所以BD⊥CG.因为PO,BD⊂平面PBD,PO∩BD=O,所以CG⊥平面PBD.3.(2017·江苏怀仁中学模拟)如图,在四棱锥E-ABCD中,△ABD为正三角形,EB=ED,CB=CD.(1)求证:EC⊥BD;(2)若AB⊥BC,M,N分别为线段AE,AB的中点,求证:平面DMN∥平面BCE.证明(1)取BD的中点O,连结EO,CO.∵CD=CB,EB=ED,∴CO⊥BD,EO⊥BD.又CO∩EO=O,CO,EO⊂平面EOC,∴BD⊥平面EOC.又EC⊂平面EOC,∴BD⊥EC.(2)∵N是AB的中点,△ABD为正三角形,∴DN⊥AB,∵BC⊥AB,∴DN∥BC.又BC⊂平面BCE,DN⊄平面BCE,∴DN∥平面BCE.∵M为AE的中点,N为AB的中点,∴MN∥BE,又MN⊄平面BCE,BE⊂平面BCE,∴MN∥平面BCE.∵MN∩DN=N,∴平面DMN∥平面BCE.4.(2017·江苏楚水中学质检)如图,在三棱锥P-ABC中,点E,F分别是棱PC,AC的中点.(1)求证:P A∥平面BEF;(2)若平面P AB⊥平面ABC,PB⊥BC,求证:BC⊥P A.证明(1)在△P AC中,E,F分别是棱PC,AC的中点,所以P A∥EF.又P A⊄平面BEF,EF⊂平面BEF,所以P A∥平面BEF.(2)在平面P AB内过点P作PD⊥AB,垂足为D.因为平面P AB ⊥平面ABC ,平面P AB ∩平面ABC =AB ,PD ⊂平面P AB ,所以PD ⊥平面ABC , 因为BC ⊂平面ABC ,所以PD ⊥BC ,又PB ⊥BC ,PD ∩PB =P ,PD ⊂平面P AB ,PB ⊂平面P AB ,所以BC ⊥平面P AB , 又P A ⊂平面P AB ,所以BC ⊥P A .(三)数 列(1)1.已知数列{a n }的前n 项和为S n ,且S n +a n =4,n ∈N *. (1)求数列{a n }的通项公式;(2)已知c n =2n +3(n ∈N *),记d n =c n +log C a n (C >0且C ≠1),是否存在这样的常数C ,使得数列{d n }是常数列,若存在,求出C 的值;若不存在,请说明理由.(3)若数列{b n },对于任意的正整数n ,均有b 1a n +b 2a n -1+b 3a n -2+…+b n a 1=⎝⎛⎭⎫12n -n +22成立,求证:数列{b n }是等差数列. (1)解 a 1=4-a 1,所以a 1=2,由S n +a n =4,得当n ≥2时,S n -1+a n -1=4, 两式相减,得2a n =a n -1,所以a n a n -1=12,数列{a n }是以2为首项,公比为12的等比数列,所以a n =22-n (n ∈N *). (2)解 由于数列{d n }是常数列, d n =c n +log C a n =2n +3+(2-n )log C 2 =2n +3+2log C 2-n log C 2=(2-log C 2)n +3+2log C 2为常数, 则2-log C 2=0, 解得C =2,此时d n =7.(3)证明 b 1a n +b 2a n -1+b 3a n -2+…+b n a 1 =⎝⎛⎭⎫12n -n +22,①当n =1时,b 1a 1=12-32=-1,其中a 1=2,所以b 1=-12.当n ≥2时,b 1a n -1+b 2a n -2+b 3a n -3+…+b n -1a 1=⎝⎛⎭⎫12n -1-n +12,② ②式两边同时乘以12,得b 1a n +b 2a n -1+b 3a n -2+…+b n -1a 2=⎝⎛⎭⎫12n -n +14,③ 由①-③,得b n a 1=-n -34,所以b n =-n 8-38(n ∈N *,n ≥2),且b n +1-b n =-18,又b 1=-12=-18-38,所以数列{b n }是以-12为首项,公差为-18的等差数列.2.在数列{a n }中,已知a 1=13,a n +1=13a n -23n +1,n ∈N *,设S n 为{a n }的前n 项和.(1)求证:数列{3n a n }是等差数列; (2)求S n ;(3)是否存在正整数p ,q ,r (p <q <r ),使S p ,S q ,S r 成等差数列?若存在,求出p ,q ,r 的值;若不存在,说明理由.(1)证明 因为a n +1=13a n -23n +1,所以3n +1a n +1-3n a n =-2. 又因为a 1=13,所以31·a 1=1,所以{3n a n }是首项为1,公差为-2的等差数列. (2)解 由(1)知3n a n =1+(n -1)·(-2)=3-2n , 所以a n =(3-2n )⎝⎛⎭⎫13n,所以S n =1·⎝⎛⎭⎫131+(-1)·⎝⎛⎭⎫132+(-3)·⎝⎛⎭⎫133+…+(3-2n )·⎝⎛⎭⎫13n , 所以13S n =1·⎝⎛⎭⎫132+(-1)·⎝⎛⎭⎫133+…+(5-2n )·⎝⎛⎭⎫13n +(3-2n )·⎝⎛⎭⎫13n +1, 两式相减,得23S n =13-2⎣⎡⎦⎤⎝⎛⎭⎫132+⎝⎛⎭⎫133+…+⎝⎛⎭⎫13n -(3-2n )·⎝⎛⎭⎫13n +1=13-2⎣⎢⎡⎦⎥⎤19×1-⎝⎛⎭⎫13n -11-13+(2n -3)·⎝⎛⎭⎫13n +1 =2n ·⎝⎛⎭⎫13n +1, 所以S n =n 3n .(3)解 假设存在正整数p ,q ,r (p <q <r ),使S p ,S q ,S r 成等差数列,则2S q =S p +S r ,即2q3q =p 3p +r 3r. 当n ≥2时,a n =(3-2n )⎝⎛⎭⎫13n<0,所以数列{S n }单调递减. 又p <q ,所以p ≤q -1且q 至少为2, 所以p 3p ≥q -13q -1,q -13q -1-2q 3q =q -33q .①当q ≥3时,p 3p ≥q -13q -1≥2q 3q ,又r 3r >0,所以p 3p +r 3r >2q3q ,等式不成立. ②当q =2时,p =1,所以49=13+r 3r ,所以r 3r =19,所以r =3({S n }单调递减,解惟一确定). 综上可知,p ,q ,r 的值为1,2,3.(三)应用题1.已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为1.8元/千克,每次购买配料需支付运费236元.每次购买来的配料还需支付保管费用,其标准如下:7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付.(1)当9天购买一次配料时,求该厂用于配料的保管费用P 是多少元?(2)设该厂x 天购买一次配料,求该厂在这x 天中用于配料的总费用y (元)关于x 的函数关系式,并求该厂多少天购买一次配料才能使平均每天支付的费用最少? 解 (1)当9天购买一次时,该厂用于配料的保管费用 P =70+0.03×200×(1+2)=88(元).(2)①当x ≤7时,y =360x +10x +236=370x +236,②当x >7时,y =360x +236+70+6[(x -7)+(x -6)+…+2+1]=3x 2+321x +432,∴y =⎩⎪⎨⎪⎧370x +236,x ≤7,3x 2+321x +432,x >7,∴设该厂x 天购买一次配料平均每天支付的费用为f (x )元. f (x )=⎩⎨⎧370x +236x,x ≤7,3x 2+321x +432x,x >7.当x ≤7时,f (x )=370+236x ,当且仅当x =7时,f (x )有最小值2 8267≈404(元);当x >7时,f (x )=3x 2+321x +432x =3⎝⎛⎭⎫x +144x +321≥393.当且仅当x =12时取等号.∵393<404,∴当x =12时f (x )有最小值393元.2.南半球某地区冰川的体积每年中随时间而变化,现用t 表示时间,以月为单位,年初为起点,根据历年的数据,冰川的体积(亿立方米)关于t 的近似函数的关系式为V (t )=⎩⎪⎨⎪⎧-t 3+11t 2-24t +100,0<t ≤10,4(t -10)(3t -41)+100,10<t ≤12.(1)该冰川的体积小于100亿立方米的时期称为衰退期.以i -1<t <i 表示第i 月份(i =1,2,…,12),问一年内哪几个月是衰退期? (2)求一年内该地区冰川的最大体积.解 (1)当0<t ≤10时,V (t )=-t 3+11t 2-24t +100<100,化简得t 2-11t +24>0,解得t <3或t >8.又0<t ≤10,故0<t <3或8<t ≤10,当10<t ≤12时,V (t )=4(t -10)(3t -41)+100<100, 解得10<t <413,又10<t ≤12,故10<t ≤12.综上得0<t <3或8<t ≤12.所以衰退期为1月,2月,3月,9月,10月,11月,12月共7个月. (2)由(1)知,V (t )的最大值只能在(3,9)内取到.由V ′(t )=(-t 3+11t 2-24t +100)′=-3t 2+22t -24, 令V ′(t )=0,解得t =6或t =43(舍去).当t 变化时,V ′(t )与V (t )的变化情况如下表:由上表,V (t )在t =6时取得最大值V (6)=136(亿立方米). 故该冰川的最大体积为136亿立方米.3.如图,某城市有一条公路从正西方AO 通过市中心O 后转向东偏北α角方向的OB .位于该市的某大学M 与市中心O 的距离OM =313 km ,且∠AOM =β.现要修筑一条铁路L ,L 在OA 上设一站A ,在OB 上设一站B ,铁路在AB 部分为直线段,且经过大学M .其中tan α=2,cos β=313,AO =15 km.(1)求大学M 与站A 的距离AM ; (2)求铁路AB 段的长AB .解 (1)在△AOM 中,AO =15,∠AOM =β且cos β=313,OM =313, 由余弦定理,得AM 2=OA 2+OM 2-2OA ·OM ·cos ∠AOM =152+(313)2-2×15×313×313=13×9+15×15-2×3×15×3=72.∴AM =62,即大学M 与站A 的距离AM 为6 2 km. (2)∵cos β=313,且β为锐角,∴sin β=213, 在△AOM 中,由正弦定理,得AM sin β=OMsin ∠MAO ,即62213=313sin ∠MAO ,sin ∠MAO =22, ∴∠MAO =π4,∴∠ABO =α-π4,∵tan α=2,∴sin α=25,cos α=15, ∴sin ∠ABO =sin ⎝⎛⎭⎫α-π4=110,又∠AOB =π-α,∴sin ∠AOB =sin(π-α)=25. 在△AOB 中,OA =15,由正弦定理,得 AB sin ∠AOB =OA sin ∠ABO,即AB 25=15110,∴AB =302,即铁路AB 段的长为30 2 km.4.(2017·江苏苏州大学指导卷)如图,某地区有一块长方形植物园ABCD ,AB =8(百米),BC =4(百米).植物园西侧有一块荒地,现计划利用该荒地扩大植物园面积,使得新的植物园为HBCEFG ,满足下列要求:E 在CD 的延长线上,H 在BA 的延长线上,DE =0.5(百米),AH =4(百米),N 为AH 的中点,FN ⊥AH ,EF 为曲线段,它上面的任意一点到AD 与AH 的距离的乘积为定值,FG ,GH 均为线段,GH ⊥HA ,GH =0.5(百米).(1)求四边形FGHN 的面积;(2)已知音乐广场M 在AB 上,AM =2(百米),若计划在EFG 的某一处P 开一个植物园大门,在原植物园ABCD 内选一点Q 为中心建一个休息区,使得QM =PM ,且∠QMP =90°,问点P 在何处时,AQ 最小.解 (1)以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴,建立平面直角坐标系如图所示.则E ⎝⎛⎭⎫-12,4,因为E 到AD 与AH 距离的乘积为2, 所以曲线EF 上的任意一点都在函数y =-2x 的图象上.由题意,N (-2,0),所以F (-2,1).四边形FGHN 的面积为12×⎝⎛⎭⎫12+1×2=32(平方百米). (2)设P (x ,y ),则MP →=(x -2,y ),MQ →=(y ,-x +2),AQ →=(y +2,-x +2),因为点Q 在原植物园内,所以⎩⎪⎨⎪⎧0≤y +2≤8,0≤2-x ≤4,即-2≤x ≤2.又点P 在曲线EFG 上,x ∈⎣⎡⎦⎤-4,-12, 所以-2≤x ≤-12,则点P 在曲线段EF 上,AQ =(y +2)2+(2-x )2, 因为y =-2x ,所以AQ =⎝⎛⎭⎫-2x +22+(2-x )2= x 2+4x 2-4x -8x+8= ⎝⎛⎭⎫x +2x 2-4⎝⎛⎭⎫x +2x +4 =⎝⎛⎭⎫x +2x -22=-x +2-x+2≥22+2. 当且仅当-x =-2x,即x =-2时等号成立.此时点P (-2,2),即点P 在距离AD 与AH 均为2百米时,AQ 最小.(四)解析几何1.已知点A (x 1,y 1),B (x 2,y 2)(x 1x 2≠0),O 是坐标原点,P 是线段AB 的中点,若C 是点A 关于原点的对称点,Q 是线段BC 的中点,且OP =OQ ,设圆P 的方程为x 2+y 2-(x 1+x 2)x -(y 1+y 2)y =0.(1)证明:线段AB 是圆P 的直径;(2)若存在正数p 使得2p (x 1+x 2)=y 21+y 22+8p 2+2y 1y 2成立,当圆P 的圆心到直线x -2y =0的距离的最小值为255时,求p 的值.(1)证明 由题意知,点P 的坐标为⎝⎛⎭⎫x 1+x 22,y 1+y 22,点A (x 1,y 1)关于原点的对称点为C (-x 1,-y 1),那么点Q 的坐标为⎝⎛⎭⎫-x 1+x 22,-y 1+y 22,由OP =OQ ,得OP 2=OQ 2, 即⎝⎛⎭⎫x 1+x 222+⎝⎛⎭⎫y 1+y 222=⎝⎛⎭⎫-x 1+x 222+⎝⎛⎭⎫-y 1+y 222,得(x 1+x 2)2+(y 1+y 2)2=(x 1-x 2)2+(y 1-y 2)2, 从而x 1x 2+y 1y 2=0,由此得OA ⊥OB ,由方程x 2+y 2-(x 1+x 2)x -(y 1+y 2)y =0知,圆P 过原点,且点A ,B 在圆P 上, 故线段AB 是圆P 的直径.(2)解 由2p (x 1+x 2)=y 21+y 22+8p 2+2y 1y 2,得x 1+x 2=12p [(y 1+y 2)2+8p 2],又圆心P ⎝⎛⎭⎫x 1+x 22,y 1+y 22到直线x -2y =0的距离为d =⎪⎪⎪⎪x 1+x 22-(y 1+y 2)5=⎪⎪⎪⎪14p [(y 1+y 2)2+8p 2]-(y 1+y 2)5=[(y 1+y 2)-2p ]2+4p 245p ≥4p 245p,当且仅当y 1+y 2=2p 时,等号成立,所以4p 245p =255,从而得p =2.2.如图,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,O 是坐标原点,OF =5,过点F 作OF 的垂线交椭圆C 于P 0,Q 0两点,△OP 0Q 0的面积为453.(1)求椭圆的标准方程;(2)若过点M (-5,0)的直线l 与上、下半椭圆分别交于点P ,Q ,且PM =2MQ ,求直线l 的方程.解 (1)由题设条件,P 0F =00OP Q S OF∆=4535=43.易知P 0F =b 2a ,所以b 2a =43.又c =OF =5,即a 2-b 2=5,因此a 2-43a -5=0,解得a =3或a =-53,又a >0,所以a =3,从而b =2. 故所求椭圆的标准方程为x 29+y 24=1.(2)设P (x 1,y 1),Q (x 2,y 2),由题意y 1>0,y 2<0,并可设直线l :x =ty -5, 代入椭圆方程得(ty -5)29+y 24=1,即(4t 2+9)y 2-85ty -16=0. 从而y 1+y 2=85t 4t 2+9,y 1y 2=-164t 2+9.又由PM =2MQ ,得y 1-y 2=PMMQ=2,即y 1=-2y 2.因此y 1+y 2=-y 2,y 1y 2=-2y 22, 故-164t 2+9=-2⎝ ⎛⎭⎪⎫-85t 4t 2+92,可解得t 2=14.注意到y 2=-85t 4t 2+9且y 2<0,知t >0,因此t =12.故满足题意的直线l 的方程为2x -y +25=0.3.如图,在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线l :y =-12x 与椭圆E 相交于A ,B 两点,AB =210,C ,D 是椭圆E 上异于A ,B 的两点,且直线AC ,BD 相交于点P ,直线AD ,BC 相交于点Q .(1)求椭圆E 的标准方程; (2)求证:直线PQ 的斜率为定值. (1)解 因为e =c a =32,所以c 2=34a 2,即a 2-b 2=34a 2,所以a =2b .所以椭圆方程为x 24b 2+y 2b2=1.由题意不妨设点A 在第二象限,点B 在第四象限,由⎩⎨⎧y =-12x ,x 24b 2+y2b 2=1,得A (-2b ,22b ). 又AB =210,所以OA =10,则2b 2+12b 2=52b 2=10,得b =2,a =4.所以椭圆E 的标准方程为x 216+y 24=1.(2)证明 由(1)知,椭圆E 的方程为x 216+y 24=1,A (-22,2),B (22,-2).①当直线CA ,CB ,DA ,DB 的斜率都存在,且不为零时,设直线CA ,DA 的斜率分别为k 1,k 2,C (x 0,y 0),显然k 1≠k 2.从而k 1·k CB =y 0-2x 0+22·y 0+2x 0-22=y 20-2x 20-8=4⎝⎛⎭⎫1-x 2016-2x 20-8=2-x 204x 20-8=-14,所以k CB =-14k 1.同理k DB =-14k 2.所以直线AD 的方程为y -2=k 2(x +22),直线BC 的方程为y +2=-14k 1(x -22), 由⎩⎪⎨⎪⎧y +2=-14k 1(x -22),y -2=k 2(x +22),解得⎩⎪⎨⎪⎧x =22(-4k 1k 2-4k 1+1)4k 1k 2+1,y =2(-4k 1k 2+4k 2+1)4k 1k 2+1,从而点Q 的坐标为⎝ ⎛⎭⎪⎫22(-4k 1k 2-4k 1+1)4k 1k 2+1,2(-4k 1k 2+4k 2+1)4k 1k 2+1.用k 2代替k 1,k 1代替k 2得点P 的坐标为⎝ ⎛⎭⎪⎫22(-4k 1k 2-4k 2+1)4k 1k 2+1,2(-4k 1k 2+4k 1+1)4k 1k 2+1.所以k PQ =2(-4k 1k 2+4k 2+1)4k 1k 2+1-2(-4k 1k 2+4k 1+1)4k 1k 2+122(-4k 1k 2-4k 1+1)4k 1k 2+1-22(-4k 1k 2-4k 2+1)4k 1k 2+1=42(k 2-k 1)82(k 2-k 1)=12.即直线PQ 的斜率为定值,其定值为12.②当直线CA ,CB ,DA ,DB 中,有直线的斜率不存在时,由题意得,至多有一条直线的斜率不存在,不妨设直线CA 的斜率不存在,从而C (-22,-2). 设DA 的斜率为k ,由①知,k DB =-14k.因为直线CA :x =-22,直线DB :y +2=-14k (x -22),得P ⎝⎛⎭⎫-22,-2+2k . 又直线BC :y =-2,直线AD :y -2=k (x +22), 得Q ⎝⎛⎭⎫-22-22k ,-2, 所以k PQ =12.由①②可知,直线PQ 的斜率为定值,其定值为12.4.(2017·江苏预测卷)平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率是32,右准线的方程为x =433.(1)求椭圆C 的方程;(2)已知点P ⎝⎛⎭⎫12,2,过x 轴上的一个定点M 作直线l 与椭圆C 交于A ,B 两点,若三条直线P A ,PM ,PB 的斜率成等差数列,求点M 的坐标. 解 (1)因为椭圆的离心率为32,右准线的方程为x =433, 所以e =c a =32,a 2c =433,则a =2,c =3,b =1,椭圆C 的方程为x 24+y 2=1.(2)设M (m,0),当直线l 为y =0时,A (-2,0),B (2,0), P A ,PM ,PB 的斜率分别为 k P A =45,k PM =41-2m,k PB =-43,因为直线P A ,PM ,PB 的斜率成等差数列,所以81-2m =45-43,m =8.证明如下:当M (8,0)时,直线P A ,PM ,PB 的斜率构成等差数列, 设AB :y =k (x -8),代入椭圆方程x 2+4y 2-4=0, 得x 2+4k 2(x -8)2-4=0,即(1+4k 2)x 2-64k 2x +256k 2-4=0, 设A (x 1,y 1),B (x 2,y 2),则 x 1+x 2=64k 21+4k 2,x 1x 2=256k 2-41+4k 2,又k PM =0-28-12=-415, 所以k P A +k PB =y 1-2x 1-12+y 2-2x 2-12=kx 1-8k -2x 1-12+kx 2-8k -2x 2-12=2k +⎝⎛⎭⎫-152k -2⎝ ⎛⎭⎪⎫1x 1-12+1x 2-12=2k +⎝⎛⎭⎫-152k -2(x 1+x 2)-1x 1x 2-12(x 1+x 2)+14=2k +⎝⎛⎭⎫-152k -264k 21+4k 2-1256k 2-41+4k 2-12×64k 21+4k 2+14=2k +⎝⎛⎭⎫-152k -260k 2-1154(60k 2-1)=-815=2k PM ,即证. (四)数 列(2)1.已知{a n },{b n },{c n }都是各项不为零的数列,且满足a 1b 1+a 2b 2+…+a n b n =c n S n ,n ∈N *,其中S n 是数列{a n }的前n 项和,{c n }是公差为d (d ≠0)的等差数列. (1)若数列{a n }是常数列,d =2,c 2=3,求数列{b n }的通项公式; (2)若a n =λn (λ是不为零的常数),求证:数列{b n }是等差数列;(3)若a 1=c 1=d =k (k 为常数,k ∈N *),b n =c n +k (n ≥2,n ∈N *),求证:对任意的n ≥2,n ∈N *,数列⎩⎨⎧⎭⎬⎫b n a n 单调递减.(1)解 因为d =2,c 2=3,所以c n =2n -1. 因为数列{a n }是各项不为零的常数列, 所以a 1=a 2=…=a n ,S n =na 1.则由c n S n =a 1b 1+a 2b 2+…+a n b n 及c n =2n -1,得 n (2n -1)=b 1+b 2+…+b n ,当n ≥2时,(n -1)(2n -3)=b 1+b 2+…+b n -1, 两式相减得b n =4n -3.当n =1时,b 1=1也满足b n =4n -3. 故b n =4n -3(n ∈N *).(2)证明 因为a 1b 1+a 2b 2+…+a n b n =c n S n , 当n ≥2时,c n -1S n -1=a 1b 1+a 2b 2+…+a n -1b n -1, 两式相减得c n S n -c n -1S n -1=a n b n , 即(S n -1+a n )c n -S n -1c n -1=a n b n , S n -1(c n -c n -1)+a n c n =a n b n , 所以S n -1d +λnc n =λnb n .又S n -1=λ+λ(n -1)2(n -1)=λn (n -1)2,所以λn (n -1)2d +λnc n =λnb n ,即(n -1)2d +c n =b n ,(*) 所以当n ≥3时,(n -2)2d +c n -1=b n -1,两式相减得b n -b n -1=32d (n ≥3),所以数列{b n }从第二项起是公差为32d 的等差数列.又当n =1时,由c 1S 1=a 1b 1,得c 1=b 1. 当n =2时,由(*)得b 2=(2-1)2d +c 2=12d +(c 1+d )=b 1+32d ,得b 2-b 1=32d .故数列{b n }是公差为32d 的等差数列.(3)证明 由(2)得当n ≥2时,S n -1(c n -c n -1)+a n c n =a n b n ,即S n -1d =a n (b n -c n ).因为b n =c n +k ,所以b n =c n +kd , 即b n -c n =kd , 所以S n -1d =a n ·kd , 即S n -1=ka n ,所以S n =S n -1+a n =(k +1)a n . 当n ≥3时,S n -1=(k +1)a n -1, 两式相减得a n =(k +1)a n -(k +1)a n -1, 即a n =k +1k a n -1,故从第二项起数列{a n }是等比数列, 所以当n ≥2时,a n =a 2⎝⎛⎭⎫k +1k n -2,b n =c n +k =c n +kd =c 1+(n -1)k +k 2=k +(n -1)k +k 2=k (n +k ), 另外由已知条件得(a 1+a 2)c 2=a 1b 1+a 2b 2. 又c 2=2k ,b 1=k ,b 2=k (2+k ), 所以a 2=1,因而a n =⎝⎛⎭⎫k +1k n -2.令d n =b na n ,则d n +1d n =b n +1a n a n +1b n =(n +k +1)k (n +k )(k +1).因为(n +k +1)k -(n +k )(k +1)=-n <0, 所以d n +1d n<1,所以对任意的n ≥2,n ∈N *,数列⎩⎨⎧⎭⎬⎫b n a n 单调递减.2.已知数列{a n }的前n 项和为S n ,且a 1=1,a 2=2,设b n =a n +a n +1,c n =a n ·a n +1(n ∈N *). (1)若数列{b 2n -1}是公比为3的等比数列,求S 2n ; (2)若数列{b n }是公差为3的等差数列,求S n ;(3)是否存在这样的数列{a n },使得{b n }成等差数列和{c n }成等比数列同时成立,若存在,求出{a n }的通项公式;若不存在,请说明理由. 解 (1)b 1=a 1+a 2=1+2=3,S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 3+…+b 2n -1=3(1-3n )1-3=3n +1-32.(2)∵b n +1-b n =a n +2-a n =3,∴{a 2k -1},{a 2k }均是公差为3的等差数列,a 2k -1=a 1+(k -1)·3=3k -2,a 2k =a 2+(k -1)·3=3k -1,当n =2k (k ∈N *)时,S n =S 2k =(a 1+a 3+…+a 2k -1)+(a 2+a 4+…+a 2k )=k (1+3k -2)2+k (2+3k -1)2=3k 2=3n 24; 当n =2k -1(k ∈N *)时,S n =S 2k -1=S 2k -a 2k =3k 2-3k +1=3×⎝⎛⎭⎫n +122-3·n +12+1=3n 2+14.综上可知,S n=⎩⎨⎧3n 24,n =2k ,k ∈N *,3n 2+14,n =2k -1,k ∈N *.(3)∵{b n }成等差数列,∴2b 2=b 1+b 3,即2(a 2+a 3)=(a 1+a 2)+(a 3+a 4),a 2+a 3=a 1+a 4,① ∵{c n }成等比数列,∴c 22=c 1c 3. 即(a 2a 3)2=(a 1a 2)·(a 3a 4), ∵c 2=a 2a 3≠0,∴a 2a 3=a 1a 4,②由①②及a 1=1,a 2=2,得a 3=1,a 4=2,设{b n }的公差为d ,则b n +1-b n =(a n +1+a n +2)-(a n +a n +1)=d ,即a n +2-a n =d ,即数列{a n }的奇数项和偶数项都构成公差为d 的等差数列, 又d =a 3-a 1=a 4-a 2=0, ∴数列{a n }=1,2,1,2,1,2,…,即a n =⎩⎪⎨⎪⎧1,n =2k -1,k ∈N *,2,n =2k ,k ∈N *. 此时c n =2,{c n }是公比为1的等比数列,满足题意.∴存在数列{a n },a n =⎩⎪⎨⎪⎧1,n =2k -1,k ∈N *,2,n =2k ,k ∈N *, 使得{b n }成等差数列和{c n }成等比数列同时成立.高考附加题加分练 1.矩阵与变换1.已知矩阵M =⎣⎢⎡⎦⎥⎤a 1b 0,点A (1,0)在矩阵M 对应的变换作用下变为A ′(1,2),求矩阵M 的逆矩阵M -1.解 ∵⎣⎢⎡⎦⎥⎤a 1b 0 ⎣⎢⎡⎦⎥⎤10=⎣⎢⎡⎦⎥⎤12, ∴a =1,b =2.∴M =⎣⎢⎡⎦⎥⎤1 120,∴M -1=⎣⎢⎡⎦⎥⎤0 121 -12.2.(2017·江苏徐州一中检测)已知曲线C :y 2=12x ,在矩阵M =⎣⎢⎡⎦⎥⎤1 00 -2对应的变换作用下得到曲线C 1,C 1在矩阵N =⎣⎢⎡⎦⎥⎤0110对应的变换作用下得到曲线C 2,求曲线C 2的方程.解 设A =NM ,则A =⎣⎢⎡⎦⎥⎤0 11 0 ⎣⎢⎡⎦⎥⎤1 00 -2=⎣⎢⎡⎦⎥⎤0 -21 0, 设P (x ′,y ′)是曲线C 上任一点,在两次变换下,在曲线C 2上对应的点为P (x ,y ), 则⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤0 -21 0 ⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤-2y ′ x ′, 即⎩⎪⎨⎪⎧x =-2y ′,y =x ′,∴⎩⎪⎨⎪⎧x ′=y ,y ′=-12x .又点P (x ′,y ′)在曲线C :y 2=12x 上,∴⎝⎛⎭⎫-12x 2=12y ,即x 2=2y . 3.已知矩阵M =⎣⎢⎡⎦⎥⎤122x 的一个特征值为3,求M 的另一个特征值及其对应的一个特征向量. 解 矩阵M 的特征多项式为f (λ)=⎣⎢⎡⎦⎥⎤λ-1 -2-2 λ-x =(λ-1)(λ-x )-4.因为λ1=3是方程f (λ)=0的一根,所以x =1. 由(λ-1)(λ-1)-4=0,得λ2=-1. 设λ2=-1对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤x y , 则⎩⎪⎨⎪⎧-2x -2y =0,-2x -2y =0,得x =-y . 令x =1,则y =-1,所以矩阵M 的另一个特征值为-1,对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤ 1-1.4.(2017·江苏江阴中学质检)若点A (2,2)在矩阵M =⎣⎢⎡⎦⎥⎤cos α -sin αsin α cos α对应变换的作用下得到的点为B (-2,2),求矩阵M 的逆矩阵.解 M ⎣⎢⎡⎦⎥⎤22=⎣⎢⎡⎦⎥⎤-2 2,即⎣⎢⎡⎦⎥⎤2cos α-2sin α2sin α+2cos α=⎣⎢⎡⎦⎥⎤-2 2, 所以⎩⎪⎨⎪⎧cos α-sin α=-1,sin α+cos α=1,解得⎩⎪⎨⎪⎧cos α=0,sin α=1.所以M =⎣⎢⎡⎦⎥⎤0 -11 0.由M -1M =⎣⎢⎡⎦⎥⎤1 001,得M -1=⎣⎢⎡⎦⎥⎤1-10. 2.坐标系与参数方程1.(2017·江苏兴化中学调研)已知曲线C 1的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=-1,曲线C 2的极坐标方程为ρ=22cos ⎝⎛⎭⎫θ-π4,判断两曲线的位置关系. 解 将曲线C 1,C 2化为直角坐标方程,得 C 1:x +3y +2=0,C 2:x 2+y 2-2x -2y =0, 即C 2:(x -1)2+(y -1)2=2. 圆心到直线的距离d =|1+3+2|12+(3)2=3+32>2, ∴曲线C 1与C 2相离.2.(2017·江苏金坛一中期中)已知在极坐标系下,圆C :ρ=2cos ⎝⎛⎭⎫θ+π2与直线l :ρsin ⎝⎛⎭⎫θ+π4=2,点M 为圆C 上的动点,求点M 到直线l 的距离的最大值. 解 圆C 化为直角坐标方程,得x 2+(y +1)2=1. 直线l 化为直角坐标方程,得x +y =2. 圆心C 到直线l 的距离d =|-1-2|2=322,所以点M 到直线l 的距离的最大值为1+322.3.已知直线l :⎩⎪⎨⎪⎧ x =1+t ,y =-t (t 为参数)与圆C :⎩⎪⎨⎪⎧x =2cos θ,y =m +2sin θ(θ为参数)相交于A ,B 两点,m 为常数. (1)当m =0时,求线段AB 的长;(2)当圆C 上恰有三点到直线的距离为1时,求m 的值.解 (1)直线l :x +y -1=0,曲线C :x 2+y 2=4, 圆心到直线的距离d =12, 故AB =2r 2-d 2=14.(2)圆C 的直角坐标方程为x 2+(y -m )2=4, 直线l :x +y -1=0,由题意,知圆心到直线的距离d =|m -1|2=1,∴m =1± 2.4.(2017·江苏昆山中学质检)已知极坐标系的极点在直角坐标系的原点,极轴与x 轴的正半轴重合.曲线C 的极坐标方程为ρ2cos 2θ+3ρ2sin 2θ=3,直线l 的参数方程为⎩⎨⎧x =-3t ,y =1+t(t 为参数,t ∈R ).试在曲线C 上求一点M ,使它到直线l 的距离最大. 解 曲线C 的普通方程是x 23+y 2=1,直线l 的普通方程是x +3y -3=0.设点M 的直角坐标是(3cos θ,sin θ),则点M 到直线l 的距离是d =|3cos θ+3sin θ-3|2=3⎪⎪⎪⎪2sin ⎝⎛⎭⎫θ+π4-12.因为-2≤2sin ⎝⎛⎭⎫θ+π4≤2, 所以当sin ⎝⎛⎭⎫ θ+π4=-1,即θ=2k π-3π4(k ∈Z )时,d 取得最大值.此时3cos θ=-62,sin θ=-22. 设点M 的极角为φ,则⎩⎨⎧ρcos φ=-62,ρsin φ=-22,所以⎩⎪⎨⎪⎧ρ=2,φ=7π6. 综上,当点M 的极坐标为⎝⎛⎭⎫2,7π6时,该点到直线l 的距离最大. 3.空间向量与立体几何1.(2017·江苏南通中学月考)如图,已知三棱锥O -ABC 的侧棱OA ,OB ,OC 两两垂直,且OA =1,OB =OC =2,E 是OC 的中点.(1)求异面直线BE 与AC 所成角的余弦值; (2)求二面角A -BE -C 的正弦值.解 (1)以O 为原点,分别以OB ,OC ,OA 为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,1),B (2,0,0),C (0,2,0),E (0,1,0). EB →=(2,-1,0),AC →=(0,2,-1), ∴cos 〈EB →,AC →〉=-25,即异面直线BE 与AC 所成角的余弦值为25.(2)AB →=(2,0,-1),AE →=(0,1,-1), 设平面ABE 的法向量为n 1=(x ,y ,z ), 则由n 1⊥AB →,n 1⊥AE →,得⎩⎪⎨⎪⎧2x -z =0,y -z =0,取n 1=(1,2,2), 平面BEC 的法向量为n 2=(0,0,1), ∴cos 〈n 1,n 2〉=23,∴二面角A -BE -C 的余弦值cos θ=23,∴sin θ=53, 即二面角A -BE -C 的正弦值为53.2.(2017·江苏宜兴中学质检)三棱柱ABC -A 1B 1C 1在如图所示的空间直角坐标系中,已知AB =2,AC =4,AA 1=3,D 是BC 的中点.(1)求直线DB 1与平面A 1C 1D 所成角的正弦值; (2)求二面角B 1-A 1D -C 1的正弦值.解 (1)由题意知,B (2,0,0),C (0,4,0),D (1,2,0),A 1(0,0,3),B 1(2,0,3),C 1(0,4,3),则A 1D →=(1,2,-3),A 1C 1→=(0,4,0),DB 1→=(1,-2,3). 设平面A 1C 1D 的一个法向量为n =(x ,y ,z ). 由n ·A 1D →=x +2y -3z =0,n ·A 1C 1→=4y =0, 得y =0,x =3z ,令z =1,得x =3,n =(3,0,1).设直线DB 1与平面A 1C 1D 所成的角为θ, 则sin θ=|cos 〈DB 1→,n 〉|=|3+3|10×14=33535.(2)设平面A 1B 1D 的一个法向量为m =(a ,b ,c ),A 1B 1→=(2,0,0). 由m ·A 1D →=a +2b -3c =0,m ·A 1B 1→=2a =0, 得a =0,2b =3c ,令c =2,得b =3,m =(0,3,2). 设二面角B 1-A 1D -C 1的大小为α, |cos α|=|cos 〈m ,n 〉|=|m ·n ||m ||n |=265, sin α=3765=345565.所以二面角B 1-A 1D -C 1的正弦值为345565.3.(2017·江苏运河中学质检)在四棱锥P -ABCD 中,侧面PCD ⊥底面ABCD ,PD ⊥CD ,底面ABCD 是直角梯形,AB ∥CD ,∠ADC =π2,AB =AD =PD =1,CD =2.设Q 为侧棱PC 上一点,PQ →=λPC →.试确定λ的值,使得二面角Q -BD -P 为π4.解 因为侧面PCD ⊥底面ABCD , 平面PCD ∩平面ABCD =CD ,PD ⊥CD , 所以PD ⊥平面ABCD ,所以PD ⊥AD , 又∠ADC =π2,故DA ,DC ,DP 两两互相垂直.如图,以D 为坐标原点,DA ,DC ,DP 分别为x 轴,y 轴,z 轴建立直角坐标系,A (1,0,0),B (1,1,0),C (0,2,0),P (0,0,1),则平面PBD 的一个法向量为n =(-1,1,0), PC →=(0,2,-1),PQ →=λPC →,λ∈(0,1), 所以Q (0,2λ,1-λ).设平面QBD 的一个法向量为m =(a ,b ,c ), 由m ·BD →=0,m ·DQ →=0,得⎩⎪⎨⎪⎧a +b =0,2λb +(1-λ)c =0,所以取b =1,得m =⎝⎛⎭⎫-1,1,2λλ-1, 所以cos π4=|m ·n ||m ||n |,即22·2+⎝⎛⎭⎫2λλ-12=22. 注意到λ∈(0,1),解得λ=2-1.4.在三棱锥S -ABC 中,底面是边长为23的正三角形,点S 在底面ABC 上的射影O 是AC 的中点,侧棱SB 和底面成45°角.。
03.高三数学选择题填空题专项训练十套-人教版[1]
![03.高三数学选择题填空题专项训练十套-人教版[1]](https://img.taocdn.com/s3/m/853ed687482fb4daa48d4b0d.png)
高三数学选择题+填空题专项训练(一)1.sin600︒=()(A)–23(B)–21.(C)23.(D)21.2.设A ={x|x ≥2},B ={x ||x –1|<3},则A ∩B=()(A)[2,4)(B)(–∞,–2](C)[–2,4)(D)[–2,+∞)3.若|a |=2sin150,|b |=4cos150,a 与b 的夹角为300,则a ·b 的值为()(A)23.(B)3.(C)32.(D)21.4.△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,则a cos C+c cos A 的值为()(A)b.(B)2cb +.(C)2cosB.(D)2sinB.5.当x ∈R 时,令f (x )为sinx 与cosx 中的较大或相等者,设a ≤f (x )≤b,则a +b 等于()(A)0(B)1+22.(C)1–22.(D)22–1.6、函数1232)(3+-=x x x f 在区间[0,1]上是()(A )单调递增的函数.(B )单调递减的函数.(C )先减后增的函数.(D )先增后减的函数.7.对于x ∈[0,1]的一切值,a +2b >0是使ax +b >0恒成立的()(A)充要条件(B)充分不必要条件(C)必要不充分条件(D)既不充分也不必要条件8.设{a n }是等差数列,从{a 1,a 2,a 3,···,a 20}中任取3个不同的数,使这三个数仍成等差数列,则这样不同的等差数列最多有()(A)90个.(B)120个.(C)180个.(D)200个.9.已知函数y=f(x)(x∈R)满足f(x+1)=f(x–1),且x∈[–1,1]时,f(x)=x2,则y=f(x)与y=log5x的图象的交点个数为()(A)1.(B)2.(C)3.(D)4.10.给出下列命题:π,则sinx<x<tanx.(1)若0<x<2π<x<0,则sin x<x<tanx.(2)若–2(3)设A,B,C是△ABC的三个内角,若A>B>C,则sinA>sinB>sinC.(4)设A,B是钝角△ABC的两个锐角,若sinA>sinB>sinC则A>B>C..其中,正确命题的个数是()(A)4.(B)3.(C)2.(D)1.11.某客运公司定客票的方法是:如果行程不超过100km,票价是0.5元/km,如果超过100km,超过100km部分按0.4元/km定价,则客运票价y元与行程公里数x km之间的函数关系式是.12.设P是曲线y=x2–1上的动点,O为坐标原点,当|→--OP|2取得最小值时,点P 的坐标为.高三数学选择题+填空题专项训练(二)1.函数12x y -=(x >1)的反函数是()(A )y =1+log 2x (x >1)(B )y =1+log 2x (x >0)(C )y =-1+log 2x (x >1)(D )y =log 2(x -1)(x >1)2.设集合A ={(x ,y )|y =2si n 2x },集合B ={(x ,y )|y =x },则()(A )A ∩B 中有3个元素(B )A ∩B 中有1个元素(C )A ∩B 中有2个元素(D )A ∪B =R3.焦点在直线3x -4y -12=0上的抛物线的标准方程为()(A )x 2=-12y (B )y 2=8x 或x 2=-6y (C )y 2=16x(D )x 2=-12y 或y 2=16y4.在△ABC 中“A >B ”是“cos A <cos B ”的()(A )充分非必要条件(B )必要非充分条件(C )充要条件(D )既不充分也不必要条件5.已知mn ≠0,则方程mx 2+ny 2=1与mx +ny 2=0在同一坐标系下的图象可能是()6.在数列{a n }中,已知1n n ca n +=+(c ∈R ),则对于任意正整数n 有()(A )a n <a n +1(B )a n 与a n +1的大小关系和c 有关(C )a n >a n +1(D )a n 与a n +1的大小关系和n 有关二.填空题:7.函数f (x )=12log (1)x -+的定义域为。
2020年江苏高考数学试卷及答案(含附加题)

2020年江苏高考数学试卷及答案(含附加题)一、填空题:本大题共14小题,每题5分,共计70分,请把答案填写在答题卡相应位置上。
1.已知集合{}1,0,1,2A =-,{}0,2,3B =,则A B = __________。
2.已知i 是虚数单位,则复数()()12z i i =+-的实部是__________。
3.已知一组数据4,2a,3-a,5,6的平均数为4,则a 的值是__________。
4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是。
5.右图是一个算法流程图,若输出y的值为-2,则输入x的值为。
6.在平面直角坐标系xOy中22y =,若双曲线()222105x y a a -=>的一条渐近线方程为52y x =,则该双曲线的离心率是。
7.已知()y f x =是奇函数,当0x >时,23()f x x =,则(8)f -的值是。
8.已知22sin +=43πα(),则sin 2α的值是。
9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的,已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半径为0.5cm,则此六角螺帽毛坯的体积是3cm 。
10.将函数3sin 24y x π⎛⎫=+ ⎪⎝⎭的图像向右平移6π个单位长度,则平移后的图像与y 轴最近的对称轴方程是。
11.设{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列,已知数列{}+n n a b 的前项和()221n n S n n n N *=-+-∈,则d q +的值是。
12.已知22451(,)x y y x y R +=∈,则22x y +的最小值是。
13.在△ABC 中,4AB =,=3AC ,∠=90BAC °,D 在边AC 上,延长AD P 到,使得=9AP ,若32PA mPB m PC ⎛⎫=+- ⎪⎝⎭(m 为常数),则CD 的长度是。
最新高考数学附加题加分练习(七)计数原理

计数原理1.已知等式(x 2+2x +2)5=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9+a 10(x +1)10,其中a i (i =0,1,2,…,10)为实常数.求:(1)n 的值;10∑n =1a(2)a n 的值.10∑n =1n解 (1)在(x 2+2x +2)5=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9+a 10(x +1)10中,令x =-1,得a 0=1.令x =0,得a 0+a 1+a 2+…+a 9+a 10=25=32.所以n =a 1+a 2+…+a 10=31.10∑n =1a(2)等式(x 2+2x +2)5=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9+a 10(x +1)10两边对x 求导,得5(x 2+2x +2)4·(2x +2)=a 1+2a 2(x +1)+…+9a 9(x +1)8+10a 10(x +1)9.在5(x 2+2x +2)4·(2x +2)=a 1+2a 2(x +1)+…+9a 9(x +1)8+10a 10(x +1)9中,令x =0,整理得a n =a 1+2a 2+…+9a 9+10a 10=5·25=160.10∑n =1n2.设等差数列{a n }的首项为1,公差为d (d ∈N *),m 为数列{a n }中的项.(1)若d =3,试判断m 的展开式中是否含有常数项?并说明理由;(x +1x )(2)证明:存在无穷多个d ,使得对每一个m ,m 的展开式中均不含(x +1x )常数项.(1)解 因为{a n }是首项为1,公差为3的等差数列,所以a n =3n -2.假设m 的展开式中第r +1项为常数项(r ∈N ),(x +1x )T r +1=C x m -r r =,于是m -r =0.r m (1x )32C m r r m x 32设m =3n -2(n ∈N *),则有3n -2=r ,32即r =2n -,这与r ∈N 矛盾.43所以假设不成立,即m 的展开式中不含常数项.(x +1x )(2)证明 由题设知a n =1+(n -1)d ,设m =1+(n -1)d ,由(1)知,要使对于每一个m ,m 的展开式中均不含常数项,(x +1x )必须有:对于n ∈N *,满足1+(n -1)d -r =0的r 无自然数解,即r =32(n -1)+∉N .2d 323当d =3k (k ∈N *)时,r =(n -1)+=2k (n -1)+∉N .2d 32323故存在无穷多个d ,满足对每一个m ,m 的展开式中均不含常数(x +1x )项.3.已知f (x )=(2+)n ,其中n ∈N *.x (1)若展开式中含x 3项的系数为14,求n 的值;(2)当x =3时,求证:f (x )必可表示成+(s ∈N *)的形式.s s -1(1)解 因为T r +1=C 2n -r x ,当=3时,r =6,r n2rr2故x 3项的系数为C 2n -6=14,解得n =7.6n (2)证明 由二项式定理可知,(2+)n =C 2n ()0+C 2n -1()1+C 2n -2()2+…+C 20()n ,30n 31n 32n 3n 3设(2+)n =p +q =+,p ,q ∈N *,33p 23q 2而若有(2+)n =+,a ,b ∈N *,3a b 则(2-)n =-,a ,b ∈N *.3a b ∵(+)·(-)=(2+)n ·(2-)n =1,a b a b 33∴a -b =1,令a =s ,s ∈N *,得b =s -1,∴(2+)n 必可表示成+的形式,其中s ∈N *.3s s -14.设n ∈N *,n ≥3,k ∈N *.(1)求值:①k C -n C ;k nk -1n ②k 2C -n (n -1)C -n C (k ≥2);k nk -2n k -1n (2)化简:12C +22C +32C +…+(k +1)2C +…+(n +1)2C .0n 1n 2n k n n 解 (1)①k C -n C =k ×-n ×k nk -1n n !k !(n -k )!(n -1)!(k -1)!(n -k )!=-=0.n !(k -1)!(n -k )!n !(k -1)!(n -k )!②k 2C -n (n -1)C -n C k nk -2n k -1n =k 2×-n (n -1)×-n ×n !k !(n -k )!(n -2)!(k -2)!(n -k )!(n -1)!(k -1)!(n -k )!=k ×--n !(k -1)!(n -k )!n !(k -2)!(n -k )!n !(k -1)!(n -k )!==0.n !(k -2)!(n -k )!(k k -1-1-1k -1)(2)由(1)可知当k ≥2时,(k +1)2C k n=(k 2+2k +1)C =k 2C +2k C +C k nk n k n k n =[n (n -1)C +n C ]+2n C +C k -2nk -1n k -1n k n =n (n -1)C +3n C +C .k -2nk -1n k n 故12C +22C +32C +…+(k +1)2C +…+(n +1)2C 0n 1n 2n k n n =(12C +22C )+n (n -1)(C +C +…+C )+3n (C +0n 1n 0n -21n -2n -21n -1C +…+C )+(C +C +…+C )2n -1n -12n 3n n =(1+4n )+n (n -1)2n -2+3n (2n -1-1)+(2n -1-n )=2n -2(n 2+5n +4).。
2024学年山东省烟台第二中学高三数学试题综合练习(四)含附加题

2024学年山东省烟台第二中学高三数学试题综合练习(四)含附加题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在ABC 中,3AB =,2AC =,60BAC ∠=︒,点D ,E 分别在线段AB ,CD 上,且2BD AD =,2CE ED =,则BE AB ⋅=( ). A .3-B .6-C .4D .92.已知正方体1111ABCD A B C D -的棱长为2,E ,F ,G 分别是棱AD ,1CC ,11C D 的中点,给出下列四个命题: ①1EF B C ⊥;② 直线FG 与直线1A D 所成角为60︒;③ 过E ,F ,G 三点的平面截该正方体所得的截面为六边形; ④ 三棱锥B EFG -的体积为56. 其中,正确命题的个数为( ) A .1B .2C .3D .43.如图,双曲线()2222:10,0x y C a b a b-=>>的左,右焦点分别是()()12,0,,0,F c F c -直线2bc y a =与双曲线C 的两条渐近线分别相交于,A B 两点.若12,3BF F π∠=则双曲线C 的离心率为( )A .2B .423CD 4.已知F 为抛物线24y x =的焦点,点A 在抛物线上,且5AF =,过点F 的动直线l 与抛物线,B C 交于两点,O 为坐标原点,抛物线的准线与x 轴的交点为M .给出下列四个命题: ①在抛物线上满足条件的点A 仅有一个;②若P 是抛物线准线上一动点,则PA PO +的最小值为 ③无论过点F 的直线l 在什么位置,总有OMB OMC ∠=∠;④若点C 在抛物线准线上的射影为D ,则三点B O D 、、在同一条直线上. 其中所有正确命题的个数为( ) A .1B .2C .3D .45.已知函数()ln f x x =,()()23g x m x n =++,若()0,x ∀∈+∞总有()()f x g x ≤恒成立.记()23m n +的最小值为(),F m n ,则(),F m n 的最大值为( )A .1B .1eC .21e D .31e 6.已知函数()ln ln(3)f x x x =+-,则( ) A .函数()f x 在()0,3上单调递增 B .函数()f x 在()0,3上单调递减 C .函数()f x 图像关于32x =对称 D .函数()f x 图像关于3,02⎛⎫⎪⎝⎭对称 7.35(1)(2)x y --的展开式中,满足2m n +=的m nx y 的系数之和为( )A .640B .416C .406D .236-8.已知甲、乙两人独立出行,各租用共享单车一次(假定费用只可能为1、2、3元).甲、乙租车费用为1元的概率分别是0.5、0.2,甲、乙租车费用为2元的概率分别是0.2、0.4,则甲、乙两人所扣租车费用相同的概率为( ) A .0.18B .0.3C .0.24D .0.369.双曲线C :22221x y a b-=(0a >,0b >)的离心率是3,,则双曲线C 的焦距为( )A .3B .C .6D .10.设()f x 是定义在实数集R 上的函数,满足条件()1y f x =+是偶函数,且当1x ≥时,()112xf x ⎛⎫=- ⎪⎝⎭,则()3log 2a f =,31log2b f ⎛⎫=- ⎪⎝⎭,()3c f =的大小关系是( ) A .a b c >>B .b c a >>C .b a c >>D .c b a >>11.5(12)(1)x x ++的展开式中2x 的系数为( ) A .5B .10C .20D .3012.集合}{220A x x x =--≤,{}10B x x =-<,则AB =( )A .}{1x x < B .}{11x x -≤< C .{}2x x ≤D .{}21x x -≤<二、填空题:本题共4小题,每小题5分,共20分。
【附加15套高考模拟试卷】浙江省2020届高三高考模拟训练评估卷(1)数学(文)试题含答案

浙江省2020届高三高考模拟训练评估卷(1)数学(文)试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知数列{}n a 的前n 项和22n S n n =+,则数列11{}n na a+⋅的前6项和为( ) A .215 B .415 C .511 D .10112.如图所示的茎叶图为高三某班50名学生的化学考试成绩,算法框图中输入的1a ,2a ,3a ,L ,50a 为茎叶图中的学生成绩,则输出的m ,n 分别是( )A .38m =,12n =B .26m =,12n =C .12m =,12n =D .24m =,10n = 3.设函数f(x)=cos(x+3π),则下列结论错误的是 A .f(x)的一个周期为−2πB .y=f(x)的图像关于直线x=83π对称C .f(x+π)的一个零点为x=6πD .f(x)在(2π,π)单调递减4.在239(1x)(1x)(1x)++++⋯++的展开式中,含2x 项的系数是( ) A .119 B .120 C .121 D .7205.若直线220(0,0)ax by a b -+=>>被圆222410x y x y ++-+=截得弦长为4,则41a b+的最小值是( )A .9B .4C .12D .146.函数223()2xx x f x --=的大致图象为 A . B .C .D .7.2018年9月24日,阿贝尔奖和菲尔兹奖双料得主,英国89岁高龄的著名数学家阿蒂亚爵士宣布自己证明了黎曼猜想,这一事件引起了数学界的震动.在1859年,德国数学家黎曼向科学院提交了题目为《论小于某值的素数个数》的论文并提出了一个命题,也就是著名的黎曼猜想.在此之前著名的数学家欧拉也曾研究过这个问题,并得到小于数字x 的素数个数大约可以表示为()ln xx xπ≈的结论.若根据欧拉得出的结论,估计10000以内的素数个数为( )(素数即质数,10.43429ge ≈,计算结果取整数) A .1089 B .1086 C .434 D .145 8.已知数列为等差数列,若,且其前项和有最大值,则使得的最大值为A .11B .19C .20D .219.已知关于x ,y 的不等式组()3{3020x y mx y x x +≥-+≥-≤,所表示的平面区域构成一个锐角三角形,则实数m 的取值范围为A .10,2⎛⎫ ⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭ C .11,32⎛⎫ ⎪⎝⎭ D .(0,1)10.在ABC ∆中,若23()2||CA AB CB AB AB ⋅+⋅=u u u r u u u r u u u r u u u r u u u r ,则1tan tan A B+的最小值为( ) A .5 B .25 C .6 D .6211.在函数:①;②;③;④中,最小正周期为的所有函数为( ) A .①②③B .①③④C .②④D .①③ 12.已知是双曲线的左焦点,过点且倾斜角为30°的直线与曲线的两条渐近线依次交于,两点,若是线段的中点,且是线段的中点,则直线的斜率为( )A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考附加题专项练习(一)1.过点P (-3,0)且倾斜角为30°的直线和曲线1,()1x t tt y t t ⎧=+⎪⎪⎨⎪=-⎪⎩为参数相交于A 、B 两点.求线段AB 的长.2.已知(n x 的展开式中前三项的系数成等差数列.(Ⅰ)求n 的值;(Ⅱ)求展开式中系数最大的项.3.动点P 在x 轴与直线l :y =3之间的区域(含边界)上运动,且点P 到点F (0,1)和直线l 的距离之和为4.(Ⅰ)求点P 的轨迹C 的方程;(Ⅱ)过点Q (0,-1)作曲线C 的切线,求所作的切线与曲线C 所围成的区域的面积.4.如图,正方题1111D C B A ABCD -中,M 是棱1BB 的中点。
⑴求直线M A 1与平面1AMC 所成角的正弦值; ⑵求二面角11A MC A --的余弦值。
BEAFDC高考附加题专项练习(二)1.如图,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,1AB AF ==.(Ⅰ) 求二面角A-DF-B 的大小;(Ⅱ) 在线段AC 上找一点P,使PF 与AD 所成的角为600,试确定点P 的位置.2.已知直线l 经过点(1,1)P ,倾斜角6πα=,(1)写出直线l 的参数方程;(2)设l 与圆422=+y x 相交与两点,A B ,求点P 到,A B 两点的距离之积.3. 某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(1)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (2)求η的分布列及期望E η.4. 求曲线x x x y 223++-=与x 轴所围成的图形的面积高考附加题专项练习(三)1.已知圆的极坐标方程为θθρsin 5cos 35-=,求它的半径和圆心的极坐标。
2某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出3箱,再从每箱中任意出取2件产品进行检验。
设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品。
(I )用ξ表示抽检的6件产品中二等品的件数,求ξ的分布列及ξ的数学期望; (II )若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品, 求这批产品被用户拒绝的概率。
3.设数列{a n }的前n 项和为S n ,且对任意的自然数n 都有n n n S a S =-2)1(。
⑴求S 1,S 2,S 3;⑵猜想S n 的表达式并证明。
4.如图,正四棱柱1111D C B A -ABCD 中,421==AB AA ,点E 在上且EC E C 31=.高考附加题专项练习(四)1.计算定积分⑴⎰+202)sin (πdx x x ⑵dx x ⎰--11212.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球. (Ⅰ)求取出的4个球均为黑球的概率;(Ⅱ)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.3.已知直线l 的参数方程⎩⎨⎧+==ty tx 21(t 为参数)和圆C 的极坐标方程)4sin(22πθρ+=。
⑴将直线l 的参数方程化为普通方程,圆C 的极坐标方程化为直角坐标方程; ⑵判断直线l 和圆C 的位置关系。
4.直三棱柱111ABC A B C -中,90ACB ∠=︒,11AC AA ==,BC =11ABB A 的两条对角线交点为D ,11B C 的中点为M ;⑴求异面直线AM 与BC 所成角的余弦值; ⑵证明CD ⊥平面BDM 。
高考附加题专项练习(五)1.经过抛物线2yx =上一点00(,)P x y (00x >)的切线L 与x 轴,及抛物线所围区域的面积为112,求直线L 的方程。
2.已知⊙O 1和⊙O 2的极坐标方程分别是θρcos 2=和θρsin 2a =(a 是非零常数)。
⑴将两圆的极坐标方程化为直角坐标方程;⑵若两圆的圆心距为5,求a 的值。
3.设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程2x bx c ++=实根的个数(重根按一个计).(Ⅰ)求方程20x bx c ++=有实根的概率; (Ⅱ)求ξ的分布列和数学期望;4.在正三棱柱ABC —A 1B 1C 1中,AB =2,AB 1⊥BC 1⑴求BB 1的长;⑵求二面角A 1—AB 1—C 1的余弦值。
高考附加题专项练习(六)1.已知直线:sin()42L πρθ+=,圆:4cos 2sin C ρθθ=+,求C 点到直线L 的距离。
2.计算定积分:⑴222(cos sin )22x x dx ππ--⎰; ⑵211()x e dx x +⎰。
3.已知nn n n P n 21312111+++++++=(+∈N n )。
用数学归纳法证明:n P nn =--++-+-211214131211 ;4.若33nx⎛ ⎝的展开式中含有常数项,试求最小的正整数n 。
高考附加题专项练习(七)1.已知直线L:12y x m=+是曲线C:()f x=⑴求m的值;⑵计算由直线L、曲线C及x轴围成的区域的面积。
2.已知直线L的极坐标方程为cos()42πρθ-=,点A(4,34π)到直线L的距离。
3.在一次数学考试中, 第14题和第15题为选做题。
规定每位考生必须且只须在其中选做一题. 设4名考生选做这两题的可能性均为1 2 .(Ⅰ)其中甲、乙2名学生选做同一道题的概率;(Ⅱ)设这4名考生中选做第15题的学生数为X个,求X的分布列及数学期望.4.在长方体ABCD—A1B1C1D1中,已知AB= 4, AD =3, AA1= 2. E、F分别是线段AB、BC上的点,且EB= FB=1.(I) 求二面角C—DE—C1的正切值;(II) 求直线EC1与FD1所成的余弦值.高考附加题专项练习(八)1.用数学归纳法证明不等式:211111(1)12n N n n n n n*++++>∈>++且.2.已知二阶矩阵A 的属于特征值-1的一个特征向量为13⎡⎤⎢⎥-⎣⎦,属于特征值3的一个特征向量为11⎡⎤⎢⎥⎣⎦,求矩阵A .3.已知四棱锥P ABCD -的底面为直角梯形,//AB DC ,⊥=∠PA DAB ,90底面ABCD ,且2,1====AB DC AD PA ,,M 是PB 的中点. (1)求AC 与PB 所成的角余弦值; (2)求二面角A MC B --的余弦值.4.随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为ξ.(1)求ξ的分布列;(2)求1件产品的平均利润(即ξ的数学期望);\高考附加题专项练习(九)1.求直线⎩⎨⎧-=+-=t y t x 1,2 (t 为参数)被圆⎩⎨⎧+-=+=θθsin 51,cos 53y x (θ参数)所截得的弦长。
2.甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分。
假设甲队中每人答对的概率均为32,且各人正确与否相互之间没有影响.用ε表示甲队的总得分.求随机变量ε分布列和数学期望;3.一X 平行四边形的硬纸片0ABC D 中,1AD BD ==,AB =BD把△0BDC 折起,使点0C 到达平面0ABC D 外点C 的位置。
(Ⅰ)证明:平面0ABC D ⊥平面0CBC ;(Ⅱ)如果△ABC 为等腰三角形,求二面角A BD C --的大小。
4.已知矩阵⎥⎦⎤⎢⎣⎡-=111a A ,其中R a ∈,若点P (1,1)在矩阵A 的变换下得到点P ’(0,-3),(1)某某数a 的值; (2)求矩阵A 的特征值及特征向量高考附加题专项练习(一)参考答案1.解:直线的参数方程为3,()12x s y s ⎧=-⎪⎪⎨⎪=⎪⎩为参数,…………3分 曲线1,()1x t tt y t t ⎧=+⎪⎪⎨⎪=-⎪⎩为参数可以化为224x y -=.…………5分将直线的参数方程代入上式,得2100s -+=.设A 、B 对应的参数分别为12s s ,,∴121210s s s s +==.…………8分AB 12s s =-.…………………10分2.解:(Ⅰ)由题设,得 02111C C 2C 42n n n +⨯=⨯⨯,…………………………3分即2980n n -+=,解得n =8,n =1(舍去).……………………4分 (Ⅱ)设第r +1的系数最大,则1881188111C C 2211C C .22rr r r r r r r ++--⎧⎪⎪⎨⎪⎪⎩≥,≥………………………6分即1182(1)11.291r r r ⎧⎪-+⎪⎨⎪⎪-⎩≥,≥解得r =2或r =3.……………8分 所以系数最大的项为537T x =,9247T x =.……………10分3.解:(Ⅰ)设P (x ,y )34y -=.………………3分化简,得21(3)4y x y =≤.………………… 4分(Ⅱ)设过Q 的直线方程为1y kx =-,代入抛物线方程,整理,得2440x kx -+=.∴△=216160k -=.解得1k =±.……………6分所求切线方程为1y x =±-(也可以用导数求得切线方程),此时切点的坐标为(2,1),(-2,1),且切点在曲线C 上.……………8分 由对称性知所求的区域的面积为2223021142(1)()041223x S x x dx x x =-+=-+=⎰.……………10分4.解:以为坐标原点,建立如图所示的空间直角坐标系,并设正方体的棱长为2。
⑴直线M A 1的一个方向向量是)1,2,0(-=m ,平面1AMC 的一个法向量是)2,1,1(-=n ,由15302,cos -=••>=<nm n m n m ,所以直线M A 1与平面1AMC 所成角的正弦值是15302。
⑵平面11MC A 的一个法向量是)2,1,1(=e ,平面1AMC 的一个法向量是)2,1,1(-=n ,由32,cos =••>=<ne n e n e ,所以二面角11A MC A --的余弦值是32。
高考附加题专项练习(二)参考答案1.解:(1)以,,CD CB CE 为正交基底,建立空间直角坐标系,则())(0,0,1),,E D B A,(1,0,0),(2,2,0),(2,0,1)ADF t BD BF ==-=面的法向量.设面DFB 法向量(,,),0,0n a b c n BD nBF =⋅=⋅=则,所以0(1,1,0c ==-+=⎪⎩令a=1,得n , 1cos ,,2n t <>=故二面角A-DF-B 的大小600………………………(5分)(2)设((,,0)0(2,2,1),(0,2,0)P a a a PFa a CB ≤≤=--=,则,因为)01,602aPFCB <>===所以cos60, 解得a =P 为AC 的中点.……………(10分) 2.解 (1)直线的参数方程为1cos 61sin 6x ty t ππ⎧=+⎪⎪⎨⎪=+⎪⎩,即1112xy t ⎧=⎪⎪⎨⎪=+⎪⎩. (2)把直线12112x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩代入422=+y x , 得2221(1)(1)4,1)2022t t t +++=+-=,122t t =-,则点P 到,A B 两点的距离之积为2.3. 解 (1)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=,()1()10.2160.784P A P A =-=-=.…………4分(2)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为200E η=⨯分 4. 解 函数x x x y 223++-=的零点:11-=x ,02=x ,23=x .…………………4分又易判断出在)0 , 1(-内,图形在x 轴下方,在)2 , 0(内,图形在x 轴上方, 所以所求面积为dx x x x A ⎰-++--=0123)2(dx x x x ⎰++-+223)2(1237=……10分 高考附加题专项练习(三)参考答案1.解:由θθρsin 5cos 35-=得2cos 5sin ρθρθ=-,………2分又sin cos y xρθρθ=⎧⎨=⎩,则225x y y +=-,………5分移项,配方得225(()2522x y -++=,………8分圆心为5(,)22-,半径是5。