中科大随机过程引论例题集含解答

中科大随机过程引论例题集含解答
中科大随机过程引论例题集含解答

最新第1章 随机过程的基本概念习题答案

第一章 随机过程的基本概念 1.设随机过程 +∞<<-∞=t t X t X ,cos )(0ω,其中0ω是正常数,而X 是标准正态变量。试求X (t )的一维概率分布 解:∵ 当0cos 0=t ω 即 πω)2 1 (0+ =k t 即 πω)21(10+=k t 时 {}10)(==t x p 若 0cos 0≠t ω 即 πω)2 1 (1 0+≠ k t 时 {}{}x t X P x x X P t x F ≤=≤=0cos )(),(ω 当 0cos 0>t ω时 ξπ ωωξd e t x X P t x F t x ? - = ??? ? ??≤=02 cos 0 2 021cos ),( 此时 ()t e x t x F t x f t x 0cos 2cos 1 21,),(022ωπ ω? =??=- 若 0cos 0

?? ?= ,2 ,cos )(出现反面出现正面t t t X π 假定“出现正面”和“出现反面”的概率各为21。试确定)(t X 的一维分布函数)2 1 ,(x F 和)1,(x F ,以及二维分布函数)1,2 1;,(21x x F 解:(1)先求)21,(x F 显然???=?? ???-=??? ??出现反面出现正面 出现反面出现正面10,212,2cos 21π X 随机变量?? ? ??21X 的可能取值只有0,1两种可能,于是 21 021= ??????=?? ? ??X P 2 1121=??????=??? ??X P 所以 ?????≥<≤<=??? ?? 11102 1 0021,x x x x F 再求F (x ,1) 显然? ??-=???=出现反面出现正面出现反面出现正面 2 1 2 cos (1)πX {}{}2 1 2)1(-1 (1)====X p X p 所以 ???? ???≥<≤<=2 121- 2 1-1 0,1)(x x x x F (2) 计算)1,2 1 ;,(21x x F ???-=???=出现反面出现正面出现反面出现正面 2 1)1(, 1 0)2 1 ( X X 于是

随机过程习题答案A

随机过程习题解答(一) 第一讲作业: 1、设随机向量的两个分量相互独立,且均服从标准正态分布。 (a)分别写出随机变量和的分布密度 (b)试问:与是否独立?说明理由。 解:(a) (b)由于: 因此是服从正态分布的二维随机向量,其协方差矩阵为: 因此与独立。 2、设和为独立的随机变量,期望和方差分别为和。 (a)试求和的相关系数; (b)与能否不相关?能否有严格线性函数关系?若能,试分别写出条件。 解:(a)利用的独立性,由计算有: (b)当的时候,和线性相关,即 3、设是一个实的均值为零,二阶矩存在的随机过程,其相关函数为 ,且是一个周期为T的函数,即,试求方差 函数。 解:由定义,有: 4、考察两个谐波随机信号和,其中:

式中和为正的常数;是内均匀分布的随机变量,是标准正态分布的随机变量。 (a)求的均值、方差和相关函数; (b)若与独立,求与Y的互相关函数。 解:(a) (b) 第二讲作业: P33/2.解: 其中为整数,为脉宽 从而有一维分布密度: P33/3.解:由周期性及三角关系,有: 反函数,因此有一维分布: P35/4. 解:(1) 其中 由题意可知,的联合概率密度为:

利用变换:,及雅克比行列式: 我们有的联合分布密度为: 因此有: 且V和相互独立独立。 (2)典型样本函数是一条正弦曲线。 (3)给定一时刻,由于独立、服从正态分布,因此也服从正态分布,且 所以。 (4)由于: 所以因此 当时, 当时, 由(1)中的结论,有: P36/7.证明: (1) (2) 由协方差函数的定义,有:

P37/10. 解:(1) 当i =j 时;否则 令 ,则有 第三讲作业: P111/7.解: (1)是齐次马氏链。经过次交换后,甲袋中白球数仅仅与次交换后的状态有关,和之前的状态和交换次数无关。 (2)由题意,我们有一步转移矩阵: P111/8.解:(1)由马氏链的马氏性,我们有: (2)由齐次马氏链的性质,有: (2)

随机过程

《随机过程》课程教学大纲 课程编号:02200021 课程名称:随机过程 英文名称:Stochastic Processes 课程类别:选修课 总学时:72 讲课学时:68 习题课学时:4 学分: 4 适用对象:数学与应用数学、信息与计算科学专业 先修课程:数学分析、高等代数、概率论与数理统计 一、课程简介 随机过程是研究客观世界中随机演变过程规律性的学科,它的基本知识和方法不仅为数学、概率统计专业所必需,也为工程技术、生物信息及经济领域的应用和研究所需要。本课程介绍随 机过程研究领域的一些基础而重要的知识和技能。 二、课程性质、目的和任务 随机过程是概率论的后续课程,具有比概率理论更加实用的应用方面,处理问题也更加贴近实际情况。通过这门课程的学习,使学生了解随机过程的基本概念,掌握最常见而又有重要应用 价值的诸如Poisson过程、更新过程、Markov过程、Brown运动的基本性质,能够处理基本的随 机算法。提高学生利用概率理论数学模型解决随机问题的能力。通过本课程的学习,可以让数学 专业的学生很方便地转向在金融管理、电子通讯等应用领域的研究。 三、课程基本要求 通过本课程的学习,要求学生掌握随机过程的一般概念,知道常见的几类随机过程的定义、背景和性质;掌握泊松过程的定义与基本性质,了解它的实际背景,熟悉它的若干推广;掌握更 新过程的定义与基本性质、更新函数、更新方程,了解更新定理及其应用,知道更新过程的若干 推广;掌握离散时间的马尔可夫链的基本概念,熟练掌握转移概率、状态分类与性质,熟悉极限 分布、平稳分布与状态空间的分解,了解分枝过程;掌握连续时间的马尔可夫链的定义、柯尔莫 哥洛夫方程;掌握布朗运动的定义与基本性质,熟悉随机积分的定义与基本性质,了解扩散过程 与伊藤公式,会求解一些简单的随机微分方程。 四、教学内容及要求 第一章预备知识 §1.概率空间;§2.随机变量和分布函数;§3.数字特征、矩母函数和特征函数;§4. 条件概率、条件期望和独立性;§5.收敛性 教学要求:本章主要是对概率论课程的复习和巩固,为后续学习做准备。 第二章随机过程的基本概念和类型

随机过程习题答案

1、 已知X(t)和Y(t)是统计独立的平稳随机过程,且它们的均值分别为mx 和my ,它们的自 相关函数分别为Rx()和Ry()。(1)求Z(t)=X(t)Y(t)的自相关函数;(2)求Z(t)=X(t)+Y(t)的自相关函数。 答案: (1)[][])()()()()()()(t y t x t y t x E t z t z E R z ττττ++=+= [][] ) ()()()()()()()()(τττττy x z R R t y t y E t x t x E R t y t x =++== :独立的性质和利用 (2)[]()()[])()()()()()()(t y t x t y t x E t z t z E R z +?+++=+=ττττ [])()()()()()()()(t y t y t x t y t y t x t x t x E ττττ+++++++= 仍然利用x(t)和y(t)互相独立的性质:)(2)()(τττy y x x z R m m R R ++= 2、 一个RC 低通滤波电路如下图所示。假定输入是均值为0、双边功率谱密度函数为n 0/2 的高斯白噪声。(1)求输出信号的自相关函数和功率谱密度函数;(2)求输出信号的一维概率密度函数。 答案: (1) 该系统的系统函数为RCs s X s Y s H +==11)()()( 则频率响应为Ω +=ΩjRC j H 11)( 而输入信号x(t)的功率谱密度函数为2 )(0n j P X =Ω 该系统是一个线性移不变系统,所以输出y(t)的功率谱密度函数为: ()2 20212/)()()(Ω+=ΩΩ=ΩRC n j H j P j P X Y 对)(Ωj P Y 求傅里叶反变换,就得到输出的自相关函数: ()??∞ ∞-Ω∞ ∞-ΩΩΩ+=ΩΩ=d e RC n d e j P R j j Y Y ττππτ22012/21)(21)( R C 电压:y(t) 电压:x(t) 电流:i(t)

最新随机过程习题及答案

一、1.1设二维随机变量(,)的联合概率密度函数为: 试求:在时,求。 解: 当时,= = 1.2 设离散型随机变量X服从几何分布: 试求的特征函数,并以此求其期望与方差。解:

所以: 2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t ?????=时取得白球如果对时取得红球 如果对t e t t t X t 3)( .维分布函数族试求这个随机过程的一 2.2 设随机过程 ,其中 是常数,与是 相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概 率密度为 试证明为宽平稳过程。 解:(1) 与无关

(2) , 所以 (3) 只与时间间隔有关,所以 为宽平稳过程。 2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E .321)方差函数)协方差函数;()均值函数;(( 2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且 数。试求它们的互协方差函 2.5, 试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立 为多少?

3.1一队学生顺次等候体检。设每人体检所需的时间服从均值为2分 钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲) 解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的 poisson 过程。以小时为单位。 则((1))30E N =。 40 300 (30)((1)40)!k k P N e k -=≤=∑。 3.2在某公共汽车起点站有两路公共汽车。乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。设在0时刻两路公共汽车同时开始等候乘客到来,求(1)1路公共汽车比2路公共汽车早出发的概率表达式;(2)当1N =2N ,1λ=2λ时,计算上述概率。 解: 法一:(1)乘坐1、2路汽车所到来的人数分别为参数为1λ、2λ的poisson 过程,令它们为1()N t 、2()N t 。1 N T 表示1()N t =1N 的发生时 刻,2 N T 表示2()N t =2N 的发生时刻。 1 11 1111111()exp()(1)! N N N T f t t t N λλ-= -- 2 22 1222222()exp()(1)! N N N T f t t t N λλ-= -- 1 2 121 2 1 2 2 1 112,12|1221 1122212(,)(|)()exp() exp() (1)! (1)! N N N N N N N N N T T T T T f t t f t t f t t t t t N N λλλλ--== ----

应用随机过程试题及答案

应用随机过程试题及答案 一.概念简答题(每题5 分,共40 分) 1. 写出卡尔曼滤波的算法公式 2. 写出ARMA(p,q)模型的定义 3. 简述Poisson 过程的随机分流定理 4. 简述Markov 链与Markov 性质的概念 5. 简述Markov 状态分解定理 6.简述HMM 要解决的三个主要问题得分B 卷(共9 页)第2 页7. 什么是随机过程,随机序列?8.什么是时齐的独立增量过程?二.综合题(每题10 分,共60 分) 1 .一维对称流动随机过程n Y , 0 1 0, , n n k k Y Y X ? ? ? ? 1 ( 1) ( 1) , 2 k k k X p x p x ? ? ? ? ? 具有的概率分布为且1 2 , , ... X X 是相互独立的。试求1 Y 与2 Y 的概率分布及其联合概率分布。 2. 已知随机变量Y 的密度函数为其他而且,在给定Y=y 条件下,随机变量X 的条件密度函数为? ? 其他试求随机变量X 和Y 的联合分布密度函数( , ) f x y . 得分B 卷(共9 页)第3 页 3. 设二维随机变量( , ) X Y 的概率密度为( ,其他试求p{x<3y} 4.设随机过程( ) c o s 2 , ( , ) , X t X t t ? ? ? ? ? ? X 是标准正态分布的随机变量。试求数学期望( ) t E X ,方差( ) t D X ,相关函数1 2 ( , ) X R t t ,协方差1 2 ( , ) X C t t 。B 卷(共9 页)第4 页5 .设马尔科夫链的状态空间为I={0,1}, 一步转移概率矩阵为

随机过程补充例题

随机过程补充例题 例题1 设袋中有a 个白球b 个黑球。甲、乙两个赌徒分别有n 元、m 元,他们不知道那一种球多。他们约定:每一次从袋中摸1个球,如果摸到白球甲给乙1元,如果摸到黑球乙给甲1元,直到两个人有一人输光为止。求甲输光的概率。 解 此问题是著名的具有两个吸收壁的随机游动问题,也叫赌徒输光问题。 由题知,甲赢1元的概率为b p a b =+,输1元的概率为 a q a b =+,设n f 为甲输光的概率,t X 表示赌t 次后甲的赌金, inf{:0 }t t t X or X m n τ===+,即τ 表示最终摸球次数。如果 inf{:0 }t t t X or X m n τ===+=Φ(Φ为空集),则令τ=∞。 设A =“第一局甲赢”,则()b p A a b = +,()a p A a b = +,且第一局甲赢的条件下(因甲有1n +元),甲最终输光的概率为1n f +,第一局甲输的条件下(因甲有1n -元),甲最终输光的概率为1n f -,由全概率公式,得到其次一元二次常系数差分方程与边界条件 11n n n f pf qf +-=+ 01f =,0m n f += 解具有边界条件的差分方程 由特征方程 2()p q p q λλ+=+

(1)当q p ≠时,上述方程有解121,q p λλ==,所以差分方程的 通解为 212()n q f c c p =+ 代入边界条件得 1()11()n n n m q p f q p +-=- - (2)当q p =时,上述方程有解121λλ==,所以差分方程的通解为 12n f c c n =+ 代入边界条件得 1n n f n m =- + 综合(1)(2)可得 1()11() 1n n m n q p p q q f p n p q n m +? -?- ≠?? -=?? ?-=? +? 若乙有无穷多的赌金,则甲最终输光概率为 () lim 1n jia n m q p q p p f p q →∞ ?>?==??≤? 由上式可知,如果赌徒只有有限的赌金,而其对手有无限的赌金,当其每局赢的概率p 不大于每局输的概率q ,即p q ≤时,

随机过程习题和答案

一、1.1设二维随机变量(,)的联合概率密度函数为: 试求:在时,求。 解: 当时, = = 1.2 设离散型随机变量X 服从几何分布: 试求的特征函数,并以此求其期望与方差。 解: 所以: 2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t ?????=时取得白球如果对时取得红球 如果对t e t t t X t 3)( .维分布函数族试求这个随机过程的一 2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀 分布,服从瑞利分布,其概率密度为 试证明为宽平稳过程。 解:(1)

与无关 (2) , 所以 (3) 只与时间间隔有关,所以为宽平稳过程。 2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E .321)方差函数)协方差函数;()均值函数;(( 2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且 数。试求它们的互协方差函 2.5, 试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立 为多少? 3.1一队学生顺次等候体检。设每人体检所需的时间服从均值为2分

钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲) 解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的 poisson 过程。以小时为单位。 则((1))30E N =。 40 300 (30)((1)40)!k k P N e k -=≤=∑。 3.2在某公共汽车起点站有两路公共汽车。乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。设在0时刻两路公共汽车同时开始等候乘客到来,求(1)1路公共汽车比2路公共汽车早出发的概率表达式;(2)当1N =2N ,1λ=2λ时,计算上述概率。 解: 法一:(1)乘坐1、2路汽车所到来的人数分别为参数为1λ、2λ的poisson 过程,令它们为1()N t 、2()N t 。1 N T 表示1()N t =1N 的发生时 刻,2 N T 表示2()N t =2N 的发生时刻。 1 11 1111111()exp()(1)! N N N T f t t t N λλ-= -- 2 22 1222222()exp()(1)! N N N T f t t t N λλ-= -- 1 2 121 2 1 2 2 1 112,12|1221 1122212(,)(|)()exp() exp() (1)! (1)! N N N N N N N N N T T T T T f t t f t t f t t t t t N N λλλλ--== ---- 1 2 2 121 2 1 11221 11222100 12()exp() exp()(1)! (1)! N N t N N N N P T T dt t t t t dt N N λλλλ∞ --<=----??

随机过程-方兆本-第三版-课后习题答案

习题4 以下如果没有指明变量t 的取值范围,一般视为R t ∈,平稳过程指宽平稳过程。 1. 设Ut t X sin )(=,这里U 为)2,0(π上的均匀分布. (a ) 若Λ,2,1=t ,证明},2,1),({Λ=t t X 是宽平稳但不是严平稳, (b ) 设),0[∞∈t ,证明}0),({≥t t X 既不是严平稳也不是宽平稳过程. 证明:(a )验证宽平稳的性质 Λ,2,1,0)cos (2121)sin()sin()(2020==-=? ==?t Ut t dU Ut Ut E t EX π π ππ ))cos()(cos(2 1 )sin (sin ))(),((U s t U s t E Us Ut E s X t X COV ---=?= t U s t s t U s t s t ππ π21}])[cos(1])[cos(1{212020? +++--= s t ≠=,0 2 1 Ut Esin ))(),((2= =t X t X COV (b) ,)),2cos(1(21 )(有关与t t t t EX ππ-= .)2sin(81 21DX(t)有关,不平稳,与t t t ππ-= 2. 设},2,1,{Λ=n X n 是平稳序列,定义Λ Λ,2,1},,2,1,{) (==i n X i n 为 Λ,,)1(1)1()2(1)1(---=-=n n n n n n X X X X X X ,证明:这些序列仍是平稳的. 证明:已知,)(),(,,2 t X X COV DX m EX t t n n n γσ===+ 2 121)1(1)1()1(2)(,0σγσ≡+=-==-=--n n n n n n X X D DX EX EX EX ) 1()1()(2),(),() ,(),(),(),(111111) 1()1(++--=+--=--=--+-+-++--+++t t t X X COV X X COV X X COV X X COV X X X X COV X X COV n t n n t n n t n n t n n n t n t n n t n γγγ显然,) 1(n X 为平稳过程. 同理可证,Λ,,) 3()2(n n X X 亦为平稳过程. 3.设 1 )n n k k k Z a n u σ==-∑这里k σ和k a 为正常数,k=1,....n; 1,...n u u 是(0,2π)

北大随机过程课件:第 3 章 第 2 讲 马尔可夫过程

马尔可夫过程 ?1马尔可夫过程概论 6 1.1马尔可夫过程处于某个状态的概率 6 1.2马尔可夫过程的状态转移概率 6 1.3参数连续状态离散马尔可夫过程的状态转移的切普曼-柯尔莫哥洛夫方程 切普曼-柯尔莫哥洛夫方程 齐次切普曼-柯尔莫哥洛夫方程 转移概率分布函数、转移概率密度函数 6 1.4马尔可夫过程状态瞬时转移的跳跃率函数和跳跃条件分布函数 瞬时转移概率分布函数 6 1.5确定马尔可夫过程Q矩阵 跳跃强度、转移概率Q矩阵 ?2参数连续状态离散马尔可夫过程的前进方程和后退方程 柯尔莫哥洛夫-费勒前进方程(利用Q矩阵可以导出、转移概率的微分方程)福克-普朗克方程(状态概率的微分方程) 柯尔莫哥洛夫-费勒后退方程(利用Q矩阵可以导出、转移概率的微分方程)?3典型例题 排队问题、机器维修问题、随机游动问题的分析方法 ?4马尔可夫过程的渐进特性 稳态分布存在的条件和性质 稳态分布求解 ?5马尔可夫过程的研究 1概论 1.1 定义及性质 1.2 状态转移概率 1.3 齐次马尔可夫过程的状态转移概率 1.5跳跃强度、转移概率Q矩阵 2 前进方程和后退方程 2.1 切普曼-柯尔莫哥洛夫方程 2.2柯尔莫哥洛夫-费勒前进方程 2.2福克-普朗克方程 2.3柯尔莫哥洛夫-费勒后退方程 3典型的马尔可夫过程举例 例1 例2 例3 例4,随机游动 4马尔可夫过程的渐进特性 4.1 引理1 4.2 定理2 4.3 定理

5马尔可夫过程的研究 6关于负指数分布的补充说明:

1概论 1.1定义:马尔可夫过程 ()t ξ: 参数域为T ,连续参数域。以下分析中假定[0,)T =∞; 状态空间为I ,离散状态。以下分析中取{0,1,2,}I ="; 对于T t t t t m m ∈<<<<+121",若在12m t t t T <<<∈"这些时刻观察到随机过程的值是12,,m i i i ",则 1m m t t T +>∈时刻的条件概率满足: {}{}1111()/(),,()()/(), m m m m m m P t j t i t i P t j t i j I ξξξξξ++======∈" 则称这类随机过程为具有马尔可夫性质的随机过程或马尔可夫过程。 1.2 定义:齐次马尔可夫过程 对于马尔可夫过程()t ξ,如果转移概率{}21()/()P t j t i ξξ==只是时间差12t t ?=τ的函数,这类马尔可夫过程称为齐次马尔可夫过程。 1.3 性质 马尔可夫过程具有过程的无后效性; 参数连续状态离散的马尔可夫过程的条件转移概率为: {}{}212112()/()0()/(),,P t j t t t P t j t i t t i j I ξξξξ′′=≤≤===≤∈ 马尔可夫过程的有限维联合分布律可以用转移概率来表示 {} {}{}{}32132211123(),(),()()/()()/()(),,,P t k t j t i P t k t j P t j t i P t i t t t i j k I ξξξξξξξξ=========≤≤∈ 马尔可夫过程的有限维条件分布律可以用转移概率来表示

随机过程知识点汇总

第一章随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量,分布函数 离散型随机变量的概率分布用分布列分布函数 连续型随机变量的概率分布用概率密度分布函数 2.n维随机变量 其联合分布函数 离散型联合分布列连续型联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量连续型随机变量 方差:反映随机变量取值的离散程度 协方差(两个随机变量): 相关系数(两个随机变量):若,则称不相关。 独立不相关 4.特征函数离散连续 重要性质:,,, 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 二项分布 泊松分布均匀分布略 正态分布 指数分布 6.N维正态随机变量的联合概率密度 ,,正定协方差阵 二.随机过程的基本概念 1.随机过程的一般定义 设是概率空间,是给定的参数集,若对每个,都有一个随机变量与之对应,则称随机变量族是上的随机过程。简记为。 含义:随机过程是随机现象的变化过程,用一族随机变量才能刻画出这种随机现象的全部统计规律性。另一方面,它是某种随机实验的结果,而实验出现的样本函数是随机的。 当固定时,是随机变量。当固定时,时普通函数,称为随机过程的一个样本函数或轨道。 分类:根据参数集和状态空间是否可列,分四类。也可以根据之间的概率关系分类,如独立增量过程,马尔可夫过程,平稳过程等。 2.随机过程的分布律和数字特征 用有限维分布函数族来刻划随机过程的统计规律性。随机过程的一维分布,二维分布,…,维分布的全体称为有限维分布函数族。随机过程的有限维分布函数族是随机过程概率特征的完整描述。在实际中,要知道随机过程的全部有限维分布函数族是不可能的,因此用某些统计特征来取代。(1)均值函数表示随机过程在时刻的平均值。 (2)方差函数表示随机过程在时刻对均值的偏离程度。 (3)协方差函数且有 (4)相关函数(3)和(4)表示随机过程在时刻,时的线性相关程度。

随机过程复习试题及答案

2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。 证明:当12n 0t t t t <<< <<时, 1122n n P(X(t)x X(t )=x ,X(t )=x ,X(t )=x )≤= n n 1122n n P(X(t)-X(t )x-x X(t )-X(0)=x ,X(t )-X(0)=x , X(t )-X(0)=x )≤= n n P(X(t)-X(t )x-x )≤,又因为n n P(X(t)x X(t )=x )=≤n n n n P(X(t)-X(t )x-x X(t )=x )≤= n n P(X(t)-X(t )x-x )≤,故1122n n P(X(t)x X(t )=x ,X(t )=x , X(t )=x )≤=n n P(X(t)x X(t )=x )≤ 3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1

随机过程复习题(含答案)

随机过程复习题 一、填空题: 1.对于随机变量序列}{n X 和常数a ,若对于任意0>ε,有 ______}|{|lim =<-∞ >-εa X P n n ,则称}{n X 依概率收敛于a 。 2.设}),({0≥t t X 是泊松过程,且对于任意0 12 ≥>t t , ,则 15 92}6)5(,4)3(,2)1({-??= ===e X X X P , 6 18}4)3(|6)5({-===e X X P 15 3 2 6 2 3 2 92! 23 ! 2)23(! 23 }2)3()5({}2)1()3({}2)0()1({}2)3()5(,2)1()3(,2)0()1({} 6)5(,4)3(,2)1({----??=? ?? ==-=-=-==-=-=-====e e e e X X P X X P X X P X X X X X X P X X X P 6 6 2 18! 26 }2)3()5({}4)3(|6)5({--== =-===e e X X P X X P 3.已知马尔可夫链的状态空间为},,{321=I ,初始分布为),,(4 1 2141, ????? ? ?? ? ????? ??? ?=434 10313131 04341 1)(P ,则167)2(12 =P ,16 1}2,2,1{210= ===X X X P

???????? ? ????? ????=48 3148 1348 436133616367164167165)1()2(2 P P 16 7)2(12= P 16 1314341}2|2{}1|2{}1{}2,1|2{}1|2{}1{} 2,2,1{12010102010210=??=================X X P X X P X P X X X P X X P X P X X X P 4.强度λ的泊松过程的协方差函数),min(),(t s t s C λ= 5.已知平稳过程)(t X 的自相关函数为πττcos )(=X R , )]()([)(π?δπ?δπω-++=X S 6. 对于平稳过程)(t X ,若)()()(ττX R t X t X >=+<,以概率1成立,则称)(t X 的自相关函数具有各态历经性。 7.已知平稳过程)(t X 的谱密度为2 3)(2 4 2++= ωωω ωS ,则)(t X 的均方值 = 212 1- 222 22 2 11221)2(2 221 1 1 22 )(+??-+?? = +- += ωωωωωS τ τ τ--- = e e R X 2 12 1)(2

随机过程课后习题

习题一 1.设随机变量X 服从几何分布,即:(),0,1,2,...k P X k pq k ===。求X 的特征函数、EX 及DX 。其中01,1p q p <<=-是已知参数。 2.(1)求参数为(p,b )的Γ分布的特征函数,其概率密度函数为 (2)求其期望和方差; (3)证明对具有相同的参数b 的Γ分布,关于参数p 具有可加性。 3.设X 是一随机变量,F (x )是其分布函数,且是严格单调的,求以下随机变量的特征函数。 (1)(),(0,)Y aF X b a b =+≠是常数; (2)Z=ln F()X ,并求()k E Z (k 为自然数)。 4.设12,,...,n X X X 相互独立,具有相同的几何分布,试求 的分布。 5.试证函数 为一特征函数,并求它所对应的随机变量的分布。 6.试证函数 为一特征函数,并求它所对应的随机变量的分布。 7.设12,,...,n X X X 相互独立同服从正态分布2(,)N a σ,试求n 维随机向量12,,...,n X X X 的分布,并求出其均值向量和协方差矩阵,再求 的概 率密度函数。 8.设X 、Y 相互独立,且(1)分别具有参数为(m, p)及(n, p)的二项分布;(2)分别服从参数为12(,),(,)p b p b 的Γ分布。求X+Y 的分布。 9.已知随机向量(X, Y )的概率密度函数为 试求其特征函数。 10.已知四维随机向量X ,X ,X ,X 1234()服从正态分布,均值向量为0,协方差矩 阵为B σ?kl 44=(),求(X ,X ,X ,X E 1234)。 11.设X 1,X 2 和X 3相互独立,且都服从(0,1)N ,试求随机变量112Y X X =+和 213Y X X =+组成的随机向量(Y 1, Y 2)的特征函数。 12.设X 1,X 2 和X 3相互独立,且都服从2(0,)N σ,试求: (1)随机向量(X 1, X 2, X 3)的特征函数; 1,0() 0,0()p p bx b x e x p x p x --?>? Γ??≤? =0,0 b p >>1 n k k X =∑ (1)()(1) jt jnt jt e e f t n e -=-21 ()1f t t =+1 1n i i X X n ==∑22 1[1()],1,1 (,)40,xy x y x y p x y ?+--<

随机过程笔记

随机过程笔记 2015-05-10 许铁混沌巡洋第一部分:为什么要研究随机过程?人类认识世界的历史,就是一认识和描绘各种运动的历史,从宏观的天体运动到分子的运动,到人心理的运动-我们通称为变化,就是一个东西随时间的改变。 人们最成功的描绘运动的模型是牛顿的天体运动,确定性是牛顿体系最大的特征。给定位置和速度,运动轨迹即确定。但是20实际后的科学却失去了牛顿美丽的确定性光环。 因为当人们试图描绘一些真实世界,充满复杂而未知因素的运动时候,人们发现不确定的因素(通常称之为噪音)对事物的变化至关重要,而牛顿的方法几乎难以应用。而我们所能够给出的最好的对事物变化的东西,是一套叫概率论的东西。而与之相应的产生的一个全新的研究运动的方法-随机过程, 对不确定性下的运动进行精细的数学描述。 我们周边充满了各种各样的数据,所谓大数据时代,这些数据最基本的特点就是含有巨量的噪音,而随机过程就是从这些噪音里提取信息的武器。 * 其实我们生活中也处处充满“噪音”。比如说我们每天发邮件,经常有一些人时回时不回。那些不回的人到底是忘了还是真的不想回,我们却不知道。一个书呆子统计学家会告诉你,你无法从一次的行为评判他,而要看他一贯的表现。

第一个随机过程方法的伟大胜利是爱因斯坦的布朗运动。一些小花粉在水里,受到水分子不停碰撞,而呈现随机的运动(花粉颗粒由于很小比较容易受到水分子热扰动的影响)。研究这些花粉的微小运动似乎有点天然呆,我们却从中找到了分子世界重要的信息。而花粉那无序与多变的轨道,也为我们提供了随机运动的范式(随机游走)。 计算机生成的十个粒子的布朗运动轨迹 如果给随机过程打个比方,它就像是一个充满交叉小径的花园。你站在现在的点上,看未来的变化,未来有千万种变化的方式,每一种可能又不断分叉变化出其它可能。第 二部分:描述随机过程的武器 随机过程怎么研究?几样神器是不可缺少的。 1. 概率空间:面对不可确定的未来,无非有两件事需要关心,一个是有哪些可以实现的可能,一个是每种可能的大小,前者定义一个事件空间(态空间),后者定义一个数-概率。关键这些信息从哪里来呢?我们如何知道要发生 什么?又如何知道多多大可能发生?-- 历史。 概率论的思维基点其实是: 日光之下并无新事。我们对未来的预测来源于对过于的经验积累,而沟通过去经验与 未来预测的工具就是概率。所谓一件事发生可能性大小,就是一件事在历史中发生的频率。 当然很多情况下概率也可以通过已知理论用演绎法推得,

第2章 随机过程习题及答案

第二章 随机过程分析 1.1 学习指导 1.1.1 要点 随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。 1. 随机过程的概念 随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。 2. 随机过程的分布函数和概率密度函数 如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。ξ(t 1)小于或等于某一数值x 1的概率为P [ ξ(t 1) ≤ x 1 ],随机过程ξ(t )的一维分布函数为 F 1(x 1, t 1) = P [ξ(t 1) ≤ x 1] (2-1) 如果F 1(x 1, t 1)的偏导数存在,则ξ(t )的一维概率密度函数为 1111111 (,) (, ) (2 - 2)?=?F x t f x t x 对于任意时刻t 1和t 2,把ξ(t 1) ≤ x 1和ξ(t 2) ≤ x 2同时成立的概率 {}212121122(, ; , )(), () (2 - 3)F x x t t P t x t x ξξ=≤≤ 称为随机过程ξ (t )的二维分布函数。如果 2212122121212 (,;,) (,;,) (2 - 4)F x x t t f x x t t x x ?=??? 存在,则称f 2(x 1, x 2; t 1, t 2)为随机过程ξ (t )的二维概率密度函数。 对于任意时刻t 1,t 2,…,t n ,把 {}n 12n 12n 1122n n ()(),(), ,() (2 - 5) =≤≤≤F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程ξ (t )的n 维分布函数。如果 n n 12n 12n n 12n 12n 12n (x ) () (2 - 6)?=???F x x t t t f x x x t t t x x x ,,,;,,,,,,;,,, 存在,则称f n (x 1, x 2, …, x n ; t 1, t 2, …, t n )为随机过程ξ (t )的n 维概率密度函数。 3. 随机过程的数字特征 随机过程的数字特征主要包括均值、方差、自相关函数、协方差函数和互相关函数。 随机过程ξ (t )在任意给定时刻t 的取值ξ (t )是一个随机变量,其均值为 []1()(, )d (2 - 7)E t xf x t x ξ∞ -∞ =?

随机过程与马尔可夫链习题答案

信息论与编码课程习题1——预备知识 概率论与马尔可夫链 1、某同学下周一上午是否上课,取决于当天情绪及天气情况,且当天是否下雨与心情好坏没有关系。若下雨且心情好,则50%的可能会上课;若不下雨且心情好,则有10%的可能性不上课;若不下雨且心情不好则有40%的可能性上课;若下雨且心情不好,则有90%的可能不会上课。假设当天下雨的概率为30%,该同学当天心情好的概率为20%,试计算该同学周一上课的可能性是多大? 分析: 天气情况用随机变量X 表示,“0”表示下雨,“1”表示不下雨;心情好坏用Y 表示,“0”表示心情好用“0”表示,心情不好用“1”表示;是否上课用随机变量Z 表示,“0”表示上课,“1”表示不上课。由题意可知 已知{ EMBED Equation.KSEE3 \* MERGEFORMAT |[]5.00,0|0====Y X Z P , , , , , , 即题目实际上给出了八个个条件概率和四个概率 由于X ,Y 相互独立,则有 = 注意:全概率公式的应用 2、已知随机变量X 和Y 的联合分布律如又表所示, 且,,求: 1)的分布律与数学期望 2)的分布律与数学期望 3)大于10的概率 4)由上面的例子,你是否能得到离散随机变量函数的数学期望的一般表达式?包括一元和多元随机变量函数。 X Y 5 6 1 0.2 0.3 2 0.1 0.4

分析: 1) 2) 说明:主要考虑联合分布律与随机变量函数分布律的关系 3) 4) and so on. 3、已知随机变量的概率密度函数为,其中,为的函数,求: 1)随机变量X 小于或等于5的概率 2)随机变量Y 的概率密度函数 3)随机变量Y 大于10的概率 4)随机变量Y 的数学期望 分析 1) 2)假设用分别表示随机变量X 的分布函数、随机变量Y 的概率密度函数和分布函数,则有: 有 3) 4) 4、已知随机变量和的联合概率密度函数为 ,。 1)求随机变量Z 的数学期望 2)求随机变量Z 的概率密度函数 3)结合习题3,总结连续随机变量的函数的数学期望的一般表达式,包括包括一元和多元 Z1 6 7 9 10 P 0.2 0.3 0.1 0.4

随机过程习题答案

随机过程部分习题答案 习题2 2.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的一维概率 密度、均值和相关函数。 解 因)1,0(~N V ,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布, b b tEV b Vt E t X E =+=+=][)]([ 22][)]([t DV t b Vt D t X D ==+= 所以),(~)(2 t b N t X ,)(t X 的一维概率密度为 ),(,21);(2 22)(+∞-∞∈= -- x e t t x f t b x π,),0(+∞∈t 均值函数 b t X E t m X ==)]([)( 相关函数 )])([()]()([),(b Vt b Vs E t X s X E t s R X ++== ][2 2 b btV bsV stV E +++= 2 b st += 2.2 设随机变量Y 具有概率密度)(y f ,令Yt e t X -=)(,0,0>>Y t ,求随机过程)(t X 的 一维概率密度及),(),(21t t R t EX X 。 解 对于任意0>t ,Yt e t X -=)(是随机变量Y 的函数是随机变量,根据随机变量函数的分 布的求法,}ln {}{})({);(x Yt P x e P x t X P t x F t Y ≤-=≤=≤=- )ln (1}ln {1}ln {t x F t x Y P t x Y P Y --=-≤-=- ≥= 对x 求导得)(t X 的一维概率密度 xt t x f t x f Y 1 )ln ();(- =,0>t 均值函数 ? ∞ +--===0 )(][)]([)(dy y f e e E t X E t m yt t Y X 相关函数

相关文档
最新文档