开关磁阻电机建模方法综述

开关磁阻电机建模方法综述
开关磁阻电机建模方法综述

开关磁阻电机建模方法综述

摘要:开关磁阻电机(SRM)的结构和工作原理比较简单,具有十分广泛的应用前景。SRM模型对于电机的优化设计、动态性能和效率的评估以及实现对电机的高性能控制都有至关重要的影响。文章分析和比较了开关磁阻电机(SRM)的各种建模方法的优缺点,重点讨论了有限元分析法和神经网络法。

关键词:开关磁阻电机;建模方法;SRM模式;有限元分析法;神经网络法文献标识码:A

中图分类号:TM352 文章编号:1009-2374(2015)05-0013-02 DOI:10.13535/jki.11-4406/n.2015.0343

开关磁阻电机(SRM)的结构和工作原理比较简单,具有十分广泛的应用前景。SRM模型对于电机的优化设计、动态性能和效率的评估以及实现对电机的高性能控制都有至关重要的影响。但由于SRM定子、转子的双凸极结构、绕组电流的非正弦特性以及铁心磁通密度的深度饱和,使得SRM的精确数学模型很难建立起来。对此,许多学者进行了大量而深入的研究,所用的建模方法也有多种,大体上包括函数解析法、有限元分析法、磁网络模型法、神经网络和模糊法等。

1 函数解析法

该方法是用函数解析式来表达相电感或是磁链与电流和角度的关系。在探索准确的函数解析式的过程中,大体上经历了线性模型、准线性模型和非线性模型三个阶段。最早采用的是用线性化描述的曲线来定性地估算电机的各项性能,但是这种模型并不考虑电流变化对电感的影响,只能用来分析电机结构与性能之间的关系。但该模型与实际情况相比仍有较大误差,

不能满足较高控制性能的需要。

实际应用中便产生了近似考虑磁路饱和效应的准线性模型,即将实际的非线性曲线分段线性化,同时也不考虑相间的耦合。推导出SRM在线性区和饱和区的转矩控制特性,该模型有一定的精度,但对电机电流与转矩的估值依然有相当大的误差。

要想更精确地分析各种性能,就必须要建立SRM的非线性模型。袁晓玲给出经过改进后的相电感拟合曲线的余弦解析式,该式中不含指数项,也不考虑四次以上的谐波影响,总体精度较高且运算简单,但依然存在局部误差较大的缺陷。文献[2]给出了一个考虑得非常全面的磁链解析式。该式不仅考虑了相电流与转子位置的作用,还加入了电机几何与材料特性的影响,并在此基础上推导出电磁转矩的解析式。这使得控制性能大大提高,但因为该模型的运算量很大,所以同时也对硬件提出了很高的要求。

为了得到具有较高工程精度又可以直接利用电机结构参数快速计算电机性能的模型,有的学者提出了用快速非线性法来建模。徐国卿利用三个特殊位置的磁链/电流关系建立SRM磁化特性曲线。文献[4]则采用四个特定转子位置的磁化曲线,无需经验公式,用线性函数和修改的Frohlich函数模化形式磁化曲线族,很好地做到了精度与速度的统一,实用价值较高。

2 有限元分析法

基于有限元方法,可以比较准确地求取磁化曲线,并进行相应的磁场计算。随着近年来计算机硬件的快速发展,利用有限元软件求解问题所需的时间大大缩短,因此也推动了有限元法的应用。二维有限元数值计算是已经比较成熟的技术。刘闯给出了二维有限元法在SRM建模中比较典型的应用方法,即先通过二维有限元数值计算得出电机磁特性函数矩阵,然后把函数矩阵三次样条插值变换成电流特性矩阵。这样可以实时地通过查询电流值来作为控制开关管通断的

依据。

在用二维有限元法对SRM建模时,需要忽略电机端部磁场效应并且假设磁场沿电机轴向不变化。SRM的端部磁场是随转子位置的变化而改变的。因此,这样虽然简化了计算,但带来的误差也是相当大的,尤其是当转子在齿对槽位置附近的时候。有的研究者将二维的计算结果乘以经验系数以计及端部磁场的影响,但依然没有很好地解决局部误差较大的问题。解决这一问题的有效方法是采用三维有限元计算。

目前,建立SRM的三维模型主要的困难有:不能精确地计算三维磁链;三维有限元分析的未知量太多导致计算规模非常大。吴建华利用三维有限元分析软件,基于SRM物理模型,系统分析了绕组、端盖和安装对定子模态及固有频率的影响,并比较和验证了二维有限元模型与三维有限元模型计算结果的差异。结论是圆环结构二维定子模型比三维定子真实模型的固有频率计算结果偏低,模态阶次越高则差异越大。

实际上,许多模型都只是研究电、磁耦合的SRM稳态运行分析,而考虑转速变化的电磁与机械系统耦合的SRM动态性能的研究较少。阎秀恪先对SRM磁场进行有限元分析,结合三次样条插值建立相电感参数曲线族,再以绕组电流、转子位置角和转速作为状态变量建立数学模型来分析SRM的动态特性。该模型将铁磁材料的非线性和相间耦合因素都考虑进去,通过对电机的启动过程进行分析,验证了该模型的有效性。

3 磁网络模型法

磁网络模型具有运算快和精度较高的特点,在双凸极的场路分析中得到应用,效果较好。磁网络法即是将SRM中磁通所经过的各个部分,包括定子极、定子轭、转子极、转子轭和气隙等均用相应的磁导来表示,再根据磁通的路径将各磁导串联或者并联起来构成磁网络。很明显,虽然磁路法的计算速度要远快于有限元法,但是精度也比有限元法要低。效磁网络法与快速非线性法相结合,使得模型在大大简化的同时又满足了一定的精度,有一定的实用性。

4 新型建模方法简介

近年来,神经网络、模糊技术、专家系统和遗传算法被广泛地应用到非系统建模当中,其中应用最多的是人工神经网络。人工神经网络(NN)是由人工神经元互联组成的网络,是从微观结构和功能上对人脑的抽象、简化,是模拟人类智能的一条重要途径,反映了人脑功能的若干基本特征,如并行信息处理、学习、联想、模式分类、记忆等。由于神经网络具有强大的学习和逼近能力以及良好的预测与泛化能力,所以非常适合用于非线性系统的建模。人们在将神经网络应用于SRM建模的过程中,使用过多种网络模型。这些模型也是各有

长短。

5 前景展望

综上所述,SRM的建模已经取得了很大的成就,但要想在实际工程中达到更精确的效果,必须要在以下三点上有所突破:(1)为了满足实时控制的要求,模型在保证精度的同时应该尽量简化;(2)应该把电机与外围电路作为一个整体来考虑,使SRM本体模型与外围控制电路很好地结合,达到整体性能最优;(3)应该充分考虑电机的运动特性,保证模型的动态跟随性

要好。

参考文献

[1] 袁晓玲.开关磁阻电动机振动分析及控制研究[D].河海大学,2004.

[2] Iqbal Husain,Syed A.Hossain.Modeling,Simulation,and Control of Switched Reluctance Motor Drives[J].IEEE Transactions on industrial electronics,2005,52(6).

[3] 徐国卿,陈永校,郦江.一种新的开关磁阻电动机非线性模型[J].浙江大学学报,1997,37(2).

[4] 吴建华.开关磁阻电动机稳态性能的一种快速非线性仿真法[J].电工技术学报,1997,12

(3).

[5] 刘闯,严利,严加根.开关磁阻电机非线性磁参数建模方法[J].南京航空航天大学学报,2007,39(6).

[6] 吴建华.基于物理模型开关磁阻电机定子模态和固有频率的研究[J].中国电机工程学报,2004,24(8).

[7] 阎秀恪,谢德馨.开关磁阻电动机动态性能建模与分析[J].电气制造,2007,5(6). 作者简介:车彦亮(1982-),男,吉林公主岭人,山钢股份济南分公司物流管理中心机动科中级工程师,研究方向:电气自动化。

(责任编辑:周琼)

感谢您的阅读!

车用电机的发展现状

电动车用电机及其控制技术的现状及趋势 电动汽车是以车载电源为动力,并采用电动机驱动的一种交通工具。电机及其驱动系统是电动汽车的核心部件之一,由于电动汽车在运行过程中频繁起动和加减速操作,对驱动系统的有着很高的要求。生产制造方面要求电机的可靠性好、结构简单、维修方便、成本低、体积小、重量轻;性能方面要求车用电机具有瞬时功率大、过载能力强、范围宽、续驶里程长等优点。 电动汽车的驱动电机按其类型来划分,可分为直流电机和交流电机两大类。直流电机的驱动特性是在基本转速以下运行于恒转矩区,基本转速以上运行于恒功率区。它的这种特性很适合汽车对动力源低速高转矩、高速低转矩的要求,而且直流电机结构简单,易于平滑调速,所以直到20世纪80年代中期,它仍是国内外的主要研发对象。几乎所有早期的电动车都采用直流电机驱动系统。如日本东京大学的UOT电动汽车采用直流串励电动机,意大利菲亚特公司的900E/E2电动汽车用直流他励电动机驱动,日本马自达汽车公司的BANGO 电动汽车则采用直流并励电动机。但是直流电机的效率和转速相对较低,其换向器维护困难,直流电机价格高、体积和重量大。随着控制理论和电力电了技术的发展,直流驱动系统与其它驱动系统相比,己大大处于劣势。因此,目前国外各大公司研制的电动车电气驱动系统己逐渐淘汰了直流驱动系统。 20世纪90年代后,交流电机驱动系统的研制和开发有了新的突破。相比直流电机,交流电机体积小、质量轻、效率高、调速范围宽、可靠性高、价格便宜、维修简单方便,在电动汽车上得到了广泛应用。交流电机包括异步电机、永磁电机以及开关磁阻电机。 美国以及欧洲研制的电动汽车多采用这种电动机,如Chrysler公司生产的Epic Van; Ford 公司生产的Ranger EV,通用汽车公司生产的IMPACT和EH电动汽车。国内也采用感应电动机作为电动汽车的驱动电机也比较多,如胜利SL6700DD电动客车,郑州华联ZK6820HG-1电动轻型客车。但其最大缺点是驱动电路复杂,相对永磁电机而言,其效率和功率密度偏低,因此有被其它新型永磁电机逐步取代的趋势。 永磁电机包括永磁无刷直流电机和永磁无刷同步电机两种。永磁无刷直流电机是在直流电机的基础上不再用电刷和换向器,起动转矩大、过载能力强,非常适合电动车的运行特性。香港大学研制的U 2001电动车采用的永磁无刷直流电机,最高车速为110krn/h,本田研制EV PLU S电动车采用的永磁无刷直流电机,最高车速为128krn/h。永磁无刷同步电机的恒转矩区比较长,这对提高汽车的低速动力性能有很大帮助,电机最高转速较高,能达到10 000 r/min。永磁无刷同步电机功率密度高调速性能好、在宽转速范围内运行效率高.它的主要缺点是电机造价较高,永磁材料会有退磁效应,要想增大电机的功率其体积会很大。随着稀土永磁材料的开发和应用,永磁无刷电机的性能有了很大的提高,是未来最有发展前景的驱动电机之一。 开关磁阻电机(SRM )是英国于1983年首次正式推出的,经过多年的研制开发,现己成为现代电动汽车交流驱动的又一个新支,它具有可控相数多、实现四象限控制方便、成本低。开关磁阻电机结构和控制简单、出力大,可靠性高,起动制动性能好,运行效率高,但电机噪声高,转矩脉动严重,非线性严重,在电动汽车驱动中有利有弊,目前在电动汽车应用较少。 上述几种电动机各有自己的优势和不足,并各有侧重,'已们在现有的电动汽车中均有应用,其中,交流异步电机主要应用在纯电动汽车(包括轿车及客车),永磁同步电机主要应用在混合动力汽车(包括轿车及客车)中,开关磁阻电机目前主要应用在客车中,而以交流异步电动机和永磁直流电动机的应用稍微居多一些。 要想使电机驱动并发挥出其优良的性能必须与合理的控制策略相配合。目前电机的控制

控制电机:开关磁阻电机

题目:开关磁阻电机

开关磁阻电机 学习《特种电机及其控制》这门课程,这要介绍了无刷直流电机及其控制、开关磁阻电机及其控制系统、步进电机及其控制,其中我最感兴趣的开关磁阻电机。下面我将对我所了解的开关磁阻电机做一总结。 一、发展背景 开关磁阻电机是80年代初随着电力电子、微电脑和控制技术的猛烈发展而发展起来的一种新型调速驱动系统,具有结构简单、运行可靠及效率高等突出优点,成为直流电机调速系统、交流电机调速系统和无刷直流电机调速系统强有力的竞争者,引起各国学者和企业界的广泛关注,目前开关磁阻电机已开始应用于工业、航空业和家用电器等各个领域。 开关磁阻电机的基本概念可追溯到19世纪40年代,1842年,英国的Aberdeen和Dafidson用两个U型电磁铁制造了由蓄电池供电的机车电动机。20世纪60年代,大功率晶闸管的出现为SR电机的研究发展提供了重要的物质条件。1967年,英国的Leeds大学开始对SR电机进行深入研究;直到1970年左右,研究结果表明:SR电机可以在单相电流下四象限运行,功率变换器无论是用晶体管还是用普通晶闸管,所需开关数都是最少的;电动机成本也明显低于同容量的感应电动机。20年代70年代初,美国福特公司研制出最早开关磁阻电机的调速系统,其结构为轴向气隙电动机,具有电动机和发电机运行状态和较宽范围调速的能力,适合于蓄电池供电的电动车辆的转动。1980年Leeds大学的Lawrenson教授及其同事总结出了自己的研究成果,发表了题为“Variable--Speed Switched Reluctance Motors”的论文,系统阐述了开关磁阻电机的基本原理与设计特点,并得出了新型磁阻电机的单位出力可以与交流感应电机相媲美甚至还略占优势的结论。1983年英国TASC公司推出了Oulton系列通用SRD调速产品,问世不久便受到了各国电气传动界的广泛重视。从1984年开始,我国许多单位先后开展了SRD研究,在借鉴国外经验的基础上,我国SR电机的研究发展很快。2000年,国内100KW以上的SR电机已应用于煤矿的采煤机,目前已将180KW的SR电机应用于地铁机车的牵引,应形成一些SRD系列商品,最

开关磁阻电机

7.2 开关磁阻电动机 开关磁阻电动机调速系统(Switched Reluctance Drive ,简称SRD )是20世纪80年代中期发展起来的新型交流调速系统, 它由开关磁阻电动机(SRM )、功率变 换器、位置检测器及控制器所构成, 其系统构成与永磁无刷直流电动机几 乎一样,如图7-19所示。它以其电机 结构简单可靠、系统效率高、高速运行区域宽等优良性能成为交流调速领域中的一支新军。 7.2.1 开关磁阻电动机的结构及其动作原理 典型的三相开关磁阻电动机的结构如图7-20所示。其定子和转子均为凸极结构,图示电机的定子有6个极(6s N =),转子有4个极(4r N =)。定子极上套有集中线圈,两个空间位置相对的极上的线圈顺向串联构成一相绕组,图7-20 a)中只画出了A 相绕组;转子由硅钢片叠压而成,转子上无绕组。该电机则称三相6/4极开关磁阻电动机。在结构形式及工作原理上,开关磁阻电动机与大步距反应式步进电机并无差别;但在控制方式上步进电机应归属于他控式变频,而 开关磁阻电动机则 归属于自控式变频; 在应用上步进电机都用作“控制电机”而开关磁阻电机则是拖动用电机,因此电机设计时所追求的目标不同而使电机的设计参数不同. 工作原理 当A 相绕组通电时,因磁通总要沿着磁阻最小的路径闭合,将力图使转子转动最终使转子1、3极和定子A 、A '极对齐,A 相断电、B 相通电时,则B 相电流产生的磁吸力要吸引转子2、4极,使转子逆时针转动,最终使转子2、4极与定子B 、B '对齐,转子在空间转过30θ=机械角。再使B 相断电、C 相通电,转子又将逆时针转过30,一个通电周期使转子在空间转过了一个齿距。电机若按A-C-B-A 的顺序通电,则反方向旋转。电流的方向不影响上述的动作过程。 为保证开关磁阻电动机能连续旋转,当A 相吸合时,B 相的定、转子极轴线应错开1/m 个转子极距,m 为电机相数,若电机极对数为p ,定子极数2s N mp =,则转子极数应为 p m N r /)1(2 =。根据这个规律,可得到各种不同相数、不同极数的开关磁阻电机,常用 的有:三相6/4极,三相6/8极,四相8/6极,四相8/10极,三相12/8极等。 当电机定子每相绕组的通电频率为f 时,每个电周期转子转过一个转子极距,每秒钟转过f 个转子极距,即每秒转过r f N 转。电动机的转速与绕组通电频率的关系为 60r f n N = (7-5) 7.2.2 开关磁阻电动机的工作原理 图7-20 开关磁阻电动机动作原理图

径向磁通开关磁阻电机的发展历史及趋势

文献检索 径向磁通开关磁阻电机的发展历史及趋势 姓名 学号825 所在学院电气与电子工程学院 专业班级12电气7班 日期2014年12月26日

一、开关磁阻电机发展简介 开关磁阻电机是80年代初随着电力电子、微电脑和控制技术的迅猛发展而发展起来的一种新型调速驱动系统,具有结构简单、运行可靠及效率高等突出特点,成为交流电机调速系统、直流电机调速系统和无刷直流电机调速系统的强有力的竞争者,引起各国学者和企业界的广泛关注。跨国电机公司Emerson电气公司还将开关磁阻电机视为其下世纪调速驱动系统的新的技术、经济增长点。目前开关磁阻电机已广泛或开始应用于工业、航空业和家用电器等各个领域。 1970年,英国Leeds大学步进电机研究小组首创一个开关磁阻电机(Switched Reluctance Motor, SRM)雏形,这是关于开关磁阻电机最早的研究。1972年,进一步对带半导体开关的小功率电动机(10w~1kw)进行了研究。到了1975年有了实质性的进展,并一直发展到可以为50kw的电瓶汽车提供装置。1980年在英国成立了开关磁阻电机驱动装置有限公司(SRD Ltd.),专门进行SRD系统的研究、开发和设计。1983年英国(SRD Ltd.)首先推出了SRD系列产品,该产品命名为OULTON。1984年TASC驱动系统公司也推出了他们的产品。另外SRD Ltd. 研制了一种适用于有轨电车的驱动系统,到1986年已运行500km。该产品的出现,在电气传动界引起不小的反响。在很多性能指标上达到了出人意料的高水平,整个系统的综合性能价格指标达到或超过了工业中长期广泛应用的一些变速传动系统。 从上世纪90年代国际会议的上有关SRD系统的文章来看,对SRD系统的研究工作已经从论证它的优点、开发应用阶段进入到设计理论、优化设计研究阶段。对SR电机、控制器、功率变换器等的运行理论、优化设计、结构形式等方面进行了更加深入的研究。 二、开关磁阻电机的分类 按气隙磁通方向分类方法将开关磁阻电机分为两类:径向磁通开关磁阻电机和横向磁通开关磁阻电机。这里,着重分析径向磁通开关磁阻电机。 1、径向气隙磁通 发电机依靠转子对定子的相对运动来发电,在定子与转子之间的间隙称为气隙。在传统电机结构中,定子在外围,转子在中间旋转,见图1右图,定子与转

开关磁阻电机工作原理及其驱动系统

开关磁阻电机工作原理及其驱动系统 开关磁阻电机 Switched Reluctance Drivesystem, SRD 开关磁阻电机驱动系统(Switched Reluctance Drive system, SRD)具有一些很有特色的优点:电机结构简单、坚固、维护方便甚至免维护,起动及低速时转矩大、电流小;高速恒功率区范围宽、性能好,在宽广转速和功率范围内都具有高输出和高效率而且有很好的容错能力。这使得SR电机驱动系统在家用电器、通用工业、伺服与调速系统、牵引电机、高转速电机、航空航天等领域得到广泛应用。 SR电机是一种机电能量转换装置。根据可逆原理,SR电机和传统电机一样,它既可将电能转换为机械能——电动运行,在这方面的理论趋于成熟;也可将机械能转换为电能——发电运行,其内部的能量转换关系不能简单看成是SR电动机的逆过程。 开关磁阻电机的发展概况和发展趋势 “开关磁阻电机(Switched reluctance motor)”一词源见于美国学者 S.A.Nasarl969年所撰论文,它描述了这种电机的两个基本特征:①开关性——电机必须工作在一种连续的开关模式,这是为什么在各种新型功率半导体器件可以获得后这种电机才得以发展的主要原因;②磁阻性——它是真正的磁阻电机,定、转子具有可变磁阻磁路,更确切地说,是一种双凸极电机。开关磁阻电机的概念实际非常久远,可以追溯到19世纪称为“电磁发动机”的发明,这也是现代步进电机的先驱。在美国,这种电机常常被称为“可变磁阻电机(variable reluctance motor, VR电机)”一词, 但是VR电机也是步进电机的一种形式,容易引起混淆。有时人们也用“无刷磁阻电机(Brushless reluctance motor)”一词,以强调这种电机的无刷性。“电子换向磁阻电机(Electronically commutated reluctance motor)”一词也曾采用,从工作原理来看,甚至比“开关磁阻”的说法更准确—些,但也容易与电子换向的水磁直流电机相混淆。毫无疑问,正是由于英国 P.J.Lawrenson教授及其同事们的杰出贡献,赋予了现代SR电机新的意义,开关磁阻电机一词也因此逐渐为人们所接受和采用。 从电机结构和运行原理上看,SR电机与大步距角的反应式步进电机十分相似,因此有人将SR电机看成是一种高速大步距角的步进电机。但事实上,两者是有本质差别的,这种差别体现在电机设计、控制方法、性能特性和应用场合等方面,见表11-1。

开关磁阻电机及其调速系统

第二章开关磁阻电机及其调速系统 2.1 开关磁阻电机的发展概况 磁阻式电机诞生于160年前,一直被认为是一种性能不高的电机。然而通过近20年的研究与改进,使磁阻式电机的性能不断提高,目前已能在较大功率范围内不低于其它型式的电机[9]。 70年代初,美国福特电动机(Ford Motor)公司研制出最早的开关磁阻电机调速系统。其结构为轴向气隙电动机、晶闸管功率电路,具有电动机和发电机运行状态和较宽范围调速的能力,特别适用于蓄电池供电的电动车辆的传动。 70年代中期,英国里兹(Leeds)大学和诺丁汉(Nottingham)大学,共同研制以电动车辆为目标的开关磁阻电机调速系统。样机容量从10W至50KW,转速从750 r/min至10000 r/min,其系统效率和电机利用系数等主要指标达到或超过了传统传动系统。该产品的出现,在电气传动界引起了不小的反响。在很多性能指标上达到了出人意料的高水平,整个系统的综合性能价格指标达到或超过了工业中长期广泛使用的一些变速传动系统。 近年来,国内外已有众多高校、研究所和企业投入了开关磁阻电机调速系统的研究、开发和制造工作。至今已推出了不同性能、不同用途的几十个系列的产品,应用于纺织、冶金、机械、汽车等行业中。 目前,在汽车行业意大利FIAT公司研制的电动车和中国第二汽车制造厂研制的电动客车都采用了开关磁阻电机。SRM是没有任何形式的转子线圈和永久磁铁的无刷电动机,它的定子磁极和转子磁极都是凸的。由于SRM具有集中的定子绕组和脉冲电流,其功率变换器可以采用更可靠的电路拓扑形式。SRM具有简单可靠、在较宽转速和转矩范围内高效运行、控制灵活、可四象限运行、响应速度快、成本较低等优点,这是其它调速系统难以比拟的,作为具有潜力的电动车电气驱动系统日益受到重视。然而目前SRM还存在转矩波动大、噪声大、需要位置检测器、系统非线性等缺点,所以,它的广泛应用还受到限制。 2.2 开关磁阻电机的基本结构与特点 开关磁阻电机为定、转子双凸极可变磁阻电机。其定、转子铁心均由硅钢片

开关磁阻电机驱动系统的运行原理及应用

开关磁阻电机驱动系统的运行原理及应用(二) (低轴阻发电机参考资料) 1 引言 开关磁阻电机驱动系统(SDR)具有一些很有特色的优点:电机结构简单、坚固、维护方便甚至免维护,启动及低速时转矩大、电流小;高速恒功率区范围宽、性能好,在宽广转速和功率访问内都具有高输出和高效率而且有很好的容错能力。这使得SR电机系统在家用电器、通用工业、伺服与调速系统、牵引电机、高转速电机、航空航天等领域得到广泛应用。 SR电机是一种机电能量转换装置。根据可逆原理,SR电机和传统电机一样,它既可将电能转换为机械能—电动运行,在这方面的理论趋于成熟;也可将机械能转换为电能—发电运行,其内部的能量转换关系不能简单看成是SR电动机的逆过程。本文将从SR电机电动和发电运行这两个角度阐述SR电机的运行原理。 2 电动运行原理 2.1 转矩产生原理 控制器根据位置检测器检测到的定转子间相对位置信息,结合给定的运行命令(正转或反转),导通相应的定子相绕组的主开关元件。对应相绕组中有电流流过,产生磁场;磁场总是趋于“磁阻最小”而产生的磁阻性电磁转矩使转子转向“极对极”位置。当转子转到被吸引的转子磁极与定子激磁相相重合(平衡位置)时,电磁转矩消失。此时控制器根据新的位置信息,在定转子即将达到平衡位置时,向功率变换器发出命令,关断当

前相的主开关元件,而导通下一相,则转子又会向下一个平衡位置转动;这样,控制器根据相应的位置信息按一定的控制逻辑连续地导通和关断相应的相绕组的主开关,就可产生连续的同转向的电磁转矩,使转子在一定的转速下连续运行;再根据一定的控制策略控制各相绕组的通、断时刻以及绕组电流的大小,就可使系统在最隹状态下运行。 图1 三相sr电动机剖面图 从上面的分析可见,电流的方向对转矩没有任何影响,电动机的转向与电流方向无关,而仅取决于相绕组的通电顺序。若通电顺序改变,则电机的转向也发生改变。为保证电机能连续地旋转,位置检测器要能及时给出定转子极间相对位置,使控制器能及时和准确地控制定子各相绕组的通断,使srm能产生所要求的转矩和转速,达到预计的性能要求。 2.2 电路分析

同步磁阻电动机与开关磁阻电机

同步磁阻电动机与开关磁阻电机 同步磁阻电动机(SynRM)总是逆变供电,并使用与IM相同类型的分布式定子。然而,转子是带冲压槽的层压钢,因此它们可以很容易地在一个轴上被磁化,而在另一个轴上则不那么容易。这些转子与旋转的定子磁场对齐的趋势产生转矩。像PM一样,SynRM是自同步的,这意味着变频器将定子激励与转子角度和转速同步。 同步磁阻电动机的主要优点是与IM相比,其可忽略的转子损耗。因此,通过精心的设计和控制,SynRM将能够满足即将推出的欧洲IE4和NEMA超高端标准的电机效率指标,同时避免使用磁铁。SynRM中的热量减少相对于IM而言改善了扭矩和功率密度,并且对于给定额定值,通常使其减小一个框架尺寸。由于低转矩波动和振动水平,这些电机也很安静。 同步磁阻电动机的一个小小的缺点是与IM相比它们的功率因数低,因此在给定的机械功率水平下需要更多的逆变器电流。这增加了成本和逆变器的功率损失,因此尽管SynRM仅用于电动机的效率可能是好的,但在系统级的好处是不太有说服力的。标准目前讨论仅电机效率,设计人员应仔细研究可能的整体系统性能。 需要复杂的转子叠片及其穿孔的磁通屏障,使得SynRM转子难以制造,有点脆弱,因此不适合于高速操作。 同步磁阻电动机非常适合于不需要大过载和高速度的广泛的工业应用,并且由于其效率而越来越多地被提供给变速泵。 开关磁阻电机(SRM)通过吸引磁凸极转子到定子磁场来产生转矩。然而,SRM定子极数相对较少。由于齿形轮廓而不是SynRM内部的磁通屏障,转子的磁性显着更加简单。定子和转子极数的差异导致游标效应,并且SRM转子通常以相反的方向以不同的速度旋转到定子磁场。与SynRM不同,SRM通常使用脉冲直流励磁,需要专门的逆变器来运行。 需要一些电流来支持SRM的磁场,导致比PM更低的转矩密度和甜点效率。但是,像SynRM一样,SRM通常比同等IM小一个帧大小。 开关磁阻电机的一个主要优点是当激励减少而不损失效率时,自然地发生场弱化。这使得宽CPSR(大于10:1)没有困难。效率在高速和轻负载条件下保持良好,SRM可在各种工作条件下提供显着的恒定效率。

开关磁阻电机的电磁设计方法

2010 年5 月 摘要 开关型磁阻电动机驱动系统(Switched Reluctance Drive,简称SRD电动机)。是20世纪80年代迅猛发展起来的一种新型调速电机驱动系统。它是由功率变换电路、双凸极磁阻电机、控制器及位置检测器构成。它的结构极其简单,调速范围宽,调速性能优异,而且在整个调速范围内都具有较高的效率,系统可靠性高,是各国研究和开发的热点之一。 本文介绍了开关磁阻电机的发展历史,应用领域以及它的优点;对三相6/4结构的开关磁阻电机与四相8/6结构的开关磁阻电机进行了比较;对开关磁阻电机的电磁设计与参数优化进行了分析与研究,简单介绍了ANSYS软件在开关磁阻电机电磁分析中的应用;提出8/6结构开关磁阻电机的一种设计方案;并对开关磁阻电机的磁通波形和电机损耗进行了分析。 关键词: 开关磁阻电机,磁场,电磁设计,参数优化

ABSTRACT The switched reluctance drive (SRD) is a new-type drived-electromotor system which develops rapidly since 1980, and consists of power converter circuits、the doubly-salient reluctance motor、the controller and the examination of position. The structure of the SRD is simple. It has a wide range and excellent performance in speed. It also has a high efficiency and high reliability. So the SRD is one of the hot spots which is studied and designed all over the world. This thesie introduced the SRD development history, the application domain as well as its merit; comparison to the three-phase 6/4 structure SRD with four-phase 8/6 structure SRD overall performance. also analysis and research SRD electromagnetism design and parameter optimization, and introduced ANSYS software in SRD electromagnetism analysis application; Proposes 8/6 structure SRD one kind of design proposal; And analysis to the switched reluctance drive magnetic flux profile and the loss of machine. Keywords:switched reluctance motor, magnetic field, electromagn- etism design, parameter optimization

开关磁阻电机的基本了解

开关磁阻电机的基本学习内容 1 开关磁阻电机的基本原理以及结构 开关磁阻电动机(Switched Reluctance Motor ,简称SRM) 定转子为双凸极结构,铁心均由普通硅钢片叠压而成,其定子极上有集中绕组,径向相对的两个绕组串联构成一相,转子非永磁体,其上也无绕组[1,3]。SRM 的定转子极数必须满足如下约束关系: s r s N =2km N = N + 2k (1-1) 其中,Ns ,Nr 分别为电机定、转子数;m 为电机相数值减1;k 为一常数。以下图1-1所示一个典型四相8/6极SRM 为例,相数为4,因而m=3,取k=1,则Ns=6,Nr=8。m 及k 值越高,越利于高控制性能控制,但相应成本越高,结构越复杂。目前技术较为成熟,发展较为迅速的产品多为三、四相SRM [2]。

图1-1即为一典型四相8/6结构的SRM电机本体及其不对称功率变换器主电路的示意图(图1-1在末尾手画)。为表述清晰,图中仅画出不对称半桥电路的一相,其他各相均与该相相同,并省略了相应的驱动及检测电路。完整的开关磁阻电机调速系统(Switched Reluctance Motor Drive,简称SRD)则由SRM、功率变换器、控制器、位置检测器等四大部分组成,如下图1-2示。 SRM可以认为是同步电机的一个分支,它运行时遵循磁阻最小原理,同步进电机较为类似[2,30]。其具体运行原理如下:首先要保证励磁相的定子凸极和最近的转子凹极中心线不重合,也即初始位移不能位于磁阻最小位置。通以交流电后,经过一个整流桥变为直流电源,当开关S1和S2开通时,AA’相通电励磁,产生一个磁拉力。在该电磁力的轴向分量作用下,产生电磁转矩,凸极转子铁心趋向于旋转到定转子极轴线B-B’与A-A’重合的位置;而电磁力的径向力分量则造成定子的“变形”,这也是产生转矩脉动和电机噪声的根本原因之一。在该过程中电机吸收电能。关断S1和S2,开通BB’相,此时AA’相经续流二极管VD1、VD2将电能回馈给电源,同时BB’相趋向运行到定转子极轴线C-C’与B-B’重合的位置。以此类推,顺次给A→B→C→D相循环励磁,在惯性和轴向力的作用下,转子将一直逆着励磁顺序旋转,从而完成自同步运行。同理若改变励磁顺序为C→B→A→D,则转子沿顺时针方向转动。由此可以看出, SRM与直流电机不同,其运行方向与相电流方向无关,而仅与相绕组通电顺序有关。 图1-2开关磁阻电机调速系统构成

我国驱动电机类型及其发展现状

我国驱动电机类型及其发展现状 1.驱动电机类型及其发展 驱动电机是电动汽车的关键部件,直接影响整车的动力性及经济性。驱动电机主要包括直流电机和交流电机。目前电动汽车广泛使用交流电机,主要包括:异步电机、开关磁阻电机和永磁电机(包括无刷直流电机和永磁同步电机)。各类型电机主要特点见表1. 车用电机的发展趋势如下:(1)电机本体永磁化:永磁电机具有高转矩密度、高功率密度、高效率、高可靠性等优点。我国具有世界最为丰富的稀土资源,因此高性能永磁电机是我国车用驱动电机的重要发展方向。 (2)电机控制数字化:专用芯片及数字信号处理器的出现,促进了电机控制器的数字化,提高了电机系统的控制精度,有效减小了系统体积。 (3)电机系统集成化:通过机电集成(电机与发动机集成或电机与变速箱集成)和控制器集成,有利于减小驱动系统的重量和体积,可有效降低系统制造成本。 2.国外发展情况根据国外资料介绍 近年来美、欧开发的电动客车多采用交流异步电机,国外典型产品技术参数请见表 2.为了降低车重,电机壳体大多采用铸铝材料,电机恒功率范围较宽,最高转速可达基速的2~2.5倍。 日本近年来问世的电动汽车大多采用永磁同步电机。产品功率等级覆盖3~123kW,电机恒功率范围很宽,最高转速可达基速的5倍。日本近几年开发的电动汽车驱动电机概况见表3. 3.我国发展现状 (1)交流异步电机驱动系统我国已建立了具有自主知识产权异步电机驱动系统的开发平台,形成了小批量生产的开发、制造、试验及服务体系;产品性能基本满足整车需求,大功率异步电机系统已广泛应用于各类电动客车;通过示范运行和小规模市场化应用,产品可靠性得到了初步验证。 (2)开关磁阻电机驱动系统已形成优化设计和自主研发能力,通过合理设计电机结构、改进控制技术,产品性能基本满足整车需求;部分公司已具备年产2000套的生产能力,能满足小批量配套需求,目前部分产品已配套整车示范运行,效果良好。 (3)无刷直流电机驱动系统国内企业通过合理设计及改进控制技术,有效提高了无刷直流电机产品性能,基本满足电动汽车需求;已初步具有机电一体化设计能力。 (4)永磁同步电机驱动系统已形成了一定的研发和生产能力,开发了不同系列产品,可应用于各类电动汽车;产品部分技术指标接近国际先进水平,但总体水平与国外仍有一定差距;基本具备永磁同步电机集成化设计能力;多数公司仍处于小规模试制生产,少数公司已投资建立车用驱动电机系统专用生产线。 (5)永磁电机材料永磁电机的主要材料有钕铁硼磁钢、硅钢等。部分公司掌握了电机转子磁体先装配后充磁的整体充磁技术。国内研制的钕铁硼永磁体最高工作温度可达280℃,但技术水平仍与德国和日本有较大差距。 硅钢是制造电机铁芯的重要磁性材料,其成本占电机本体的20%左右,其厚度对铁耗有较大影响,日本已生产出0.27mm硅钢片用于车用电机,我国仅开发出0.35mm硅钢片。 (6)电机控制器关键部件电机控制器用位置/转速传感器多为旋转变压器,目前基本采用进口产品,我国部分公司已具备旋转变压器的研发生产能力,但产品精度、可靠性与国外仍有差距。IGBT基本依赖进口,价格昂贵,国产车用IGBT尚处于研究阶段。 4.我国驱动电机及其控制器存在的主要问题 (1)电机原材料、控制器核心部件研发能力较弱,依赖进口,如硅钢片、电机高速轴承、位置/转速传感器、IGBT模块等。进口产品成本高,影响电机系统产业化。 (2)我国车用电机的机电集成水平与国外差距较大。控制器集成度较低,体积、重量相对偏大。 (3)我国车用电机系统尚处于起步阶段,制造工艺水平落后,缺乏自动化生产线,造成产品可靠性、

开关磁阻电动机原理

开关磁阻电动机原理 Switched Reluctance Motor 开关磁阻电动机(SR)是近些年发展的新型调速电机,结构简单结实、调速范围宽且性能好,现已广泛用在仪器仪表、家电、电动汽车等领域。 下面通过一个开关磁阻电动机原理模型来介绍工作原理。 双凸极结构 磁阻电机的定子铁芯有六个齿极,由导磁良好的硅钢片冲制后叠成,见下图。 磁阻电机定子铁芯 磁阻电机的转子铁芯有四个齿极,由导磁良好的硅钢片冲制后叠成,见下图。 磁阻电机转子铁芯

与普通电机一样,转子与定子直接有很小缝隙,转子可在定子内自由转动,见下图。 双凸极结构的定子铁芯与转子铁芯 由于定子与转子都有凸起的齿极,这种形式也称为双凸极结构。在定子齿极上绕有线圈(定子绕组),是向电机提供工作磁场的励磁绕组。 定子铁芯上有励磁绕组 在转子上没有线圈,这是磁阻电机的主要特点。在讲电动机工作原理时常用通电导线在磁场中受力来解释电动机旋转的道理,但磁阻电机转子上没有线圈,也无“鼠笼”,那是靠什么力推动转子转动呢?磁阻电动机则是利用磁阻最小原理,也就是磁通总是沿磁阻最小的路径闭合,利用齿极间的吸引

力拉动转子旋转。 三相6/4结构工作原理 下面通过图示来说明转子的工作原理,下面是磁阻电动机的正视图,定子六个齿极上绕有线圈,径向相对的两个线圈连接在一起(标有紫色圆点的线端连接在一起),组成一“相”,该电机有3相,结合定子与转子的极数就称该电机为三相6/4结构。在下图标注的A相、B相、C相线圈仅为后面分析磁路带来方便,并不是连接普通的三相交流电。 磁阻电机励磁绕组分布图 在下面有一组磁阻电动机运转原理动画的截图,从中我们将看到磁阻电动机是如何转动起来的。A 相、B相、C相线圈由开关控制电流通断,图中红色的线圈是通电线圈,黄色的线圈没有电流通过;通过定子与转子的深蓝色线是磁力线;约定转子启动前的转角为0度。 从左面图起,A相线圈接通电源产生磁通,磁力线从最近的转子齿极通过转子铁芯,磁力线可看成极有弹力的线,在磁力的牵引下转子开始异时针转动;中间图是转子转了10度的图,右面图是转到20度的图,磁力一直牵引转子转到30度为止,到了30度转子不再转动,此时磁路最短。

自启动永磁同步电机与开关磁阻电机对比

自启动永磁同步电机与开关磁阻电机对比 1、自启动永磁同步电机 1.1 工作原理 起步过程与异步电机一样,定子绕组三相旋转磁场与转子鼠笼条(铜条)感应电流产生的磁场作用,让电机启动起来,此时永磁体不起作用,当转速起来后,由永磁体与定子旋转磁场作用带动转子旋转。当同步转速稳定后,由于定子磁场转速与转子转速一致,及没有相对运动,不会产生感应电流,鼠笼条(铜条)也就不起作用。 1.2 基本结构 主要由定子铁芯、绕组、机座、端盖、接线盒、转子铁芯、转轴、磁钢等组成。 定子结构转子结构 2、开关磁阻电机 2.1 工作原理 开关磁阻电机磁路始终以“磁阻最小”为转动原则,及当绕组通交流时,会在气隙形成交流磁场,该磁场从定子流动转子,再留回定子形成回路,该回路始终从最小磁阻的路径流过。然后通过控制器依次给三相绕组通电形成旋转磁场,从而带动转子旋转起来。 2.2 基本结构 除转子上没有磁钢外,其余构建与永磁同步电机一致,只是转子形状和绕组排布有差异而已。

3、性能对比 3.1 由于开关磁阻电机定子和转子都有齿槽,气隙磁场畸变比较严重,相比永磁同步电机只有定子开有槽,开关磁阻转矩脉动和电磁噪音大很多。 3.2 自启动永磁同步电机转子有启动绕组,可以直接启动,而开关磁阻电机必须通过控制器才能启动,成本增加,而且需增加控制器安装空间。 3.3 开关磁阻电机由于转子没有安装永磁体,出力全靠定子绕组电流产生,不仅增加了定子绕组和逆变器的负担,也提高了逆变器功率要求,当然成本也会提高。 3.4 永磁同步电机额定效率达95%以上,且高效率区域很宽,而开关磁阻基本在90%左右,高效区也很窄,在负载比较低的工况下,耗电量比较高。 3.5 同功率、转速下,永磁同步电机可以做得比开关磁阻体积小、重量轻。 综上:与开关磁阻电机相比,永磁同步电机的优势更明显,特别是在负载不高的工况下,节能效果比较突出。

家电电机的应用现状及发展趋势

电机是家电产品中的重要零部件,电机及其控制技术的发展对家电产品的升级换代起至关重要的作用。本文中,我们将具体探讨家电电机的应用现状和发展趋势。 家电电机一般采用B级或F级绝缘,应用场合十分广泛。B级绝缘电机的最高温度为130℃。F级绝缘的最高温度为155℃。对电机的性能要求往往包括在相应的家电电器中,例如,洗衣机的能耗标准就包括了对电机的效率要求。 用于各种家用电器的电机,一般均为单相电机,属分马力电机的范畴。如按电源分类,可以分为数种,具体见图1。 现有各种家电电机及其特点 (1)单相感应电机 尽管各种新型电机层出不穷,目前家电产品中使用最多的仍是单相感应电机,约占市场容量的80%以上。单相感应电机的结构简单、节能、容易生产成本低、技术成熟、没有电刷、运转噪音不大、寿命长。单相感应电机有自启动能力,但启动时冲击电流,速度与负载大小有关,效率一般,通常在50%~60%。罩极电机效率一般低于30%。 (2)单相变极感应电机 在家电电机中, 变极电机有一定应用,例如,在北美市场上的搅拌式洗衣机就采用了4/6极双速或4/6/8极三速电容起动电机。在中国国内的波轮式洗衣机则大部分采用4极单速电容运转电机。近年来,才开始出现由艾默生公司提供的4/6极共享绕组双速电容运转电机。长期以来,滚筒洗衣机大都采用2/16极或2/12极独立绕组电容运转电机。目前,单相变极感应电机正在逐渐被串激电机或三相变频感应电机所替代。 (3)无刷直流永磁电机(BLDC) 无刷直流永磁电机(BLDC)近年来在家电电机中得到越来越多的应用,如洗衣机、空调、洗碗机等。其优点是高效率与低噪声。与电子控制器相配合可以进行无级调速。日本在采用无刷直流电机上处于领先地位,其空调及洗衣机广泛地使用BLDC。但由于其没有自启动能力,通常不能脱离电子控制器而单独运行。与同样必须带电子控制的开关磁阻电机、三相感应调频电机相比,控制器的价格相差不大。由于这种电机在高速运转时需要进行弱磁控制,因而其应用受到限制。 (4)三相感应调频电机 由于三相感应调频电机的生产工艺比较成熟,其运行可靠性高。但是在需要兼顾较大范围速度调节时,其高速时的力矩及低速时的效率会受到限制。 (5)开头磁阻电机 开头磁阻电机的特点是转子结构简单,既没有绕组、磁钢,也没有电刷,因此特别适宜于高速及超高速运行,其效率及力矩在大范围调速中可保持较小的变化。缺点是较难控制其噪音,其电子控制器需要特殊的设计。 (6)永磁同步水泵电机 永磁同步水泵电机的特点是泵与电机结合成一体, 电机转子为 两极环形永磁体,没有电子控制器,靠振动启动,旋转方向不定,效率达60%~70%。比传统罩极电机效率提高一倍多,代表了无电子控制器的永磁电机的发展方向。 电机的发展趋势及研究方向 家电电机产品正在向高性能、轻薄短小化、永磁化、无刷化、机电一体化、智能化和组合化发展。 家电电机的应用现状及发展趋势 艾默生(中国)电机有限公司艾默生电机技术中心 费仁言 腾飞 家电电机分类 1 8

永磁同步电机的原理及结构

第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是其在 异步转矩、永磁发电制动转矩、矩起的磁阻转矩和单轴转由转子磁路不对称而引 等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起动 过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其他 的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

最新 开关磁阻电机发展应用简介

开关磁阻电机技术发展及应用简介 F35的通用电气F135发动机

开关磁阻电机(Switched Reluctance Motor, SRM)是随着现代电力电子技术、控制技术及数字计算机技术的发展而出现的一种新型无级调速电机,是典型的机电一体化产品。 Switched Reluctance Motor, SRM开关磁阻电机 Switched Reluctance Drivesystem, SRD 开关磁阻电机驱动系统 《GB/T2900.25-2008电工术语旋转电机》对磁阻电机定义如下: 磁阻电机Reluctance machine 一种同步电机,其中一个部件(通常为静止部件)上装有互相适当排列的电枢绕组和励磁绕组或永久磁铁,而另一个部件(通常为旋转部件)上没有绕组,只具有若干规则的凸起部分。 由于利用了磁阻最小原理,故称为磁阻电动机,又由于线圈电流通断、磁通状态直接受开关控制,故称为开关磁阻电动机。 1983年,英国TASC Drive有限公司将世界第一台SR电机——oIllton装置(7.5KW,1500r/min)商品投放市场 控制方式:电流斩波,电压斩波,角度位置控制等 定子转子极对数:4/2,6/4,8/6,12/8,18/12,24/18 开关磁阻电机技术应用

已经应用行业: 采煤采矿机驱动电机(英国SRD公司最早) 抽油机牵引电机(中国) 装载机牵引电机(美国莱图尔诺,轮毂牵引电机) 电力机车牵引电机(中国,矿用) 电动大巴(英国SRD公司、北京中纺锐力)、电动轿车(日本,主驱动电机,轮毂电机)、电动自行车牵引电机(美国最早,中国), 电动工具(美国百得凿破机)、工业吸尘器(美国)、家用吸尘器(英国戴森)等驱动电机 家用空调,洗衣机 飞机发动机起动机,如美国F35战斗机,芯片厂商microchip 美国的第四代战斗机F一35的主电源系统就采用美国SUNDSTRAND公司的80KW高转速的航空SRM起动/发电机。这些研究成果表明:高速/超高速SRM可达到很高的功率密度,而且有高容错性,高可靠性等优点(美国汉胜公司(Hamilton Sundstrand)) 食品机械,药品反应釜/搅拌设备 尚未应用行业:重型渣土车牵引动力,电动叉车驱动/液压电机,风机,水泵(潜水泵、高压锅炉泵),船舶推进动力,工业机器人动力 国内最早应用研发项目:70年代后期,原纺织部北京纺织机电研究所研制纺织机械牵引动力,原合肥电机厂和合肥工业大学电机系合作研制军用鱼雷推进电机。 国外代表企业:英国开关磁阻电机有限公司(原先属于美国艾默生电

开关磁阻电机的原理及其控制系统

开关磁阻电机的原理及其控制系统 开关磁阻电机80年代初随着电力电子、微电脑和控制理论的迅速发展而发展起来的一种新型调速驱动系统。具有结构简单、运行可靠、成本低、效率高等突出优点,目前已成为交流电机调速系统、直流电机调速系统、无刷直流电机调速系统的强有力的竞争者。 一、开关磁阻电机的工作原理 开关磁阻电机的工作原理遵循磁磁阻最小原理,即磁通总是要沿着磁阻最小路径闭合。因此,它的结构原则是转子旋转时磁路的磁阻要有尽可能大的变化。所以开关磁阻电动机采用凸极定子和凸极转子的双凸极结构,并且定转子极数不同。 开关磁阻电机的定子和转子都是凸极式齿槽结构。定、转子铁芯均由硅钢片冲成一定形状的齿槽,然后叠压而成,其定、转子冲片的结构如图1所示。

图1:开关磁阻电机定、转子结构图 图1所示为12/8极三相开关磁阻电动机,S1. S2是电子开关,VD1, VD2是二极管,是直流电源。 电机定子和转子呈凸极形状,极数互不相等,转子由叠片构成,定子绕组可根据需要采用串联、并联或串并联结合的形式在相应的极上得到径向磁场,转子带有位置检测器以提供转子位置信号,使定子绕组按一定的顺序通断,保持电机的连续运行。电机磁阻随着转子磁极与定子磁极的中心线对准或错开而变化,因为电感与磁阻成反比,当转子磁极在定子磁极中心线位置时,相绕组电感最大,

当转子极间中心线对准定子磁极中心线时,相绕组电感最小。 当定子A相磁极轴线OA与转子磁极轴线O1不重合时,开关S1, S2合上,A相绕组通电,电动机内建立起以OA为轴线的径向磁场,磁通通过定子扼、定子极、气隙、转子极、转子扼等处闭合。通过气隙的磁力线是弯曲的,此时磁路的磁导小于定、转子磁极轴线重合时的磁导,因此,转子将受到气隙中弯曲磁力线的切向磁拉力产生的转矩的作用,使转子逆时针方向转动,转子磁极的轴线O1向定子A相磁极轴线OA趋近。当OA和O1轴线重合时,转子己达到平衡位置,即当A相定、转子极对极时,切向磁拉力消失。此时打开A相开关S1, S2,合上B相开关,即在A相断电的同时B相通电,建立以B相定子磁极为轴线的磁场,电动机内磁场沿顺时针方向转过300,转子在磁场磁拉力的作用下继续沿着逆时针方向转过15,。依此类推,定子绕组A-B-C三相轮流通电一次,转子逆时针转动了一个转子极距Tr(T.=2π/N,),对于三相12/8极开关磁阻电机, T=3600/8=o 45,定子磁极产生的磁场轴线则顺时针移动了3×30'=90'空间角。可见,连续不断地按A-B-C-A的顺序分别给定子各相绕组通电,电动机内磁场轴线沿A-B-C-A的方向不断移动,转子沿A-C-B-A的方向逆时针旋转。如果按 A-C-B-A的顺序给定子各相绕组轮流通电,则磁场沿着A-C-B-A的方向转动,转子则沿着与之相反的A-B-C-A方向顺时针旋转。 二、开关磁阻电机的控制原理 传统的PID控制一方面参数的整定没有实现自动化,另一方面这种控制必须精确地确定对象模型。而开关磁阻电动机( SRM) 得不到精确的数学模型, 控制参数变化和非线性, 使得固定参数的PID 控制不能使开关磁阻电动机控制系统在各种工况下保持设计时的性能指标。

相关文档
最新文档