2019年中考开放探究题、压轴题

合集下载

2019届中考数学总复习:创新、开放与探究型问题

2019届中考数学总复习:创新、开放与探究型问题

2019届中考数学总复习:创新、开放与探究型问题【中考展望】所谓开放探索型问题指的是有些数学问题的条件、结论或解决方法不确定或不唯一,需要根据题目的特点进行分析、探索,从而确定出符合要求的答案(一个、多个或所有答案)或探索出解决问题的多种方法.由于开放探究型问题对考查学生思维能力和创造能力有积极的作用,是近几年中考命题的一个热点.通常这类题目有以下几种类型:条件开放与探索,结论开放和探索,条件与结论都开放与探索及方案设计、命题组合型、问题开放型等.【方法点拨】由于开放探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答.由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律.2.反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致.3.分类讨论法.当命题的题设和结论不唯一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果.4.类比猜想法.即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证.以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用.【典型例题】类型一、探究规律1.观察下列各式:222211⨯=+,333322⨯=+,444433⨯=+,555544⨯=+,…想一想,什么样的两数之积等于这两数之和?设n表示正整数,用关于n的等式表示这个规律.【思路点拨】所给各式中的两个数中,一个是分数,一个是整数,且分数的分子比分母大1,分子与整数相等,因此得出规律.【答案与解析】所给各式中的两个数中,一个是分数,一个是整数,且分数的分子比分母大1,分子与整数相等,因此得到规律:11(1)(1)n nn nn n+++=++(n为正整数)【总结升华】这个规律是否正确呢?可将等式左右两边分别化简,即能得出结论.对于“数字规律”的观察,要善于发现其中的变量与不变量,以及变量与项数之间的关系,将规律用代数式表示出来.举一反三:【变式】(2015秋•日照期中)如图,把一条绳子折成3折,用剪刀从中剪断,如果剪一刀得到4条绳子,如果剪两刀得到7条绳子,如果剪三刀得到10条绳子,…,依照这种方法把绳子剪n刀,得到的绳子的条数为()A.n B.4n+5 C.3n+1 D.3n+4【答案】C【解析】解:设段数为x则依题意得:n=0时,x=1,n=1,x=4,n=2,x=7,n=3,x=10,…所以当n=n时,x=3n+1.故选:C.类型二、条件开放型2.如图所示,四边形ABCD是矩形,O是它的中心,E,F是对角线AC上的点.(1)若________________________,则△DEC≌△BFA(请你填上能使结论成立的一个条件);(2)证明你的结论.【思路点拨】(1)已知了一边AD=BC,和一角(AD∥BC,∠DAC=∠BCA)相等.根据全等三角形的判定AAS、SAS、ASA等,只要符合这些条件的都可以.(2)按照(1)中的条件根据全等三角形的判定进行证明即可.【答案与解析】解:(1)AE=CF;(OE=OF;DE⊥AC,BF⊥AC;DE∥BF等等)(2)以AE=CF为例.∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∠DCE=∠BAF.又∵AE=CF.∴AC-AE=AC-CF.∴AF=CE,∴△DEG≌△BAF.【总结升华】这是一道探索条件、补充条件的开放型试题,解决这类问题的一般方法是:从结论出发,由果寻因,逆向推理,探寻出使结论成立的条件;有时也采取把可能产生结论的条件一一列出,逐个分析考察.举一反三:【高清课堂:创新、开放与探究型问题例1】【变式】如图,飞机沿水平方向(A,B两点所在直线)飞行,前方有一座高山,为了避免飞机飞行过低,就必须测量山顶M到飞行路线AB的距离MN.飞机能够测量的数据有俯角和飞行距离(因安全因素,飞机不能飞到山顶的正上方N处才测飞行距离),请设计一个求距离MN的方案,要求:(1)指出需要测量的数据(用字母表示,并在图中标出);(2)用测出的数据写出求距离MN的步骤.【答案】解:此题为开放题,答案不唯一,只要方案设计合理,可参照给分⑴如图,测出飞机在A处对山顶的俯角为α,测出飞机在B处对山顶的俯角为β,测出AB的距离为d,连接AM,BM .⑵第一步,在AMN Rt ∆中,AN MN =αtan ∴αtan MN AN =; 第二步,在BMN Rt ∆中,BNMN =βtan ∴βtan MN BN =; 其中BN d AN +=,解得αββαtan tan tan tan -⋅⋅=d MN . 类型三、结论开放型3.已知:如图(a),Rt △ABC ≌Rt △ADE ,∠ABC =∠ADE =90°,试以图中标有字母的点为端点,连接两条线段,如果你所连接的两条线段满足相等、垂直或平行关系中的一种,那么请你把它写出来并证明.【思路点拨】此题需分三种情况讨论:第一种相等CD=BE ,第二种垂直AF ⊥BD ,第三种是平行DB ∥CE .首先利用全等三角形的性质,再利用三角形全等的判定定理分别进行证明即可.【答案与解析】解:可以写出的结论有:CD =BE ,DB ∥CE ,AF ⊥BD ,AF ⊥CE 等.(1)如图(b),连接CD ,BE ,得CD =BE .证明:∵△ABC ≌△ADE ,∴AB =AD ,AC =AE .又∠CAB =∠EAD ,∴∠CAD =∠E 1AB .∴△ADC ≌△ABE .∴CD =BE .(2)如图(c),连接DB ,CE ,得DB ∥CE .证明:∵△ABC ≌△ADE ,∴AD =AB .∴∠ADB =∠ABD .∵∠ABC =∠ADE ,∴∠BDF =∠FBD .由AC =AE 可得∠ACE =∠AEC .∵∠ACB =∠AED ,∴∠FCE =∠FEC .∵∠BDF+∠FBD =∠FCE+∠FEC ,∴∠FCE =∠DBF .∴DB ∥CE .(3)如图(d),连接DB ,AF ,得AF ⊥BD .∵△ABC ≌△ADE ,∴AD =AB ,∠ABC =∠ADE =90°.又∵AF =AF ,∴△ADF ≌△ABF .∴∠DAF =∠BAF .∴AF ⊥BD .(4)如图(e),连接CE 、AF ,得AF ⊥CE .同(3)得∠DAF =∠BAF .可得∠CAF =∠EAF .∴AF ⊥BD .【总结升华】本题考查了全等三角形的判定及性质;要对全等三角形的性质及三角形全等的判断定理进行熟练掌握、反复利用,达到举一反三.举一反三:【高清课堂:创新、开放与探究型问题 例2】【变式】数学课上,李老师出示了这样一道题目:如图1,正方形ABCD 的边长为12,P 为边BC 延长线上的一点,E 为DP 的中点,DP 的垂直平分线交边DC 于M ,交边AB 的延长线于N.当CP=6时,EM 与EN 的比值是多少? 经过思考,小明展示了一种正确的解题思路:过E 作直线平行于BC 交DC ,AB 分别于F ,G ,如图2,则可得:DF DE FC EP=,因为DE EP =,所以DF FC =.可求出EF 和EG 的值,进而可求得EM 与EN 的比值. (1) 请按照小明的思路写出求解过程.(2) 小东又对此题作了进一步探究,得出了DP MN =的结论.你认为小东的这个结论正确吗?如果正确,请给予证明;如果不正确,请说明理由.【答案】(1)解:过E 作直线平行于BC 交DC ,AB 分别于点F ,G , 则DF DE FC EP =,EM EF EN EG=,12GF BC ==. ∵DE EP =,∴DF FC =. ∴116322EF CP ==⨯=,12315EG GF EF =+=+=. ∴31155EM EF EN EG ===. (2)证明:作MH ∥BC 交AB 于点H ,则MH CB CD ==,90MHN ∠=︒.∵1809090DCP ∠=︒-︒=︒,∴DCP MHN ∠=∠.∵90MNH CMN DME CDP ∠=∠=∠=︒-∠,90DPC CDP ∠=︒-∠,∴DPC MNH ∠=∠.∴DPC MNH ∆≅∆.∴DP MN =.类型四、动态探究型4.(2016•平南县二模)已知:在△AOB 与△COD 中,OA=OB ,OC=OD ,∠AOB=∠COD=90°.(1)如图1,点C 、D 分别在边OA 、OB 上,连结AD 、BC ,点M 为线段BC 的中点,连结OM ,则线段AD 与OM 之间的数量关系是 ,位置关系是 ;(2)如图2,将图1中的△COD 绕点O 逆时针旋转,旋转角为α(0°<α<90°).连结AD 、BC ,点M 为线段BC 的中点,连结OM .请你判断(1)中的两个结论是否仍然成立.若成立,请证明;若不成立,请说明理由;(3)如图3,将图1中的△COD 绕点O 逆时针旋转到使△COD 的一边OD 恰好与△AOB 的边OA 在同一条直线上时,点C 落在OB 上,点M 为线段BC 的中点.请你判断(1)中线段AD 与OM 之间的数量关系是否发生变化,写出你的猜想,并加以证明.【思路点拨】(1)AD 与OM 之间的数量关系为AD=2OM ,位置关系是AD ⊥OM ;(2)(1)中的两个结论仍然成立,利用中位线定理得到FC=2OM ,利用SAS 得到三角形AOD 与三角形FOC 全等,利用全等三角形的对应边相等得到FC=AD ,等量代换得到AD=2OM ;由OM 为三角形BCF 的中位线,利用中位线定理得到OM与CF平行,利用两直线平行同位角相等得到∠BOM=∠F,由全等三角形的对应角相等得到∠F=∠OAD,等量代换得到∠BOM=∠OAD,根据∠BOM与∠AOM互余,得到∠OAD与∠AOM互余,即可确定出OM与AD垂直,得证;(3)(1)中线段AD与OM之间的数量关系没有发生变化,理由为:如图3所示,延长DC交AB于E,连结ME,过点E作EN⊥AD于N,由三角形COD与三角形AOB都为等腰直角三角形,利用等腰直角三角形的性质得到四个角为45度,进而得到三角形MCE与三角形AED为等腰直角三角形,根据EN为直角三角形ADE斜边上的中线得到AD=2EN,再利用三个角为直角的四边形为矩形得到四边形OMEN为矩形,可得出EN=OM,等量代换得到AD=2OM.【答案与解析】解:(1)线段AD与OM之间的数量关系是AD=2OM,位置关系是AD⊥OM;(2)(1)的两个结论仍然成立,理由为:证明:如图2,延长BO到F,使FO=BO,连结CF,∵M为BC中点,O为BF中点,∴MO为△BCF的中位线,∴FC=2OM,∵∠AOB=∠AOF=∠COD=90°,∴∠AOB+∠BOD=∠AOF+∠AOC,即∠AOD=∠FOC,在△AOD和△FOC中,,∴△AOD≌△FOC(SAS),∴FC=AD,∴AD=2OM,∵MO为△BCF的中位线,∴MO∥CF,∴∠MOB=∠F,又∵△AOD≌△FOC,∴∠DAO=∠F,∵∠MOB+∠AOM=90°,∴∠DAO+∠AOM=90°,即AD⊥OM;(3)(1)中线段AD与OM之间的数量关系没有发生变化,理由为:证明:如图3,延长DC交AB于E,连结ME,过点E作EN⊥AD于N,∵OA=OB,OC=OD,∠AOB=∠COD=90°,∴∠A=∠D=∠B=∠BCE=∠DCO=45°,∴AE=DE,BE=CE,∠AED=90°,∴DN=AN ,∴AD=2NE ,∵M 为BC 的中点,∴EM ⊥BC ,∴四边形ONEM 是矩形.∴NE=OM ,∴AD=2OM .故答案为:AD=2OM ;AD ⊥OM .【总结升华】此题考查了几何变换综合题,涉及的知识有:全等三角形的判定与性质,等腰直角三角形的判定与性质,三角形的中位线定理,是一道多知识点探究性试题.类型五、创新型5.认真观察图3的4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征.特征1:_________________________________________________;特征2:_________________________________________________.(2)请在图4中设计出你心中最美丽的图案,使它也具备你所写出的上述特征【思路点拨】本题主要考查轴对称图形,中心对称图形的知识点,以及学生的观察能力及空间想象能力.【答案与解析】(1)特征1:都是轴对称图形;特征2:都是中心对称图形;特征3:这些图形的面积都等于4个单位面积等.(2)满足条件的图形有很多,只要画正确一个,就可以得满分.图5【总结升华】本题为开放型试题,答案并不唯一,只要考生能够写出一种符合要求的情景即可,该题为考生提供了一个广阔的发挥空间,但是学生必须通过前四个图形发现其中蕴涵的规律,依照此规律来画出自己想象中的美妙图形.【巩固练习】一、选择题1.若自然数n 使得三个数的加法运算“n+(n+1)+(n+2)”产生进位现象,则称n 为“连加进位数”.例如:2不是“连加进位数”,因为2+3+4=9不产生进位现象;4是“连加进位数”,因为4+5+6=15产生进位现象;51是“连加进位数”,因为51+52+63=156产生进位现象.如果从0,1,2,…,99这100个自然数中任取一个数,那么取到“连加进位数”的概率是( )A .0.88B .0.89C .0.90D .0.912.如图,点A ,B ,P 在⊙O 上,且∠APB =50°,若点M 是⊙O 上的动点,要使△ABM 为等腰三角形,则所有符合条件的点M 有( )A .1个B .2个C .3个D .4个图4 图33.(2016秋•永定区期中)下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑧个图形中棋子的颗数为( )A .226B .181C .141D .106二、填空题4.(2015秋•淮安校级期中)电子跳蚤游戏盘为△ABC,AB=8,AC=9,BC=10,如果电子跳蚤开始时在BC 边上的P 0点,BP 0=4.第一步跳蚤跳到AC 边上P 1点,且CP 1=CP 0;第二步跳蚤从P 1跳到AB 边上P 2点,且AP 2=AP 1;第三步跳蚤从P 2 跳回到BC 边上P 3点,且BP 3=BP 2;…跳蚤按上述规则跳下去,第2015次落点为P 2016,则P 3与P 2016之间的距离为 .5.下图为手的示意图,在各个手指间标记字母A ,B ,C ,D ,请你按图中箭头所指方向(如A →B →C →D →C →B →A →B →C →…的方式)从A 开始数连续的正整数1,2,3,4,…,当数到12时,对应的字母是________;当字母C 第201次出现时,恰好数到的数是________;当字母C 第2n+1次出现时(n 为正整数),恰好数到的数是________(用含n 的代数式表示).6. (1)如图(a),∠ABC =∠DCB ,请补充一个条件:________,使△ABC ≌△DCB .(2)如图(b),∠1=∠2,请补充一个条件:________,使△ABC ≌△ADE .三、解答题7.如图所示,已知在梯形ABCD 中,AD ∥BC ,AB =DC ,对角线AC 和BD 相交于点O ,E 是BC 边上一个动点(点E 不与B ,C 两点重合),EF ∥BD 交AC 于点F ,EG ∥AC 交BD 于点G .(1)求证:四边形EFOG 的周长等于2OB ;(2)请你将上述题目的条件“梯形ABCD 中,AD ∥BC ,AB =DC ”改为另一种四边形,其他条件不变,使得结论“四边形EFOG 的周长等于2OB ”仍成立,并将改编后的题目画出图形,写出已知、求证,不必证明.8.如图所示,平面直角坐标系内有两条直线1l ,2l ,直线1l 的解析式为213y x =-+.如果将坐标纸折叠,使直线1l 与2l 重合,此时点(-2,0)与点(0,2)也重合.(1)求直线2l 的解析式;(2)设直线1l 与2l 相交于点M .问:是否存在这样的直线:l y x t =+,使得如果将坐标纸沿直线l 折叠,点M 恰好落在x 轴上?若存在,求出直线l 的解析式;若不存在,请说明理由.9.(2015•黄陂区校级模拟)正方形ABCD 中,将一个直角三角板的直角顶点与点A 重合,一条直角边与边BC 交于点E (点E 不与点B 和点C 重合),另一条直角边与边CD 的延长线交于点F .(1)如图①,求证:AE=AF ;(2)如图②,此直角三角板有一个角是45°,它的斜边MN 与边CD 交于G ,且点G 是斜边MN 的中点,连接EG ,求证:EG=BE+DG ;(3)在(2)的条件下,如果=,那么点G 是否一定是边CD 的中点?请说明你的理由. 10. (2016•天门)如图①,半圆O 的直径AB=6,AM 和BN 是它的两条切线,CP 与半圆O 相切于点P ,并于AM ,BN 分别相交于C ,D 两点.(1)请直接写出∠COD 的度数;(2)求AC•BD 的值;(3)如图②,连接OP 并延长交AM 于点Q ,连接DQ ,试判断△PQD 能否与△ACO 相似?若能相似,请求AC :BD 的值;若不能相似,请说明理由.【答案与解析】一、选择题1.【答案】A;【解析】不是“连加进位数”的有“0,1,2,10,11,12,20,21,22,30,31,32”共有12个.∴P(取到“连加进位数”)=100120.88 100-=.2.【答案】D;【解析】如图,①过圆点O作AB的垂线交AB和APB于M1,M2.②以B为圆心AB为半径作弧交圆O于M3.③以A为圆心,AB为半径弧作弧交圆O于M4.则M1,M2,M3,M4都满足要求.3.【答案】C;【解析】设第n个图形中棋子的颗数为a n(n为正整数),观察,发现规律:a1=1,a2=1+3+2=6,a3=1+3+5+4+3=16,…,∴a n=1+3+5+…+(2n﹣1)+(2n﹣2)+…+n=n2+=n2﹣n+1,当n=8时,a8=×82﹣×8+1=141.二、填空题4.【答案】1.【解析】∵BC=10,BP0=4,知CP0=6,∴CP1=6.∵AC=9,∴AP2=AP1=3.∵AB=8,∴BP3=BP2=5.∴CP4=CP3=5,∴AP4=4.∴AP5=AP4=4,∴BP5=4.∴BP6=BP5=4.此时P6与P0重合,即经过6次跳,电子跳蚤回到起跳点.2016÷6=336,即P2016与P0重合,∴P3与P2016之间的距离为P3P0=1.故答案为:1.5.【答案】B; 603; 6n+3.【解析】由题意知A→B→C→D→C→B→A→B→C→D→C→B→A→B…,每隔6个数重复一次“A→B→C→D→C→B→”,所以,当数到12时对应的字母是B;当字母C第201次出现时,恰好数到的数是201×3=603;当字母C第2n+1次出现时(n为正整数),恰好数到的数是(2n+1)×3=6n+3.6.【答案】答案不唯一.(1)如图(a)中∠A=∠D,或AB=DC;(2)图(b)中∠D=∠B,或AB ACAD AE=等.三、解答题7.【答案与解析】(1)证明:∵四边形ABCD是梯形,AD∥BC,AB=CD,∴∠ABC=∠DCB.又∵BC=CB,AB=DC,∴△ABC ≌△DCB .∴∠1=∠2.又∵ GE ∥AC ,∴∠2=∠3.∴∠1=∠3.∴EG =BG .∵EG ∥OC ,EF ∥OB ,∴四边形EGOF 是平行四边形.∴EG =OF ,EF =OG .∴四边形EGOF 的周长=2(OG+GE)=2(OG+GB)=2OB .(2)方法1:如图乙,已知矩形ABCD 中,对角线AC ,BD 相交于点O ,E 为BC 上一个动点(点E 不与B ,C 两点重合),EF ∥BD ,交AC 于点F ,EG ∥AC 交BD 于点G .求证:四边形EFOG 的周长等于2OB .图略.方法2:如图丙,已知正方形ABCD 中,……其余略.8. 【答案与解析】解:(1)直线1l 与y 轴交点的坐标为(0,1).由题意,直线1l 与2l 关于直线y x =-对称,直线2l 与x 轴交点的坐标为(-1,0).又∵直线1l 与直线y x =-的交点为(-3,3),∴直线2l 过点(-1,0)和(3,3).设直线2l 的解析式为y =kx+b .则有0,3 3.k b k b -+=⎧⎨-+=⎩ 解得3,23.2k b ⎧=-⎪⎪⎨⎪=-⎪⎩ 所求直线2l 的解析式为3322y x =--. (2)∵直线l 与直线y x =-互相垂直,且点M(-3,3)在直线y x =-上,∴如果将坐标纸沿直线l 折叠,要使点M 落在x 轴上,那么点M 必须与坐标原点O 重合,此时直线l 过线段OM 的中点33,22⎛⎫-- ⎪⎝⎭. 将32x =-,32y =代入y =x+t ,解得t =3. ∴直线l 的解析式为y =x+3.9.【答案与解析】解:(1)如图①,∵四边形ABCD 是正方形,∴∠B=∠BAD=∠ADC=∠C=90°,AB=AD .∵∠EAF=90°,∴∠EAF=∠BAD ,∴∠EAF ﹣∠EAD=∠BAD ﹣∠EAD ,∴∠BAE=∠DAF .在△ABE 和△ADF 中,∴△ABE≌△ADF(ASA)∴AE=AF;(2)如图②,连接AG,∵∠MAN=90°,∠M=45°,∴∠N=∠M=45°,∴AM=AN.∵点G是斜边MN的中点,∴∠EAG=∠NAG=45°.∴∠EAB+∠DAG=45°.∵△ABE≌△ADF,∴∠BAE=∠DAF,AE=AF,∴∠DAF+∠DAG=45°,即∠GAF=45°,∴∠EAG=∠FAG.在△AGE和AGF中,,∴△AGE≌AGF(SAS),∴EG=GF.∵GF=GD+DF,∴GF=GD+BE,∴EG=BE+DG;(3)G不一定是边CD的中点.理由:设AB=6k,GF=5k,BE=x,∴CE=6k﹣x,EG=5k,CF=CD+DF=6k+x,∴CG=CF﹣GF=k+x,在Rt△ECG中,由勾股定理,得(6k﹣x)2+(k+x)2=(5k)2,解得:x1=2k,x2=3k,∴CG=4k或3k.∴点G不一定是边CD的中点.10.【答案与解析】解:(1)∠COD=90°.理由:如图①中,∵AB是直径,AM、BN是切线,∴AM⊥AB,BN⊥AB,∴AM∥BN,∵CA、CP是切线,∴∠ACO=∠OCP,同理∠ODP=∠ODB,∵∠ACD+∠BDC=180°,∴2∠OCD+2∠ODC=180°,第 11 页 共 12 页 ∴∠OCD+∠ODC=90°,∴∠COD=90°.(2)如图①中,∵AB 是直径,AM 、BN 是切线,∴∠A=∠B=90°,∴∠ACO+∠AOC=90°,∵∠COD=90°,∴∠BOD+∠AOC=90°,∴∠ACO=∠BOD ,∴RT △AOC ∽RT △BDO , ∴=,即AC•BD=AO•BO,∵AB=6,∴AO=BO=3,∴AC•BD=9.(3)△PQD 能与△ACQ 相似.∵CA 、CP 是⊙O 切线,∴AC=CP ,∠1=∠2,∵DB 、DP 是⊙O 切线,∴DB=DP ,∠B=∠OPD=90°,OD=OD , ∴RT △ODB ≌RT △ODP ,∴∠3=∠4,①如图②中,当△PQD ∽△ACO 时,∠5=∠1, ∵∠ACO=∠BOD ,即∠1=∠3,∴∠5=∠4,∴DQ=DO ,∴∠PDO=∠PDQ ,∴△DCQ ≌△DCO ,∴∠DCQ=∠2,∵∠1+∠2+∠DCQ=180°,∴∠1=60°=∠3,在RT △ACO ,RT △BDO 中,分别求得AC=,BD=3, ∴AC :BD=1:3.②如图②中,当△PQD∽△AOC时,∠6=∠1,∵∠2=∠1,∴∠6=∠2,∴CO∥QD,∴∠1=∠CQD,∴∠6=∠CQD,∴CQ=CD,∵S△CDQ =•CD•PQ=•CQ•AB,∴PQ=AB=6,∵CO∥QD,∴=,即=,∴AC:BD=1:2第12 页共12 页。

中考数学压轴题十大题型(含详细答案)

中考数学压轴题十大题型(含详细答案)

一、中考数学压轴题1.如图,在平面直角坐标系中,点O 为坐标原点,直线y =-x + m 交 y 轴的正半轴于点A ,交x 轴的正半轴于点B ,过点A 的直线AF 交x 轴的负半轴于点F ,∠AFO=45°. (1)求∠FAB 的度数;(2)点 P 是线段OB 上一点,过点P 作 PQ ⊥OB 交直线 FA 于点Q ,连接 BQ ,取 BQ 的中点C ,连接AP 、AC 、CP ,过点C 作 CR ⊥AP 于点R ,设 BQ 的长为d ,CR 的长为h ,求d 与 h 的函数关系式(不要求写出自变量h 的取值范围);(3)在(2)的条件下,过点 C 作 CE ⊥OB 于点E ,CE 交 AB 于点D ,连接 AE ,∠AEC=2∠DAP ,EP=2,作线段 CD 关于直线AB 的对称线段DS ,求直线PS 与直线 AF 的交点K 的坐标.2.已知:如图,在平面直角坐标系中,点O 为坐标原点,()2,0C .直线26y x =+与x 轴交于点A ,交y 轴于点B .过C 点作直线AB 的垂线,垂足为E ,交y 轴于点D . (1)求直线CD 的解析式;(2)点G 为y 轴负半轴上一点,连接EG ,过点E 作EH EG ⊥交x 轴于点H .设点G 的坐标为()0,t ,线段AH 的长为d .求d 与t 之间的函数关系式(不要求写出自变量的取值范围)(3)过点C 作x 轴的垂线,过点G 作y 轴的垂线,两线交于点M ,过点H 作HN GM ⊥于点N ,交直线CD 于点K ,连接MK ,若MK 平分NMB ∠,求t 的值.3.如图1,抛物线2(0)y ax bx c a =++≠的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,点E 是BD 上方抛物线上的一点,连接AE 交DB 于点F ,若AF=2EF ,求出点E 的坐标.(3)如图3,点M 的坐标为(32,0),点P 是对称轴左侧抛物线上的一点,连接MP ,将MP 沿MD 折叠,若点P 恰好落在抛物线的对称轴CE 上,请求出点P 的横坐标.4.如图,在梯形ABCD 中,AD//BC ,AB=CD=AD=5,cos 45B =,点O 是边BC 上的动点,以OB 为半径的O 与射线BA 和边BC 分别交于点E 和点M ,联结AM ,作∠CMN=∠BAM ,射线MN 与边AD 、射线CD 分别交于点F 、N .(1)当点E 为边AB 的中点时,求DF 的长;(2)分别联结AN 、MD ,当AN//MD 时,求MN 的长;(3)将O 绕着点M 旋转180°得到'O ,如果以点N 为圆心的N 与'O 都内切,求O 的半径长.5.如图,在平面直角坐标系中,直线6y x =+与x 轴交于点A ,与y 轴交于点B ,点C 在x 轴正半轴上,2ABC ACB ∠=∠.(1)求直线BC 的解析式;(2)点D 是射线BC 上一点,连接AD ,设点D 的横坐标为t ,ACD ∆的面积为S ()0S ≠,求S 与t 的函数解析式,并直接写出自变量t 的取值范围;(3)在(2)的条件下,AD 与y 轴交于点E ,连接CE ,过点B 作AD 的垂线,垂足为点H ,直线BH 交x 轴于点F ,交线段CE 于点M ,直线DM 交x 轴于点N ,当:7:12NF FC =时,求直线DM 的解析式.6.在梯形ABCD 中,//AD BC ,90B ∠=︒,45C ∠=︒,8AB =,14BC =,点E 、F 分别在边AB 、CD 上,//EF AD ,点P 与AD 在直线EF 的两侧,90EPF ∠=︒,PE PF =,射线EP 、FP 与边BC 分别相交于点M 、N ,设AE x =,MN y =.(1)求边AD 的长;(2)如图,当点P 在梯形ABCD 内部时,求关于x 的函数解析式,并写出定义域; (3)如果MN 的长为2,求梯形AEFD 的面积.7.如图,已知正方形ABCD 中,4,BC AC BD =、相交于点O ,过点A 作射线AM AC ⊥,点E 是射线AM 上一动点,连接OE 交AB 于点F ,以OE 为一边,作正方形OEGH ,且点A 在正方形OEGH 的内部,连接DH .(1)求证:EDO EAO ∆≅∆;(2)设BF x =,正方形OEGH 的边长为y ,求y 关于x 的函数关系式,并写出定义域;(3)连接AG ,当AEG ∆是等腰三角形时,求BF 的长.8.问题提出(1)如图①,在ABC 中,42,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.9.如图,在ABC ∆中,14AB =,45B ∠=︒,4tan 3A =,点D 为AB 中点.动点P 从点D 出发,沿DA 方向以每秒1个单位长度的速度向终点A 运动,点P 关于点D 对称点为点Q ,以PQ 为边向上作正方形PQMN .设点P 的运动时间为t 秒.(1)当t =_______秒时,点N 落在AC 边上.(2)设正方形PQMN 与ABC ∆重叠部分面积为S ,当点N 在ABC ∆内部时,求S 关于t 的函数关系式.(3)当正方形PQMN 的对角线所在直线将ABC ∆的分为面积相等的两部分时,直接写出t 的值.10.对于平面直角坐标系xOy 中的任意点()P x y ,,如果满足x y a += (x ≥0,a 为常数),那么我们称这样的点叫做“特征点”.(1)当2≤a ≤3时,①在点(1,2),(1,3),(2.5,0)A B C 中,满足此条件的特征点为__________________;②⊙W 的圆心为(,0)W m ,半径为1,如果⊙W 上始终存在满足条件的特征点,请画出示意图,并直接写出m 的取值范围;(2)已知函数()10Z x x x=+>,请利用特征点求出该函数的最小值.11.如图,在平面直角坐标系中,点(1,2)A ,(5,0)B ,抛物线22(0)y ax ax a =->交x 轴正半轴于点C ,连结AO ,AB .(1)求点C 的坐标;(2)求直线AB 的表达式; (3)设抛物线22(0)y ax ax a =->分别交边BA ,BA 延长线于点D ,E .①若2AE AO =,求抛物线表达式;②若CDB △与BOA △相似,则a 的值为 .(直接写出答案)12.如图1,在平面直角坐标系中,抛物线239334y x x =--x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C . (1)过点C 的直线5334y x =-x 轴于点H ,若点P 是第四象限内抛物线上的一个动点,且在对称轴的右侧,过点P 作//PQ y 轴交直线CH 于点Q ,作//PN x 轴交对称轴于点N ,以PQ PN 、为邻边作矩形PQMN ,当矩形PQMN 的周长最大时,在y 轴上有一动点K ,x 轴上有一动点T ,一动点G 从线段CP 的中点R 出发以每秒1个单位的速度沿R K T →→的路径运动到点T ,再沿线段TB 以每秒2个单位的速度运动到B 点处停止运动,求动点G 运动时间的最小值:(2)如图2, 将ABC ∆绕点B 顺时针旋转至A BC ''∆的位置, 点A C 、的对应点分别为A C ''、,且点C '恰好落在抛物线的对称轴上,连接AC '.点E 是y 轴上的一个动点,连接AE C E '、, 将AC E ∆'沿直线C E '翻折为A C E ∆'', 是否存在点E , 使得BAA ∆'为等腰三角形?若存在,请求出点E 的坐标;若不存在,请说明理由.13.(1)如图1,A 是⊙O 上一动点,P 是⊙O 外一点,在图中作出PA 最小时的点A . (2)如图2,Rt △ABC 中,∠C =90°,AC =8,BC =6,以点C 为圆心的⊙C 的半径是3.6,Q 是⊙C 上一动点,在线段AB 上确定点P 的位置,使PQ 的长最小,并求出其最小值. (3)如图3,矩形ABCD 中,AB =6,BC =9,以D 为圆心,3为半径作⊙D ,E 为⊙D 上一动点,连接AE ,以AE 为直角边作Rt △AEF ,∠EAF =90°,tan ∠AEF =13,试探究四边形ADCF 的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由.14.(问题探究)课堂上老师提出了这样的问题:“如图①,在ABC 中,108BAC ∠=︒,点D 是BC 边上的一点,7224BAD BD CD AD ∠=︒==,,,求AC 的长”.某同学做了如下的思考:如图②,过点C 作CE AB ∥,交AD 的延长线于点E ,进而求解,请回答下列问题:(1)ACE ∠=___________度;(2)求AC 的长.(拓展应用)如图③,在四边形ABCD 中,12075BAD ADC ∠=︒∠=︒,,对角线AC BD 、相交于点E ,且AC AB ⊥,22EB ED AE ==,,则BC 的长为_____________.15. 在平面直角坐标系中,点O 为坐标原点,直线y =﹣x+4与x 轴交于点A ,过点A 的抛物线y =ax 2+bx 与直线y =﹣x+4交于另一点B ,且点B 的横坐标为1.(1)该抛物线的解析式为;(2)如图1,Q 为抛物线上位于直线AB 上方的一动点(不与B 、A 重合),过Q 作QP ⊥x 轴,交x 轴于P ,连接AQ ,M 为AQ 中点,连接PM ,过M 作MN ⊥PM 交直线AB 于N ,若点P 的横坐标为t ,点N 的横坐标为n ,求n 与t 的函数关系式;在此条件下,如图2,连接QN 并延长,交y 轴于E ,连接AE ,求t 为何值时,MN ∥AE .(3)如图3,将直线AB 绕点A 顺时针旋转15度交抛物线对称轴于点C ,点T 为线段OA 上的一动点(不与O 、A 重合),以点O 为圆心、以OT 为半径的圆弧与线段OC 交于点D ,以点A 为圆心、以AT 为半径的圆弧与线段AC 交于点F ,连接DF .在点T 运动的过程中,四边形ODFA 的面积有最大值还是有最小值?请求出该值.16.如图,抛物线25y ax bx =+-交x 轴于点A 、B (A 在B 的左侧),交y 轴于点C ,且OB OC =,()2,0A -.(1)求抛物线的解析式;(2)点P 为第四象限抛物线上一点,过点P 作y 轴的平行线交BC 于点D ,设P 点横坐标为t ,线段PD 的长度为d ,求d 与t 的函数关系式.(不要求写出t 的取值范围) (3)在(2)的条件下,F 为BP 延长线上一点,且45PFC ∠=︒,连接OF 、CP 、PB ,FOB ∆的面积为3600169,求PBC ∆的面积.17.如图①,△ABC是等腰直角三角形,在两腰AB、AC外侧作两个等边三角形ABD和ACE,AM和AN分别是等边三角形ABD和ACE的角平分线,连接CM、BN,CM与AB交于点P.(1)求证:CM=BN;(2)如图②,点F为角平分线AN上一点,且∠CPF=30°,求证:△APF∽△AMC;(3)在(2)的条件下,求PFBN的值.18.如图,在⊙O中,直径AB=10,tanA=3.(1)求弦AC的长;(2)D是AB延长线上一点,且AB=kBD,连接CD,若CD与⊙O相切,求k的值;(3)若动点P以3cm/s的速度从A点出发,沿AB方向运动,同时动点Q以32cm/s的速度从B点出发沿BC方向运动,设运动时间为t (0<t<103),连结PQ.当t为何值时,△BPQ为Rt△?19.如图,在矩形ABCD中,点E为BC的中点,连接AE,过点D作DF AE⊥于点F,过点C作CN DF⊥于点N,延长CN交AD于点M.(1)求证:AM MD=(2)连接CF,并延长CF交AB于G①若2AB=,求CF的长度;②探究当ABAD为何值时,点G恰好为AB的中点.20.在一次数学课上,李老师让同学们独立完成课本第23页第七题选择题(2)如图 1,如果 AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=()A.180° B.270° C.360° D.540°(1)请写出这道题的正确选项;(2)在同学们都正确解答这道题后,李老师对这道题进行了改编:如图2,AB∥EF,请直接写出∠BAD,∠ADE,∠DEF之间的数量关系.(3)善于思考的龙洋同学想:将图1平移至与图2重合(如图3所示),当AD,ED分别平分∠BAC,∠CEF时,∠ACE与∠ADE之间有怎样的数量关系?请你直接写出结果,不需要证明.(4)彭敏同学又提出来了,如果像图4这样,AB∥EF,当∠ACD=90°时,∠BAC、∠CDE 和∠DEF之间又有怎样的数量关系?请你直接写出结果,不需要证明.21.如图1,以AB为直径作⊙O,点C是直径AB上方半圆上的一点,连结AC,BC,过点C作∠ACB的平分线交⊙O于点D,过点D作AB的平行线交CB的延长线于点E.(1)如图1,连结AD,求证:∠ADC=∠DEC.(2)若⊙O的半径为5,求CA•CE的最大值.(3)如图2,连结AE,设tan∠ABC=x,tan∠AEC=y,①求y关于x的函数解析式;②若CBBE=45,求y的值.22.发现来源于探究.小亮进行数学探究活动,作边长为a的正方形ABCD和边长为b的正方形AEFG(a>b),开始时,点E在AB上,如图1.将正方形AEFG绕点A逆时针方向旋转.(1)如图2,小亮将正方形AEFG 绕点A 逆时针方向旋转,连接BE 、DG ,当点G 恰好落在线段BE 上时,小亮发现DG ⊥BE ,请你帮他说明理由.当a=3,b=2时,请你帮他求此时DG 的长.(2)如图3,小亮旋转正方形AEFG ,点E 在DA 的延长线上,连接BF 、DF .当FG 平分∠BFD 时,请你帮他求a :b 及∠FBG 的度数.(3)如图4,BE 的延长线与直线DG 相交于点P ,a=2b .当正方形AEFG 绕点A 从图1开始,逆时针方向旋转一周时,请你帮小亮求点P 运动的路线长(用含b 的代数式表示).23.问题探究(1)如图1.在ABC 中,8BC =,D 为BC 上一点,6AD =.则ABC 面积的最大值是_______.(2)如图2,在ABC 中,60BAC ∠=︒,AG 为BC 边上的高,O 为ABC 的外接圆,若3AG =,试判断BC 是否存在最小值?若存在,请求出最小值:若不存在,请说明理由.问题解决:如图3,王老先生有一块矩形地ABCD ,6212AB =,626BC =+,现在他想利用这块地建一个四边形鱼塘AMFN ,且满足点E 在CD 上,AD DE =,点F 在BC 上,且6CF =,点M 在AE 上,点N 在AB 上,90MFN ∠=︒,这个四边形AMFN 的面积是否存在最大值?若存在,求出面积的最大值;若不存在,请说明理由.24.问题一:如图①,已知AC =160km ,甲,乙两人分别从相距30km 的A ,B 两地同时出发到C 地.若甲的速度为80km /h ,乙的速度为60km /h ,设乙行驶时间为x (h ),两车之间距离为y (km ).(1)当甲追上乙时,x = .(2)请用x 的代数式表示y .问题二:如图②,若将上述线段AC 弯曲后视作钟表外围的一部分,线段AB 正好对应钟表上的弧AB (1小时的间隔),易知∠AOB =30°.(3)分针OD 指向圆周上的点的速度为每分钟转动 km ,时针OE 指向圆周上的点的速度为每分钟转动 °;(4)若从2:00起计时,求几分钟后分针与时针第一次重合?25.在平面直角坐标系中,点O 为坐标原点,抛物线(2)()y a x x m =++与x 轴交于点A C 、(点A 在点C 的左侧),与y 轴正半轴交于点B ,24OC OB ==.(1)如图1,求a m 、的值;(2)如图2,抛物线的顶点坐标是M ,点D 是第一象限抛物线上的一点,连接AD 交抛物线的对称轴于点N ,设点D 的横坐标是t ,线段MN 的长为d ,求d 与t 的函数关系式;(3)如图3,在(2)的条件下,当154d =时,过点D 作DE x 轴交抛物线于点E ,点P 是x 轴下方抛物线上的一个动点,连接PE 交x 轴于点F ,直线211y x b =+经过点D 交EF 于点G ,连接CG ,过点E 作EH CG 交DG 于点H ,若3CFG EGH S S =△△,求点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.F解析:(1)∠FAB=90°;(2)22d h =;(3)直线PS 与直线AF 的交点K(-2,6).【解析】【分析】(1)通过直线AB 的解析式可求出点A 、B 的坐标,可知AOB 是等腰直角三角形,再结合已知条件即可确定90FAB ∠=︒;(2)根据已知条件证明CP=AC=QC=BC 从而得出△ACP 是等腰直角三角形,在Rt △CRP 中,利用sin ∠CPR 22CR CP ==,推出2CP CR =,继而得出22BQ CR =,得出答案; (3)过点 A 作AH ⊥CE 交 EC 的延长线于点 H ,延长 CH 到点 G ,使 HG=CH ,连接AG ,证明△AHC ≌△CEP ,设AH CE n ==,得出EG=CE+CH+GH=n+2+2=n+4,再通过角的等量代换,得出∠EAG=∠G ,从而有EG=EA=n+4,在Rt △AHE 中,通过勾股定理AE²=HE²+AH²可求出n 的值为6,从而得出直线AF 的解析式y = x + 8 ,再求出直线PS 的解析式为 y=-x+4,求交点即可.【详解】解:(1)如下图,y = -x + m ,当x=0时,y=m∴A (0,m ),OA=m当y=0时,0=-x+m ,x=m ,∴B (m ,0),OB=m∴OA=OB∴∠OAB=∠OBA=45°∵∠AFO=45°,∠FAB+∠FBA+∠AFB=180°∴∠FAB=90°(2)如下图 ,∵CP 、AC 分别是 Rt △QPB 和 Rt △QAB 的斜边上的中线∴CP= 12QB ,12AC QB =, ∴CP=AC=QC=BC∴∠CAB=∠CBA设∠CAB=∠CBA=α,∴∠CBP=45°+α∴∠CPB=∠CBP=45°+α∴∠PCB=180°-(∠CPB+∠CBP )=90°-2α∵∠ACB=180°-∠CAB-∠CBA=180°-2α∴∠ACP=∠ACB-∠PCB=180°-2α-(90°-2α)=90°∵AC=CP∴△ACP 是等腰直角三角形∴∠CPA=∠CAP=45°∵CR ⊥AP ,∴∠CRP=90°,在Rt △CRP 中sin ∠CPR 22CR CP == ∴2CP CR =∵12CP BQ =, ∴22BQ CR =即22d h =(3)过点 A 作AH ⊥CE 交 EC 的延长线于点 H ,延长 CH 到点 G ,使 HG=CH ,连接AG ∴∠AHC=∠CEP=90°∴∠HAC+∠HCA=∠PCE+∠HCA∴∠HAC=∠PCE ,∵AC=CP∴△AHC ≌△CEP∴CH=PE=2,AH=CE ,∴GH=CH=2,AH CE n ==∴EG=CE+CH+GH=n+2+2=n+4设∠DAP=β,则∠AEG=2β∴α+β=45°∵∠EBD=∠EDB=∠HDA=∠HAD=45°∴∠CAH=∠HAD-α=45°-α=β∵AH 垂直平分 GC∴AG=AC∴∠GAH=∠CAH=β∴∠G=90°-β 在△EAG 中∠EAG=180°-∠G-∠AEG=180°-(90°-β)-2β =90°-β∴∠EAG=∠G∴EG=EA=n+4在 Rt △AHE 中,AE²=HE²+AH²222(4)(2)n n n +=++126,2n n ==-(舍)∴AH=OE=6,EP=EB=2∴OB=OE+BE=8∴m=8,∴A (0,8)∴OA=OF=8 , ∴F (-8,0)∴直线 AF 的解析式为 y = x + 8∵CD=CE-DE=CE-BE=6-2=4∵线段 CD 关于直线 AB 的对称线段 DS∴SD=CD=4,∠CDA=∠SDA=45°∴∠CDS=90°,∴SD ∥x 轴过点 S 分别作 SM ⊥x 轴于点 M ,SN ⊥y 轴于点 N∴四边形 OMSN 、SMED 都是矩形∴OM=SN=OE-ME=2,ON=SM=DE=BE=2∴S(2,2)∵OP=OE-EP=6-2=4,∴P(4,0)设直线 PS 的解析式为 y=ax+b∴4022a b a b +=⎧⎨+=⎩,解得:14a b =-⎧⎨=⎩∴直线 PS 的解析式为 y=-x+4设直线PS 与直线AF 的交点K(x ,y)∴48y x y x =-+⎧⎨=+⎩解得26x y =-⎧⎨=⎩∴直线PS 与直线AF 的交点K(-2,6).【点睛】本题考查的知识点是一次函数与几何图形,将一次函数的图象与几何图形综合在一起的问题,是考查学生综合素质和能力的热点题型,它充分体现了数学解题中的数形结合思想和整体转化思想.本题考查的知识点有一次函数图象与坐标轴的交点问题、等腰直角三角形的判定及性质、三角形内角和定理、全等三角形的判定及性质、矩形的性质、待定系数法求一次函数解析式、线段垂直平分线等.2.C解析:(1)112y x =-+;(2)1d t =-+;(3)6215t -= 【解析】【分析】(1)根据互相垂直两直线斜率积为-1,设出直线CE 的解析式,再将点C 坐标代入即可求解;(2)过点E 作EM ⊥y 轴于点M ,过点E 作EN x ⊥轴于点N ,通过解直角三角形可证EDM ≌EAN ,ENH ≌EMG ,得到AN =DM ,HN =GM ,进而得到AH DG =,再根据CE 解析式求出D 点坐标,即可找出d 与t 之间的函数关系式;(3)过点B 作BT CM ⊥于点T ,在直线BT 上截取TL NK =,证四边形BGMT 与四边形HNMC 均为矩形,得MN MT =,再进一步证明ENH ≌EMG ,利用全等三角形的性质通过角度计算,得出△BML 为等腰三角形且BM BL =,再用含有t 的代数式表示BM ,最后在Rt △BMG 中利用勾股定理建立等式,求出t 的值.【详解】解:(1)∵CE ⊥AB ,∴设直线CE 的解析式为:12y x c =-+, 把点C (2,0)代入上述解析式,得1c =,∴直线CD 的解析式为:112y x =-+; (2)过点E 作EM ⊥y 轴于点M ,过点E 作EN x ⊥轴于点N ,令26 112y xy x=+⎧⎪⎨=-+⎪⎩,解得22xy=-⎧⎨=⎩,∴()2,2E-,易证EDM≌EAN,ENH≌EMG,∴AN=DM ,HN=GM,∴AH DG=,由直线CE的解析式112y x=-+,可求点D(0,1)∴DG=1—t,∴1d t=-+;(3)过点B作BT CM⊥于点T,在直线BT上截取TL NK=,易证四边形BGMT与四边形HNMC均为矩形,由(2)问可知1tAH GD==-,则6tHC=-∴6tBG MT==-,∴MN MT=,∵90KNM LTM∠=∠=︒,∴ENH≌EMG,∴LNKM∠=∠,设KMNα∠=,则KMB KMNα∠=∠=,∴90NKM α∠=︒-,∴90NKM L α∠=∠=︒-,∵//BL MN ,∴2MBL BMN α∠=∠=,∴18090BML MBL L α∠=︒-∠-∠=︒-,∴BM BL =, ∵1tan 2KCH ∠=, ∴11322KH CH t ==-, ∴133322KN KH HN t t t TL =+=--=-=, ∴352BL BT TL t BM =+=-=, 在Rt BMG △中, 222BM BG GM =+,解得t =(不合题意舍去)或t =故,65t -=. 【点睛】本题一次函数综合题,考查了待定系数法求解析式,一次函数的性质,全等三角形的判定与性质,角平分线的性质,勾股定理等,利用已知条件求相等交,相等线段是解决本题的关键.3.E解析:(1)2y x 2x 3=-++;(2)E (2,3)或(1,4);(3)P 点横坐标为118【解析】【分析】(1) 抛物线2(0)y ax bx c a =++≠的顶点为C (1,4),设抛物线的解析式为2(1)4y a x =-+,由抛物线过点B,(3,0),即可求出a 的值,即可求得解析式; (2)过点E 、F 分别作x 轴的垂线,交x 轴于点M 、N ,设点E 的坐标为()2,23x xx -++,求出A 、D 点的坐标,得到OM=x ,则AM=x+1,由AF=2EF 得到22(1)33x AN AM +==,从而推出点F 的坐标21210(,)3333x x --+,由23FN EM =,列出关于x 的方程求解即可;(3)先根据待定系数法求出直线DM 的解析式为y=-2x+3,过点P 作PT ∥y 轴交直线DM 于点T ,过点F 作直线GH ⊥y 轴交PT 于点G ,交直线CE 于点H.证明△FGP ≌△FHQ ,得到FG=FH ,PT=45GH.设点P (m ,-m²+2m+3),则T (m ,-2m+3),则PT=m²-4m ,GH=1-m , 可得m²-4m=45(1-m ),解方程即可. 【详解】(1)∵抛物线的顶点为C (1,4),∴设抛物线的解析式为2(1)4y a x =-+,∵抛物线过点B,(3,0),∴20(31)4a =-+,解得a=-1,∴设抛物线的解析式为2(1)4y x =--+,即2y x 2x 3=-++;(2)如图,过点E 、F 分别作x 轴的垂线,交x 轴于点M 、N ,设点E 的坐标为()2,23x x x -++,∵抛物线的解析式为2y x 2x 3=-++,当y=0时,2023x x =-++,解得x=-1或x=3,∴A (-1.0),∴点D (0,3),∴过点BD 的直线解析式为3y x =-+,点F 在直线BD 上,则OM=x ,AM=x+1,∴22(1)33x AN AM +==, ∴2(1)2111333x x ON AN +=-=-=-, ∴21210(,)3333x x F --+,∴2210332233FN EM x x x +--++==, 解得x=1或x=2, ∴点E 的坐标为(2,3)或(1,4);(3)设直线DM 的解析式为y=kx+b ,过点D (0,3),M (32,0), 可得,3023k b b ⎧+=⎪⎨⎪=⎩,解得k=-2,b=3,∴直线DM 的解析式为y=-2x+3,∴32OM =,3OD =, ∴tan ∠DMO=2, 如图,过点P 作PT ∥y 轴交直线DM 于点T ,过点F 作直线GH ⊥y 轴交PT 于点G ,交直线CE 于点H.∵PQ ⊥MT ,∴∠TFG=∠TPF ,∴TG=2GF ,GF=2PG ,∴PT=25GF , ∵PF=QF ,∴△FGP ≌△FHQ ,∴FG=FH ,∴PT=45GH. 设点P (m ,-m²+2m+3),则T (m ,-2m+3),∴PT=m²-4m ,GH=1-m ,∴m²-4m=45(1-m ), 解得:1112018m -=,或2112018m +=(不合题意,舍去), ∴点P 的横坐标为11201-. 【点睛】 本题考查二次函数综合题、平行线分线段成比例定理、轴对称性质等知识,解题的关键是学会用转化的思想思考问题,学会用数形结合的思想解决问题,有一定难度.4.D解析:(1)DF 的长为158;(2)MN 的长为5;(3)O 的半径长为258. 【解析】【分析】(1)作EH BM ⊥于H ,根据中位线定理得出四边形BMFA 是平行四边形,从而利用cos 45B =解直角三角形即可求算半径,再根据平行四边形的性质求FD 即可; (2)先证AMB CNM ∠=∠,再证MAD CNM ∠=∠,从而证明AFM NFD ∆~∆,得到AF MF AF DF NF MF NF DF=⇒=,再通过平行证明AFN DFM ∆~∆,从而得到AF NF AF MF NF DF DF MF=⇒=,通过两式相乘得出AF NF =再根据平行得出NF DF =, 从而得出答案.(3)通过图形得出MN 垂直平分'OO ,从而得出90BAM CMN ∠=∠=︒,再利用cos 45B =解三角函数即可得出答案. 【详解】(1)如图,作EH BM ⊥于H :∵E 为AB 中点,45,cos 5AB AD DC B ====∴52AE BE ==∴cos 45BH B BE == ∴2BH = ∴2253222EH ⎛⎫=-= ⎪⎝⎭设半径为r ,在Rt OEH ∆中:()222322r r ⎛⎫=-+ ⎪⎝⎭ 解得:2516r =∵,E O 分别为,BA BM 中点 ∴BAM BEO OBE ∠=∠=∠又∵CMN BAM ∠=∠∴CMN OBE ∠=∠∴//MF AB∴四边形BMFA 是平行四边形∴2528AF BM r ===∴2515588FD AD AF =-=-= (2)如图:连接MD AN ,∵,B C BAM CMN ∠=∠∠=∠∴AMB CNM ∠=∠又∵AMB MAD ∠=∠∴MAD CNM ∠=∠又∵AFM NFD ∠=∠∴AFM NFD ∆~∆∴AF MF AF DF NF MF NF DF=⇒=① 又∵//MD AN ∴AFN DFM ∆~∆∴AF NF AF MF NF DF DF MF=⇒=② 由①⨯②得; 22AF NF AF NF =⇒=∴NF DF =∴5MN AD ==故MN 的长为5;(3)作如图:∵圆O 与圆'O 外切且均与圆N 内切设圆N 半径为R ,圆O 半径为r∴'=NO R r NO -=∴N 在'OO 的中垂线上 ∴MN 垂直平分'OO∴90NMC ∠=︒∵90BAM CMN ∠=∠=︒∴A 点在圆上∴54cos 5AB B BM BM === 解得:254BM = O 的半径长为258【点睛】 本题是一道圆的综合题目,难度较大,掌握相似之间的关系转化以及相关线段角度的关系转化是解题关键.5.A解析:(1)6y x =-+;(2)636S t =-,()6t >;(3)5599y x =+ 【解析】【分析】(1)求出点A 、B 的坐标,从而得出△ABO 是等腰直角三角形,再根据2ABC ACB ∠=∠可得△OCB 也是等腰直角三角形,从而可求得点C 的坐标,将点B 、C 代入可求得解析式;(2)存在2种情况,一种是点D 在线段BC 上,另一种是点D 在线段BC 的延长线上,分别利用三角形的面积公式可求得;(3)如下图,先证ACR CAD ∆≅∆,从而推导出//RD AC ,进而得到CF RG =,同理还可得NF DG =,RD CN =,然后利用:7:12NF FC =可得到N 、D 的坐标,代入即可求得.【详解】解:(1)直线6y x =+与x 轴交于点A ,与y 轴交于点B ,(6,0)A ∴-,(0,6)B .6OA OB ∴==.45BAO ∴∠=︒,180BAO ABC BCO ∠+∠+∠=︒,2ABC ACB ∠=∠,45BCO ∴∠=︒6OC OB ∴==,()6,0C ∴.设直线BC 的解析式为y kx b =+,将B 、C 两点坐标代得606k b b +=⎧⎨=⎩ 解得16k b =-⎧⎨=⎩∴直线BC 的解析式为6y x =-+.(2)点D 是射线BC 上一点,点D 的横坐标为t ,(,6)D t t ∴-+,6(6)12AC =--=.如下图,过点D 作DK AC ⊥于点K ,当点D 在线段BC 上时,6DK t =-+,16362S AC DK t ∴=⋅=-+()06t ≤<; 如下图,当点D 在线段BC 的延长线上时,6DK t =-,636S t ∴=-()6t >.(3)如图,延长CE 交AB 于点R ,连接DR 交BF 于点G ,交y 轴于点P .45BAO BCO ∠=∠=︒,BA BC ∴=.AO CO =,BO AC ⊥EA EC ∴=,EAC ECA ∴∠=∠.ACR CAD ∴∆≅∆.BAD BCR ∴∠=∠.AR CD ∴=.BR BD ∴=.//RD AC ∴.BH AD ⊥,HBD BAD BCR ∴∠=∠=∠.MB MC ∴=,∠MRB MRB MBR ∠=∠MR MB ∴=.CM MR ∴=.//RD AC ,::1:1CF RG CM RM ∴==.CF RG ∴=.同理NF DG =.RD CN =.∵:7:12NF FC =.:7:12DG RG ∴=.RP PD BP ==,5tan 19PG OF OBF BP OB∴==∠= 6OB ∴=,3019OF ∴=,6OC =,8419CF ∴=. 7RD GN ∴==.1ON ∴=,72PD =.52OP OB BP ∴=-=. (1,0)N ∴-,75,22D ⎛⎫ ⎪⎝⎭. 设直线 DN 的解析式为y ax c =+,将N 、D 两点代入,07522a c a c -+=⎧⎪⎨+=⎪⎩解得5959 ac⎧=⎪⎪⎨⎪=⎪⎩∴直线DM的解析式为5599y x=+.【点睛】本题考查了一次函数与图形的综合,需要用到全等、三角函数和平面直角坐标系的知识,解题关键是想办法确定函数图像上点的坐标.6.D解析:(1)6;(2)y=-3x+10(1≤x<103);(2)1769或32【解析】【分析】(1)如下图,利用等腰直角三角形DHC可得到HC的长度,从而得出HB的长,进而得出AD的长;(2)如下图,利用等腰直角三角形的性质,可得PQ、PR的长,然后利用EB=PQ+PR得去x、y的函数关系,最后根据图形特点得出取值范围;(3)存在2种情况,一种是点P在梯形内,一种是在梯形外,分别根y的值求出x的值,然后根据梯形面积求解即可.【详解】(1)如下图,过点D作BC的垂线,交BC于点H∵∠C=45°,DH⊥BC∴△DHC是等腰直角三角形∵四边形ABCD是梯形,∠B=90°∴四边形ABHD是矩形,∴DH=AB=8∴HC=8∴BH=BC-HC=6∴AD=6(2)如下图,过点P作EF的垂线,交EF于点Q,反向延长交BC于点R,DH与EF交于点G∵EF ∥AD,∴EF ∥BC∴∠EFP=∠C=45°∵EP ⊥PF∴△EPF 是等腰直角三角形同理,还可得△NPM 和△DGF 也是等腰直角三角形∵AE=x∴DG=x=GF,∴EF=AD+GF=6+x∵PQ ⊥EF,∴PQ=QE=QF∴PQ=()162x + 同理,PR=12y ∵AB=8,∴EB=8-x∵EB=QR∴8-x=()11622x y ++ 化简得:y=-3x+10 ∵y >0,∴x <103 当点N 与点B 重合时,x 可取得最小值则BC=NM+MC=NM+EF=-3x+10+614x +=,解得x=1∴1≤x <103(3)情况一:点P 在梯形ABCD 内,即(2)中的图形 ∵MN=2,即y=2,代入(2)中的关系式可得:x=83=AE ∴188176662339ABCD S ⎛⎫=⨯++⨯= ⎪⎝⎭梯形 情况二:点P 在梯形ABCD 外,图形如下:与(2)相同,可得y=3x -10则当y=2时,x=4,即AE=4 ∴()16644322ABCD S =⨯++⨯=梯形 【点睛】本题考查了等腰直角三角形、矩形的性质,难点在于第(2)问中确定x 的取值范围,需要一定的空间想象能力. 7.A解析:(1)详见解析;(2)2448x x y -+=(04x <<);(3)当AEG ∆是等腰三角形时,2BF =或43【解析】【分析】 (1)根据正方形的性质得到∠AOD=90°,AO=OD ,∠EOH=90°,OE=OH ,由全等三角形的性质即可得到结论;(2)如图1,过O 作ON ⊥AB 于N ,根据等腰直角三角形的性质得到122AN BN ON AB ====, 根据勾股定理得到()222222248OF FN ON x x x =+=-+=-+线段成比例定理即可得到结论;(3)①当AE=EG 时,△AEG 是等腰三角形,②当AE=AG 时,△AEG 是等腰三角形,如图2,过A 作AP ⊥EG 于P ③当GE=AG 时,△AEG 是等腰三角形,如图3,过G 作GQ ⊥AE 于Q ,根据相似三角形的性质或全等三角形的性质健即可得到结论.【详解】(1)∵四边形ABCD 是正方形,,OA OD AC BD ∴=⊥,90AOD ∴∠=︒,∵四边形OEGH 是正方形,,90OE OH EOH ∴=∠=︒,AOD EOH ∴∠=∠,AOD AOH EOH AOH ∴∠-∠=∠-∠,即HOD EOA ∠=∠,HDO EAO ∴∆≅∆.(2)如图1,过O 作ON⊥AB 于N ,则122AN BN ON AB ====, ∵BF=x,∴AF=4-x ,∴FN=2-x , ∴()222222248OF FN ON x x x =+=-+=-+∴248EF y x x =-+ ∵AM⊥AC,∴AE∥OB,∴BF OF AF EF=, ∴2248448x x x x y x x -+=---+, ∴)24804x x y x x-+≤=<; (3)①当AE=EG 时,△AEG 是等腰三角形,则AE=OE ,∵∠EAO=90°,∴这种情况不存在;②当AE=AG 时,△AEG 是等腰三角形,如图2,过A 作AP⊥EG 于P ,则AP∥OE,∴∠PAE=∠AEO,∴△APE∽△EAO,∴PE AE OA OE=,∵AE=AG,∴2421482x xxPE y-+==,()22248xAE yx-=-=,∴()22222224448448xx xxx xx---+=+,解得:x=2,②当GE=AG时,△AEG是等腰三角形,如图3,过G作GQ⊥AE于Q,∴∠GQE=∠EAO=90°,∴∠GEQ+∠EGQ=∠GEQ+∠AEO=90°,∴∠EGQ=∠AEO,∵GE=OE,∴△EGQ≌△OEA(AAS),∴22EQ AO==∴224242()xAE E Q-===∴43x =, ∴BF=2或43. 【点睛】本题考查了四边形的综合题,正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的性质,勾股定理,正确的作出辅助线构造全等三角形是解题的关键.8.B解析:(1)12;(2)3)【解析】【分析】(1)如图1中,过点B 作BD CA ⊥,交CA 延长线于点D ,通过构造直角三角形,求出BD 利用三角形面积公式求解即可.(2)如图示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M ,确定点P 的位置,利用勾股定理与矩形的性质求出CQ 的长度即为答案.(3)解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、,通过轴对称性质的转化,最终确定最小值转化为SN 的长.【详解】(1)如解图1所示,过点B 作BD CA ⊥,交CA 延长线于点D ,135BAC ∠=,180********BAD BAC ∴∠=-∠=-=,BD CA ⊥,交CA 延长线于点D ,BAD ∴为等腰直角三角形,且90BDA ∠=,BD AD ∴=,在BAD 中,,90BD AD BDA =∠=,222BD AD AB ∴+=,即222BD AB =,4AB =222232BD AB ∴===,解得:4BD =,6AC =,11641222ABC S AC BD ∴=⋅=⨯⨯=.(2)如解图2所示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M , D 关于AB 的对称点Q ,CQ 交AB 于点P ,PD PQ ∴=,PC PD PC PQ CQ ∴+=+=,点P 为AB 上的动点,PC PD CQ ∴+≥,∴当点P 处于解图2中的位置,PC PD +取最小值,且最小值为CQ 的长度, 点C 为半圆AB 的中点,90COB ∴∠=,90BOD COD COB ∠+∠=∠=,11903033BOD COB ∴∠=∠=⨯=, 10AB =,1110522OD AB ∴==⨯=, 在Rt ODH △中,由作图知,90OHD ∠=,且30HOD BOD ∠=∠=, 155,222DH OD QH DH ∴==∴==, 222255352OH OD DH ⎛⎫∴=-=-= ⎪⎝⎭, 由作图知,四边形OMQH 为矩形,553,2OM QH MQ OH ∴==== 515522CM OM OC ∴=+=+=, 222215535322CQ CM MQ ⎛⎫⎛⎫∴=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭,PC PD ∴+的最小值为53.(3)如解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、, 点P 关于OA 的对称点S ,点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,PE SE ∴=,FP FN =,SOA POA ∠=∠,,NOB POB OS OP ON ∠=∠==,.PE EF FP SE EF FN SN ∴++=++=,SOA NOB POA POB ∠+∠=∠+∠,E 为OA 上的点,F 为OB 上的点PE EF FP SN ∴++≥,∴当点E F 、处于解图3的位置时,PE EF FP ++的长度取最小值,最小值为SN 的长度,45POA POB AOB ∠+∠=∠=,45SOA NOB ∴∠+∠=,454590SON SOA AOB NOB ∴∠=∠+∠+∠=+=.扇形AOB 的半径为20,20OS ON OP ∴===,在Rt SON 中,90SON ∠=,20,90OS ON SON ==∠=PE EF FP ∴++的长度的最小值为202【点睛】本题主要考察了轴对称、勾股定理、圆、四边形等相关内容,理解题意,作出辅助线是做题的关键.9.A解析:(1)145;(2)2274,0314971421,2235t tSt t t⎧⎛⎫<≤⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-<<⎪⎪⎝⎭⎩;(3)t的值为477或727.【解析】【分析】(1)如下图,根据4tan3A=,可得出PN与AP的关系,从而求出t的值;(2)如下图,存在2种情况,一种是点M在△ABC内,另一种是点M在△ABC外部,分别根据正方形和三角形求面积的公式可求解;(3)如下图,存在2种情况,一种是PM所在的直线将△ABC的面积平分,另一种是QN 所在的直线将△ABC的面积平分.【详解】(1)如图1,点N在AC上图1由题意可知:PD=DQ=t ,AP=7-t∴PN=PQ=2t ∵4tan 3A = ∴43NP AP =,即2473t t =- 解得:t=145 (2)①如图2,图2四边形PQMN 是正方形,90BQM ∴∠=︒,45B ∠=︒,BQ MQ ∴=,即72t t -=解得73t =, 故当0t <≤73时,22(2)4S t t ==; ②如图3, 图390BQF ∠=︒,45B ∠=︒,7BQ FQ t ∴==-,45BFQ MFE ∠=∠=︒,则37MF MQ QF t =-=-,90M ∠=︒,37ME MF t ∴==-, 则2221149(2)(37)21222S t t t t =--=-+-71435t ⎛⎫<< ⎪⎝⎭; 综上,2274,0314971421,2235t t S t t t ⎧⎛⎫<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-<< ⎪⎪⎝⎭⎩. (3)如下图,过点C 作AB 的垂线,交AB 于点G图4∵4tan 3A = ∴设CG=4x ,则AG=3x∵∠B=45°∴△CBG 是等腰直角三角形∴GB=GC=4x∵AB=14∴3x+4x=14,解得:x=2∴1148562ABC S== ∴1282ABCS = 情况一:PM 所在的直线平分△ABC 的面积,如下图,PM 与BC 交于点E图5则28PBES=∵四边形PQMN是正方形,∴∠EPB=45°∵∠B=45°∴△PBE是等腰直角三角形∵1282PBES PE PB==∴PE=PB=214∴PB=47∵PB=AB-PA=14-(7-t)=7+t∴7+t=47t=477-情况二:如下图,QN所在线段平分△ABC的面积,QF交AC于点F,过点F作AB的垂线,交AB于点H图6同理,28AFQS=∵四边形PQMN是正方形,∴∠EQH=45°∴△FHQ是等腰直角三角形∵4 tan3A=∴设FH=4y,则AH=3y,HQ=FH=4y,∴AQ=7y∴174282AFQS y y==,解得:2∵AQ=AB-QB=14-(7-t)=7+t∴2解得:27∴综上得:t的值为477或727.【点睛】本题考查动点问题,解题关键是根据动点的变化情况,适当划分为几种不同的形式分别分析求解.10.A。

中考探索开放性问题第2讲:开放探究题

中考探索开放性问题第2讲:开放探究题

A′D′ A′B′

AD AB
,即
AD-(a+c) 2 2AB-(a+c) 2 a+c AB-(b+d)=1,即 AB-(b+d) =1,即b+d=2.
第2讲┃ 开放探究题
• 解结论开放型问题时要充分利用已知条件或 图形特征,进行猜想、归纳、类比,透彻分析 出给定条件下可能存在的结论现象,然后经过 论证作出取舍,这是一种归纳类比型思维.它 要求解题者充分利用条件进行大胆而合理的猜 想,发现规律,得出结论,这类题主要考查解 题者的发散性思维能力和知识应用能力.
第2讲┃ 开放探究题
► 类型之二 结论开放型问题
• 例2 [2011·南通] 比较正五边形与正六边形, 可以发现它们的相同点和不同点.例如:它们 的一个相同点:正五边形的各边相等,正六边 形的各边也相等.它们的一个不同点:正五边 形不是中心对称图形,正六边形是中心对称图 形.
• 请你再写出它们的两个相同点和不同点.
第2讲┃ 开放探究题
• 解:设矩形蔬菜种植区域的宽为x_m,则长为2x_m.? • 根据题意,得x·2x=288. • 解这个方程,得x1=-12(不合题意,舍去),x2=12. • 所以温室的长为2×12+3+1=28(m), • 宽为12+1+1=14(m). • 答:当温室的长为28 m,宽为14 m时,矩形蔬菜种植
第2讲┃ 开放探究题
• 开放探究性问题是相对于有明确条件和结论 的封闭式问题而言的,它的特点是条件或结论 的不确定性、不唯一性.解此类题没有固定的 方法,学生需要通过观察、分析、比较、概括、 推理、判断等探索活动来确定所需求的条件或 结论或方法,此类题往往作为中考试卷中的压 轴题出现.

专第题2突讲破┃ 开五放┃ 开探放究探题究题

探究中考压轴题

探究中考压轴题

专题九 ┃ 热点探究
2-h (3)把x=0,y=2代入到y=a(x-6) +h,得a= . 36 2-h 2+3h 2 当x=9时,y= (9-6) +h= >2.43,① 36 4 2-h x=18时,y= (18-6)2+h≤0,② 36 8 由①②得h≥ . 3 故若球一定能越过球网,又不出边界,h的取值范围 8 是:h≥ . 3
专题九 ┃探究安徽中考压轴题
专题九 ┃ 考情分析
考情分析
中考压轴题是中考必不可少的试题,这类题一般是融代数、几何为一体 的综合题,或者是解决实际问题的综合题.此类题注重对数学思想方法、探 究性思维能力和创新思维能力的考查,涉及的知识比较多,信息量大,题目 灵活,要求学生有较高的分析问题、解决问题的能力.它符合新课标对学生 能力提高的要求. 从近几年安徽中考数学压轴题来看,作为试卷的最后一题,一般都是循 序渐进地设置几个问题,对学生的要求一步步的抬高.压轴题涉及知识多, 覆盖面广,综合性强,难度系数大,关系比较复杂,解法灵活,既考查了学 生的基础知识和基本技能,又考查了学生的数学思想方法和探索创新能力、 解决问题能力,是必不可少的. 近几年来主要以函数和几何综合题、二次函数与代数知识综合应用、一 次函数与二次函数综合题、开放探究题等类型出现,预测2013年仍会以函数 与几何图形综合题的形式出现.
专题九 ┃ 热点探究
【题干关键词】 正方形,顶点在平行线上. 【提示】 正方形性质,构造全等三角形,正方形面 积,二次函数最值.
图X9-2
专题九 ┃ 热点探究
解:(1)证明:过A点作AF⊥l3分别交l2、l3于点E、F,过 C点作CH⊥l2分别交l2、l3于点H、G,
∵l1∥l2∥l3∥l4,∴AF⊥l2,CH⊥l3,h1=AE,,h3=CG. 由同角的余角相等得∠CDG=∠DAF=∠ABE,∠AEB= ∠CGD=90°,AB=CD,∴△ABE≌△CDG,∴AE= CG,∴h1=h3.

2019年中考二次函数压轴题整理

2019年中考二次函数压轴题整理

2019年中考二次函数压轴题整理1.给定三个点A(-1.a)。

B(3.b)。

C(c。

3),求经过这三个点的抛物线的解析式,以及线段BC上一点M关于抛物线的对称点N到y轴的距离MN的表达式。

进一步地,连接NB、NC,判断是否存在一个点M,使得△BNC的面积最大。

若存在,求出该点的横坐标m,否则说明理由。

2.给定点A、B、C,其中B(4.b)在抛物线y=ax^2+bx+c上,求该抛物线的解析式。

进一步地,探究△ABC的外接圆的圆心位置,求出圆心的坐标。

若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标。

3.给定抛物线y=x+mx+n和点A(3.a)、B(b。

-3),点P是线段AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t。

求出直线AB和抛物线的解析式。

进一步地,当点P在第四象限时,连接AM、BM,求出线段PM最长时△ABM的面积。

然后判断是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形。

若存在,直接给出点P的横坐标;否则说明理由。

4.在平面直角坐标系中放置一直角三角板,其顶点为A(a。

1),B(2.b),O(0.0),将此三角板绕原点O逆时针旋转90°,得到△A′B′O。

给定抛物线经过点A′、B′、B,求该抛物线的解析式。

进一步地,设点P是在第一象限内抛物线上的一动点,判断是否存在点P,使得四边形PB′A′B的面积是△A′B′O面积的4倍。

若存在,求出点P的坐标;否则说明理由。

最后,确定四边形PB′A′B的形状,并给出两条性质。

5.给定抛物线y=x-2x+c的顶点A在直线l:y=x-5上。

求出抛物线顶点A的坐标。

进一步地,设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),判断△ABD的形状。

然后在直线l上判断是否存在一点P,使得以点P、A、B、D为顶点的四边形是平行四边形。

若存在,求出点P的坐标;否则说明理由。

2019中考化学的开放性试题精品教育.doc

2019中考化学的开放性试题精品教育.doc

中考化学的开放性试题下一页 1 2 近几年中考化学试题在贯彻“有利于实施初中素质教育,有利于中等学校选拔人才”的命题指导思想,进一步注意考查学生的创新和实践能力,设置了开放性试题。

笔者在调研中发现,这类试题的出现是对传统命题方式和教学方式的挑战,引导教师在教学中必须注意培养和发展学生的创造性思维意识,摒弃死守书本、循规蹈矩、人云亦云的学习方式和习惯,而形成不拘泥、不守旧、敢于批判、勇于创新的思维品格。

近年来出现的开放性试题能根据初中生的知识和能力要求,命题立意较深刻,设问是开放的,答案是灵活的,评分尊重学生的创新意识。

这样,学生的答题过程也是一个创新过程,为中学化学教学起到良好的导向作用。

一、以生活实际为情境,考查学生的实际应用与创新意识以生活实际为情境设置开放性试题,使学生感受到解决身边的问题离不开化学知识,掌握好化学知识和原理,对遇到的实际问题即可迎刃而解,进一步增强学生的创新意识。

例有两瓶无色液体,其中一瓶是蒸馏水,另一瓶是浓食盐水,区别它们的方法有很多,请你简要写出尽可能多的你认为可行的方法(至少写三种):方法一:__________;方法二:__________;方法三:__________。

(广州市2019年中考题。

)此题是一道非常简单的鉴别题,生活中也可能常遇到,学生可以动用所学的物理、化学知识展开想像的翅膀去构思,不被条条框框限制,不被学科知识限制,养成遇事多角度、多方面思考的习惯,激发学生学习化学的兴趣和创新意识。

答案:(1)蒸发或减少溶剂时食盐能结晶;(2)通电或食盐水能导电;(3)测密度或食盐水的密度比蒸馏水大;(4)加AgNO3溶液或食盐水跟AgNO3溶液反应生成白色沉淀等,只要意思正确,就可给分。

例举出家庭中常见的一种酸性物质__________,一种碱性物质__________,一种盐__________。

(黑龙江省2019年中考题。

)这虽是一道填空题,但要求学生联想到家庭中常见物质的酸碱性和常见物质与物质分类的关系,引导学生用化学视角观察生活的思想方法。

2019山西中考模拟百校联考试卷(一)数学试卷解析


14. 小明用火柴棒按如图所示的规律摆放下列图形,则摆放第 n 个图形共需要火柴棒 根.
【考点】找规律:图形规律
【难度星级】★
【答案】 5n +1
【解析】当六边形个数分别为 1,2,3 时,火柴棒根数分别为 6,11,16
所以当六边形个数为 n 时,火柴棒根数为 6+5(n −1)=5n +1
15. 如图,在 ABC 中, AC = BC , ACB=100 ,点 D 在线段 AB 上运动( D 不与 A , B 重
剪口与折痕所成的角的度数应为 30 或 60
故选:C
10. 如图所示,已知点 A 坐标为 (6,0) ,直线 y = x + b(b 0) 与 y 轴交与点 B ,连接 AB , = 75 ,则 b 的值为
A. 2 3 B. 3 3 C.3 D. 6 3
【考点】一次函数与解直角三角形
【考点】解直角三角形
【难度星级】★★
【答案】C
【解析】 AB ⊥ BE, DE ⊥ BE, AD ⊥ CE
四边形ABED 是矩形
BE = 9m,AB =1.5m AD = BE = 9m,DE = AB =1.5m
在 Rt △ ACD 中,
CAD = 30, AD = 9m CD = AD tan 30=9 3 =3 3m
(2) D是一次函数与y轴的交点

D

0,

2 3

SBCD
= 1 BC 2
yD
= 1 3 2 =1 23
【难度星级】★★
18. (本题 7 分)
探索三角形的内(外)角平分线形成的角的规律
在三角形中,由三角形的内角平分线、外角平分线所形成的角存在一定的规律,如果能

中考数学压轴题十大题型(含详细答案)

数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性,多数为函数型综合题和几何型综合题。

函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。

求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。

几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。

一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或探索两个三角形满足什么条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x 的值等,或直线(圆)与圆的相切时求自变量的值等。

求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y 的方程),变形写成y=f(x)的形式。

找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。

求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。

而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。

解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。

关键是掌握几种常用的数学思想方法。

一是运用函数与方程思想。

以直线或抛物线知识为载体,列(解)方程或方程组求其解析式、研究其性质。

二是运用分类讨论的思想。

对问题的条件或结论的多变性进行考察和探究。

三是运用转化的数学的思想。

由已知向未知,由复杂向简单的转换。

中考压轴题它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。

2019年中考数学开放探究型问题试题归总解析

2019年中考数学开放探究型问题试题归总解析本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!以下是中国()为您推荐的xxxx年中考数学开放探究型问题试题归总解析,希望本篇对您学习有所帮助。

xxxx年中考数学开放探究型问题试题归总解析一、选择题1.如图所示,在平面直角坐标系中,直线om是正比例函数y=-3x的图象,点A的坐标为,在直线om 上找点N,使△oNA是等腰三角形,符合条件的点N 的个数是.个个个个【答案】A。

【考点】正比例函数图象的性质,锐角三角函数,等腰三角形的判定。

【分析】如图,根据正比例函数图象的性质和锐角三角函数,可以求出∠AoN2=600,故当oA=oN2时,AN2=oA。

因此符合条件的点N只有N1和N2两个。

故选A。

2.如图,在平行四边形ABcD中,过对角线BD上一点P作EF∥AB,GH∥AD,与各边交点分别为E、F、G、H,则图中面积相等的平行四边形的对数为A、3B、4c、5D、6【答案】D。

【考点】平行四边形的性质,全等三角形的判定和性质。

【分析】根据平行四边形的性质,平行四边形的对角线将平行四边形分成两个面积相等的全等三角形,即。

则,。

因此图中面积相等的平行四边形的对数有三对:,。

故选D。

3.在锐角△ABc中,∠BAc=60°,BN、cm为高,P为Bc的中点,连接mN、mP、NP,则结论:①NP=mP ②当∠ABc=60°时,mN∥Bc③BN=2AN④AN︰AB=Am︰Ac,一定正确的有A、1个B、2个c、3个D、4个【答案】c。

【考点】直角三角形斜边上的中线的性质,相似三角形的判定和性质,等边三角形的判定与和性质,平行的判定,锐角三角函数的定义。

【分析】①由BN、cm为高,P为Bc的中点,根据直角三角形斜边上的中线等于斜边的一半,即可证得NP=mP。

故①正确。

中考专题1 【原创】2019年中考数学图形变换压轴题汇总(28道题)后附答案详解(word)

中考专题1 图形变换压轴题汇总(28道题)后附答案详解1.(2017•黑龙江)已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°.连接AD,BC,点H为BC中点,连接OH.(1)如图1所示,易证:OH=AD且OH⊥AD(不需证明)(2)将△COD绕点O旋转到图2,图3所示位置时,线段OH与AD又有怎样的关系,并选择一个图形证明你的结论.2.(2017•连云港四模)阅读与理解:图1是边长分别为a和b(a>b)的两个等边三角形纸片ABC和C′DE叠放在一起(C与C′重合)的图形.操作与证明:(1)操作:固定△ABC,将△C′DE绕点C按顺时针方向旋转30°,连接AD,BE,如图2;在图2中,线段BE与AD之间具有怎样的大小关系?证明你的结论;(2)操作:若将图1中的△C′DE,绕点C按顺时针方向任意旋转一个角度α,连接AD,BE,如图3;在图3中,线段BE与AD之间具有怎样的大小关系?证明你的结论;猜想与发现:根据上面的操作过程,请你猜想当α为多少度时,线段AD的长度最大是多少?当α为多少度时,线段AD的长度最小是多少?3.(2017•金乡县模拟)请阅读下列材料:问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1、求∠BPC度数的大小和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PC是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以∠AP′B=150°,而∠BPC=∠AP′B=150°,进而求出等边△ABC的边长为,问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=,BP=,PC=1.求∠BPC度数的大小和正方形ABCD的边长.4.(2017•滦县模拟)两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB=∠DCE=90°,F是DE的中点,H是AE的中点,G是BD的中点.(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为和位置关系为;(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;(3)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.5.(2017•路北区三模)如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.6.(2017•平房区二模)如图,正方形ABCD,点E在AD上,将△CDE绕点C顺时针旋转90°至△CFG,点F,G分别为点D,E旋转后的对应点,连接EG,DB,DF,DB与CE交于点M,DF与CG交于点N.(1)求证BM=DN;(2)直接写出图中已经存在的所有等腰直角三角形.7.(2017•路南区一模)如图①,△ABC中,AC=BC,∠A=30°,点D在AB边上且∠ADC=45°.(1)求∠BCD的度数;(2)将图①中的△BCD绕点B顺时针旋转得到△BC′D′.当点D′恰好落在BC边上时,如图②所示,连接C′C并延长交AB于点E.①求∠C′CB的度数;②求证:△C′BD'≌△CAE.8.(2017•沙坪坝区一模)已知△ABC和△DEB都是等腰直角三角形,∠BAC=∠EDB=90°.(1)如图1,若点E,B,C在同一直线上,连接AE,当∠AEC=30°,BC=4时,求EB的长;(2)如图2,将图1中的△DEB绕点B顺时针旋转,当点C在ED的延长线上时,EC交AB 于点H,求证:∠EAH=2∠HCB.9.(2017•重庆模拟)已知等腰Rt△ABC与等腰Rt△CDE,∠ACB=∠DCE=90°,把Rt△ABC 绕点C旋转.(1)如图1,当点A旋转到ED的延长线时,若BC=,BE=5,求CD的长;(2)当Rt△ABC旋转到如图2所示的位置时,过点C作BD的垂线交BD于点F,交AE于点G,求证:BD=2CG.10.(2017•河北区模拟)如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M,N分别是斜边AB,DE的中点,点P为AD的中点,连接AE、BD、MN.(1)求证:△PMN为等腰直角三角形;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP,BD 分别交于点G、H,请判断①中的结论是否成立,若成立,请证明;若不成立,请说明理由.11.(2017•吉安模拟)两块全等的三角板ABC和EDC如图(1)放置,AC=CB,CE=CD,∠ACB=∠ECD=90°,且AB与CE交于F,ED与AB、BC分别交于M、H,△ABC不动,将△EDC 绕点C旋转到如图(2),当∠BCE=45°时,试判断四边形ACDM是什么四边形?并证明你的结论.12.(2017•江津区校级三模)如图,已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE的中点,连接CF,DF.(1)如图①,当点D在AB上,点E在AC上时,请判断线段CF,DF有怎样的数量关系和位置关系?为什么?(2)如图②,将图①中的△ADE绕点A旋转到图②位置时,请判断(1)中的结论是否仍然成立?并证明你的判断.13.(2017•济宁二模)将两块全等的三角板如图1摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图1中△A1B1C绕点C顺时针旋转45°得图2,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图2中,若AP1=a,则CQ等于多少?(3)将图2中△A1B1C绕点C顺时针旋转到△A2B2C(如图3),点P2是A2C与AP1的交点.当旋转角为多少度时,有△AP1C∽△CP1P2?这时线段CP1与P1P2之间存在一个怎样的数量关系?.14.(2017•常德)如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.(1)如图1,若BD=BA,求证:△ABE≌△DBE;(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AF•AC.15.(2017•杭州)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.16.(2017•天水)△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF 的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.17.(2017•深圳模拟)如图1,边长为2的正方形ABCD中,E是BA延长线上一点,且AE=AB,点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,直线EP交AD于点F,过点F作直线FG⊥DE于点G,交AB于点R.(1)求证:AF=AR;(2)设点P运动的时间为t,①求当t为何值时,四边形PRBC是矩形?②如图2,连接PB.请直接写出使△PRB是等腰三角形时t的值.18.(2017•惠阳区模拟)把Rt△ABC和Rt△DEF按如图(1)摆放(点C与E重合),点B、C(E)、F在同一条直线上.已知:∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=10cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF 移动的同时,点P从△ABC的顶点A出发,以2cm/s的速度沿AB向点B匀速移动;当点P 移动到点B时,点P停止移动,△DEF也随之停止移动.DE与AC交于点Q,连接PQ,设移动时间为t(s).(1)用含t的代数式表示线段AP和AQ的长,并写出t的取值范围;(2)连接PE,设四边形APEQ的面积为y(cm2),试探究y的最大值;(3)当t为何值时,△APQ是等腰三角形.19.(2017•蜀山区二模)如图,在△ABC中,D、E分别为AB、AC上的点,线段BE、CD相交于点O,且∠DCB=∠EBC=∠A.(1)求证:△BOD∽△BAE;(2)求证:BD=CE;(3)若M、N分别是BE、CE的中点,过MN的直线交AB于P,交AC于Q,线段AP、AQ 相等吗?为什么?20.(2017•安徽模拟)如图,已知△ABC中,AC=BC,点D、E、F分别是线段AC、BC、AD 的中点,BF、ED的延长线交于点G,连接GC.(1)求证:AB=GD;(2)如图2,当CG=EG时,求的值.21.(2017•肥城市三模)如图,在锐角△ABC中,D,E分别为AB,BC中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.(1)点G在BE上,且∠BDG=∠C,求证:DG•CF=DM•EG;(2)在图中,取CE上一点H,使∠CFH=∠B,若BG=1,求EH的长.22.(2017•石家庄二模)如图,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE 与AC交于点M,EF与AC交于点N,动点P从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,伴随点P的运动,矩形PEFG在射线AB上滑动;动点K从点P出发沿折线PE﹣﹣EF以每秒1个单位长的速度匀速运动.点P、K同时开始运动,当点K到达点F时停止运动,点P也随之停止.设点P、K运动的时间是t秒(t>0).(1)当t=1时,KE=,EN=;(2)当t为何值时,△APM的面积与△MNE的面积相等?(3)当点K到达点N时,求出t的值;(4)当t为何值时,△PKB是直角三角形?23.(2017•岱岳区二模)如图,C为线段BD上一动点,过B、D分别作BD的垂线,使AB=BC,DE=DB,连接AD、AC、BE,过B作AD的垂线,垂足为F,连接CE、EF.(1)求证:AC•DF=BF•BD;(2)点C运动的过程中,∠CFE的度数保持不变,求出这个度数;(3)当点C运动到什么位置时,CE∥BF?并说明理由.24.(2017•长春模拟)如图,在△ABC中,点D在边AB上(不与A,B重合),DE∥BC交AC于点E,将△ADE沿直线DE翻折,得到△A′DE,直线DA′,EA′分别交直线BC于点M,N.(1)求证:DB=DM.(2)若=2,DE=6,求线段MN的长.(3)若=n(n≠1),DE=a,则线段MN的长为(用含n的代数式表示).25.(2017•大冶市模拟)如图,△ABC中,点E、F分别在边AB,AC上,BF与CE相交于点P,且∠1=∠2=∠A.(1)如图1,若AB=AC,求证:BE=CF;(2)若图2,若AB≠AC,①(1)中的结论是否成立?请给出你的判断并说明理由;②求证:=.26.(2017•大东区二模)如图1,在锐角△ABC中,D、E分别是AB、BC的中点,点F在AC 上,且满足∠AFE=∠A,DM∥EF交AC于点M.(1)证明:DM=DA;(2)点G在BE上,且∠BDG=∠C,如图2,求证:△DEG∽△ECF;(3)在图2中,取CE上一点H,使得∠CFH=∠B,若BG=5,求EH的长.27.(2017•阳谷县一模)如图,在△ABC中,点D是BA边延长线上一点,过点D作DE∥BC,交CA延长线于点E,点F是DE延长线上一点,连接AF.(1)如果=,DE=6,求边BC的长;(2)如果∠FAE=∠B,FA=6,FE=4,求DF的长.28.(2017•杭州模拟)已知,如图1,点D、E分别在AB,AC上,且=.(1)求证:DE∥BC.(2)已知,如图2,在△ABC中,点D为边AC上任意一点,连结BD,取BD中点E,连结CE并延长CE交边AB于点F,求证:=.(3)在(2)的条件下,若AB=AC,AF=CD,求的值.答案解析1.(2017•黑龙江)已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°.连接AD,BC,点H为BC中点,连接OH.(1)如图1所示,易证:OH=AD且OH⊥AD(不需证明)(2)将△COD绕点O旋转到图2,图3所示位置时,线段OH与AD又有怎样的关系,并选择一个图形证明你的结论.【解答】(1)证明:如图1中,∵△OAB与△OCD为等腰直角三角形,∠AOB=∠COD=90°,∴OC=OD,OA=OB,∵在△AOD与△BOC中,,∴△AOD≌△BOC(SAS),∴∠ADO=∠BCO,∠OAD=∠OBC,∵点H为线段BC的中点,∴OH=HB,∴∠OBH=∠HOB=∠OAD,又因为∠OAD+∠ADO=90°,所以∠ADO+∠BOH=90°,所以OH⊥AD(2)解:①结论:OH=AD,OH⊥AD,如图2中,延长OH到E,使得HE=OH,连接BE,易证△BEO≌△ODA∴OE=AD∴OH=OE=AD由△BEO≌△ODA,知∠EOB=∠DAO∴∠DAO+∠AOH=∠EOB+∠AOH=90°,∴OH⊥AD.②如图3中,结论不变.延长OH到E,使得HE=OH,连接BE,延长EO交AD于G.易证△BEO≌△ODA∴OE=AD∴OH=OE=AD由△BEO≌△ODA,知∠EOB=∠DAO∴∠DAO+∠AOF=∠EOB+∠AOG=90°,∴∠AGO=90°∴OH⊥AD.2.(2017•连云港四模)阅读与理解:图1是边长分别为a和b(a>b)的两个等边三角形纸片ABC和C′DE叠放在一起(C与C′重合)的图形.操作与证明:(1)操作:固定△ABC,将△C′DE绕点C按顺时针方向旋转30°,连接AD,BE,如图2;在图2中,线段BE与AD之间具有怎样的大小关系?证明你的结论;(2)操作:若将图1中的△C′DE,绕点C按顺时针方向任意旋转一个角度α,连接AD,BE,如图3;在图3中,线段BE与AD之间具有怎样的大小关系?证明你的结论;猜想与发现:根据上面的操作过程,请你猜想当α为多少度时,线段AD的长度最大是多少?当α为多少度时,线段AD的长度最小是多少?【解答】解:操作与证明:(1)BE=AD.∵△C′DE绕点C按顺时针方向旋转30°,∴∠BCE=∠ACD=30度,∵△ABC与△C′DE是等边三角形,∴CA=CB,CE=CD,∴△BCE≌△ACD,∴BE=AD.(2)BE=AD.∵△C′DE绕点C按顺时针方向旋转的角度为α,∴∠BCE=∠ACD=α,∵△ABC与△C′DE是等边三角形,∴CA=CB,CE=CD,∴△BCE≌△ACD,∴BE=AD.猜想与发现:当α为180°时,线段AD的长度最大,等于a+b;当α为0°(或360°)时,线段AD的长度最小,等于a﹣b.3.(2017•金乡县模拟)请阅读下列材料:问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1、求∠BPC度数的大小和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PC是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以∠AP′B=150°,而∠BPC=∠AP′B=150°,进而求出等边△ABC的边长为,问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=,BP=,PC=1.求∠BPC度数的大小和正方形ABCD的边长.【解答】解:(1)如图,将△BPC绕点B逆时针旋转90°,得△BP′A,则△BPC≌△BP′A.∴AP′=PC=1,BP=BP′=;连接PP′,在Rt△BP′P中,∵BP=BP′=,∠PBP′=90°,∴PP′=2,∠BP′P=45°;(2分)在△AP′P中,AP′=1,PP′=2,AP=,∵,即AP′2+PP′2=AP2;∴△AP′P是直角三角形,即∠AP′P=90°,∴∠AP′B=135°,∴∠BPC=∠AP′B=135°.(4分)(2)过点B作BE⊥AP′,交AP′的延长线于点E;则△BEP′是等腰直角三角形,∴∠EP′B=45°,∴EP′=BE=1,∴AE=2;∴在Rt△ABE中,由勾股定理,得AB=;(7分)∴∠BPC=135°,正方形边长为.4.(2017•滦县模拟)两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB=∠DCE=90°,F是DE的中点,H是AE的中点,G是BD的中点.(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为相等和位置关系为垂直;(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;(3)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.【解答】(1)解:∵CE=CD,AC=BC,∠ECA=∠DCB=90°,∴BE=AD,∵F是DE的中点,H是AE的中点,G是BD的中点,∴FH=AD,FH∥AD,FG=BE,FG∥BE,∴FH=FG,∵AD⊥BE,∴FH⊥FG,故答案为:相等,垂直.(2)答:成立,证明:∵CE=CD,∠ECD=∠ACD=90°,AC=BC,∴△ACD≌△BCE∴AD=BE,由(1)知:FH=AD,FH∥AD,FG=BE,FG∥BE,∴FH=FG,FH⊥FG,∴(1)中的猜想还成立.(3)答:成立,结论是FH=FG,FH⊥FG.连接AD,BE,两线交于Z,AD交BC于X,同(1)可证∴FH=AD,FH∥AD,FG=BE,FG∥BE,∵三角形ECD、ACB是等腰直角三角形,∴CE=CD,AC=BC,∠ECD=∠ACB=90°,∴∠ACD=∠BCE,在△ACD和△BCE中,∴△ACD≌△BCE,∴AD=BE,∠EBC=∠DAC,∵∠DAC+∠CXA=90°,∠CXA=∠DXB,∴∠DXB+∠EBC=90°,∴∠EZA=180°﹣90°=90°,即AD⊥BE,∵FH∥AD,FG∥BE,∴FH⊥FG,即FH=FG,FH⊥FG,结论是FH=FG,FH⊥FG5.(2017•路北区三模)如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.【解答】解:(1)由旋转的性质得:△ABC≌△ADE,且AB=AC,∴AE=AD,AC=AB,∠BAC=∠DAE,∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠DAB,在△AEC和△ADB中,,∴△AEC≌△ADB(SAS);(2)∵四边形ADFC是菱形,且∠BAC=45°,∴∠DBA=∠BAC=45°,由(1)得:AB=AD,∴∠DBA=∠BDA=45°,∴△ABD为直角边为2的等腰直角三角形,∴BD2=2AB2,即BD=2,∴AD=DF=FC=AC=AB=2,∴BF=BD﹣DF=2﹣2.6.(2017•平房区二模)如图,正方形ABCD,点E在AD上,将△CDE绕点C顺时针旋转90°至△CFG,点F,G分别为点D,E旋转后的对应点,连接EG,DB,DF,DB与CE交于点M,DF与CG交于点N.(1)求证BM=DN;(2)直接写出图中已经存在的所有等腰直角三角形.【解答】(1)证明:∵四边形ABCD为正方形,∴∠DCB=90°,CD=CB,∵△CDE绕点C顺时针旋转90°至△CFG,∴CF=CD,∠ECG=∠DCF=90°,∴△CDF为等腰直角三角形,∴∠CDF=∠CFD=45°,∵∠BCM+∠DCE=90°,∠DCN+∠DCE=90°,∴∠BCM=∠DCN,∵∠CBM=∠ABC=45°,∴∠CBM=∠CDN,在△BCM和△DCN中,∴△BCM≌△DCN,∴BM=DN;(2)解:∵四边形ABCD为正方形,∴△ABD和△BCD为等腰直角三角形;由(1)得△CDF为等腰三角形;∵△CDE绕点C顺时针旋转90°至△CFG,∴CE=CG,∠ECG=90°,∴△ECG为等腰直角三角形;∵△CBD和△CFD为等腰直角三角形;∴△BDF为等腰直角三角形.7.(2017•路南区一模)如图①,△ABC中,AC=BC,∠A=30°,点D在AB边上且∠ADC=45°.(1)求∠BCD的度数;(2)将图①中的△BCD绕点B顺时针旋转得到△BC′D′.当点D′恰好落在BC边上时,如图②所示,连接C′C并延长交AB于点E.①求∠C′CB的度数;②求证:△C′BD'≌△CAE.【解答】解:(1)∵AC=BC,∠A=30°,∴∠CBA=∠CAB=30°,∵∠ADC=45°,∴∠BCD=∠ADC﹣∠CBA=15°=∠BC'D';(2)①由旋转可得CB=C'B=AC,∠C'BD'=∠CBD=∠A=30°,∴∠CC'B=∠C'CB=75°;②证明:∵AC=C'B,∠C'BD'=∠A,∴∠CEB=∠C'CB﹣∠CBA=45°,∴∠ACE=∠CEB﹣∠A=15°,∴∠BC'D'=∠BCD=∠ACE,在△C'BD'和△CAE中,,∴△C'BD'≌△CAE(ASA).8.(2017•沙坪坝区一模)已知△ABC和△DEB都是等腰直角三角形,∠BAC=∠EDB=90°.(1)如图1,若点E,B,C在同一直线上,连接AE,当∠AEC=30°,BC=4时,求EB的长;(2)如图2,将图1中的△DEB绕点B顺时针旋转,当点C在ED的延长线上时,EC交AB 于点H,求证:∠EAH=2∠HCB.【解答】(1)解:如图1中,作AH⊥BC于H.∵AB=AC,∠BAC=90°,AH⊥BC,∴AH=BH=HC=2,在Rt△AEH中,∵∠AHE=90°,AH=2,∠AEH=30°,∴EH==2,∴EB=EH﹣BH=2﹣2.(2)证明:如图2中,连接AD.∵∠BDH=∠HAC,∠BHD=∠CHA,∴△BHD∽△CHA,∴=,∴=,∵∠AHD=∠CHB,∴△AHD∽△CHB,∴∠ADH=∠CBH=45°,∠DAH=∠BCH,∴∠ADB=90°+45°=135°,∴∠ADE=360°﹣90°﹣135°=135°,∴∠ADE=∠ADB,在△ADE和△ADB中,,∴△ADE≌△ADB,∴∠DAE=∠DAB,∵∠DAB=∠BCH,∴∠EAH=2∠HCB.9.(2017•重庆模拟)已知等腰Rt△ABC与等腰Rt△CDE,∠ACB=∠DCE=90°,把Rt△ABC 绕点C旋转.(1)如图1,当点A旋转到ED的延长线时,若BC=,BE=5,求CD的长;(2)当Rt△ABC旋转到如图2所示的位置时,过点C作BD的垂线交BD于点F,交AE于点G,求证:BD=2CG.【解答】解:(1)如图1,∵△ADC是由△BEC绕点C旋转得到的,∴AD=BE=5,∠ADC=∠BEC,∵在等腰Rt△ABC与等腰Rt△CDE中,BC=AC=,∠EDC=∠DEC=45°,∴AB=13,∠ADC=∠BEC=135°,∴∠AEB=90°,∴AE==12,∴DE=7,∴等腰Rt△CDE中,CD=DE=;(2)如图2,过点A作AH∥CE,交CG的延长线于H,连接HE,则∠CAH+∠ACE=180°,∵∠ACB=∠DCE=90°,∴∠BCD+∠ACE=180°,∴∠CAE=∠BCD,∵CF⊥BD,∠ACB=90°,∴∠CBF+∠BCF=∠ACG+∠BCF=90°,∴∠CBF=∠ACG,在△BCD和△CAH中,,∴△BCD≌△CAH(ASA),∴AH=CD=CE,BD=CH,又∵AH∥CE,∴四边形ACEH是平行四边形,∴CH=2CG,∴BD=2CG.10.(2017•河北区模拟)如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M,N分别是斜边AB,DE的中点,点P为AD的中点,连接AE、BD、MN.(1)求证:△PMN为等腰直角三角形;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP,BD 分别交于点G、H,请判断①中的结论是否成立,若成立,请证明;若不成立,请说明理由.【解答】解:(1)∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠CBD+∠BDC=90°,∴∠EAC+∠BDC=90°,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,∴PM=PM,∵PM∥BD,PN∥AE,∴∠NPD=∠EAC,∠MPA=∠BDC,∵∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN,∴△PMN为等腰直角三角形;(2)①中的结论成立,理由:设AE与BC交于点O,如图②所示:∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD.∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°,∴AE⊥BD,∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PM∥BD,PN=AE,PN∥AE,∴PM=PN.∵AE⊥BD,∴PM⊥PN,∴△PMN为等腰直角三角形.11.(2017•吉安模拟)两块全等的三角板ABC和EDC如图(1)放置,AC=CB,CE=CD,∠ACB=∠ECD=90°,且AB与CE交于F,ED与AB、BC分别交于M、H,△ABC不动,将△EDC 绕点C旋转到如图(2),当∠BCE=45°时,试判断四边形ACDM是什么四边形?并证明你的结论.【解答】解:四边形ACDM是菱形.证明:∵∠ACB=∠DCE=90°,∠BCE=45°,∴∠1=∠2=45°.∵∠E=45°,∴∠1=∠E,∴AC∥DE,∴∠AMH=180°﹣∠A=135°=∠ACD,又∵∠A=∠D=45°,∴四边形ACDM是平行四边形(两组对角分别相等的四边形是平行四边形),∵AC=CD,∴四边形ACDM是菱形.12.(2017•江津区校级三模)如图,已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE的中点,连接CF,DF.(1)如图①,当点D在AB上,点E在AC上时,请判断线段CF,DF有怎样的数量关系和位置关系?为什么?(2)如图②,将图①中的△ADE绕点A旋转到图②位置时,请判断(1)中的结论是否仍然成立?并证明你的判断.【解答】解:(1)CF=DF且CF⊥DF.理由如下:∵∠ADE=90°,∴∠BDE=90°,又∵∠BCE=90°,点F是BE的中点,∴CF=DF=BE=BF,∴∠1=∠3,∠2=∠4,∴∠5=∠1+∠3=2∠1,∠6=∠2+∠4=2∠2,∴∠CFD=∠5+∠6=2(∠1+∠2)=2∠ABC,又∵△ABC是等腰直角三角形,且∠ACB=90°,∴∠ABC=45°,∴∠CFD=90°,∴CF=DF且CF⊥DF.(2)(1)中的结论仍然成立.理由如下:如图,延长DF至G使FG=DF,连接BG,CG,DC,∵F是BE的中点,∴BF=EF,又∵∠BFG=∠EFD,GF=DF,∴△BFG≌△EFD(SAS),∴∠FBG=∠FED,BG=ED,∴BG∥DE,∵△ADE和△ACB都是等腰直角三角形,∴DE=DA,∠DAE=∠DEA=45°,AC=BC,∠CAB=∠CBA=45°,又∵∠CBG=∠EBG﹣∠EBA﹣∠ABC=∠DEF﹣(180°﹣∠AEB﹣∠EAB)﹣45°=∠DEF﹣180°+∠AEB+∠EAB﹣45°=(∠DEF+∠AEB)+∠EAB﹣225°=360°﹣∠DEA+∠EAB﹣225°=360°﹣45°+∠EAB﹣225°=90°+∠EAB,而∠DAC=∠DAE+∠EAB+∠CAB=45°+∠EAB+45°=90°+∠EAB,∴∠CBG=∠DAC,又∵BG=ED,DE=DA,∴BG=AD,又∵BC=AC,∴△BCG≌△ACD(SAS),∴GC=DC,∠BCG=∠ACD,∴∠DCG=∠DCB+∠BCG=∠DCB+∠ACD=∠ACB=90°,∴△DCG是等腰直角三角形,又∵F是DG的中点,∴CF⊥DF且CF=DF.13.(2017•济宁二模)将两块全等的三角板如图1摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图1中△A1B1C绕点C顺时针旋转45°得图2,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图2中,若AP1=a,则CQ等于多少?(3)将图2中△A1B1C绕点C顺时针旋转到△A2B2C(如图3),点P2是A2C与AP1的交点.当旋转角为多少度时,有△AP1C∽△CP1P2?这时线段CP1与P1P2之间存在一个怎样的数量关系?.【解答】(1)证明:∵∠B1CB=45°,∠B1CA1=90°,∴∠B1CQ=∠BCP1=45°;又B1C=BC,∠B1=∠B,∴△B1CQ≌△BCP1(ASA)∴CQ=CP1;(2)解:如图:作P1D⊥AC于D,∵∠A=30°,∴P1D=AP1;∵∠P1CD=45°,∴=sin45°=,∴CP1=P1D=AP1;又AP1=a,CQ=CP1,∴CQ=a;(3)解:当∠P1CP2=∠P1AC=30°时,由于∠CP1P2=∠AP1C,则△AP1C∽△CP1P2,所以将图2中△A1B1C绕点C顺时针旋转30°到△A2B2C时,有△AP1C∽△CP1P2.这时==,∴P1P2=CP1.14.(2017•常德)如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.(1)如图1,若BD=BA,求证:△ABE≌△DBE;(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AF•AC.【解答】证明:(1)在Rt△ABE和Rt△DBE中,,∴△ABE≌△DBE;(2)①过G作GH∥AD交BC于H,∵AG=BG,∴BH=DH,∵BD=4DC,设DC=1,BD=4,∴BH=DH=2,∵GH∥AD,∴==,∴GM=2MC;②过C作CN⊥AC交AD的延长线于N,则CN∥AG,∴△AGM∽△NCM,∴=,由①知GM=2MC,∴2NC=AG,∵∠BAC=∠AEB=90°,∴∠ABF=∠CAN=90°﹣∠BAE,∴△ACN∽△BAF,∴=,∵AB=2AG,∴=,∴2CN•AG=AF•AC,∴AG2=AF•AC.15.(2017•杭州)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.【解答】解:(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴=由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=16.(2017•天水)△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF 的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.【解答】(1)证明:∵△ABC是等腰直角三角形,∴∠B=∠C=45°,AB=AC,∵AP=AQ,∴BP=CQ,∵E是BC的中点,∴BE=CE,在△BPE和△CQE中,∵,∴△BPE≌△CQE(SAS);(2)解:∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∴△BPE∽△CEQ,∴=,∵BP=2,CQ=9,BE=CE,∴BE2=18,∴BE=CE=3,∴BC=6.17.(2017•深圳模拟)如图1,边长为2的正方形ABCD中,E是BA延长线上一点,且AE=AB,点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,直线EP交AD于点F,过点F作直线FG⊥DE于点G,交AB于点R.(1)求证:AF=AR;(2)设点P运动的时间为t,①求当t为何值时,四边形PRBC是矩形?②如图2,连接PB.请直接写出使△PRB是等腰三角形时t的值.【解答】(1)证明:如图,在正方形ABCD中,AD=AB=2,∵AE=AB,∴AD=AE,∴∠AED=∠ADE=45°,又∵FG⊥DE,∴在Rt△EGR中,∠GER=∠GRE=45°,∴在Rt△ARF中,∠FRA=∠AFR=45°,∴∠FRA=∠RFA=45°,∴AF=AR;(2)解:①如图,当四边形PRBC是矩形时,则有PR∥BC,∴AF∥PR,∴△EAF∽△ERP,∴,即:由(1)得AF=AR,∴,解得:或(不合题意,舍去),∴,∵点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,∴(秒);②若PR=PB,过点P作PK⊥AB于K,设FA=x,则RK=BR=(2﹣x),∵△EFA∽△EPK,∴,即:=,解得:x=±﹣3(舍去负值);∴t=(秒);若PB=RB,则△EFA∽△EPB,∴=,∴,∴BP=AB=×2=∴CP=BC﹣BP=2﹣=,∴(秒).综上所述,当PR=PB时,t=;当PB=RB时,秒.18.(2017•惠阳区模拟)把Rt△ABC和Rt△DEF按如图(1)摆放(点C与E重合),点B、C(E)、F在同一条直线上.已知:∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=10cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF 移动的同时,点P从△ABC的顶点A出发,以2cm/s的速度沿AB向点B匀速移动;当点P 移动到点B时,点P停止移动,△DEF也随之停止移动.DE与AC交于点Q,连接PQ,设移动时间为t(s).(1)用含t的代数式表示线段AP和AQ的长,并写出t的取值范围;(2)连接PE,设四边形APEQ的面积为y(cm2),试探究y的最大值;(3)当t为何值时,△APQ是等腰三角形.【解答】(1)解:AP=2t∵∠EDF=90°,∠DEF=45°,∴∠CQE=45°=∠DEF,∴CQ=CE=t,∴AQ=8﹣t,t的取值范围是:0≤t≤5;(2)过点P作PG⊥x轴于G,可求得AB=10,SinB=,PB=10﹣2t,EB=6﹣t,∴PG=PBSinB=(10﹣2t)∴y=S△ABC﹣S△PBE﹣S△QCE==∴当(在0≤t≤5内),y有最大值,y最大值=(cm2)(3)若AP=AQ,则有2t=8﹣t解得:(s)若AP=PQ,如图①:过点P作PH⊥AC,则AH=QH=,PH∥BC ∴△APH∽△ABC,∴,即,解得:(s)若AQ=PQ,如图②:过点Q作QI⊥AB,则AI=PI=AP=t∵∠AIQ=∠ACB=90°∠A=∠A,∴△AQI∽△ABC∴即,解得:(s)综上所述,当或或时,△APQ是等腰三角形.19.(2017•蜀山区二模)如图,在△ABC中,D、E分别为AB、AC上的点,线段BE、CD相交于点O,且∠DCB=∠EBC=∠A.(1)求证:△BOD∽△BAE;(2)求证:BD=CE;(3)若M、N分别是BE、CE的中点,过MN的直线交AB于P,交AC于Q,线段AP、AQ 相等吗?为什么?【解答】(1)证明:∵∠BCO=∠CBO,∴∠DOB=∠BCO+CBO=2∠BCO,∵∠A=2∠BCO,∴∠DOB=∠A,∵∠ABE=∠ABE,∴△BOD∽△BAE;(2)解:延长CD,在CD延长线上取一点F,使BF=BD,∴∠BDF=∠BFD,∵∠BDF=∠ABO+∠DOB,∠BEC=∠ABO+∠A,由(1)得∠BOD=∠A,∴∠BDF=∠BEC,∴∠BFD=∠BEC,在△BFC与△CEB中,,∴△BFC≌△CEB,∴BD=BF,∴BD=CE;(3)解:AP=AQ,理由:取BC的中点G,连接GM,GN,∵M,N分别是BE,CD的中点,∴GM,GN是中位线,∴GM∥CE,GM=CE,GN∥BD,GN=BD,∵BD=CE,∴GM=GN,∴∠3=∠4,∵GM∥CE,∴∠2=∠4,∵GN∥BD,∴∠3=∠1,∴∠1=∠2,∴AP=AQ.20.(2017•安徽模拟)如图,已知△ABC中,AC=BC,点D、E、F分别是线段AC、BC、AD 的中点,BF、ED的延长线交于点G,连接GC.(1)求证:AB=GD;(2)如图2,当CG=EG时,求的值.【解答】解:(1)∵D、E分别是线段AC、BC的中点,∴DE为△ABC的中位线,∴DE∥AB,即EG∥AB,∴∠FDG=∠A,∵点F为线段AD的中点,∴AF=DF,在△ABF与△DGF中,∴△ABF≌△DGF(ASA)∴AB=GD(2)∵DE为△ABC的中位线,∴DE=AB,CE=BC=AC∵DG=AB,∴EG=DE+DG∴EG=AB∵DE∥AB,∴∠GEC=∠CBA,∵AC=BC,CG=EG∴△GEC∽△CBA∴,即,∴21.(2017•肥城市三模)如图,在锐角△ABC中,D,E分别为AB,BC中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.(1)点G在BE上,且∠BDG=∠C,求证:DG•CF=DM•EG;(2)在图中,取CE上一点H,使∠CFH=∠B,若BG=1,求EH的长.【解答】(1)证明:如图1所示,∴D,E分别为AB,BC中点,∴DE∥AC∵DM∥EF,∴四边形DEFM是平行四边形,∴DM=EF,如图2所示,∵D、E分别是AB、BC的中点,∴DE∥AC,∴∠BDE=∠A,∠DEG=∠C,∵∠AFE=∠A,∴∠BDE=∠AFE,∴∠BDG+∠GDE=∠C+∠FEC,∵∠BDG=∠C,∴∠GDE=∠FEC,∴△DEG∽△ECF;∴,∴,∴,∴DG•CF=DM•EG;(2)解:如图3所示,∵∠BDG=∠C=∠DEB,∠B=∠B,∴△BDG∽△BED,∴,∴BD2=BG•BE,∵∠AFE=∠A,∠CFH=∠B,∴∠C=180°﹣∠A﹣∠B=180°﹣∠AFE﹣∠CFH=∠EFH,又∵∠FEH=∠CEF,∴△EFH∽△ECF,∴=,∴EF2=EH•EC,∵DE∥AC,DM∥EF,∴四边形DEFM是平行四边形,∴EF=DM=DA=BD,∴BG•BE=EH•EC,∵BE=EC,∴EH=BG=1.22.(2017•石家庄二模)如图,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE 与AC交于点M,EF与AC交于点N,动点P从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,伴随点P的运动,矩形PEFG在射线AB上滑动;动点K从点P出发沿折线PE﹣﹣EF以每秒1个单位长的速度匀速运动.点P、K同时开始运动,当点K到达点F时停止运动,点P也随之停止.设点P、K运动的时间是t秒(t>0).(1)当t=1时,KE=1,EN=;(2)当t为何值时,△APM的面积与△MNE的面积相等?(3)当点K到达点N时,求出t的值;(4)当t为何值时,△PKB是直角三角形?【解答】解:(1)当t=1时,根据题意得,AP=1,PK=1,∵PE=2,∴KE=2﹣1=1,∵四边形ABCD和PEFG都是矩形,∴△APM∽△ABC,△APM∽△NEM,∴=,=,∴MP=,ME=,∴NE=;故答案为:1;;(2)由(1)并结合题意可得,AP=t,PM=t,ME=2﹣t,NE=﹣t,∴t×t=(2﹣t)×(﹣t),解得,t=;(3)当点K到达点N时,则PE+NE=AP,由(2)得,﹣t+2=t,解得,t=;(4)①当K在PE边上任意一点时△PKB是直角三角形,即,0<t≤2;②当点k在EF上时,则KE=t﹣2,BP=8﹣t,∵△BPK∽△PKE,∴PK2=BP×KE,PK2=PE2+KE2,∴4+(t﹣2)2=(8﹣t)(t﹣2),解得t=3,t=4;③当t=5时,点K在BC边上,∠KBP=90°.综上,当0<t≤2或t=3或t=4或5时,△PKB是直角三角形.23.(2017•岱岳区二模)如图,C为线段BD上一动点,过B、D分别作BD的垂线,使AB=BC,DE=DB,连接AD、AC、BE,过B作AD的垂线,垂足为F,连接CE、EF.(1)求证:AC•DF=BF•BD;(2)点C运动的过程中,∠CFE的度数保持不变,求出这个度数;(3)当点C运动到什么位置时,CE∥BF?并说明理由.【解答】解:(1)∵BF⊥AD,∴∠AFB=∠BFD=90°,∴∠ABF+∠BAF=90°,∵AB⊥BC,∴∠ABF+∠DBF=90°,∴∠BAF=∠DBF,∴△ABF∽△BDF,∴=,即AB•DF=BF•BD,由AB=BC,AB⊥BC,∴AB=AC,∴AC•DF=BF•BD;(2)∵=,AB=BC、BD=DE,∴=,∵∠FBC+∠BDF=90°、∠BDF+∠EDF=90°,∴∠FBC=∠EDF,∴△FBC∽△FDE,∴∠BFC=∠DFE,又∠BFD=∠BFC+∠CFD=90°,∴∠DFE+∠CFD=90°,即∠CFE=90°,故∠CFE的度数保持不变,始终等于90°.(3)当C为BD中点时,CE∥BF,理由如下:∵C为BD中点,∴AB=BC=CD=BD=DE,在△ABD和△CDE中,∵,∴△ABD≌△CDE(SAS),∴∠ADB=∠CED,∵∠CED+∠ECD=90°,∴∠ADB+∠ECD=90°,∴CE⊥AD,∵BF⊥AD,∴CE∥BF.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开放探究题开放探究题是一种新题型,主要有下列两种描述:(1)答案不固定或者条件不完备的习题称为开放题;(2)具有多种不同的解法或有多种可能的解答的问题称为开放题。

开放探究题的特点是:(1)条件多余需选择,条件不足需补充;(2)答案不固定;(3)问题一般没有明确的结论,没有固定的形式和方法,需要自己通过观察、分析、比较、概括、推理、判断等探索活动来确定所需求的结论或条件或方法,因而解题的策略是将其转化为封闭性问题。

开放探究题常见的类型有:(1)条件开放型:结论明确但问题的条件不完备或满足结论的条件不唯一;(2)结论开放型:在给定的条件下,结论不唯一;(3)策略开放型:即思维策略与解题方法不唯一;(4)综合开放型:条件、结论、策略中至少有两项均是开放的。

类型之一条件开放型问题解条件开放型问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,结合图形挖掘条件,是一种分析型思维方式。

它要求解题者善于从问题的结论出发,逆向追索,多途寻因。

例1 [2010·南通] 如图X3—1,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF。

能否由上面的已知条件证明AB//ED?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使AB//ED成立,并给出证明。

供选择的三个条件(请从其中选择一个):①AB=ED②BC=EF∠=∠③ACB DFE∠=∠,故证【解析】由已知条件,显然不能证明AB//ED。

欲证明AB//ED,可以证明B E明△ABC≌△DEF即可。

由已知易得这两三角形有两边对应相等,因此可以考虑添加第三边对应相等或这两组对应的夹角相等。

解:由上面两条件不能证明AB//ED。

有两种添加方法。

第一种:FB=CE,AC=DF,添加①AB=ED。

证明:因为FB=CE,所以BC=EF,又AC=DF,AB=ED,所以△ABC≌△DEF。

∠=∠,所以AB//ED。

所以ABC DEF∠=∠。

第二种:FB=CE,AC=DF,添加③ACB DFE∠=∠,AC=DF,所以△ABC≌△DEF。

证明:因为FB=CE,所以BC=EF,又ACB DFE所以ABC DEF ∠=∠,所以AB//ED 。

[点评]条件开放探索题的特征是缺少确定的条件,问题所需补充的条件不是得出结论的必要条件,所需补充的条件不能由结论推出。

类型之二 结论开放型问题解结论开放型问题时要充分得用已知条件或图形特征,进行猜想、归纳、类比,透彻分析出给定条件下可能存在的结论现象,然后经过论证作出取舍,这是一种归纳类比型思维。

它要求解题者充分利用条件进行大胆而合理的猜想,发现规律,得出结论,这类题主要考查解题者的发散性思维能力和知识应用能力。

例2 [2010·临沂] 如图X3—3(1)所示,已知矩形ABED ,点C 是边DE 的中点,且AB=2AD 。

(1)判断的形状,并说明理由;(2)保持图X3—3(1)中的△ABC 固定不变,绕点C 旋转DE 所在的直线MN 到图(2)中的位置(当垂线段AD 、BE 在直线MN 的同侧)。

试探究线段AD 、BE 、DE 长度之间有什么关系?并给予证明;(3)保持图(2)中的△ABC 固定不变,继续绕点C 旋转DE 所在的直线MN 到图(3)中的位置(当垂线段AD 、BE 在直线MN 的异侧)。

试探究线段AD 、BE 、DE 长度之间有什么关系?并给予证明。

【解析】(1)先猜测△ABC 是等腰直角三角形。

证明Rt △ADC ≌Rt △CEB 。

(2)图形改变,Rt △ADC ≌Rt △CEB 的关系不变,从而得出DC=BE ,CE=AD 。

(3)同样图形改变,Rt △ADC ≌Rt △CEB 的关系不变。

解:(1)△ABC 是等腰直角三角形。

如图X3—3(1),在矩形ABED 中, 因为点C 是边DE 的中点,且AB=2AD , 所以AD=DC=CE=EB ,D E ∠=∠=90º。

∴Rt △ADC ≌Rt △CEB 。

∴AC=BC ,ACD BCE ∠=∠=45º。

∴ACB ∠=90º。

∴△ABC 是等腰直角三角形。

如图(2),在Rt △ADC 和Rt △CEB 中,∵ACD CAD ∠+∠=90º,ACD BCE ∠+∠=90º. ∴CAD BCE ∠=∠.又∵AC=BC ,ADC CEB ∠=∠=90º,∴Rt △ADC ≌Rt △CEB 。

∴DC=BE ,CE=AD 。

∴DC +CE=BE +AD ,即DE=BE +AD 。

(3)DE=BE -AD 。

如图(3),在Rt △ADC 和Rt △CEB 中,∵ACD CAD ∠+∠=90º,ACD BCE ∠+∠=90º. ∴CAD BCD ∠=∠。

又∵ADC CEB ∠=∠=90º,AC=CB , ∴Rt △ADC ≌Rt △CEB 。

∴DC=BE ,CE=AD∴DC -CE=BE -AD ,即DE=BE -AD 。

【点评】抓住问题中的不变关系,探究改变的量。

类型之三 策略开放型问题策略开放型也称为设计方案型,题目的条件和结论都已知或部分已知,需要探索解题方法或设计解题方案;这种类型的开放性试题的处理方法一般需要模仿、类比、试验、创新和综合运用所学知识,建立合理的数学模型,从而使问题得以解决。

例3 [2010·台州] 类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位。

用实数加法表示为3+(-2)=1。

若坐标平面上的点作如下平移:沿x 轴方向平移的数量为a (向右为正,向左为负,平移a 个单位),沿y 轴方向平移的数量为b (向上为正,向下为负,平移b 个单位),则把有序数对{},a b 叫做这一平移的“平移量”;“平移量” {},a b 与“平移量”{},c d 的加法运算法则为{}{}{},,,a b c d a c b d +=++。

解决问题:(1)计算:{}{}3,11,2+;{}{}1,23,1+。

(2)①动点P 从坐标原点O 出发,先按照“平移量”{}3,1平移到A ,再按照“平移量”{}1,2平移到B ;若先把动点P 按照“平移量”{}1,2平移到C ,再按照“平移量”{}3,1平移,最后的位置还是点B 吗?在图X3—5(1)中画出四边形OABC ;②证明四边形OABC 是平行四边形。

(3)如图X3—5(2)所示,一艘船从码头O 出发,先航行到湖心岛头(2,3)P ,再从码头P 航行到码头(5,5)Q ,最后回到出发点O ,请用“平移量”加法算式表示它的航行过程。

【解析】“平移量”{},a b 与“平移量”{},c d 的加法运算法则为{}{},,a b c d +={},a c b d ++。

解:(1){}{}{}3,11,24,3+=。

{}{}{}1,23,14,3+=。

(2)①画图(如图X3—6所示),最后的位置仍是B 。

②证明:由①知,(3,1)A ,(4,3)B ,(1,2)C , ∴OC =OA BC ==∴四边形OABC 是平行四边形。

(3){}{}{}{}2,33,25,50,0++--=。

【点评】策略开放性问题,一般指解题方法不唯一或解题途径不明确的问题,这类问题要求解题者不墨守成规,善于标新立异,积极发散思维,优化解题方案和过程。

类型之四 存在开放性与探究型问题这类问题是指条件、结论、解题方法都不全或未知,而仅提供一种问题情境,需要我们补充条件,设计结论,并寻求解法的一类问题;它更具有开发性,能为我们提供宽松的思维环境,解这类题时,要求我们对课本知识特别熟悉并能灵活运用。

例4 [2010·娄底] 如图X3—8所示,在梯形ABCD 中,AB//CD ,AB=2,DC=10,AD=BC=5,点M 、N 分别在边AD 、BC 上运动,并保持MN//AB ,ME DC ⊥,NF DC ⊥,垂足分别为E 、F 。

(1)求梯形ABCD 的面积;(2)探究一:四边形MNEF 的面积有无最大值?若有, 请求出这个最大值:若无,请说明理由; (3)探究二:四边形MNEF 能否为正方形?若能,请求出正方形的面积;若不能,请说明理由。

【解析】(1)作AG DC ⊥,BH DC ⊥,利用梯形面积公式求解。

(2)设MN x =,则EF MN x ==,利用△DEM ∽△DGA ,得ME DEAG DG=,求四边形MEFN 的面积S 与x 的函数关系式。

(3)四边形MEFN 能为正方形,且边长为x ,结合ME DE AG DG =,得10234xx-=。

解:(1)作AG DC ⊥,BH DC ⊥,垂足分别为G ,H 。

因为AB//DC ,所以四边形AGHB是矩形,所以GH=AB=2,AG=BH ,又因为AD=BC=5,所以Rt △ADG ≌Rt△BCH ,所以DG=CH 。

所以DG=(DC -GH )÷2=4,在Rt △ADG 中,3AG ==。

所以梯形ABCD 的面积是()182AB CD AG+∙=。

(2)设MN x =,则EF MN x ==,所以1022DC EF xDE --==。

因为ME DC ⊥,NF DC ⊥,所以ME//AG ,MED AGD ∠=∠=90º,所以△DEM ∽△DGA ,所以ME DEAG DG=,所以10234xME-=,所以3(10)8x ME -=, 所以四边形MEFN 的面积是3(10)8x S MN ME x -=∙=∙=233088x x -+23(5)8x =--758+。

所以当5x =时,四边形MEFN 的面积的最大值是758。

(3)四边形MEFN 能为正方形,且边长为x ,则由(2)知道,ME DE AG DG =,所以10234xx-=,所以3011x =。

此时四边形的面积是223090011121x ⎛⎫== ⎪⎝⎭。

【点评】解答结论存在性问题的一般思路是:先假设存在,然后由此出发,结合已知条件进行计算推理论证,导出某个结果。

若该结果合理,则说明假设成立,由此得出问题的答案;如果该结果不合理,则说明假设不成立,所探索的条件或结论不存在。

相关文档
最新文档