高一数学圆试题答案及解析

合集下载

高一数学试题答案及解析

高一数学试题答案及解析

高一数学试题答案及解析1.若△ABC中,∠C=90°,A(1,2,﹣3k),B(﹣2,1,0),C(4,0,﹣2k),则k的值为()A.B.﹣C.2D.±【答案】D【解析】先根据向量的运算性质求出与,然后根据∠C=90°得•=0建立等式关系,解之即可.解:∵A(1,2,﹣3k),B(﹣2,1,0),C(4,0,﹣2k),∴=(3,﹣2,k),=(6,﹣1,﹣2k)∵△ABC中,∠C=90°∴•=(3,﹣2,k)•(6,﹣1,﹣2k)=18+2﹣2k2=0解得k=故选D.点评:本题主要考查了向量语言表述线线的垂直,解题的关键是空间向量的数量积,属于基础题.2.(2013•山东)已知三棱柱ABC﹣A1B1C1的侧棱与底面垂直,体积为,底面是边长为的正三角形,若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为()A.B.C.D.【答案】B【解析】利用三棱柱ABC﹣A1B1C1的侧棱与底面垂直和线面角的定义可知,∠APA1为PA与平面A1B1C1所成角,即为∠APA1为PA与平面ABC所成角.利用三棱锥的体积计算公式可得AA1,再利用正三角形的性质可得A1P,在Rt△AA1P中,利用tan∠APA1=即可得出.解:如图所示,∵AA1⊥底面A1B1C1,∴∠APA1为PA与平面A1B1C1所成角,∵平面ABC∥平面A1B1C1,∴∠APA1为PA与平面ABC所成角.∵==.∴V三棱柱ABC﹣A1B1C1==,解得.又P为底面正三角形A1B1C1的中心,∴==1,在Rt△AA1P中,,∴.故选B.点评:熟练掌握三棱柱的性质、体积计算公式、正三角形的性质、线面角的定义是解题的关键.3.设与都是直线Ax+By+C=0(AB≠0)的方向向量,则下列关于与的叙述正确的是()A.=B.与同向C.∥D.与有相同的位置向量【答案】C【解析】根据直线的方向向量的定义直接判断即可.解:根据直线的方向向量定义,把直线上的非零向量以及与之共线的非零向量叫做直线的方向向量.因此,线Ax+By+C=0(AB≠0)的方向向量都应该是共线的故选C.点评:本题考查了直线的方向向量的定义,是基础题.4.若A(﹣1,0,1),B(1,4,7)在直线l上,则直线l的一个方向向量为()A.(1,2,3)B.(1,3,2)C.(2,1,3)D.(3,2,1)【答案】A【解析】由题意可得首先求出直线上的一个向量,即可得到它的一个方向向量,再利用平面向量共线(平行)的坐标表示即可得出答案.解:由题意可得:直线l的一个方向向量=(2,4,6),又∵(1,2,3)=(2,4,6),∴(1,2,3)是直线l的一个方向向量.故选A.点评:本题主要考查直线的方向向量,以及平面向量共线(平行)的坐标表示,是基础题.5.直线l与x轴、y轴、z轴的正方向所成的夹角分别为α、β、γ,则直线l的方向向量为.【答案】(cosα,cosβ,cosγ).【解析】设过原点与直线l平行的直线为直线l′,直线l′取OP=1,P(x,y,z),求出=(cosα,cosβ,cosγ),即可求出直线l的方向向量.解:设过原点与直线l平行的直线为直线l′,直线l′取OP=1,P(x,y,z),则x=cosα,y=cosβ.z=cosγ,∴=(cosα,cosβ,cosγ),∴直线l的方向向量为(cosα,cosβ,cosγ),故答案为:(cosα,cosβ,cosγ).点评:本题考查直线l的方向向量,考查学生的计算能力,比较基础.6.已知一个正四面体的棱长为2,则它的体积为.【答案】【解析】求出正四面体的底面面积以及高,即可求解正四面体的体积.解:一个正四面体的棱长为2,∴正四面体的底面面积为:=.正四面体的高:=.一个正四面体的棱长为2,则它的体积为:=.故答案为:.点评:本题考查几何体的体积的求法,求解正四面体的高是解题的关键.7. 已知等差数列{a n }的前n 次和为s n ,且S 2=10,S 5=55,则过点P (n ,a n )和Q (n+2,a n+2)(n ∈﹣N *)的直线方向向量的坐标可以是 . 【答案】(1,4)【解析】根据等差数列{a n },可求数列的通项公式,根据斜率公式可知求出直线PQ 的斜率,从而求出一个直线方向向量的坐标.解:∵等差数列{a n }的前n 项和为S n ,且S 2=10,S 5=55, ∴a 1+a 2=10,a 3=11, ∴a 1=3,d=4, ∴a n =4n ﹣1 a n+2=4n+7,∴P (n ,4n ﹣1),Q (n+2,4n+7) ∴直线PQ 的斜率是=4,∴过点P (n ,a n )和Q (n+2,a n+2)(n ∈﹣N *)的直线方向向量的坐标可以是(1,4) 故答案为:(1,4)点评:本题主要考查了一条直线的方向向量,注意当方向向量横标是1时,纵标就是直线的斜率,属于基础题.8. 设异面直线l 1,l 2的方向向量分别为=(﹣1,1,0),=(1,0,﹣1),则异面直线l 1,l 2所成角的大小为 . 【答案】【解析】根据已知中异面直线l 1,l 2的方向向量分别为=(﹣1,1,0),=(1,0,﹣1),代入向量夹角公式,可得答案.解:设异面直线l 1,l 2所成角的大小为θ,∵异面直线l 1,l 2的方向向量分别为=(﹣1,1,0),=(1,0,﹣1), ∴cosθ===,故θ=,故答案为:; 点评:本题考查的知识点是直线的方向向量,异面直线的夹角,其中将直线夹角问题转化为向量夹角是解答的关键.9. (2011•自贡三模)设x >y >0>z ,空间向量=(x ,,3z ),=(x ,+,3z ),且x 2+9z 2=4y (x ﹣y ),则•的最小值是( ) A .2 B .4C .2D .5【答案】B【解析】先利用空间向量的数量积运算出,的数量积,再将题中条件:“x 2+9z 2=4y (x ﹣y ),”代入运算,最后利用基本不等式即可求得最小值. 解:∵空间向量=(x ,,3z ),=(x ,+,3z ),∴•==4y (x ﹣y )+≥2=4. 则•的最小值是:4 故答案为:B .点评:本题主要考查了空间向量的数量积运算,以及基本不等式等知识,解答的关键是适当变形成可以利用基本不等式的形式.属于基础题.10.已知ABCD为矩形,P为平面ABCD外一点,且PA⊥平面ABCD,G为△PCD的重心,若=x+y+z,则()A.x=,y=,z=B.x=,y=,z=C.x=﹣,y=,z=D.x=,y=,z=【答案】B【解析】利用三角形的重心性质、向量的三角形法则、平行四边形法则即可得出.解:,,,,,,代入可得=++,∴,,.故选:B.点评:本题考查了三角形的重心性质、向量的三角形法则、平行四边形法则,属于基础题.11.(2004•广州一模)已知向量=(8,x,x),=(x,1,2),其中x>0.若∥,则x的值为()A.8B.4C.2D.0【答案】B【解析】根据两个向量平行,写出两个向量平行的充要条件,得到两个向量的坐标之间的关系,根据横标、纵标和竖标分别相等,得到λ和x的值.解:∵∥且x>0存在λ>0使=λ∴(8,,x)=(λx,λ,2λ)∴∴.故选B点评:本题考查共线向量的充要条件的应用,是一个基础题,这种题目可以作为选择和填空出现在高考题目中,是一个送分题目.12.已知=(2,﹣1,3),=(﹣4,2,x),=(1,﹣x,2),若(+)⊥,则x等于()A.4B.﹣4C.D.﹣6【答案】B【解析】利用已知条件求出+,然后(+)•=0,求出x即可.解:=(2,﹣1,3),=(﹣4,2,x),=(1,﹣x,2),+=(﹣2,1,x+3),∵(+)⊥,∴(+)•=0即﹣2﹣x+2(x+3)=0,解得x=﹣4.故选:B.点评:本题考查空间向量的数量积的应用,向量的坐标运算,考查计算能力.13.已知O是平面上一定点,A﹑B﹑C是平面上不共线的三个点,动点P满足=+λ(+)λ∈[0,+∞),则点P的轨迹一定通过△ABC的()A.外心B.内心C.重心D.垂心【答案】C【解析】将=提取出来,转化成λt(+),而λt(+)表示与共线的向量,点D是BC的中点,故P的轨迹一定通过三角形的重心.解:∵=设它们等于∴=+λ(+)而+=2λ(+)表示与共线的向量而点D是BC的中点,所以即P的轨迹一定通过三角形的重心.故选C点评:本题主要考查了空间向量的加减法,以及三角形的三心等知识,属于基础题.14.设=(x,4,3),=(3,2,z),且∥,则xz的值为()A.9B.﹣9C.4D.【答案】A【解析】利用共线向量的条件,推出比例关系,求出x,z的值.解:∵=(x,4,3)与=(3,2,z),共线,故有.∴x=6,y=.则xz的值为:9故选A.点评:本题考查共线向量的知识,考查学生计算能力,是基础题.15.已知正方体ABCD﹣A′B′C′D′中,点F是侧面CDD′C′的中心,若=+x+y,则x﹣y 等于()A.0B.1C.D.﹣【答案】A【解析】由向量的运算法则可得=+,结合已知可得xy的值,进而可得答案.解:由向量的运算法则可得=+=+(+)=+(+)=+又=+x+y,故x=,y=,所以x﹣y=0故选A点评:本题考查空间向量基本定理即意义,属基础题.16.若{、、}为空间的一组基底,则下列各项中,能构成基底的一组向量是()A.,+,﹣B.,+,﹣C.,+,﹣D.+,﹣,+2【答案】C【解析】空间的一组基底,必须是不共面的三个向量,利用向量共面的充要条件可证明A、B、D 三个选项中的向量均为共面向量,利用反证法可证明C中的向量不共面解:∵(+)+(﹣)=2,∴,+,﹣共面,不能构成基底,排除 A;∵(+)﹣(﹣)=2,∴,+,﹣共面,不能构成基底,排除 B;∵+2=(+)﹣(﹣),∴,+,﹣,+2共面,不能构成基底,排除 D;若、+、﹣共面,则=λ(+)+m(﹣)=(λ+m)+(λ﹣m),则、、为共面向量,此与{、、}为空间的一组基底矛盾,故,+,﹣可构成空间向量的一组基底.故选:C点评:本题主要考查了空间向量基本定理,向量共面的充要条件等基础知识,判断向量是否共面是解决本题的关键,属基础题17.(理)在长方体ABCD﹣A1B1C1D1中,以,,为基底表示,其结果是()A.=++B.=C.=﹣2+D.=【答案】C【解析】先可得=,然后逐步把其中的三个向量用所给的基底表示,化简可得结论.解:由向量的运算法则可得===﹣+()=﹣+()=故选C点评:本题考查空间向量基本定理和意义,属基础题.18.若向量是空间的一个基底,则一定可以与向量构成空间的另一个基底的向量是()A.B.C.D.【答案】C【解析】空间向量的一组基底,要满足不为零向量,且三个向量不共面,逐个判断即可.解:由已知及向量共面定理,结合=,可知向量,,共面,同理可得=2,故向量,,共面,故向量,都不可能与,构成基底,又可得==,故向量+也不可能与,构成基底,只有符合题意,故选C点评:本题考查空间向量的基底,涉及向量的共面的判定,属基础题.19.在正方形ABCD﹣A1B1C1D1A1C1中,点E为上底面A1C1的中点,若,则x,y,z的值分别是()A.B.C.D.【答案】B【解析】画出正方体,表示出向量,为的形式,可得x、y,z的值.解:如图,===.∴x=1,y=z=.故选B.点评:本题考查棱柱的结构特征,向量加减运算,是基础题.主要是用三角形法则把所求向量转化.20.(2014•南昌模拟)已知抛物线y2=2px(p>0)的焦点F与椭圆的一个焦点重合,它们在第一象限内的交点为T,且TF与x轴垂直,则椭圆的离心率为()A.B.C.D.【答案】B【解析】由条件可得b2=2ac,再根据c2 +b2﹣a2=0,即c2+2ac﹣a2=0,两边同时除以a2,化为关于的一元二次方程,解方程求出椭圆的离心率的值.解:依题意抛物线y2=2px(p>0)的焦点F与椭圆的一个焦点重合,得:,由TF=及TF=p,得,∴b2=2ac,又c2 +b2﹣a2=0,∴c2+2ac﹣a2=0,∴e2+2e﹣1=0,解得.故选B.点评:本题考查了圆锥曲线的共同特征,主要考查了椭圆和抛物线的几何性质,属于基础题.。

高一数学试题大全

高一数学试题大全

高一数学试题答案及解析1.有下列调查方式:①某学校为了了解高一学生的作业完成情况,从该校20个班中每班抽1人进行座谈;②某班共有50人,在一次期中考试中,15人在120以上,30人在90~120分,5人低于90分.现在从中抽取10人座谈了解情况,120分以上的同学中抽取3人,90~120分的同学中抽取6人,低于90分的同学中抽取1人;③从6名家长志愿者中随机抽取1人协助交警疏导交通.这三种调查方式所采用的抽样方法依次为A.分层抽样,系统抽样,简单随机抽样B.简单随机抽样,系统抽样,分层抽样C.分层抽样,简单随机抽样,系统抽样D.系统抽样,分层抽样,简单随机抽样【答案】D【解析】系统抽样适用于元素个数很多且均衡的总体;分层抽样适用于总体由差异明显的几部分组成的情况;简单随机抽样适用于总体个体性质相似,无明显层次,总体容量较小;因此①是系统抽样;②是分层抽样;③是简单随机抽样.【考点】随机抽样的特点.2.已知非零实数满足,则下列不等式成立的是().A.B.C.D.【答案】D【解析】由于,因此,,由于正负不确定,因此其余三个不能确定.【考点】大小关系.3.利用计算机产生0~1之间的均匀随机数a,则使关于x的一元二次方程x2-x+a=0无实根的概率为()A.B.C.D.【答案】C【解析】∵关于x的一元二次方程x2-x+a=0无实根,∴△=1-4a<0,∵0<a<1,∴∴事件“关于x的一元二次方程x2-x+a=0无实根”的概率为.故选:C.【考点】几何概型的意义;模拟方法估计概率.4.已知中,=4,,则( ).A.1500B.300或1500C.1200D.600或1200【答案】C【解析】,.【考点】余弦定理.5.如图是一个算法流程图,该流程图输出的结果是,则判断框内应该填入的是().A.i≥3B.i>3C.i≥5D.i>5【答案】C.【解析】此流程图为循环结构,初始值,第一次:,第二次:,第三次:,第四次:,由于新的值的出现是在判断框后,当第四次出现时必须离开循环结构,所以判断框要填,故选C.【考点】对循环结构的程序框图中条件的确定.6.已知为平行四边形,若向量,,则向量为()A.B.C.D.【答案】C【解析】【考点】向量的减法7.求值:sin150=A.B.C.D.【答案】A【解析】解:∵,故选A.【考点】运用诱导公式化简求值..8.已知集合,则( )A.B.C.D.【答案】D【解析】因为集合的全集为.又因为.所以.故选D.本小题的关键就是考察集合的补集的概念.【考点】1.集合的列举法.2.集合补集的运算.9.圆的圆心坐标和半径分别为A.B.C.D.【答案】B【解析】把圆的方程化为标准形式,它表示以为圆心,以2为半径的圆,从而得到结论.解:圆的方程化为,则其圆心和半径分别为。

高一数学试题大全

高一数学试题大全

高一数学试题答案及解析1.已知点A(1,2,1),B(﹣1,3,4),D(1,1,1),若=2,则||的值是.【答案】.【解析】设出P点的坐标,根据所给的=2和A、B两点的坐标求出P点的坐标,写出向量的坐标,利用求模的公式得到结果.解:设P(x,y,z),∴=(x﹣1,y﹣2,z﹣1).=(﹣1﹣x,3﹣y,4﹣z)由=2得点P坐标为P(﹣,,3),又D(1,1,1),∴||=.点评:认识向量的代数特性.向量的坐标表示,实现了“形”与“数”的互相转化.以向量为工具,几何问题可以代数化,代数问题可以几何化.空间向量在立体几何中作用不可估量.2.直线被圆截得的弦长为,则实数的值为()A.或B.或C.或D.或【答案】D【解析】由圆,则圆心为:,半径为:,圆心到直线的距离为:,又,即,解得或.故选D.【考点】直线和圆的位置关系;点到直线距离公式.3.等比数列的前项和为,若,,则()A.15B.30C.45D.60【答案】C【解析】可以将每三项看作一项,则也构成一个等比数列.所以,故选C.【考点】等比数列性质.4.已知函数是定义在上的偶函数,且在区间上是增函数.令,,,则()A.B.C.D.【答案】A【解析】由于,又,又在区间上是增函数,所以有。

【考点】函数的单调性及三角函数值大小的比较。

5.已知,且.若,则的值为A.B.C.D.或【答案】D【解析】由已知得,则,又,则的值为或。

【考点】(1)共线向量的坐标运算;(2)特殊角的三角函数值。

6.若为圆的弦的中点,则直线的方程是()A.B.C.D.【答案】D【解析】圆的圆心为,点为弦AB的中点,PC的斜率为,直线AB的斜率为1,点斜式写出直线AB的方程即【考点】圆的方程,直线方程点斜式7.在中,,则()A.B.C.D.【答案】A【解析】由正弦定理可得即,在中,可得,也就是.那么,由余弦定理,代入可得,则.【考点】正余弦定理,向量的数量积运算.8.在中,,,,则的面积为()A.B.C.D.【答案】C【解析】由已知可得,同理,又,可得,所以,.【考点】向量的坐标运算,三角形的面积公式.9.已知一个水平放置的正方形用斜二测画法作出的直观图是一个平行四边形,平行四边形中有一条边长为4,则此正方形的面积是( )A.16B.64C.16或64D.以上都不对【答案】C【解析】因为我们默认坐标系的横轴与水平线是平行的,所以假设用斜二测画法作出的直观图是一个平行四边形的水平的边为4,则原正方形的边长为4,所以面积为16.若平行四边形的另一边为四则根据斜二测画法可知原正方形的边长为8,所以面积为64.所以选C.【考点】1.斜二测画法的法则.2.变化前与变化后的对应关系.10.若函数满足对任意的,当时,则实数的取值范围是()A.B.C.D.【答案】C【解析】当时,说明函数在上是减函数,根据复合函数的单调性的性质,有.【考点】复合函数的单调性.11.函数的零点所在的区间是A.(0,1)B.(1,2)C.(2,3)D.(3,+∞)【答案】C.【解析】根据零点存在定理,由可得函数在区间上有零点,本题我们只要计算区间两端点处的函数值(如果存在的话),看看它们的正负即可.易知,.因此选C.【考点】函数的零点.12.已知,则角所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】根据题意,由于,则说明正弦值和余弦值都是正数,因此可知角所在的象限是第一象限,故选A.【考点】三角函数的定义点评:主要是考查了三角函数的定义的运用,属于基础题。

高一数学试卷带答案解析

高一数学试卷带答案解析

高一数学试卷带答案解析考试范围:xxx;考试时间:xxx分钟;出题人:xxx姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.圆的圆心在直线上,经过点,且与直线相切,则圆的方程为A.B.C.D.2.已知函数为上的减函数,若,则()A.B.C.D.3.设全集,集合,,则下列图中的阴影部分表示集合的是()4.(2015秋•河西区期末)将函数y=sinx的图象向左平移φ(0≤φ≤2π)个单位后,得到函数的图象,则φ=()A. B. C. D.5.若直线(1+a)x+y+1=0与圆x2+y2-2x=0相切,则a的值为()A.1,-1 B.2,-2 C.1 D.-16.设是两条不同的直线,是三个不同的平面,则下列正确的是()A.若,,则B.若,,,则C.若,,则D.若,,则7.下列四个函数中,在上为增函数的是()A. B. C. D.8.下列对应法则中,可以构成从集合到集合的映射的是()A.B.C.D.9.如图,纵向表示行走距离d,横向表示行走时间t,下列四图中,哪一种表示先快后慢的行走方法。

()10.容量为20的样本,已知某组的频率为0.25,则该组的频数为()则率0量_______________A.2 B.5 C.15 D.8011.设,且,则()A. B. C. D.12.如图所示的曲线是幂函数在第一象限的图象,已知,相应曲线对应的值依次为A.B.C.D.13.将图1所示的三角形线直线l旋转一周,可以得到如图2所示的几何体的是哪一个三角形()14.若全集,则集合的真子集共有()A.个 B.个 C.个 D.个15.在中,若,则的面积的最大值为()A.8 B.16 C. D.16.函数在上单调递增,则的取值范围是()A.B.C.D.17.函数的图像如图所示,在区间上可找到个不同的数,使得,则的取值范围为( )A.B.C.D .18.已知函数f(x)=ax 2+bx +c ,不等式f(x)<0的解集为,则函数y =f(-x)的图象可以为A .B .C .D .19.边长为的三角形的最大角与最小角的和是( ) A .B .C .D .20.已知方程|x|-ax -1=0仅有一个负根,则a 的取值范围是 ( ) A .a<1 B .a≤1 C .a>1 D .a≥1二、填空题21.函数的单调增区间是 .22.使成立的的取值范围是________;23.一个算法如下: 第一步:取值取值;第二步:若不大于,则执行下一步;否则执行第六步;第三步:计算且将结果代替; 第四步:用结果代替;第五步:转去执行第二步;第六步:输出则运行以上步骤输出的结果为 .24.一组数据1,2,1,0,-1,-2,0,-1的方差为___________.25.(2015秋•吉林校级月考)如图所示,在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,A 1B 1的中点是P ,过点A 1作与截面PBC 1平行的截面,则截面的面积是 .26.设M 是△ABC 的边BC 上任意一点,且,若,则_____________;27.已知二次函数f (x )=x 2+2ax -4,当a ______时,f (x )在[1,+∞)上是增函数;当a ______时,函数f (x )的单调递增区间是[1,+∞). 28.已知直线l 通过直线和直线的交点,且与直线平行,则直线l 的方程为 .29.正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为 . 30.已知函数,若在上有最小值和最大值,则实数的取值范围是____________.三、解答题31.已知数列 的前项和.(Ⅰ)求数列的通项公式; (Ⅱ) 若数列满足,且,求.32.设,,,,.(1)求;(2)设,且中有且仅有2个元素属于,求的取值范围.33.(本小题满分12分)已知函数,(1)当时,求的最大值和最小值(2)若在上是单调函数,且,求的取值范围34.(本小题满分8分)已知数列的通项公式.(1)求,;(2)若,分别是等比数列的第1项和第2项,求数列的通项公式.35.将一颗骰子先后抛掷2次,观察向上的点数,则以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=27的内部的概率.参考答案1 .C【解析】考点:圆的标准方程.专题:计算题.分析:根据圆心在一条直线上,设出圆心的坐标,根据圆心的坐标看出只有A,C两个选项符合题意,根据圆过一个点,把这个点代入圆的方程,A不合题意,得到结果.解答:解:∵圆M的圆心在直线y=-2x上,∴圆心的坐标设成(a,-2a)∴在所给的四个选项中只有A,C符合题意,∵经过点A(2,-1),∴把(2,-1)代入圆的方程方程能够成立,代入A中,32+32≠2,∴A选项不合题意,故选C.点评:本题考查圆的标准方程,本题解题的关键是根据所给的条件设出圆的方程,可以是一般式方程也可以是标准方程,在根据其他的条件解出方程.2 .D【解析】,又函数为上的减函数,所以.故选D3 .B【解析】试题分析:由A,B两集合可知,所以B正确考点:集合运算及表示方法4 .D【解析】试题分析:由条件利用诱导公式,y=Asin(ωx+φ)的图象变换规律,求得φ的值.解:∵将函数y=sinx的图象向左平移φ(0≤φ≤2π)个单位后,得到函数y=sin(x+φ)=sin(x﹣)的图象,∴sin(x+φ)=sin(x﹣),故φ=2kπ+(﹣),k∈Z,∴φ=,故选:D.考点:函数y=Asin(ωx+φ)的图象变换.5 .D【解析】试题分析:因为,直线(1+a)x+y+1=0与圆x2+y2-2x=0相切,所以,圆心(1,0)到直线的距离等于半径1,,解得,,故选D。

高一数学试卷带答案解析

高一数学试卷带答案解析

高一数学试卷带答案解析考试范围:xxx;考试时间:xxx分钟;出题人:xxx姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.函数的单调递增区间为A.B.C.D.2.下列各式中,正确的个数是(1){0}∈{0,1,2};(2){0,1,2}⊆{2,1,0};(3)⊆{0,1,2}.A.0B.1C.2D.33.若函数y=f(x)的图象过点(1,-1),则y=f(x-1)-1的图像必过点()A.(2,-2) B.(1,-1) C.(2,-1) D.(-1,-2)4.为了让人们感受到丢弃塑料袋对环境造成的影响,某班环保小组的六名同学记录了自己家中一周内丢弃的塑料袋的数量,结果如下(单位:个):33、25、28、26、25、31,如果该班有45名同学,那么根据提供的数据估计这周全班同学各家总共丢弃塑料袋的数量约为A.900 B.1080 C.1260 D.18005.的零点个数是()A.0个 B.1个 C.2个 D.3个6.在下列函数中,最小值是2的是()A.y=B.y=(x>0)C.y="sin" x+(0<x<)D.y=7x+7-x7.函数的定义域为()A. B. C. D.R8.(如果点位于第三象限,那么角所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.若角的终边与单位圆的交点为,则()A. B. C. D.10.若函数在上单调递增,则实数的取值范围是()A. B. C. D.11.化简的结果为()A.a16 B.a8 C.a4 D.a212.已知f(x)=,则f(3)等于()A.2 B.3 C.4 D.513.如果直线的倾斜角为,则有关系式A. B. C. D.以上均不可能14.已知,且垂直,则实数的值为()A. B. C. D.1[15.下列不等式中,正确的是()A.B.C.D.16.已知集合,集合,则()A. B. C. D.17.为了得到函数的图象,只需把函数的图象上所有的点A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度18.的值为()A. B. C. D.19.甲、乙两名运动员在某项测试中的6次成绩的茎叶图如图所示,,分别表示甲、乙两名运动员这项测试成绩的平均数,,分别表示甲、乙两名运动员这项测试成绩的方差,则有()A.>,<B.=,>C.=,=D.=,<20.在中,内角的对边分别为,且,则是()A.钝角三角形 B.直角三角形 C.锐角三角形 D.等边三角形二、填空题21.将正方形沿对角线折成直二面角,有如下四个结论:①; ②是等边三角形;③所成的角是60°; ④所成的角是60°.其中正确结论的序号是________.22.(2014•虹口区二模)对于数列{a n },规定{△1a n }为数列{a n }的一阶差分数列,其中△1a n =a n+1﹣a n (n ∈N *).对于正整数k ,规定{△k a n }为{a n }的k 阶差分数列,其中△k a n =△k ﹣1a n+1﹣△k ﹣1a n .若数列{a n }有a 1=1,a 2=2,且满足△2a n +△1a n ﹣2=0(n ∈N *),则a 14= . 23.已知圆与圆,过动点分别作圆、圆的切线、、分别为切点),若,则的最小值是 .24.用二分法求函数在区间上零点的近似解,经验证有.取区间的中点,计算得,则此时零点★ (填区间)25.若某空间几何体的三视图如图所示,则 该几何体的表面积S=_______26.已知的一个内角为,并且三边长构成公差为4的等差数列,则的面积为_______________.27.已知,且,则的最大值为__________. 28.设是等差数列的前项和,若,则. 29.设函数是定义域R 上的奇函数,且当时,则当时, ____________________30.由正数组成的等比数列中,,,则__________。

高一数学试题答案及解析

高一数学试题答案及解析

高一数学试题答案及解析1.(3分)函数y=x+,x∈[2,+∞)的最小值为.【答案】【解析】先求导数,再利用导数的符号与单调性的关系,结合x的取值范围求解即可.解析:y′=1﹣,x∈[2,+∞)时,y′>0,故函数为增函数,最小值为f(2)=.故答案:.点评:本题主要考查了利用导数求闭区间上函数的最值,求最值是高考中常见问题,属于基础题.2.函数的导数为.【答案】【解析】根据导数的运算法则可得答案.解:∵∴y'==故答案为:点评:本题主要考查导数的运算法则.属基础题.求导公式一定要熟练掌握.3.曲线y=x3在点(0,0)处的切线方程是.【答案】y=0.【解析】先求出函数y=x3的导函数,然后求出在x=0处的导数,从而求出切线的斜率,利用点斜式方程求出切线方程即可.解:∵y′=(x3)′=3x2,∴k=3×02=0,∴曲线y=x3在点(0,0)切线方程为y=0.故答案为:y=0.点评:本题主要考查了利用导数研究曲线上某点切线方程,考查运算求解能力,属于基础题.4.已知f(x)=x2+2x•f′(1),则f′(0)= .【答案】﹣4.【解析】要求某点处函数的导数,应先求函数解析式f(x),本题求函数解析式f(x)关键求出未知f′(1).解:f'(x)=2x+2f'(1)⇒f'(1)=2+2f'(1),∴f'(1)=﹣2,有f(x)=x2﹣4x,f'(x)=2x﹣4,∴f'(0)=﹣4.点评:本题考查导数的运算,注意分析所求.5.函数y=ax2+1的图象与直线y=x相切,则a= .【答案】【解析】设切点为(x0,y),由于y′=2ax,利用导数的几何意义可得k=2ax=1,又由于点(x,y)在曲线与直线上,可得,即可解出a.解:设切点为(x0,y),∵y′=2ax,∴k=2ax=1,①又∵点(x0,y)在曲线与直线上,即,②由①②得a=.故答案为.点评:熟练掌握导数的几何意义、切线的方程等是解题的关键.6.已知抛物线y=x2,求过点(﹣,﹣2)且与抛物线相切的直线方程.【答案】2x﹣y﹣1=0和4x+y+4=0.【解析】欲求出切线方程,只须求出其斜率即可,故先利用导数求出在切点(x0,x2)处的导函数值,再结合导数的几何意义即可求出切线的斜率.最后结合切线过点(﹣,﹣2)即可求出切点坐标,从而问题解决.解:设直线的斜率为k,直线与抛物线相切的切点坐标为(x0,y),则直线方程为y+2=k(x+),∵y′=2x,∴k=2x0,又点(x,x)在切线上,∴x+2=2x0(x+),∴x0=1或x=﹣2,∴直线方程为y+2=2(x+)或y+2=﹣4(x+),即为2x﹣y﹣1=0和4x+y+4=0.点评:本小题主要考查导数的概念、导数的几何意义和利用导数研究曲线上某点切线方程的能力,考查运算求解能力.属于基础题.7.函数y=f(x)的自变量在x=1处有增量△x时,函数值相应的增量为.【答案】△y=f(1+△x)﹣f(1)【解析】函数y=f(x)的自变量在x=1处有增量△x,函数在1+△x处的函数值为f(1+△x),由此可得结论.解:∵函数y=f(x)的自变量在x=1处有增量△x,∴函数在1+△x处的函数值为f(1+△x),∴函数y=f(x)的自变量在x=1处有增量△x时,函数值相应的增量为△y=f(1+△x)﹣f(1),故答案为:△y=f(1+△x)﹣f(1)点评:本题考查导数的概念,考查学生分析解决问题的能力,属于基础题.8.已知函数f(x)=x3,求证:函数在任意区间[a,a+b]上的平均变化率都是正数.【答案】见解析【解析】利用函数的解析式求出区间两个端点的函数值;利用平均变化率公式求出该函数在区间[a,a+b]上的平均变化率,即可得出结论.证明:==3a2+3ab+b2=3(a+)2+>0.因此,函数在任意区间[a,a+b]上的平均变化率都是正数.点评:本题变化的快慢与变化率,解题的关键是求出函数值做出函数值之差,数字的运算不要出错,这是用定义求导数的必经之路.9.(5分)一个酒杯的轴截面是抛物线的一部分,它的方程是x2=2y(0≤y≤20).在杯内放入一个玻璃球,要使球触及酒杯底部,则玻璃球的半径r的范围为【答案】0<r≤1【解析】设小球圆心(0,y)抛物线上点(x,y),求得点到圆心距离平方的表达式,进而根据若r2最小值在(0,0)时取到,则小球触及杯底需1﹣y≥0 进而求得r的范围.解:设小球圆心(0,y)抛物线上点(x,y)点到圆心距离平方r2=x2+(y﹣y0)2=2y+(y﹣y)2=Y2+2(1﹣y)y+y2若r2最小值在(0,0)时取到,则小球触及杯底所以1﹣y≥0所以0<y≤1所以0<r≤1故答案为0<r≤1点评:本题主要考查了抛物线的应用.考查了学生利用抛物线的基本知识解决实际问题的能力.10.如图是一种加热水和食物的太阳灶,上面装有可旋转的抛物面形的反光镜,镜的轴截面是抛物线的一部分,盛水和食物的容器放在抛物线的焦点处,容器由若干根等长的铁筋焊接在一起的架子支撑.已知镜口圆的直径为12 m,镜深2 m,(1)建立适当的坐标系,求抛物线的方程和焦点的位置;(2)若把盛水和食物的容器近似地看作点,试求每根铁筋的长度.【答案】(1)y2=18x,F(,0).(2)6.5m.【解析】(1)先建立直角坐标系,得到A的坐标,然后设出抛物线的标准方程进而可得到P的值,从而可确定抛物线的方程和焦点的位置.(2)根据盛水的容器在焦点处,结合两点间的距离公式可得到每根铁筋的长度.解:(1)如图,在反光镜的轴截面内建立直角坐标系,使反光镜的顶点(即抛物线的顶点)与原点重合,x轴垂直于镜口直径.由已知,得A点坐标是(2,6),设抛物线方程为y2=2px(p>0),则36=2p×2,p=9.所以所求抛物线的标准方程是y2=18x,焦点坐标是F(,0).(2)∵盛水的容器在焦点处,∴A、F两点间的距离即为每根铁筋长.|AF|==(或|AF|=+2=).故每根铁筋的长度是6.5m.点评:本题主要考查抛物线的应用.抛物线在现实生活中应用很广泛,在高考中也占据重要的地位,一定要掌握其基础知识做到活学活用.11.以双曲线=1的右顶点为焦点的抛物线的标准方程为()A.y2=16x B.y2=﹣16x C.y2=8x D.y2=﹣8x【答案】A【解析】根据双曲线方程,算出它的右焦点为F(4,0),也是抛物线的焦点.由此设出抛物线方程为y2=2px,(p>0),结合抛物线焦点坐标的公式,可得p=8,从而得出该抛物线的标准方程.解析由双曲线方程﹣=1,可知其焦点在x轴上,由a2=16,得a=4,∴该双曲线右顶点的坐标是(4,0),∴抛物线的焦点为F(4,0).设抛物线的标准方程为y2=2px(p>0),则由=4,得p=8,故所求抛物线的标准方程为y2=16x.故选A.点评:本题给出抛物线焦点与已知双曲线的右焦点重合,求抛物线的标准方程,着重考查了双曲线、抛物线的标准方程与简单几何性质等知识,属于基础题.12.求椭圆+y2=1的长轴和短轴的长、离心率、焦点和顶点的坐标.【答案】离心率e=.焦点,顶点(±2,0),(0,±1).【解析】利用椭圆+y2=1,可得a2=4,b2=1.即可得到a,b,c=.进而得到长轴和短轴的长、离心率、焦点和顶点的坐标.解:∵椭圆+y2=1,∴a2=4,b2=1.∴a=2,b=1..∴椭圆的长轴和短轴的长分别为2a=4,2b=2.离心率e=.焦点,顶点(±2,0),(0,±1).点评:熟练掌握椭圆的标准方程及其性质是解题的关键.13.(3分)(2009•广东)巳知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,且G 上一点到G的两个焦点的距离之和为12,则椭圆G的方程为.【答案】.【解析】由题设条件知,2a=12,a=6,b=3,由此可知所求椭圆方程为.解:由题设知,2a=12,∴a=6,b=3,∴所求椭圆方程为.答案:.点评:本题考查椭圆的性质和应用,解题时要注意公式的灵活运用.14.(3分)已知中心在原点,对称轴为坐标轴,长半轴长与短半轴长的和为9,离心率为的椭圆的标准方程为.【答案】或.【解析】由题意可得,解得a与b即可.解:由题意可得,解得.∴椭圆的标准方程为或.故答案为或.点评:熟练掌握椭圆的标准方程及其性质事件他的关键.15.(3分)椭圆=1的焦点为F1,点P在椭圆上,如果线段PF1的中点M在y轴上,那么点M的纵坐标是()A.±B.±C.±D.±【答案】A【解析】设点P的坐标为(m,n),根据椭圆方程求得焦点坐标,进而根据线段PF1的中点M 在y轴上,推断m+3=0求得m,代入椭圆方程求得n,进而求得M的纵坐标.解:设点P的坐标为(m,n),依题意可知F1坐标为(3,0)∴m+3=0∴m=﹣3,代入椭圆方程求得n=±∴M的纵坐标为±故选A点评:本题主要考查了椭圆的应用.属基础题.16.(3分)已知椭圆=1的上焦点为F,直线x+y﹣1=0和x+y+1=0与椭圆分别相交于点A,B和C,D,则AF+BF+CF+DF=()A.2B.4C.4D.8【答案】D【解析】利用直线过椭圆的焦点,转化为椭圆的定义去求解.解:如图:两条平行直线分别经过椭圆的两个焦点,连接AF1,FD.由椭圆的对称性可知,四边形AFDF1(其中F1是椭圆的下焦点)为平行四边形,所以AF1=FD,同理BF1=CF.所以AF+BF+CF+DF=AF+BF+BF1+AF1=4a=8.故选D.点评:本题主要考查了椭圆的方程和椭圆的性质,综合性较强.17.(3分)已知命题p:2+2=5,命题q:3>2,则下列判断正确的是()A.“p或q”为假,“非q”为假B.“p或q”为真,“非q”为假C.“p且q”为假,“非p”为假D.“p且q”为真,“p或q”为假【答案】B【解析】先判断命题p,q的真假,然后利用复合命题的真假关系进行判断.解:因为命题p为假,命题q为真,故“p或q”为真,“p且q”为假,“非p”为真,“非q”为假,故选B.点评:本题主要考查复合命题的真假判断,比较基础.18.(5分)分别写出由下列各组命题构成的“p∧q”“p∨q”“¬p”形式的命题:(1)p:π是无理数,q:e是有理数;(2)p:三角形的外角等于与它不相邻的两个内角的和,q:三角形的外角大于与它不相邻的任一个内角.【答案】(1)“p∧q”:π是无理数且e是有理数.“p∨q”:π是无理数或e是有理数.“¬p”:π不是无理数.(2)“p∧q”:三角形的外角等于与它不相邻的两个内角的和且大于与它不相邻的任一个内角.“p∨q”:三角形的外角等于与它不相邻的两个内角的和或大于与它不相邻的任一个内角.“¬p”:三角形的外角不等于与它不相邻的两个内角的和.【解析】根据复合命题的结果分别写出“p∧q”“p∨q”“¬p”形式.解(1)“p∧q”:π是无理数且e是有理数.“p∨q”:π是无理数或e是有理数.“¬p”:π不是无理数.(2)“p∧q”:三角形的外角等于与它不相邻的两个内角的和且大于与它不相邻的任一个内角.“p∨q”:三角形的外角等于与它不相邻的两个内角的和或大于与它不相邻的任一个内角.“¬p”:三角形的外角不等于与它不相邻的两个内角的和.点评:本题主要考查复合命题的结构形式,比较基础.19.(3分)命题“若a<b,则2a<2b”的否命题为,命题的否定为.【答案】否命题为:若a≥b,则2a≥2b命题的否定为:若a<b,则2a≥2b【解析】同时否定条件和结论得到命题的否命题.不改变条件,只否定结论,得到命题的否定.解:命题“若a<b,则2a<2b”的否命题为:若a≥b,则2a≥2b,命题的否定为:若a<b,则2a≥2b.故答案为:否命题为:若a≥b,则2a≥2b命题的否定为:若a<b,则2a≥2b点评:本题考查了命题的否命题和命题的否定.20.(8分)已知命题p:1∈{x|x2<a};q:2∈{x|x2<a}(1)若“p∨q”为真命题,求实数a的取值范围;(2)若“p∧q”为真命题,求实数a的取值范围.【答案】(1)a>1;(2)a>4.【解析】根据题意,首先求得P为真与q为真时,a的取值范围,(1)若“p∨q”为真命题,则p、q为至少有一个为真,对求得的a的范围求并集可得答案;(2)若“p∧q”为真命题,则p、q同时为真,对求得的a的范围求交集可得答案.解:若P为真,则1∈{x|x2<a},所以12<a,则a>1;若q为真,则2∈{x|x2<a},有x2<a,解可得a>4;(1)若“p∨q”为真,则p、q为至少有一个为真,即a>1和a>4中至少有一个成立,取其并集可得a>1,此时a的取值范围是a>1;(2)若“p∧q”为真,则p且q同时为真,即a>1和a>4同时成立,取其交集可得a>4,此时a的取值范围是a>4.点评:本题考查复合命题真假的判断,要牢记复合命题真假的判读方法.。

高一数学试卷带答案解析

高一数学试卷带答案解析

高一数学试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.若且,则直线不通过( )A .第三象限B .第一象限C .第四象限D .第二象限 2.函数 与 的图象交点为,则所在区间是A .B .C .D .3.已知,,且两向量夹角为,求= ( )A .8B .10C .12D .14 4.向等腰直角三角形内任意投一点, 则小于的概率为( ) A .B .C .D .5.若A 、B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sin B -cos A )在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.若直线被圆所截得的弦长为,则实数的值为( )A .或B .或C .或 D .或7.(2014•南昌模拟)若正数x ,y 满足x 2+3xy ﹣1=0,则x+y 的最小值是( ) A .B .C .D .8.已知等差数列满足,,则它的前10项的和A .138B .135C .95D .239.(2013•绍兴一模)如图,正四面体ABCD 的顶点C 在平面α内,且直线BC 与平面α所成角为45°,顶点B 在平面α上的射影为点O ,当顶点A 与点O 的距离最大时,直线CD 与平面α所成角的正弦值等于( )A. B. C. D.10.设实数满足约束条件,则的最大值为()A.10 B.8 C.3 D.411.甲船在岛B的正南A处,AB=10千米,甲船以每小时8千米的速度向正北航行,同时乙船自B以每小时12千米的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们所航行的时间是()A.分钟 B.小时 C.10.75分钟 D.2.15分钟12.设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是A.若m∥n,m∥α,则n∥αB.若α⊥β,m∥α,则m⊥βC.若α⊥β,m⊥β,则m∥αD.若m⊥n,m⊥α,n⊥β,则α⊥β13.已知定义在R上的函数,对任意都有,若函数为偶函数,则()A.B.C.D.14.下列关系式中正确的是()A.B.C.D.15.若,则()A. B. C. D.16.=()A.1 B.﹣1 C.﹣5 D.517.下列各图中,表示以为自变量的奇函数的图象是()18.已知是定义在R 上的偶函数,且,当时, ,则 A .0 B .2.5 C .- D .3.5 19.回归直线方程=a +bx 必定过点( )A .(0,0)B .(,0)C .(0,)D .(,) 20.已知lg2≈0.3010,且a = 2×8×5的位数是M ,则M 为( ). A .20 B .19 C .21 D .22二、填空题21.设等比数列{a n }的公比为q ,前n 项和为S n ,若S n+1,S n ,S n+2成等差数列,则q 的值为 . 22.已知是关于的方程的两个实根,且,= 。

高一数学试题大全

高一数学试题大全

高一数学试题答案及解析1.设全集,集合,则等于()A.B.C.D.【答案】D【解析】由,,所以.故选D.【考点】集合的简单运算.2.已知点()在第三象限,则角在A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】由于点是第三象限角,,在第二象限.【考点】三角函数在各个象限的符号.3.等比数列的前项和为,若,,则()A.15B.30C.45D.60【答案】C【解析】可以将每三项看作一项,则也构成一个等比数列.所以,故选C.【考点】等比数列性质.4.三边长分别是,则它的最大锐角的平分线分三角形的面积比是( )A.1:1B.1:2C.1:4D.4:3【答案】B【解析】如图,设,由余弦定理可得,所以为钝角,又因为,由大边对大角,可知为的最大锐角,作角的平分线,交于点,则有,故选B.【考点】1.余弦定理;2.三角形的面积公式.5.设是不同的直线,是不同的平面,下列命题中正确的是( )A.若,则B.若,则C.若,则⊥D.若,则【答案】C【解析】由可知与的关系为:相交、平行或线在面内,故A、B错;由可在中a中找一条直线使,又,所以,而,所以,得,故选C.【考点】面面垂直的判定.6.若,则下列不等式成立的是()A.B.C.D.【答案】D【解析】因为,所以,所以。

因为,所以。

所以。

故D正确。

【考点】对数的基础知识。

7.函数,的最小正周期为()A.B.C.D.【答案】C【解析】这是三角函数图像与性质中的最小正周期问题,只要熟悉三角函数的最小正周期的计算公式即可求出,如的最小正周期为,而的最小正周期为,故函数的最小正周期为,故选C.【考点】三角函数的图像与性质.8.圆与圆的位置关系为( )A.内切B.相交C.外切D.相离【答案】B【解析】圆心分别为(-2,0),(2,1),半径分别为2,3.圆心距,所以,两圆的位置关系为相交,选B。

【考点】圆与圆的位置关系点评:简单题,判定圆与圆的位置关系,有“代数法”和“几何法”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学圆试题答案及解析1.半径为10cm,面积为100cm2的扇形中,弧所对的圆心角为()A.B.C.D.【答案】A【解析】由扇形的面积公式可得,,所以弧度,故选A.【考点】本题考查的重点是扇形的面积公式,以及扇形圆心角的弧度数与半径和面积的关系.2.如图所示,已知点P是⊙O外一点,PS、PT是⊙O的两条切线,过点P作⊙O的割线PAB,交⊙O于A、B两点,与ST交于点C,求证:【答案】利用切割线定理再由三角形相似即可证.【解析】作OD垂直PB于D,连接SD、OS、PO,则有P、S、D、O四点共圆,PA+PB=2PD,又由切割线定理可知PS2=PA·PB,又易证三角形PSC与三角形PCS相似可得,PS2=PC·PD,即有PC·PD=PC· (PA+PB)=PA·PB,从而得证.【考点】切割线定理;勾股定理;相交弦定理.点评:本题主要考查了切割线定理以及三角形相似的证明,注意对比例式的变形是解题关键.3. P在⊙O外,PC切⊙O于C,PAB交⊙O于A、B,则()A.∠PCB=∠BB.∠PAC=∠PC.∠PCA=∠BD.∠PAC=∠BCA【答案】C【解析】由∠PCA是弦切角,且弦CA所对的圆周角是∠B,知∠PCA=∠B.解:如图,PC切⊙O于C,PAB交⊙O于A、B,∵∠PCA是弦切角,且弦CA所对的圆周角是∠B,∴∠PCA=∠B,故选C.点评:本题考查弦切角的性质和应用,是基础题.解题时要认真审题,仔细解答.4.(2009•崇文区一模)如图,半径相等的两圆⊙O1,⊙O2相交于P,Q两点.圆心O1在⊙O2上,PT是⊙O1的切线,PN是⊙O2的切线,则∠TPN的大小是()A.90°B.120°C.135°D.150°【答案】B【解析】由题意可知△PO 1O 2是等边三角形,所以∠O 1PO 2=60°,又PT 是⊙O 1的切线,PN 是⊙O 2的切线,可以得到∠TPO 1=∠NPO 2=90°,由此即可求出∠TPN 的度数.解:∵半径相等的两圆⊙O 1,⊙O 2相交于P ,Q 两点,圆心O 1在⊙O 2上, ∴△PO 1O 2是等边三角形, ∴∠O 1PO 2=60°. ∵PT 是⊙O 1的切线,PN 是⊙O 2的切线, ∴∠TPO 1=∠NPO 2=60°, ∴∠TPN=360°﹣90°﹣90°﹣60°=120°.故选B .点评:本题利用了等边三角形的判定和性质,切线的性质等知识解决问题,属于基础题.5. (2005•福建)△ABC 中,内切圆I 和边BC 、CA 、AB 分别相切于点D 、E 、F ,则∠FDE 与 ∠A 的关系是( )A.∠FDE+∠A=90°B.∠FDE=∠AC.∠FDE+∠A=180°D.无法确定【答案】A【解析】连接IE ,IF ,则有∠AEI=∠IFA=90°,∠EIF=180°﹣∠A ,由圆周角定理知,∠FDE=∠EIF=90°+∠A ,所以可求得∠FDE+∠A=90°.解:连接IE ,IF ,则有∠AEI=∠IFA=90°,∴∠EIF=180°﹣∠A ,∴∠FDE=∠EIF=90°﹣∠A ,∴∠FDE+∠A=90°.故选A .点评:本题考查了圆的切线的性质定理的证明,利用了切线的概念,圆周角定理求解.属于基础题.6. 如图⊙O 内切于△ABC ,切点分别为D 、E 、F ;若∠ABC=40°,∠ACB=60°,连接OE 、OF ,则∠EOF 为( )A.30°B.45°C.100°D.90°【答案】B【解析】首先根据三角形的内角和定理,得∠A=80°,再根据切线的性质定理以及四边形的内角和定理,得∠EOF=100°.解:∵∠ABC=40°,∠ACB=60°,∴∠A=80°, ∴∠EOF=180°﹣80°=100°.故选B .点评:此题要熟练运用切线的性质定理、四边形的内角和定理以及三角形的内角和定理.7. 如图,两个半圆,大半圆中长为16cm 的弦AB 平行于直径CD ,且与小半圆相切,则图中阴影部分的面积为()A.34πcm2B.126πcm2C.32πcm2D.36πcm2【答案】C【解析】作辅助线,连接OE和OB,根据已知条件,可知△OEB为直角三角形,根据勾股定理可将直角三角形的各边长表示出来,由于阴影的面积等于以OB和OE为半径的半圆的面积差,可将两半圆的圆心放在一起利于计算.解:将两半圆的圆心重合令此点为O,连接OB和OE,∵弦AB与小半圆相切,AB∥CD,∴OE⊥AB,EB=AB=8,在Rt△OBE中,OB2=OE2+EB2,∴OB2﹣OE2=EB2=64,S阴影=﹣==32πcm2;故图中阴影部分的面积为32πcm2.故选C.点评:本小题主要考查异面直线所成的角,注意:不规则图形面积的求法可用几个规则图形面积相加或相减求得,属于基础题.8.如图,直线AD与△ABC的外接圆相切于点A,若∠B=60°,则∠CAD等于()A.30°B.60°C.90°D.120°【答案】B【解析】由于弦切角∠DAC所夹弧的圆周角正好是∠B,因此可直接利用弦切角定理求解.解:∵DA与△ABC的外接圆相切于点A,由弦切角定理得:∴∠CAD=∠B=60°.故选B.点评:本题主要考查圆的切线的性质定理的证明、弦切角定理的应用.属于基础题.9.如图,AP为⊙O切线,P为切点,OA交⊙O于点B,∠A=40°,则∠APB=()A.25°B.20°C.40°D.35°【答案】A【解析】连接OP,得到PO垂直PA.通过三角形的内角和定理求出∠O的度数,从而得到∠OPB=65°,进而得到∠APB=25°.解:连OP,如图,∵AP为⊙O切线,∴OP⊥AP,∵∠A=40°,∴∠O=50°,∴∠1==65°,∴∠APB=90°﹣65°=25°.故选A.点评:熟练掌握切线的性质.通常我们把圆的切线问题转化为垂直问题,因此连接圆心和切点是常作的辅助线.10.(2014•高州市模拟)如图,从圆O外一点A引圆的切线AD和割线ABC,已知AD=2,AC=6,圆O的半径为3,则圆心O到AC的距离为.【答案】【解析】要求圆心O到AC的距离,我们要先做出O点到AC的垂线段OE,则OE的长度即为所求,根据半径、半弦长(BE)、弦心距(OE)构成直角三角形,满足勾股定理,故我们要要求出半弦长(BE),根据切割线定理,我可以求出AB长,进而得到BE,代入即可得到答案.解:连接OB,过O点向AC引垂线,垂足为E,∵AD=2,AC=6,由切割线定理可得,AD2=AC•AB,∴AB=2,∴BC=4,由垂径定理得BE=2.又∵R=OB=3,∴OE=,故答案为:.点评:要求圆到割线的距离,即弦心距,我们最常用的性质是:半径、半弦长(BE)、弦心距(OE)构成直角三角形,满足勾股定理,求出半径和半弦长,代入即可求解.11.如图,A、B是⊙O上的两点,AC是⊙O的切线,∠B=70°,则∠BAC等于()A.70°B.35°C.20°D.10°【答案】C【解析】先求圆心角,再利用弦切角等于弧所对圆心角的一半,即可得到结论.解:∵OA=OB,∠B=70°,∴∠AOB=40°∵AC是⊙O的切线,∴∠BAC=∠AOB=20°故选C.点评:本题考查圆的切线,考查学生的计算能力,属于基础题.12.如图,两圆相交于A,B两点,小圆经过大圆的圆心O,点C,D分别在两圆上,若∠ADB=100°,则∠ACB的度数为()A.35°B.40°C.50°D.80°【答案】B【解析】A,B,O,D都在⊙O上,从而∠D+∠AOB=180°,由此能求出结果.解:连OA,OB,如图,∵A,B,O,D都在⊙O上,∴∠D+∠AOB=180°,而∠ADB=100°,∴∠AOB=80°,∴∠ACB=∠AOB=40°.故选:B.点评:本题考查角的大小的求法,是基础题,解题时要认真审题,注意四点共圆的性质的合理运用.13.在直径为4的圆内接矩形中,最大的面积是()A.4B.2C.6D.8【答案】D【解析】设内接矩形的长和宽为x和y,根据圆内接矩形的性质可知矩形的对角线为圆的直径,利用勾股定理求得x2+y2的值,进而利用基本不等式求得xy的范围及矩形面积的范围求得答案.解:设内接矩形的长和宽为x和y,根据圆内接矩形的性质可知矩形的对角线为圆的直径故x2+y2=16,∴x2+y2≥2xy(当且仅当x=y时等号成立)∴xy≤8即矩形的面积的最大值值为8故选D点评:本题主要考查了圆内接多边形的性质和判定.考查了基础知识的灵活运用.14.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA=()A.30°B.45°C.60°D.67.5°【答案】D【解析】利用圆的切线的性质定理、等腰三角形的性质即可得出.解:∵PD切⊙O于点C,∴OC⊥CD,在Rt△OCD中,又CD=OC,∴∠COD=45°.∵OC=OA,∴=22.5°.∴∠PCA=90°﹣22.5°=67.5°.故选D.点评:熟练掌握圆的切线的性质定理、等腰三角形的性质是解题的关键.15.图中∠BOD的度数是()A.55°B.110°C.125°D.150°【答案】B【解析】做出辅助线,根据同弧所对的圆心角与圆周角的关系得到∠BOC=2∠A=50°,∠COD=2∠E=60°,两角相加得到结果.解:连接OC.根据圆周角定理,得∠BOC=2∠A=50°,∠COD=2∠E=60°,∴∠BOD=110°.故选B.点评:此题主要考查圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.16. A、B、C是⊙O上三点,的度数是50°,∠OBC=40°,则∠OAC等于()A.15°或65°B.25°C.30°D.15°或40°【答案】A【解析】利用圆的性质、三角形的外角定理即可得出.解:如图所示,当点C在OB的左侧时,连接OC,延长AO与圆相交于点D.∵∠OBC=40°=∠OCB,∴∠BOC=100°.∵∠AOB=50°,∴∠DOC=30°.∴.同理可得当点C在OB的右侧时,∠OAC=65°.故选:A.点评:本题考查了圆的性质、三角形的外角定理,考查了推理能力,属于基础题.17.一条弦分圆周为5:7,则这条弦所对的圆周角为()A.75°B.105°C.60°或120°D.75°或105°【答案】D【解析】利用圆周角定理即可得出.解:设两个圆周角分别为5x,7x,则5x+7x=180°,解得x=15°.∴这条弦所对的圆周角分别为5×15°,7×15°,即75°、105°.故选:D.点评:本题考查了圆周角定理,属于基础题.18.(2012•惠州一模)如图,AB是⊙O的直径,P是AB延长线上的一点.过P作⊙O的切线,切点为C,PC=2,若∠CAP=30°,则⊙O的直径AB= .【答案】4【解析】根据所给的条件判断三角形ABC 是一个含有30°角的直角三角形,得到直角边与斜边的关系,即直角边与直径之间的关系,根据切割线定理写出关系式,把所有的未知量用直径来表示,解方程得到结果.解:连接BC,设圆的直径是x则三角形ABC是一个含有30°角的三角形,∴BC=AB,三角形BPC是一个等腰三角形,BC=BP=AB,∵PC是圆的切线,PA是圆的割线,∴PC2=PB•PC=x•x=,∵PC=2,∴x=4,故答案为:4点评:本题考查圆周角定理,考查切割线定理,考查含有特殊角的直角三角形的性质,是一个综合题目,这种题目运算量比较小,是一个得分题目.19.(2010•石景山区一模)如图,已知PE是圆O的切线.直线PB交圆O于A、B两点,PA=4,AB=12,.则PE的长为,∠ABE的大小为 °.【答案】8;30°.【解析】(1)要求:“PE的长”,只要切割线定理列出关于PE的方程式PE2=PA×PB,通过解方程求出PE的长即可;(2)欲求:“∠ABE的大小”,根据弦切角知识,可先求得∠AEP,再利用弦切角等于内对角求得∠ABE.解:∵PE是圆O的切线,∴由切割线定理得,∴PE2=PA×PB=64,PE=8,在直角三角形PAE中,PE=8,PA=4,∴∠AEP=30°,∴从而∠ABE=30°.故填:8;30°.点评:本题主要考查与圆有关的比例线段、角度以及圆中的切割线定理,属于基础题.20.(2010•海门市模拟)如图,已知∠DEC=80°,弧CD的度数与弧AB的度数的差为20°,则∠DAC的度数为.【答案】45°.【解析】欲求∠DAC的度数,根据圆周角定理及三角形外角的性质进行列方程组,求解即可.解:∵弧CD的度数与弧AB的度数的差为20°,∴2(∠A﹣∠D)=20°即∠A﹣∠D=10°∵∠DEC=80°∴∠DEC=∠D+∠A=80°∴∠A=45°,∠D=35°.故答案为45°.点评:本题利用了圆周角定理和三角形的外角与内角的关系求解.考查方程思想,属于基础题.。

相关文档
最新文档