高考数学理科导数大题目专项训练及答案

合集下载

高考数学专题:导数大题专练附答案

高考数学专题:导数大题专练附答案

高考数学专题:导数大题专练附答案一、解答题1.对于正实数a ,b (a b >),我们熟知基本不等式:()()G a b A a b <,,,其中()G a b ,a ,b 的几何平均数,()2a bA a b +=,为a ,b 的算术平均数.现定义a ,b 的对数平均数:(),ln ln a bL a b a b-=-.(1)设1x >,求证:12ln x x x<-,并证明()()G a b L a b <,,;(2)若不等式()()(),,,G a b A a b m L a b +>⋅对任意正实数a ,b (a b >)恒成立,求正实数m 的取值范围.2.直线:l y kx t =+交抛物线24x y =于A ,B 两点,过A ,B 作抛物线的两条切线,相交于点C ,点C 在直线3y =-上. (1)求证:直线l 恒过定点T ,并求出点T 坐标;(2)以T 为圆心的圆交抛物线于PQMN 四点,求四边形PQMN 面积的取值范围.3.已知a R ∈,函数()22e 2xax f x =+. (1)求曲线()y f x =在0x =处的切线方程 (2)若函数()f x 有两个极值点12,x x ,且1201x x ,(ⅰ)求a 的取值范围;(ⅱ)当9a <-时,证明:21x x <-<. (注: 2.71828e =…是自然对数的底数) 4.已知函数()ln .f x x x ax a =-+(1)若1≥x 时,()0f x ≥恒成立,求a 的取值范围;(2)当1a =,01b <<时,方程()f x b =有两个不相等的实数根12,x x ,求证:12 1.x x <5.函数()3e xf x ax =-,0a >.(1)讨论函数()f x 的极值点个数;(2)已知函数()g x 的定义域为[)0,∞+,且[)0,x ∞∀∈+满足()()()g x xg x xg x '+>.若[)00,x ∃∈+∞,满足不等式()()()22e 22e x x g x xg x --≤,且0x 是函数()f x 的极值点,求a 的取值范围.6.已知:()e xf x mx =+.(1)当1m =时,求曲线()y f x =的斜率为2的切线方程;(2)当0x ≥时,()2213222m f x x ≥+-成立,求实数m 的范围7.已知函数()ln xf x x=, ()()1g x k x =-. (1)证明: R k ∀∈,直线y g x 都不是曲线()y f x =的切线;(2)若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立,求实数k 的取值范围.8.设函数ln e ()xx f x a x=-,其中a ∈R 且0a ≠,e 是自然对数的底数. (1)设()'f x 是函数()f x 的导函数,若()'f x 在(2,3)上存在零点,求a 的取值范围; (2)若34e a ≥,证明:()0f x <. 9.已知函数()()()2e 1,e 2.718xf x m x m R =-+∈≈.(1)选择下列两个条件之一:①12m =;②1m =,判断()f x 在区间()0,∞+上是否存在极小值点,并说明理由;(2)已知0m >,设函数()()()1ln g x f x mx mx =-+.若()g x 在区间()0,∞+上存在零点,求实数m 的取值范围. 10.设函数3()65f x x x x R =-+∈,. (1)求函数()f x 的单调区间;(2)若关于x 的方程()f x a =有三个不等实根,求实数a 的取值范围.【参考答案】一、解答题1.(1)证明见解析 (2)02m <≤ 【解析】 【分析】(1)令()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭,利用导数证明当1x >时,()0f x <,即可得到12ln x x x<-. 用分析法证明()()G a b L a b <,,.(2)把题意转化为1112ln a a b m a b b-⎛⎫⋅+ ⎪⎝⎭恒成立.令)1t t =>,即为1ln 01t m t t -⋅-<+恒成立.令()()1ln 11t g t m t t t -=⋅->+,分2m >和02m <≤两种情况求出正实数m 的取值范围. (1)令()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭,定义域为()0,+∞.则()()222221111212222x x x f x x x x x ---'=--==-. 所以当1x >时,()0f x '<,()f x 在()1,+∞上单调递减. 又()10f =,所以当1x >时,()0f x <.所以当1x >时,11ln 2x x x ⎛⎫<- ⎪⎝⎭,即12ln x x x<-.(*)要证()()G a b L a b <,,ln ln a ba b--,只需证ln a b <令)1t t =>,则由(*),得12ln t t t <-.所以()()G a b L a b <,,.(2)由()()(),,,G a b A a b m L a b +<⋅恒成立,得ln ln 2a b a b m a b -+⋅-恒成立,即1112ln aa b m a b b-⎛⎫⋅<+ ⎪⎝⎭恒成立.令)1t t =>,由()221112ln 2t m t t t -⋅<++恒成立,得()1112ln 2t m t t -⋅<+恒成立. 所以1ln 01t m t t -⋅-<+恒成立. 令()()1ln 11t g t m t t t -=⋅->+,则 ()()()()()()222222121121111mt t t m t g t m t t t t t t-+-+--'=⋅-==++⋅+⋅. (注:()10g =) i.当0∆>,即2m >时,易知方程()22110t m t -+--=有一根1t 大于1,一根2t 小于1,所以()g t 在()11,t 上单调递增.所以()()110g t g >=,不符合题意.ii.当02m <≤时,有()()()222214110mt t t t t -+≤-+=--<, 所以()0g t '<,从而()g t 在()1,+∞上单调递减. 故当1t >时,恒有()()10g t g <=,符合题意. 综上可知,正实数m 的取值范围为02m <≤. 【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值); (3)利用导数求参数的取值范围. 2.(1)证明见解析,()0,3T ;(2)⎛⎝⎦. 【解析】 【分析】(1)设()11,A x y ,()22,B x y ,(),3C m -,利用点斜式写出直线AC ,BC 的方程,由C 在两直线上,即可知直线AB 的方程,进而确定定点.(2)联立抛物线24x y =和圆T :()2223x y r +-=,由题设及一元二次方程根的个数求参数r 的范围,由122PQMN QM PNS y y +=⋅-结合韦达定理得到PQMN S 关于r 的表达式,构造函数并利用导数研究区间单调性,进而求范围. (1)设()11,A x y ,()22,B x y ,(),3C m -,则12AC x k =,22BC xk =,直线AC 为:()1111122x x x y y x x y y -=-⇒=-,同理直线BC 为:222x xy y =-,把(),3C m -代入直线AC ,BC 得:11223232x m y x m y⎧-=-⎪⎪⎨⎪-=-⎪⎩,∴()11,A x y ,()22,B x y 都满足直线方程32xm y -=-,则32xmy =+为直线AB 的方程,故直线l 恒过定点()0,3T . (2)如图,设圆T 的半径为r ,()11,M x y ,()22,N x y ,()11,Q x y -,()22,P x y -, 把24x y =代入圆T :()2223x y r +-=,整理得22290y y r -+-=,由题意知:关于y 的一元二次方程有两个不等实根,则()21221244902090r y y y y r ⎧∆=-->⎪⎪+=>⎨⎪=->⎪⎩,可得223r <.(1212121212122222PQMN QM PNS y y y y y y y y y y y y +=⋅-=-=++-()()()2222222944942198r r r r =+---=+--29r t -=,由223r <得:01t <<,则()()2211PQMN S t t =+-令()()()211f t t t =+-且01t <<,则()()()311f t t t '=--+,故在1(0,)3上()0f t '>,()f t 递增;在1(,1)3上()0f t '<,()f t 递减; 所以132()()327f t f ≤=,又(0)1f =,(1)0f =,故f t 的取值范围是320,27⎛⎤ ⎥⎝⎦,综上,PQMN S 的取值范围是323⎛ ⎝⎦.【点睛】关键点点睛:第二问,由圆T :()2223x y r +-=,联立抛物线方程,结合四边形面积公式得到关于参数r 的表达式,再应用函数思想并利用导数求面积的范围. 3.(1)(2e 1y x =-+(2)(ⅰ)(2e 2e ,4e -;(ⅱ)证明见解析【解析】 【分析】(1)由导数的几何意义即可求解;(2)(ⅰ)原问题等价于12,x xa =-的两根,且1201x x ,从而构造函数())0g x x =>,将问题转化为直线y a =-与函数()g x 的图象有两个交点,且交点的横坐标大于0小于1即可求解;(ⅱ)由1e x x +≤,利用放缩法可得()()1112210x ax f x '++-=,即1x 2114x <<,从而可证21x x -<()21e 011x xx x +<<<-,然后利用放缩法可得()()1201,21i i i ix ax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,最后构造二次函数()(222m x ax a x =-++++21x x ->而得证原不等式. (1)解:因为()22e x f x ax '=+所以()02f '=()01f =,所以曲线()y f x =在0x =处的切线方程为(21y x =-+; (2)解:(ⅰ)因为函数()f x 有两个极值点12,x x ,所以12,x x 是关于x 的方程()22e 0x f x ax =+'的两根,也是关于x的方程a =-的两正根, 设())0g x x =>,则()g x '=, 令())224e 2e 0x x h x x x =->,则()28e xh x x '=,当0x >时,()0h x '>,所以()h x 在()0,∞+上单调递增,又104h ⎛⎫= ⎪⎝⎭,所以,当104x <<时,()0h x <,()0g x '<;当14x >时,()0h x >,()0g x '>, 所以函数()g x 在10,4⎛⎫ ⎪⎝⎭上单调递减,在1,4⎛⎫+∞ ⎪⎝⎭上单调递增,又因为1201x x ,所以()114g a g ⎛⎫<-<⎪⎝⎭,即22e a <-<- 所以a的取值范围是22e ,-;22e 9a <<-,因为1e x x +≤,所以()()1112210x ax f x '++-=,所以()142a x +-,所以1x 2114x <<,所以211x x -<= 下面先证明不等式()21e 011x xx x+<<<-, 设()()2101e 1xx r x x x -=⋅<<+,则()()2222e 1x x r x x '=-+, 所以,当01x <<时,()0r x '<,()r x '在()0,1上单调递减,所以,()()01r x r <=,所以不等式()21e 011xxx x+<<<-成立, 因为12,x x ,()1201x x <<<是()22e 0x f x ax '=+=的两个根,所以()()01,2i f x i '==,又()21e 011x xx x+<<<-,所以()()1201,21ii i ix ax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,设函数()(222m x ax a x =-++++x t ==因为((()2224261620a a a ∆=+++-=+-+->,且()00m >,()10m >,102t <<, 所以函数()m x 有两个不同的零点,记为α,()βαβ<,且01t αβ<<<<,因为()22616212e 201ta tf t at at t+++'=+-⋅+-=<-,且()00f '>,()10f '>,所以1201x x ,因为()m x 在()0,t 上单调递减,且()()10m x m α>=,所以10x t α<<<; 因为()m x 在(),1t 上单调递增,且()()20m x m β>=,所以21t x β<<<; 所以1201x x αβ<<<<<,所以21x x βα->-,因为βα-=又()109a -<<<-,所以βα->所以21x x ->综上,21x x <-< 【点睛】关键点点睛:本题(2)问(ii )小题证明的关键是,利用1e x x +≤,进行放缩可得1x21x x -<;再利用()21e 011x x x x +<<<-,进行放缩可得()()1201,21ii i ix ax f x i x +'⋅+->==-,从而构造二次函数()(222m x ax a x =-++++21x x ->4.(1)(,1].-∞ (2)证明见解析 【解析】 【分析】(1)1x ≥,()0ln 0a f x x a x ≥⇔-+≥,设()ln (1)ag x x a x x=-+≥,求导得221()a x ag x x x x-'=-=,分1a ≤与1a >两类讨论,即可求得a 的取值范围;(2)当1a =时,方程()f xb =有两个不相等的实数根1x ,2x ,不妨设12x x <,则1201x x <<<,要证121x x ⋅<,只需证2111x x <<,而12()()f x f x =,只需证明111()()f x f x <,再构造函数,设1()()()(01)F x f x f x x=-<<,通过求导分析即可证得结论成立. (1)1x ≥,()0f x ∴≥,即ln 0ax a x-+≥, 设()ln (1)ag x x a x x=-+≥,221()a x ag x x x x -'=-=,当1a ≤时,()0g x '≥, ()g x ∴在[1,)+∞上单调递增,()(1)0g x g ∴≥=,满足条件;当1a >时,令()0g x '=,得x a =,当1x a <≤时,()0g x '<;当x a >时,()0g x '>,()g x ∴在区间[1,]a 上单调递减,在区间[,)a +∞上单调递增,min ()()ln 1g x g a a a ∴==-+,()(1)0g a g ∴<=,与已知矛盾.综上所述,a 的取值范围是(,1].-∞ (2)证明:当1a =时,()ln f x x '=,则()f x 在区间(0,1]上单调递减,在区间[1,)+∞上单调递增,由方程()f x b =有两个不相等的实数根12,x x ,不妨设12x x <,则1201x x <<<,要证121x x ⋅<,只需证2111x x <<, ()f x 在区间[1,)+∞上单调递增,只需证121()()f x f x < 又()()12f x f x =,∴只需证明111()()f x f x <,设1()()()(01)F x f x f x x =-<<,则22211()ln ln ln 0x F x x x x x x-'=-=>,()F x ∴在区间(0,1)上单调递增,()(1)0F x F ∴<=,1()()0f x f x∴-<,即111()()f x f x <成立, ∴原不等式成立,即121x x ⋅<成立.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用. 5.(1)答案见解析(2)2e e ,123⎛⎤ ⎥⎝⎦【解析】 【分析】(1)求出()'f x ,由()0f x '=知0x ≠,分离参数得2e 3xa x =,引入函数2e ()3x G x x=,由()G x 的导数确定单调性与极值,可作出函数的大致图象,结合图象分类讨论得出零点个数,根据极值定义得极值点个数; (2)令()()e xxg x h x =,求导后得()h x 是增函数,不等式()()()22e 22e x x g x xg x --≤,整理得()()()222eexxx g x xg x ---≤,即()()2h x h x -≤,由单调性得x 的范围,从而得出0x 的范围,结合极值点的要求得0[1,2)x ∈,然后由(1)的函数()G x 的性质得a 的范围. (1)()3e x f x ax =-,则()23e x f x ax '=-,函数的极值点为导函数的变号零点,显然0x =不是()0f x '=的解,当0x ≠时,令()2e 3xG x x=,则()2431e 2e e 233x x x x x x G x x x⋅-⋅-'=⋅=⋅, 故()G x 的单调性如表格所示:x(),0∞-()0,22()2,+∞()G x '0>0<0=0>()G x单调递增 单调递减 极小值 单调递增则极小值为()2e 212G =,可得函数()G x 的大致图象如图,故当2e 0,12a ⎛⎤∈ ⎥⎝⎦时,2e 3xa x =有两个解12,x x (120x x <<),在1x 两侧()'f x 的符号相等,在2x 两侧,()'f x 不变号,()f x 有1个极值点;当2e ,12a ⎛⎫∈+∞ ⎪⎝⎭时,2e 3xa x =有三个解123,,x x x ,在这三个解两侧()'f x 均变号,()f x 有3个极值点. (2) 令()()e x xg xh x =,则()()()()1e xx g x xg x h x '-+'=, 因为[)0,x ∞∀∈+满足()()()g x xg x xg x '+>,故()()()10x g x xg x '-+>, 则()0h x '>,故函数()h x 是一个在定义域上单调递增的函数;又[)00,x ∃∈+∞,满足不等式()()()22e 22e x x g x xg x --≤,整理得()()()222e e x xx g x xg x ---≤,即()()2h x h x -≤,结合定义域有0,20,2,x x x x ≥⎧⎪-≥⎨⎪-≤⎩故0x 的取值范围是[]1,2,又0x 是函数()f x 的极值点,即函数()f x 的变号零点,∴02x ≠,由(1)知,函数()G x 在区间[)1,2上单调递减,故2e e ,123a ⎛⎤∈ ⎥⎝⎦. 【点睛】本题考查用导数确定函数的极值点,研究不等式恒成立问题,解题关系是问题的转化,极值点的个数问题转化为方程的根的个数,再转化为函数图象交点个数.不等式问题通过引入函数,利用函数单调性化简得出参数范围,本题属于困难题,对学生的逻辑思维能力,运算求解能力要求较高.6.(1)21y x =+(2)ln 3m ⎡∈-⎣【解析】【分析】(1)利用导数的几何意义直接可得切线方程;(2)()2213222m f x x ≥+-恒成立,可转化为()22130222x m g x e mx x =+--+≥恒成立,利用导数判断函数()g x 的单调性与最值情况.(1)当1m =时,()e x f x x =+,则()e 1x f x '=+,设切点为()()00,x f x ,故()00e 12x k f x '==+=, 解得00x =,故()0000e e 01x f x x =+=+=, 即切点坐标为()0,1,所以切线方程()120y x -=-,即21y x =+;(2)当0x ≥时,()2213222m f x x ≥+-成立, 即2213e 0222xm mx x +--+≥恒成立, 设()2213e 222xm g x mx x =+--+, ()e x g x x m '=-+,()e 1x g x ''=-,因为0x ≥,故()e 10x g x ''=-≥恒成立,则()e x g x x m '=-+在()0,∞+上单调递增,所以()()01g x g m ''≥=+,当1m ≥-时,()()010g x g m ''≥=+≥恒成立,故()g x 在()0,∞+上单调递增,即()()2235012222m m g x g ≥=-+=-,所以25022m -≥,解得m ≤≤故1m -≤≤当1m <-时,()010g m '=+<,()e 2m g m m -'-=+,设()e 2m h m m -=+,1m <-,()e 20m h m -'=-+<恒成立,则()h m 在(),1-∞-上单调递减,所以()()120h m h e >-=->,即()e 20m g m m -'-=+>,所以存在()00,x m ∈-,使()00g x '=,即000x e x m -+=, 所以()g x 在()00,x 上单调递减,在()0,x +∞上单调递增,故()()02200013e 222x m g x g x mx x ≥=+--+()()00000222000011313e e e e e 022222x x x x x x x x x =+----+=-++≥, 解得0ln 3x ≤,即00ln 3x ≤≤,设()e xx m x ϕ==-,0ln3x ≤≤, ()1e 0x x ϕ'=-≤恒成立,故()x ϕ在()0,3上单调递减,故()()3ln33x ϕϕ≥=-,即ln33m ≥-,所以ln331m -≤<-,综上所述,ln 3m ⎡∈-⎣.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.7.(1)证明见解析 (2)e ,e 1⎡⎫+∞⎪⎢-⎣⎭【解析】【分析】(1)求出()f x 的导数,设出切点,可得切线的斜率,根据斜率相等,进而构造函数()=ln 1h x x x +-,求出导数和单调区间,即可证明;(2)由2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()max ln 1x k x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-2e,e x ⎡⎤∈⎣⎦,再 利用导数法求出()()n 1l x x x x ϕ-=在2e,e ⎡⎤⎣⎦的最大值即可求解.(1) 由题意可知,()f x 的定义域为()()0,11,+∞,由()ln x f x x=,得()()2ln 1ln x f x x -'=, 直线y g x 过定点()1,0,若直线y g x 与曲线()y f x =相切于点()00000,01ln x x x x x ⎛⎫>≠ ⎪⎝⎭且,则 ()0002000ln 1ln 1ln x x x k x x --==-,即00ln 10x x +-=① 设()()=ln 1,0h x x x x +-∈+∞,则()1=10h x x '+>,所以()h x 在()0+∞上单调递增,又()1ln1110h =+-=,从而当且仅当01x =时,①成立,这与01x ≠矛盾.所以,R k ∀∈,直线y g x 都不是曲线()y f x =的切线.(2)由()()f x g x ≤,得()1ln x x k x ≤-, 22e e ,0e 11e 1x x ∴≤≤∴<-≤-≤-,()l 1n xk x x -∴≥若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()maxln 1x k x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-,2e,e x ⎡⎤∈⎣⎦即可. 令()()n 1l x x x x ϕ-=,2e,e x ⎡⎤∈⎣⎦,则()()2ln 1ln 1x x x x x ϕ---+'=⎡⎤⎣⎦, 令()ln 1t x x x =--+,2e,e x ⎡⎤∈⎣⎦,则()110t x x'=--<, 所以()t x 在2e,e ⎡⎤⎣⎦上是单调递减;所以()()e lne e 1e<0t x t ≤=--+=-,故()0ϕ'<x()ϕx 在2e,e ⎡⎤⎣⎦上是单调递减;当e x =时,()ϕx 取得最大值为()()e e e e 1ln e e 1ϕ==--,即e e 1k ≥-. 所以实数k 的取值范围为e ,e 1⎡⎫+∞⎪⎢-⎣⎭ 【点睛】 解决此题的关键利用导数的几何意义及两点求斜率,再根据同一切线斜率相等即可证明,对于恒成立问题通常采用分离常数法,进而转化为求函数的最值问题,利用导数法即可求解.8.(1)32322e e a <<; (2)证明见解析.【解析】【分析】(1)求出函数()f x 的导数,由()0f x '=分离参数并构造函数,求解其值域作答. (2)将不等式等价转化,构造两个函数,并分别探讨它们的最大、最小值即可推理作答.(1) 依题意,21(1)e ()x x f x ax x -'=-,由()0f x '=得:21(1)e 1(1)e x x x x ax x a x--=⇔=, 令1())(e x x x x ϕ-=,23x <<,则22()(1)e 0xx x x xϕ+'-=>,即()ϕx 在(2,3)上单调递增,当23x <<时,(2)()(3)x ϕϕϕ<<,即23e 2e ()23x ϕ<<, 由()'f x 在(2,3)上存在零点,则方程1(1)e xx a x-=在(2,3)上有根,因此有23e 12e 23a <<,解得32322e e a <<, 所以a 的取值范围是:32322e e a <<. (2) 函数()f x 的定义域为(0,)+∞,当34e a ≥时,2ln e e ln ()000x x x a x f x a x x x<⇔-<⇔->, 令2e ()x a g x x =,0x >,求导得:3e ())(2x a x x g x'-=,当02x <<时,()0g x '<,当2x >时,()0g x '>,即函数()g x 在(0,2)上单调递减,在(2,)+∞上单调递增,当2x =时,22min 3e 4e 1()(2)4e 4ea g x g ==≥⋅=, 令ln ()x h x x =,0x >,求导得:21ln ()x h x x -'=,当0e x <<时,()0h x '>,当e x >时,()0h x '<,即函数()h x 在(0,e)上单调递增,在(e,)+∞上单调递减,当e x =时,max 1()(e)eh x h ==, 因此,0x ∀>,min max 1()()()()eg x g x h x h x ≥≥=≥,而()g x 的最大值与()h x 的最小值不同时取得,即上述不等式中不能同时取等号,于是得:0x ∀>,()()g x h x >成立,即2e ln 0x a x x x ->成立, 所以()0f x <.【点睛】思路点睛:证明不等式常需构造辅助函数,将不等式证明转化为利用导数研究函数的单调性、求最值等解决.9.(1)选择①不存在,理由见解析;选择②存在,理由见解析(2)[)1,+∞【解析】【分析】(1)若选择①,则()1x f x e x '=--,令()1x q x e x =--,由于()q x '在R 上单调递增,且()00f '=,从而可求出求出()f x '的单调区间,进而可求出()f x '的最小值非负,则()f x 无极值;若选择②,则()22x f x e x '=--,令()22x n x e x =--,由()n x '在R 上单调递增,且()ln 20n '=,可得()f x '的单调区间,从而得其最小值小于0 ,进而可判断函数的极值,(2)令()0g x =,则可得()()()1ln 1ln ln 0x x mx e x mx e x mx mx----+=--=⎡⎤⎣⎦,令()ln t x mx =-,即转化为10t e t --=有解,构造函数()1t h t e t -=-,由导数可得()1t h t e t -=-由唯一零点1t =,从而将问题转化为()1ln x mx =-在()0,∞+有解,即1ln ln m x x +=-,再构造函数()ln l x x x =-,利用导数求出函数的值域可得1ln m +的范围,从而可求出实数m 的取值范围(1)若选择①12m =,则()()2112x f x e x =-+,则()1x f x e x '=--. 令()1x q x e x =--,则()1x q x e '=-,由()q x '单调递增,且()00q '=,得()0q x '>在()0,∞+上恒成立,所以()f x '在()0,∞+上单调递增, 所以当()0,x ∈+∞时,()()00f x f ''>=,则()f x 在()0,∞+上单调递增,不存在极小值点.若选择②1m =,则()()21x f x e x =-+,则()22x f x e x '=--.令()22x n x e x =--,则()2x n x e '=-,()n x '单调递增,且()ln 20n '=,所以()f x '在()0,ln 2上单调递减,()ln 2,+∞上单调递增.又()ln 22ln 20f '=-<,()2260f e '=->,所以存在()0ln 2,2x ∈,满足()00f x '=.则()f x 在()00,x 上单调递减,在()0,x +∞上单调递增,所以()f x 存在极小值点0x .(2)令()0g x =,则()12ln 0x e mx mx mx --+=.又0mx >, 所以()()()()()11ln 1ln ln ln ln 0x x x mx mx e e x mx x mx e x mx mx e-----+=-+=--=⎡⎤⎣⎦. 令()ln t x mx =-,即可转化为10t e t --=有解.设()1t h t e t -=-,则由()110t h t e -'=-<可得1t <,则()h t 在(),1t ∈-∞上单调递减,在()1,t ∈+∞上单调递增.又()10h =,所以()1t h t e t -=-有唯一的零点1t =.若()g x 在区间()0,∞+上存在零点,则()1ln x mx =-在()0,∞+有解.整理得.设()ln l x x x =-,由()11l x x'=-,知()l x 在()0,1x ∈上单调递减,在()1,x ∈+∞上单调递增,又当0x +→时,()l x →+∞,则()()11l x l ≥=,所以1ln 1m +≥,得1m ≥.故实数m 的取值范围是[)1,+∞.【点睛】关键点点睛:此题考查导数的应用,考查利用导数解决零点问题,解题的关键是由()0g x =可得()()ln 1ln 0x mx e x mx ----=⎡⎤⎣⎦,令()ln t x mx =-,将问题转化为10t e t --=有解,构造()1t h t e t -=-利用导数讨论其解的情况即可,考查数学转化思想和计算能力,属于较难题10.(1)单调递增区间为(2)-∞-,,(2)+∞,;单调递减区间为(22)-, (2)542542a -<<+【解析】【分析】(1)求出导函数()'f x ,由()0f x '>得增区间,由()0f x '<得减区间;(2)由(1)中所得函数的单调性,得极值,可结合函数的图象得其与直线y a =三个交点时的a 的范围.(1)由已知可得:2()36f x x '=-,令()0f x '=,即2360x -=,解得12x =-,12x =,所以当2x >或2x <-时,()0f x '>,当22x -<<时,()0f x '<.所以()f x 的单调递增区间为(2)-∞-,,(2)+∞,; 单调递减区间为(22)-,.(2)由(1)可知()y f x =的图象的大致走势及走向,如图所示,又(2542f -=-2542f =+所以当542542a -<+y a =与函数()y f x =的图象有三个不同的交点,方程()f x a =有三个不等实根.。

高考导数大题难题练习册及答案

高考导数大题难题练习册及答案

高考导数大题难题练习册及答案## 高考导数大题难题练习册及答案### 练习题一:函数的单调性与极值题目:设函数 \( f(x) = x^3 - 3x^2 + 4 \),求函数的单调区间和极值点。

解答:首先求导数 \( f'(x) = 3x^2 - 6x \)。

令 \( f'(x) = 0 \),解得 \( x = 0 \) 或 \( x = 2 \)。

分析 \( f'(x) \) 的符号,当 \( x < 0 \) 或 \( x > 2 \) 时,\( f'(x) > 0 \),函数单调递增;当 \( 0 < x < 2 \) 时,\( f'(x) < 0 \),函数单调递减。

因此,函数在 \( x = 0 \) 处取得极大值 \( f(0) = 4 \),在 \( x = 2 \) 处取得极小值 \( f(2) = 0 \)。

### 练习题二:曲线的切线与法线题目:曲线 \( y = \ln(x) \) 在点 \( (1, 0) \) 处的切线方程是什么?解答:首先求导数 \( y' = \frac{1}{x} \)。

在点 \( (1, 0) \) 处,切线的斜率为 \( k = 1 \)。

利用点斜式方程 \( y - y_1 = k(x - x_1) \),代入点 \( (1, 0) \)和斜率 \( k = 1 \),得到切线方程为 \( y = x - 1 \)。

### 练习题三:导数在实际问题中的应用题目:某工厂生产一种产品,其成本函数为 \( C(x) = 0.01x^2 + 2x + 100 \),其中 \( x \) 为产品数量。

求生产多少件产品时,单位成本最低。

解答:首先求成本函数的导数 \( C'(x) = 0.02x + 2 \)。

令 \( C'(x) = 0 \),解得 \( x = -100 \)(舍去,因为产品数量不能为负)。

高考数学专题:导数大题专练(含答案)

高考数学专题:导数大题专练(含答案)

高考数学专题:导数大题专练(含答案) 一、解答题 1.

已知函数2ln0fxaxaxa

(1)求fx的最大值 (2)若0fx恒成立,求a的值 2.某学校组织数学,物理学科答题竞赛活动,该学校准备了100个相同的箱

子,其中第1,2,,100kk个箱子中有k个数学题,100k个物理题.每一轮竞赛活动规则如下:任选一个箱子,依次抽取三个题目(每次取出不放回),并全部作答完毕,则该轮活动结束;若此轮活动中,三个题目全部答对获得一个奖品. (1)已知学生甲在每一轮活动中,都抽中了2个数学题,1个物理题,且甲答对每

一个数学题的概率为p,答对每一个物理题的概率为q. ①求学生甲第一轮活动获得一个奖品的概率; ②已知1pq,学生甲理论上至少要进行多少轮活动才能获得四个奖品?并求

此时p、q的值. (2)若学生乙只参加一轮活动,求乙第三次抽到物理题的概率.

3.已知函数21()ln(1)()22Rxfxaxaxaa有一个大于1的零点0x. (1)求实数a的取值范围; (2)证明:对任意的01,xx,都有ln10axx恒成立.

4.已知aR,函数22ee2xaxfxx. (1)求曲线yfx在0x处的切线方程 (2)若函数fx有两个极值点12,xx,且1201xx, (ⅰ)求a的取值范围;

(ⅱ)当9a时,证明:212e6e4axxaa. (注:2.71828e…是自然对数的底数) 5.已知函数()e(1)()xfxaxaR. (1)当1a时,求函数()yfx的极值; (2)若函数()()lnegxfxx在[1,)有唯一的零点,求实数a的取值范围. 6.已知函数322fxxaxbx在2x时取得极值,且在点1,1f处的切

线的斜率为3

. (1)求fx的解析式; (2)若函数yfx有三个零点,求实数的取值范围.

高考导数大题大全理科答案

高考导数大题大全理科答案

一、解答题1. 解:(Ⅰ) 函数()f x 的定义域为(0,)+∞,'112()e ln e e e .xx x x a b b f x a x x x x--=+-+ 由题意可得'(1)2,(1) e.f f ==故1,2a b ==.(Ⅱ)由(Ⅰ)知12e ()e ln ,x xf x x x -=+从而()1f x >等价于2ln e .ex x x x ->- 设函数()ln g x x x =,则()1ln g x x '=+,所以当1(0,)ex ∈时,'()0g x <; 当1(,)ex ∈+∞时,'()0g x >,故()g x 在1(0,)e 单调递减,在1(,)e+∞单调递增, 从而()g x 在(0,)+∞的最小值为11().e eg =-. 设函数2()eexh x x -=-,则'()e (1)x h x x -=-,所以当(0,1)x ∈时,'()0h x >; 当(1,)x ∈+∞时,'()0h x <,故()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,从而()h x 在(0,)+∞的最大值为1(1)eh =-. 综上,当0x >时,()()g x h x >,即()1f x >.2. 解题指南(1)根据导数公式求出函数的导数,利用分类讨论思想求解;(2)根据函数的单调性以及函数极值与导数的关系式确定函数的极值点,代入函数中求解.解析(1)2/222(2)24(1)()1(2)(1)(2)a x x ax a f x ax x ax x +-+-=-=++++ (*)当1a ≥时,/()0f x >,此时,()f x 在区间(0,)+∞上单调递增. 当01a <<时,由/()0f x =得1x =(2x =-舍去).当1(0,)x x ∈时,/()0f x <;当1(,)x x ∈+∞时,/()0f x >. 故()f x 在区间1(0,)x 上单调递减,在区间1(,)x +∞上单调递增. 综上所述,当1a ≥时,()f x 在区间(0,)+∞上单调递增.当01a <<时,()f x在区间(0,上单调递减,在区间)+∞上单调递增. 由(*)式知,当1a ≥时,/()0f x >,此时()f x 不存在极值点,因而要使得()f x 有两个极值点, 必有01a <<.又()f x的极值点只可能是1x =和2x =-,且由定义可知,1x a >-且2x ≠-,所以1a ->-且2-≠-,解得12a ≠- 此时,由(*)式易知,12,x x 分别是()f x 的极小值和极大值点,而 令21a x -=,则01a <<且12a ≠-知:当102a <<时,10x -<<;当112a <<时,01x <<. 记22()ln 2g x x x=+-, (Ⅰ)当10x -<<时,2()2ln()2g x x x =-+-,所以/222222()0x g x x x x-=-=< 因此,()g x 在区间(1,0)-上单调递减,从而()(1)40g x g <-=-<,故当102a <<时, 12()()0f x f x +<.(Ⅱ)当01x <<时,2()2ln 2g x x x =+-,所以/222222()0x g x x x x-=-=< 因此,()g x 在区间(0,1)上单调递减,从而()(1)0g x g >=,故当时112a <<,12()()0f x f x +>.综上所述,满足条件的a 的取值范围为1(,1)2. 3. (1)证明:因为对任意x ∈R ,都有()()e ee e ()x x x xf x f x -----=+=+=,所以f (x )是R 上的偶函数.(2)解:由条件知(e e1)e 1x xx m --+-≤-在(0,+∞)上恒成立.令t = e x(x >0),则t >1,所以m ≤21111111t t t t t --=--+-++-对于任意t >1成立.因为11111t t -++≥- = 3,所以1113111t t -≥--++-, 当且仅当t = 2,即x = ln2时等号成立.因此实数m 的取值范围是1,3⎛⎤-∞- ⎥⎝⎦.(3)解:令函数31()e (3)e xx g x a x x =+--+,则21()e 3(1)exxg x a x '=-+-. 当x ≥1时,1e 0ex x ->,x 2– 1≥0,又a >0,故g ′(x )>0,所以g (x )是[1,+∞)上的单调增函数, 因此g (x )在[1,+∞)上的最小值是1(1)e e 2g a -=+-.由于存在x 0∈[1,+∞),使0030e e (3)0x x a x x -+--+<成立,当且仅当最小值g (1)<0, 故1e+e20a --<,即1e e2a -+>. 令函数()(e 1)ln 1h x x x =---,则()1h x '=-e 1x-,令h ′(x ) = 0,得e 1x =-.当(0,e 1)x ∈-时,h ′(x )<0,故h (x )是(0,e 1)-上的单调减函数.当x ∈(e – 1,+∞)时,h ′(x )>0,故h (x )是(e – 1,+∞)上的单调增函数. 所以h (x )在(0,+∞)上的最小值是(e 1)h -.注意到h (1) = h (e) = 0,所以当(1,e 1)x ∈- ?(0,e 1)-时,(e 1)h -)≤h (x )<h (1) = 0; 当(e 1,e)(e 1,)a ∈-⊆-+∞时,h (x )<h (e) = 0,所以h (x )<0对任意的x ∈(1,e)成立.①当a ∈1e e ,e 2-⎛⎫+⎪⎝⎭?(1,e)时,h (a )<0,即1(e 1)ln a a -<-,从而1e 1e a a --<; ②当a = e 时,1e 1ea a --<;③当(e,)(e 1,)a ∈+∞⊆-+∞时,h (a )>h (e) = 0,即1(e 1)ln a a ->-,故1e 1e a a -->.综上所述,当a ∈1e e ,e 2-⎛⎫+⎪⎝⎭时,1e 1e a a --<,当a = e 时,1e 1e a a --=,当(e,)a ∈+∞ 时,1e 1ea a -->.4. 解题指南:(I )利用'()f x 为偶函数和()y f x =在点(0,(0))f 处的切线的斜率为4c -建立关于,a b 的方程求解. (II )利用基本不等式求解.(III)需对c 进行分类,讨论方程'()0f x =是否有实根,从而确定极值.解析:(I )对()f x 求导得'22()22xxf x aebec -=+-,由()f x '为偶函数,知'()'()f x f x -=,即222()()0x x a b e e --+=,因220x x e e -+>,所以a b =. 又'(0)224f a b c c =+-=-,故1,1a b ==. (II )当3c =时,22()3x x f x e e x -=--,那么故()f x 在R 上为增函数.(III)由(Ⅰ)知'22()22x x f x e e c -=+-,而22224,x x e e -+≥当0x =时等号成立. 下面分三种情况进行讨论.当4c <时,对任意22,()220x x x R f x e e c -'∈=+->,此时()f x 无极值; 当4c =时,对任意220,()220x x x f x e e c -'≠=+->,此时()f x 无极值;当4c >时,令2xe t =,注意到方程220t c t+-=有两根1,20t =>, 即'()0f x =有两根112211ln ln 22x t x t ==或. 当12x x x <<时,'()0f x <;又当2x x >时,'()0f x >,从而'()f x 在2x x =处取得极小值; 综上,若'()f x 有极值,则c 取值范围为()4,+∞.5. 解题指南(1)先求导数,结合解不等式求解函数的单调区间;(2)利用单调性与导数的关系求解字母的取值范围.解析⑴当4b =时,2()(4f x x x =++定义域为12(,)-∞,212()(24)(44)(2)f x x x x '=+++⨯-=.令()0f x '=,解得12x =-,20x =. 当2x <-或120x <<时,()0f x '<;当20x -<<时,()0f x '>.所以()f x 在(,2)-∞-,12(0,)上单调递减;在(2,0)-上单调递增.所以当2x =-时,()f x 取得极小值(2)0f -=;当0x =时,()f x 取得极大值(0)4f =.⑵因为()f x 在13(0,)上单调递增,所以()0f x '≥,且不恒等于0对13(0,)x ∈恒成立.2212()(2)()(2)f x x b x bx b '=+++⨯-=所以25320x bx x --+≥,得min 253()x b -≤.因为1252513339x-⨯->=,所以19b ≤,故b 的取值范围为19(,]-∞.6. 解析:(Ⅰ)对()f x 求导得222(6)(3)3(6)'(),()x x x xx a e x ax e x a x af x e e+-+-+-+== 因为()f x 在0x =处取得极值,所以'(0)0f =即0a =.当0a =时,()f x =22336,'(),x xx x x f x e e -+=故33(1),'(1),f f e e==从而()f x 在点(1,(1)f )处的切线方程为33(1),y x e e-=-化简得30.x ey -= (Ⅱ)由(Ⅰ)知23(6)'().xx a x af x e-+-+= 令2()3(6),g x x a x a =-+-+由()0g x =解得12x x == 当1x x <时,()0g x <,即'()0f x <,故()f x 为减函数;当12x x x <<时,()0g x >,即'()0f x >,故()f x 为增函数;当2x x >时,()0g x <,即'()0f x <,故()f x 为减函数;由()f x 在[)3,+∞上为减函数,知263,6a x -=≤解得9,2a ≥- 故a 的取值范围为9,.2⎡⎫-+∞⎪⎢⎣⎭考点分类第四章 考点一、导数的概念、运算及其几何意义;考点二、导数的应用;第九章 考点一、不等关系与一元二次不等式7. 解:(1)∵22'()2(1)(1)0x x xf x x x x =++=+≥e e e (仅当1x =-时取等号),∴()f x 的单调递增区间为(,)-∞+∞.(2)∵(0)10f a =-<,2(ln )(ln )0f a a a =>,∴()f x 在单调递增区间(,)-∞+∞上仅有一个零点.(3)由题意知'()0P f x =,又仅'(1)0f -=,得1P x =-,2P y a =-e,由题意知'()OP f m k =,得22(1)m m a +=-e e,要证1m ≤,即要证32(1)m a +≤-e ,只需证32(1)(1)mm m +≤+e ,即要证1m m +≤e ,① 设()1mg m m =+-e ,则'()1mg m =-e , 又'()00g m m ⇔==,∴()g m 在(,0)-∞上递增,在(0,)∞+上递减。

高考数学专题:导数大题专练含答案

高考数学专题:导数大题专练含答案

高考数学专题:导数大题专练含答案一、解答题1.已知函数()ln f x ax x =+ (1)讨论()f x 的单调区间;(2)设()2xg x =,若对任意的[]11,100x ∈,存在[]20,1x ∈,使()()12f x g x <成立,求实数a 的取值范围. 2.已知函数()ln f x x =.(1)当()()sin 1g x x =-,求函数()()()T x f x g x =+在()0,1的单调性; (2)()()12h x f x b x=+-有两个零点1x ,2x ,且12x x <,求证:121x x +>. 3.已知函数()21si cos n 2f x x x a x x =-++.(1)当1a =-时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,求a 的取值范围.4.已知a R ∈,函数()22e 2xax f x =+. (1)求曲线()y f x =在0x =处的切线方程 (2)若函数()f x 有两个极值点12,x x ,且1201x x ,(ⅰ)求a 的取值范围;(ⅱ)当9a <-时,证明:21x x <-<. (注: 2.71828e =…是自然对数的底数) 5.求下列函数的导数: (1)2cos x xy x -=; (2)()e 1cos 2x x y x =+-; (3)()3log 51y x =-.6.已知函数()322f x x ax bx =++-在2x =-时取得极值,且在点()()1,1f --处的切线的斜率为3- . (1)求()f x 的解析式;(2)若函数()y f x λ=-有三个零点,求实数λ的取值范围.7.已知函数()323f x x ax x =-+.(1)若3x =是()f x 的极值点,求()f x 在[]1,a 上的最大值和最小值;(2)若()f x 在[)1,+∞上是单调递增的,求实数a 的取值范围.8.2020年9月22日,中国政府在第七十五届联合国大会上提出:“中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和.”为了进一步了解普通大众对“碳中和”及相关举措的认识,某机构进行了一次问卷调查,部分结果如下:(1)根据所给数据,完成下面的22⨯列联表,并根据列联表,判断是否有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关?附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.(2)经调查后,有关部门决定加大力度宣传“碳中和”及相关措施以便让节能减排的想法深入人心.经过一段时间后,计划先随机从社会上选10人进行调查,再根据检验结果决定后续的相关举措.设宣传后不了解“碳中和”的人概率都为()01p p <<,每个被调查的人之间相互独立.①记10人中恰有3人不了解“碳中和”的概率为()f p ,求()f p 的最大值点0p ; ②现对以上的10人进行有奖答题,以①中确定的0p 作为答错的概率p 的值.已知回答正确给价值a 元的礼品,回答错误给价值b 元的礼品,要准备的礼品大致为多少元?(用a ,b 表示即可)9.已知函数()ln 2f x x x ax =++在点()()1,1f 处的切线与直线220x y 相互垂直.(1)求实数a 的值;(2)求()f x 的单调区间和极值.10.已知函数()222(0)e xmx x f x m +-=>. (1)判断()f x 的单调性;(2)若对[]12,1,2x x ∀∈,不等式()()1224e f x f x -≤恒成立,求实数m 的取值范围.【参考答案】一、解答题1.(1)答案见解析 (2)31a e ≤-【解析】 【分析】(1)由()()110ax f x a x xx+=+=>',按0a ≥,0a <进行分类讨论求解; (2)由已知,转化为()()max max f x g x <,由已知得()()max 12g x g ==,由此能求出实数a 的取值范围. (1)()(]110ax f x a x x x+'=+=>, ①当0a ≥时,由于0x >,故10ax +>,()0f x '>, 所以()f x 的单调递增区间为()0,∞+;②当0a <时,由()0f x '=,得1x a=-,在区间10,a ⎛⎫- ⎪⎝⎭上()0f x '>,在区间1,a∞⎛⎫-+ ⎪⎝⎭上()0f x '<,所以,函数()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,单调递减区间为1,a∞⎛⎫-+ ⎪⎝⎭;(2)由题目知,只需要()()max max f x g x <即可又因为()()max 12g x g ==,所以只需要()max 2f x <即可()max 2f x <即等价于()2f x <恒成立,由变量分离可知2ln xa x-<,[]1,100x ∈, 令()2ln xh x x -=,下面求()h x 的最小值, 令()23ln xh x x-+'=,所以()0h x '=得3x e =, 所以()h x 在31,e ⎡⎤⎣⎦为减函数,3,100e ⎡⎤⎣⎦为增函数,所以()()33min 1h x h e e -==,所以31a e ≤-. 2.(1)单调递增 (2)证明见解析 【解析】 【分析】(1)直接求导,判断出导数大于0,即可得到单调性;(2)直接由1x ,2x 是函数()1ln 2h x x b x =+-的两个零点得到1212122ln x xx x x x -=,分别解出1211212ln x xx x x -=,2121212ln xx x x x -=,再换元令12x t x =构造函数()12ln l t t t t=--,求导确定单调性即可求解. (1)由题意,函数()()sin 1ln T x x x =-+,则()()1cos 1T x x x'=--+,又∵()0,1x ∈,∴11x>,()()10,1,cos 11x x -∈-<,∴()0T x '>,∴()T x 在(0,1)上单调递增. (2)根据题意,()()1ln 02h x x b x x =+->, ∵1x ,2x 是函数()1ln 2h x x b x=+-的两个零点,∴111ln 02x b x +-=,221ln 02x b x +-=. 两式相减,可得122111ln22x x x x =-,即112221ln 2x x x x x x -=, ∴1212122ln x x x x x x -=,则1211212ln x x x x x -=,2121212ln xx x x x -=. 令12x t x =,()0,1t ∈,则1211112ln 2ln 2ln t t t t x x t t t---+=+=.记()12ln l t t t t =--,()0,1t ∈,则()()221t l t t-'=. 又∵()0,1t ∈,∴()0l t '>恒成立,∴()l t 在()0,1上单调递增,故()()1l t l <,即12ln 0t t t --<,即12ln t t t-<.因为ln 0t <,可得112ln t t t->,∴121x x +>.【点睛】本题关键点在于对双变量的处理,通过对111ln 02x b x +-=,221ln 02x b x +-=作差,化简得到1212122ln x x x x xx -=, 分别得到12,x x 后,换元令12x t x =,这样就转换为1个变量,再求导确定单调性即可求解. 3.(1)10y +=; (2)[)1,+∞. 【解析】 【分析】(1)将1a =-代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件可以将问题转化为恒成立问题,进而转化为求函数的最值问题,利用导数法求函数的最值即可求解. (1)当1a =-时,()2cos 1sin 2f x x x x x =--+()2cos 10000sin 012f =⨯--+=-,所以切点为0,1,()1sin cos x f x x x '=-++,∴(0)01sin 0cos00f '=-++=,所以曲线()y f x =在点()()0,0f 处的切线的斜率为(0)0k f '==, 所以曲线()y f x =在点0,1处的切线的斜率切线方程为()()100y x --=⨯-,即10y +=.(2)由()21si cos n 2f x x x a x x =-++,得()s 1co i s n f x x a x x '=--+因为函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,可得()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 设()()1c s os in g x f x x a x x '==--+,则()cos 1sin g x a x x '=--. 因为si (n 0)001cos00g a =--+=, 所以使()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 则至少满足()00g '≤,即10a -≤,解得1a ≥. 下证明当1a ≥时,()0f x '≤恒成立,因为3π0,4x ⎡⎤∈⎢⎥⎣⎦,所以sin 0x ≥, 因为1a ≥,所以()sin 1cos f x x x x '≤--+.记s ()cos n 1i h x x x x =--+,则π()1sin 14cos h x x x x ⎛⎫'=-=+ ⎝-⎪⎭.当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<;当π3π,24x ⎛⎫∈ ⎪⎝⎭时,()0h x '>. 所以函数()h x 在π0,2⎡⎫⎪⎢⎣⎭上单调递减,在π3π,24⎛⎤⎥⎝⎦上单调递增.因为ππ(),h h ⎛⎫==- ⎪⎝⎭33001044, 所以()h x 在3π0,4⎡⎤⎢⎥⎣⎦上的最大值为(0)0h =. 即()()1sin cos 0f x h x x x x '≤=--+≤在3π0,4⎡⎤⎢⎥⎣⎦上恒成立.所以a 的取值范围为[)1,+∞.4.(1)(21y x =-+(2)(ⅰ)22e ,-;(ⅱ)证明见解析【解析】 【分析】(1)由导数的几何意义即可求解;(2)(ⅰ)原问题等价于12,x xa =-的两根,且1201x x ,从而构造函数())0g x x =>,将问题转化为直线y a =-与函数()g x 的图象有两个交点,且交点的横坐标大于0小于1即可求解;(ⅱ)由1e x x +≤,利用放缩法可得()()1112210x ax f x '++-=,即1x 2114x <<,从而可证21x x -<()21e 011x x x x +<<<-,然后利用放缩法可得()()1201,21i i i ix ax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,最后构造二次函数()(222m x ax a x =-++++21x x ->而得证原不等式. (1)解:因为()22e x f x ax '=+所以()02f '=()01f =,所以曲线()y f x =在0x =处的切线方程为(21y x =-+; (2)解:(ⅰ)因为函数()f x 有两个极值点12,x x ,所以12,x x 是关于x 的方程()22e 0x f x ax =+'的两根,也是关于x的方程a =-的两正根, 设())0g x x =>,则()g x '=, 令())224e 2e 0x x h x x x =->,则()28e xh x x '=,当0x >时,()0h x '>,所以()h x 在()0,∞+上单调递增,又104h ⎛⎫= ⎪⎝⎭,所以,当104x <<时,()0h x <,()0g x '<;当14x >时,()0h x >,()0g x '>,所以函数()g x 在10,4⎛⎫⎪⎝⎭上单调递减,在1,4⎛⎫+∞ ⎪⎝⎭上单调递增,又因为1201x x ,所以()114g a g ⎛⎫<-<⎪⎝⎭,即22e a <-<- 所以a的取值范围是22e ,-;22e 9a <<-, 因为1e x x +≤,所以()()1112210x ax f x '++-=,所以()142a x +-,所以1x 2114x <<,所以211x x -<= 下面先证明不等式()21e 011x xx x+<<<-, 设()()2101e 1xx r x x x -=⋅<<+,则()()2222e 1x x r x x '=-+, 所以,当01x <<时,()0r x '<,()r x '在()0,1上单调递减, 所以,()()01r x r <=,所以不等式()21e 011x xx x+<<<-成立, 因为12,x x ,()1201x x <<<是()22e 0x f x ax '=+=的两个根,所以()()01,2i f x i '==,又()21e 011x xx x+<<<-,所以()()1201,21ii i ixax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,设函数()(222m x ax a x =-++++x t ==因为((()2224261620a a a ∆=+++-=+-+->,且()00m >,()10m >,102t <<, 所以函数()m x 有两个不同的零点,记为α,()βαβ<,且01t αβ<<<<,因为()22616212e 201ta tf t at at t+++'=+-⋅+-=<-,且()00f '>,()10f '>,所以1201x x ,因为()m x 在()0,t 上单调递减,且()()10m x m α>=,所以10x t α<<<; 因为()m x 在(),1t 上单调递增,且()()20m x m β>=,所以21t x β<<<; 所以1201x x αβ<<<<<,所以21x x βα->-,因为βα-=又()109a-<<<-,所以βα-> 所以21x x->综上,21x x <-< 【点睛】关键点点睛:本题(2)问(ii)小题证明的关键是,利用1e x x +≤,进行放缩可得1x 21x x -<;再利用()21e 011x xx x +<<<-,进行放缩可得()()1201,21ii i ixax f x i x +'⋅+->==-,从而构造二次函数()(222m x ax ax =-++++21x x ->5.(1)'y ()31sin 2cos x x xx --=;(2)'y ()e 1cos sin 2ln 2x xx x =+--;(3)'y ()551ln 3x =-⋅.【解析】 【分析】根据导数的运算法则,对(1)(2)(3)逐个求导,即可求得结果. (1)因为2cos x x y x -=,故'y ()()()243sin 12cos 1sin 2cos x x x x x x x x x x------==. (2)因为()e 1cos 2x x y x =+-,故'y ()e 1cos sin 2ln 2x xx x =+--.(3)因为()3log 51y x =-,故'y ()()155?51ln 351ln 3x x =⨯=--⋅. 6.(1)()3232f x x x =+-(2)()2,2- 【解析】 【分析】(1)由已知可得()()2013f f ⎧-=⎪⎨-=-''⎪⎩,可得出关于实数a 、b 的方程组,解出这两个未知数的值,即可得出函数()f x 的解析式;(2)分析可知,直线y λ=与函数()f x 的图象有3个交点,利用导数分析函数()f x 的单调性与极值,数形结合可得出实数λ的取值范围.(1)解:因为()322f x x ax bx =++-,则()232f x x ax b '=++,由题意可得()()212401323f a b f a b ⎧-=-+=⎪⎨-=-+=-''⎪⎩,解得30a b =⎧⎨=⎩,所以,()3232f x x x =+-.当3a =,0b =时,()236f x x x '=+,经检验可知,函数()f x 在2x =-处取得极值. 因此,()3232f x x x =+-.(2)解:问题等价于()f x λ=有三个不等的实数根,求λ的范围.由()2360f x x x '=+>,得2x <-或0x >,由()2360f x x x '=+<,得20x -<<,所以()f x 在(),2-∞-、()0,∞+上单调递增,在()2,0-上单调递减, 则函数()f x 的极大值为()22f -=,极小值为()02f =-,如下图所示:由图可知,当22λ-<<时,直线y λ=与函数()f x 的图象有3个交点, 因此,实数λ的取值范围是()2,2-. 7.(1)最大值为15,最小值为9- (2)3a ≤ 【解析】 【分析】(1)由()30f '=可求得实数a 的值,再利用函数的最值与导数的关系可求得函数()f x 在[]1,a 上的最大值和最小值;(2)分析可知()23230f x x ax '=-+≥对任意的1≥x 恒成立,利用参变量分离法结合基本不等式可求得实数a 的取值范围. (1)解:因为()323f x x ax x =-+,则()2323f x x ax =-+',则()33060f a '=-=,解得5a =,所以,()3253f x x x x =-+,则()()()23103313f x x x x x '=-+=--,列表如下:所以,min 39f x f ==-,因为11f =-,515f =,则max 515f x f ==. (2)解:由题意可得()23230f x x ax '=-+≥对任意的1≥x 恒成立,即312a x x⎛⎫≤+ ⎪⎝⎭,由基本不等式可得313322x x ⎛⎫+≥⨯ ⎪⎝⎭,当且仅当1x =时,等号成立,故3a ≤.8.(1)列联表见解析,没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关; (2)①0310p =;②()73a b + 【解析】 【分析】(1)对满足条件的数据统计加和即可,然后根据给定的2K 计算公式,将计算结果与195%0.05-=所对应的k 值比较大小即可;(2)①利用独立重复试验与二项分布的特点,写出10人中恰有3人不了解“碳中和”的概率为()f p ,再利用导数求出最值点; ②利用独立重复试验的期望公式代入可求出答案. (1)由题中表格数据完成22⨯列联表如下:()22800125250150275800 3.463 3.841275525400400231K ⨯⨯-⨯==≈<⨯⨯⨯.故没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关. (2)①由题得,()()733101f p C p p =-,()0,1p ∈, ∴()()()()()763236321010C 3171C 1310f p p p p p p p p ⎡⎤'=---=--⎣⎦. 令()0f p '=,得310p =,当30,10p ⎛⎫∈ ⎪⎝⎭时,()0f p '>; 当3,110p ⎛⎫∈⎪⎝⎭时,()0f p '<, ∴当30,10p ⎛⎫∈ ⎪⎝⎭时,()f p '单调选增;当3,110p ⎛⎫∈ ⎪⎝⎭时,()f p '单调递减, ∴()f p 的最大值点0310p =. ②本题求要准备的礼品大致为多少元,即求10个人礼品价值X 的数学期望. 由①知答错的概率为310, 则()33101731010E X a b a b ⎡⎤⎛⎫=-+=+ ⎪⎢⎥⎝⎭⎣⎦, 故要准备的礼品大致为73a b +元. 9.(1)3a =-;(2)增区间为()2e ,+∞,减区间为()20,e ,极小值22e -,无极大值.【解析】 【分析】(1)根据()1112f '⨯=-,代值计算即可求得参数值;(2)根据(1)中所求参数值,求得()f x ',利用导数的正负即可判断函数单调性和极值. (1)因为()ln 1f x x a '=++,在点()()1,1f 处的切线斜率为()11k f a '==+, 又()f x 在点()()1,1f 处的切线与直线220x y 相互垂直, 所以()1112f '⨯=-,解得3a =-. (2)由(1)得,()ln 2f x x '=-,()0,x ∈+∞,令()0f x '>,得2e x >,令()0f x '<,得20e x <<,即()f x 的增区间为()2e ,+∞,减区间为()20,e . 又()22222e e ln e 3e 22ef =-+=-,所以()f x 在2e x =处取得极小值22e -,无极大值. 【点睛】本题考查导数的几何意义,以及利用导数研究函数的单调性和极值,属综合中档题.10.(1)单调增区间为2,2m ⎛⎫- ⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+⎥⎝⎦ (2)20,4e ⎛⎤ ⎥-⎝⎦【解析】 【分析】(1)先对函数求导,然后由导数的正负可求出函数的单调区间, (2)由函数()f x 在[]1,2上为增函数,求出函数的最值,则()()max min 24e 2()()e m g m f x f x -+=-=,然后将问题转化为()224e 24e e m -+≥,从而可求出实数m 的取值范围. (1)()()()()221422(0)e e xxmx m x mx x f x m -+-+-+-=>'=令()0f x '=,解得2x m =-或2x =,且22m-< 当2,x m ∞⎛⎤∈-- ⎥⎝⎦时,()0f x '≤,当2,2x m ⎛⎫∈- ⎪⎝⎭时,()0f x '>,当[)2,x ∞∈+时,()0f x '≤即()f x 的单调增区间为2,2m ⎛⎫- ⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+⎥⎝⎦(2)由(1)知,当[]0,1,2m x >∈时,()0f x '>恒成立 所以()f x 在[]1,2上为增函数, 即()()max min242()2,()1e em mf x f f x f +====. ()()12f x f x -的最大值为()()max min 24e 2()()e m g m f x f x -+=-=()()1224e f x f x ⎡⎤≥-⎣⎦恒成立()224e 24e e m -+∴≥ 即24em ≤-, 又0m > 20,4e m ⎛⎤∴∈ ⎥-⎝⎦ 故m 的取值范围20,4e ⎛⎤ ⎥-⎝⎦。

高考数学专题:导数大题专练含答案

高考数学专题:导数大题专练含答案

高考数学专题:导数大题专练含答案 一、解答题 1.已知函数()()e,Rxfxxaa.

(1)若函数()fx在区间[3,)上是增函数,求实数a的取值范围. (2)若2()efx在0,2x时恒成立,求实数a的取值范围. 2.已知函数32fxxaxbx的图象在点(0,(0))f处的切线斜率为4,且

2x

时,yfx有极值. (1)求fx的解析式; (2)求fx在3,2上的最大值和最小值.

3.已知函数321()33fxxxax (1)若()fx在点(1,(1))f处切线的倾斜角为4,求a的值; (2)若1a,求()fx的单调区间. 4.对于正实数a,b(ab),我们熟知基本不等式:GabAab,,,其中

Gabab,为a,b的几何平均数,2abAab,为a,b的算术平均数.现定义

a,b的对数平均数:,lnlnabLabab. (1)设1x,求证:12lnxxx,并证明GabLab,,; (2)若不等式,,,GabAabmLab对任意正实数a,b(ab)恒成立,求正

实数m的取值范围. 5.函数3exfxax,0a. (1)讨论函数fx的极值点个数; (2)已知函数gx的定义域为0,,且0,x满足gxxgxxgx.若



00,x,满足不等式22e22exxgxxgx,且0x是函数fx的极值点,

求a的取值范围. 6.已知函数e,xfxaxaR. (1)讨论fx的单调性; (2)讨论fx在0,上的零点个数. 7.已知函数()ln2fxaxxx. (1)若()fx在1x处取得极值,求()fx的单调区间;

(2)若函数2()()2fxhxxx有1个零点,求a的取值范围. 8.已知函数2()lnfxaxx. (1)若1a,求()fx在点(1(1))f,处的切线方程; (2)若对于任意2x,()fxx恒成立,求实数a的取值范围. 9.设函数3()65fxxxxR,. (1)求函数()fx的单调区间; (2)若关于x的方程()fxa有三个不等实根,求实数a的取值范围. 10.设函数223ln1fxaxaxx,其中0a. (1)求fx的单调区间; (2)若yfx的图象与x轴没有公共点,求a的取值范围.

高考数学专题:导数大题专练含答案

高考数学专题:导数大题专练含答案

高考数学专题:导数大题专练含答案一、解答题 1.已知函数()1e -=xx f x . (1)求()f x 极值点;(2)若()()4g x f x =-,证明:2x >时,()()f x g x >成立.2.某学校组织数学,物理学科答题竞赛活动,该学校准备了100个相同的箱子,其中第()1,2,,100k k =个箱子中有k 个数学题,100k -个物理题.每一轮竞赛活动规则如下:任选一个箱子,依次抽取三个题目(每次取出不放回),并全部作答完毕,则该轮活动结束;若此轮活动中,三个题目全部答对获得一个奖品.(1)已知学生甲在每一轮活动中,都抽中了2个数学题,1个物理题,且甲答对每一个数学题的概率为p ,答对每一个物理题的概率为q . ①求学生甲第一轮活动获得一个奖品的概率;②已知1p q +=,学生甲理论上至少要进行多少轮活动才能获得四个奖品?并求此时p 、q 的值.(2)若学生乙只参加一轮活动,求乙第三次抽到物理题的概率. 3.已知函数()ln f x x =.(1)当()()sin 1g x x =-,求函数()()()T x f x g x =+在()0,1的单调性; (2)()()12h x f x b x=+-有两个零点1x ,2x ,且12x x <,求证:121x x +>. 4.已知函数()21si cos n 2f x x x a x x =-++.(1)当1a =-时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,求a 的取值范围. 5.己知数列{}n a 和{}n b ,12a =且()11n n b n a *=-∈N ,函数()()ln 11mx f x x x=+-+,其中0m >.(1)求函数()f x 的单调区间;(2)若数列{}n a 各项均为正整数,且对任意的n *∈N 都有2112112n n n n a a a a +++-<+.求证:(ⅰ)()12n n a a n *+=∈N ;(ⅱ)53123e n b b b b ->,其中e 2.71828=⋅⋅⋅为自然对数的底数.6.设函数()1eln 1x af x a x -=--,其中0a >(1)当1a =时,讨论()f x 单调性;(2)证明:()f x 有唯一极值点0x ,且()00f x ≥.7.已知函数()ln 1f x x ax =++,R a ∈,函数()()21e ln 2xg x x x x x x =-++-,)2e ,x -∈+∞⎡⎣.(1)试讨论函数()f x 的单调性;(2)若0x 是函数()g x 的最小值点,且函数()()h x xf x =在0x x =处的切线斜率为2,试求a 的值.8.已知函数()e 2,R x f x ax a =-∈. (1)若12a =,求函数()f x 的极小值.(2)存在[]02,3x ∈,使得()00f x ≤成立,求实数a 的取值范围. 9.已知函数()323f x x ax x =-+.(1)若3x =是()f x 的极值点,求()f x 在[]1,a 上的最大值和最小值; (2)若()f x 在[)1,+∞上是单调递增的,求实数a 的取值范围. 10.已知函数2()e 1x f x ax x =---. (1)当1a =-时,讨论()f x 的单调性; (2)当0x ≥时,321()22f x x ax ≥-恒成立,求实数a 的取值范围.【参考答案】一、解答题1.(1)极大值点为2x =,无极小值点; (2)证明见解析. 【解析】 【分析】(1)利用导数求出函数的单调区间即得解;(2)令()()()()4e 31e exx x x F x f x g x --=-=-,利用导数求出函数()F x 的最小值即得证. (1)解:由题意,得()2e xxf x -'=, 令()0f x '>,得2x <;()0f x '<,得2x >; 列表如下:所以f x 极大值点为2x =,无极小值点. (2)证明:()()()4e 34e x x g xf x -=-=,令()()()()4e 31e e xx x x F x f x g x --=-=-, ∴()()()()42442e ee 22e e e xxx x x x x F x +----'=-=.当2x >时,20x -<,24x >,从而42e e 0x -<,∴()0F x '>,()F x 在()2,+∞上是增函数,∴()()221120e e F x F >=-=. ∴当2x >时,()()f x g x >成立.2.(1)①2p q ;②至少要进行27轮游戏,23p =,13q =. (2)99200【解析】 【分析】(1)①利用独立事件的概率乘法公式可求得所求事件的概率;②利用导数求出学生甲在每一轮活动中获得一个奖品的概率为2P p q =的最大值,可知学生甲在n 轮活动中获得奖品的个数()~,B n P ξ,由()max 4nP =可求得n 的值,即可得解;(2)设选出的是第k 个箱子,计算出在第k 个箱子中第三次取出的是物理题的概率为100100k kp -=,进而可求得所求概率为10011100k k P p ='=⋅∑,结合数列的求和公式可求得所求事件的概率. (1)解:①记“学生甲第一轮活动获得一个奖品”为事件A .则()2P A p q =;②学生甲在每一轮活动中获得一个奖品的概率为()22321P p q p p p p ==-=-+,令()32f x x x =-+,[]0,1x ∈,()223233f x x x x x ⎛⎫'=-+=-- ⎪⎝⎭,当203x <<时,()0f x '>,当213x <<时,()0f x '<,所以()f x 在20,3⎡⎤⎢⎥⎣⎦上单调递增,在2,13⎡⎤⎢⎥⎣⎦上单调递减,()max 24327f x f ⎛⎫== ⎪⎝⎭,即当23p =时,32max 2243327P ⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭.学生甲在n 轮活动中获得奖品的个数()~,B n P ξ,由()max 4nP =,知27n =. 故理论上至少要进行27轮游戏,此时23p =,13q =. (2)解:设选出的是第k 个箱子,连续三次取出题目的方法数为()()10010011002--. 设数学题为M ,物理题为W ,第三次取出的是物理题W 有如下四种情形:(),,W W W 取法数为()()()10010011002k k k -----,(),,W M W 取法数为()()1001001k k k ---, (),,M W W 取法数为()()1001001k k k ---, (),,M M W 取法数为()()1100k k k --,从而,第三次取出的是物理题的种数为()()()()()()()()()10010011002100100110010011100k k k k k k k k k k k k -----+---+---+--()()()10011002100k =---.则在第k 个箱子中第三次取出的是物理题的概率为100100k kp -=. 而选到第k 个箱子的概率为1100, 故所求的概率为()100100100992221111100111509999100100100100100100100200k k k k i k P p k i ====-⨯'=⋅=⋅=-===∑∑∑∑. 【点睛】关键点点睛:本题考查概率与数列的综合应用,在求解第三问时,关键要求出在第k 个箱子中第三次取出物理题的概率,那么就应该对前三次取出的题目所属科目进行列举,进而求解. 3.(1)单调递增 (2)证明见解析【分析】(1)直接求导,判断出导数大于0,即可得到单调性;(2)直接由1x ,2x 是函数()1ln 2h x x b x =+-的两个零点得到1212122ln x x x x x x -=,分别解出1211212ln x x x xx -=,2121212ln xx x x x -=,再换元令12x t x =构造函数()12ln l t t t t =--,求导确定单调性即可求解. (1)由题意,函数()()sin 1ln T x x x =-+,则()()1cos 1T x x x'=--+,又∵()0,1x ∈,∴11x>,()()10,1,cos 11x x -∈-<,∴()0T x '>,∴()T x 在(0,1)上单调递增. (2)根据题意,()()1ln 02h x x b x x =+->, ∵1x ,2x 是函数()1ln 2h x x b x=+-的两个零点,∴111ln 02x b x +-=,221ln 02x b x +-=. 两式相减,可得122111ln22x x x x =-,即112221ln 2x x x x x x -=, ∴1212122ln x x x x x x -=,则1211212ln x x x x x -=,2121212ln xx x x x -=. 令12x t x =,()0,1t ∈,则1211112ln 2ln 2ln t t t t x x t t t---+=+=.记()12ln l t t t t =--,()0,1t ∈,则()()221t l t t-'=. 又∵()0,1t ∈,∴()0l t '>恒成立,∴()l t 在()0,1上单调递增,故()()1l t l <,即12ln 0t t t --<,即12ln t t t-<.因为ln 0t <,可得112ln t t t->,∴121x x +>.本题关键点在于对双变量的处理,通过对111ln 02x b x +-=,221ln 02x b x +-=作差,化简得到1212122ln x x x x xx -=, 分别得到12,x x 后,换元令12x t x =,这样就转换为1个变量,再求导确定单调性即可求解. 4.(1)10y +=; (2)[)1,+∞. 【解析】 【分析】(1)将1a =-代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件可以将问题转化为恒成立问题,进而转化为求函数的最值问题,利用导数法求函数的最值即可求解. (1)当1a =-时,()2cos 1sin 2f x x x x x =--+()2cos 10000sin 012f =⨯--+=-,所以切点为0,1,()1sin cos x f x x x '=-++,∴(0)01sin 0cos00f '=-++=,所以曲线()y f x =在点()()0,0f 处的切线的斜率为(0)0k f '==, 所以曲线()y f x =在点0,1处的切线的斜率切线方程为()()100y x --=⨯-,即10y +=.(2)由()21si cos n 2f x x x a x x =-++,得()s 1co i s n f x x a x x '=--+因为函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,可得()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 设()()1c s os in g x f x x a x x '==--+,则()cos 1sin g x a x x '=--. 因为si (n 0)001cos00g a =--+=, 所以使()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 则至少满足()00g '≤,即10a -≤,解得1a ≥.下证明当1a ≥时,()0f x '≤恒成立, 因为3π0,4x ⎡⎤∈⎢⎥⎣⎦,所以sin 0x ≥, 因为1a ≥,所以()sin 1cos f x x x x '≤--+.记s ()cos n 1i h x x x x =--+,则π()1sin 14cos h x x x x ⎛⎫'=-=+ ⎝-⎪⎭.当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<;当π3π,24x ⎛⎫∈ ⎪⎝⎭时,()0h x '>. 所以函数()h x 在π0,2⎡⎫⎪⎢⎣⎭上单调递减,在π3π,24⎛⎤⎥⎝⎦上单调递增.因为ππ(),h h ⎛⎫==- ⎪⎝⎭33001044, 所以()h x 在3π0,4⎡⎤⎢⎥⎣⎦上的最大值为(0)0h =. 即()()1sin cos 0f x h x x x x '≤=--+≤在3π0,4⎡⎤⎢⎥⎣⎦上恒成立. 所以a 的取值范围为[)1,+∞.5.(1)单调增区间为()1,1m --,单调减区间为()1,m ∞-+ (2)(ⅰ)、(ⅱ)证明见解析 【解析】 【分析】(1)求导之后,分别令()0f x '>,()0f x '<即可求得单调区间(2)(i )将已知恒成立的不等式化简之后再放缩得到121n na a +-<,又12n n a a +-为整数,则120n n a a +-=,即得所证(ii )对所要证明的不等式两边同时取对数,等价转化为115ln 123nk k =⎛⎫->- ⎪⎝⎭∑,利用(1)的结论可得()ln 11x x x+≥+(1x >-),赋值累加之后进一步将问题转化为证明115213nk k =<-∑,对通项进行放缩,即可证明(1)()()()211111x m m f x x xx --'=-=+++(1x >-),令()0f x '=得1x m =-. 因为0m >,所以11m ->-,当()1,1x m ∈--时,()0f x '<;当()1,x m ∈-+∞时,()0f x '>.故函数()f x 的单调递减区间为()1,1m --,单调递增区间为()1,m ∞-+.(2)(i )法一:因为{}n a 各项均为正整数,即1n a ≥,故112nna a ≥+.于是()211112122112n n n n n n n nn n a a a a a a a a a a +++++-=-≥-++,又2112112n n n n a a a a +++-<+, 所以121n n a a +-<,由题意12n n a a +-为整数, 因此只能120n n a a +-=,即12n n a a +=. (i )法二:由题,22111122111111212122222n n n n n n n n n n n n a a a a a a a a a a a a +++++--<⇔<⇔--<-<+++,因为{}n a 各项均为正整数,即1n a ≥, 故11022na<≤,于是()111,022na --∈-且()110,122n a +∈. 由题意12n n a a +-为整数,因此只能120n n a a +-=,即12n n a a +=.(ii )法一:由12a =,得2n n a =,11112n nnb a=-=-.原不等式532111115111e ln 122223nn k k -=⎛⎫⎛⎫⎛⎫⎛⎫⇔--->⇔->- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑. 由(1)知1m =时,()ln 11xx x+≥+(1x >-), 取12kx =-得11ln 1221k k -⎛⎫-≥ ⎪-⎝⎭.因此只需证:11115ln 12213nnkkk k ==⎛⎫-≥->- ⎪-⎝⎭∑∑, 即证明115213nn k k S ==<-∑.记121k k c =-,则+1+1+1+1212111212222k k k k k k k kc c c c --=<=⇒<--. 1513S =<;215133S =+<; 当3n ≥时,1122222211111153211222312n n n S c c c c c --⎛⎫- ⎪⎝⎭<+++++=+<-.故原不等式成立.(ii )法二:由12a =,得2n n a =,11112n n n b a =-=-.原不等式532111115111e ln 122223nn k k -=⎛⎫⎛⎫⎛⎫⎛⎫⇔--->⇔->- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑. 由(1)知1m =时,()ln 11xx x+≥+(1x >-), 取12kx =-得11ln 1221k k -⎛⎫-≥ ⎪-⎝⎭.因此只需证:11115ln 12213nnkkk k ==⎛⎫-≥->- ⎪-⎝⎭∑∑, 即证明115213nn k k S ==<-∑.1513S =<;215133S =+<; 当3k ≥时,24k >,故()42132k k ->⋅,即1412132k k <⋅-.当3n ≥时,2233111414414451582132133233332312n nnn k k n k k S --==⎛⎫- ⎪⎝⎭=+<+=+⋅=-<-⋅-∑∑.故原不等式成立. 【点睛】利用导数证明不等式,一般要结合所证不等式,抽象构造出函数,利用导数求出函数的单调性或最值,证明不等式成立,然后把已经证明的不等式替换,或应用得到需要证明的不等式,能力要求较高,属于难题. 6.(1)()f x 在0,1上单调递减,在()1,+∞上单调递增; (2)证明见解析. 【解析】 【分析】(1)首先确定()f x 定义域,再应用二阶导数的符号判断f x 的单调性,进而分区间判断f x 的符号,即可确定()f x 的单调性.(2)求()f x 的二阶导,根据其符号知f x 在()0,+∞上单调递增,令0f x 得到ln 1x x a+=,构造()ln 1x h x x a=+-结合其单调性,注意利用导数研究()ln 1x x x ϕ=-+的符号,再用放缩法判断1a h a ⎛⎫⎪+⎝⎭、()1ea h +的符号,即可判断零点0x 的唯一性,进而得到00011ln ln xx a x -==-,结合基本不等式求证()00f x ≥.(1)当1a =时,()1e ln 1xf x x -=--,定义域为()0,+∞, 则()11e x f x x -'=-,()121e 0xf x x -+'=>',所以f x 在()0,+∞上单调递增,又()10f '=, 当01x <<时,0f x ,所以()f x 在区间0,1上单调递减; 当1x >时,0f x,所以()f x 在区间()1,+∞上单调递增.综上,()f x 在0,1上单调递减,在()1,+∞上单调递增. (2)由题意,()11ex af x x -='-,()1211e 0x af x a x-=⋅+'>',则f x 在()0,+∞上单调递增,至多有一个零点,令()ln 1x x x ϕ=-+,其中1x >,则()111xx x xϕ-'=-=, 当()0,1x ∈时,()0ϕ'>x ,()ϕx 单调递增. 当()1,x ∈+∞时,()0ϕ'<x ,()ϕx 单调递减,所以()()10x ϕϕ≤=,即ln 10x x -+≤,于是ln 1≤-x x , 令0f x,则e e x a x ⋅=,两边取自然对数可得ln 1xx a+=,令()ln 1xh x x a=+-,则()h x 在()0,+∞上单调递增. 故11ln1111011111a a a h a a a a a ⎛⎫=+-≤-+-=-<⎪+++++⎝⎭,又()11111e eln ee 10a a a a h a a a++++=+⋅-=+>, 所以()h x 在()0,+∞上有唯一零点0x ,则f x 有唯一零点0x ,即()f x 有唯一极值点0x .下证()00f x ≥: 因为()01001e0x af x x -'=-=,所以0101e x a x -=,可得00011ln ln x x a x -==-,所以()010000e ln 11120x ax a f x a x x a -=--=+--≥=,当且仅当0x a =时等号成立,综上,()f x 有唯一极值点0x 且()00f x ≥,得证. 【点睛】关键点点睛:第二问,利用二阶导数研究一阶导数的单调性,根据零点所得的等量关系构造()ln 1x h x x a=+-,结合单调性、零点存在性定理判断f x 零点的唯一性,进而利用基本不等式证明不等式. 7.(1)答案见解析;(2)12a =. 【解析】 【分析】(1)由题可得()11ax f x a xx+'=+=,讨论0a ≥,0a <即得; (2)由题可得()g x '是一个单调递增的函数,利用零点存在定理可得()2e ,1t -∃∈,使得()0g t '=,进而可得()0000111ln e e 1ln x x x x ⎛⎫+=+ ⎪⎝⎭,利用导数可得001e x x =,结合条件可得00ln 20x ax +=,即求. (1)()11ax f x a x x+'=+=,0x >, 当0a ≥时,函数()f x 在定义域()0,∞+上单调递增; 当0a <时,函数的单调性如表格所示:由题可得()()()22121e 1ln 2e ln 1x xg x x x x x x x x '=-++-++-=++-,0x >,则()g x '是一个单调递增的函数, 当2e x -=时,()()2242e eee e 30g ----'=+-<,当1x =时,()12e 10g '=->,故()2e ,1t -∃∈,使得()0g t '=,且所以0x t =,00000e ln 10g x x x x '=++-=,整理该式有()02000e 1ln x xx x +=-,()000001111e ln xx x x x +=+,∴()000111ln ee1ln x x x x ⎛⎫+=+ ⎪⎝⎭令()()21ln ,e m x x x x -=+>,则()2ln 0m x x '=+>,所以函数在()2e ,-+∞上单调递增,故()0000111ln e e 1ln x x x x ⎛⎫+=+ ⎪⎝⎭的解满足001e x x =; 又()2ln h x x x ax x =++,()1ln 21h x x ax '=+++,()0002ln 22h x x ax '=++=,所以00ln 20x ax +=,由01e xx =知,0020x ax -+=,故12a =. 8.(1)1;(2)2,+e 4a ∞⎡⎫∈⎪⎢⎣⎭.【解析】 【分析】(1)利用导数求()f x 的单调性,即可求极值.(2)将问题转化为在[]2,3x ∈上min e2()xa x≥,再应用导数求()e =x g x x 的最小值,即可求a 的范围. (1)当12a =时()e x f x x =-,则()e 1xf x '=-,令0f x,得0x =.0x >时0fx ,函数()f x 的单调递增区间为()0,+∞, 0x <时0fx,函数()f x 的单调递减区间为(),0-∞;所以函数()f x 的极小值为()00e 01f =-=.(2)由题设,在[]2,3x ∈上min e2()x a x≥,设()e =xg x x ,则()()2e 1x x g x x -'=,显然当[]2,3x ∈时0g x恒成立,所以()g x 在[]2,3单调递增,则()min22e ()2g x g ==,综上,22e e 224a a ≥⇒≥,故2,+e 4a ∞⎡⎫∈⎪⎢⎣⎭.9.(1)最大值为15,最小值为9-(2)3a ≤ 【解析】 【分析】(1)由()30f '=可求得实数a 的值,再利用函数的最值与导数的关系可求得函数()f x 在[]1,a 上的最大值和最小值;(2)分析可知()23230f x x ax '=-+≥对任意的1≥x 恒成立,利用参变量分离法结合基本不等式可求得实数a 的取值范围. (1)解:因为()323f x x ax x =-+,则()2323f x x ax =-+',则()33060f a '=-=,解得5a =,所以,()3253f x x x x =-+,则()()()23103313f x x x x x '=-+=--,列表如下:所以,min ,因为,515f =,则max . (2)解:由题意可得()23230f x x ax '=-+≥对任意的1≥x 恒成立,即312a x x ⎛⎫≤+ ⎪⎝⎭,由基本不等式可得313322x x ⎛⎫+≥⨯ ⎪⎝⎭,当且仅当1x =时,等号成立,故3a ≤.10.(1)()f x 在()0+∞,上单调递增,在()0-∞,上单调递减; (2)274e a -≥【解析】 【分析】(1)直接求导,先确定导数的单调性及零点,即可确定()f x 的单调性;(2)当0x =时, a R ∈,当0x >时,参变分离得3211e 2xx x a x++-≥,构造函数()h x 求导得()321e 2()21xx x h x x x ⎛⎫⎪⎝⎭'--=--,再构造函数21e 12()x m x x x ---=确定()h x 单调性后,即可求出实数a 的取值范围.(1)当1a =-时,2()e 1x f x x x =+--,()e 21x f x x '=+-,易得()'f x 在R 上递增,又(0)0f '=,故当()0x ∈+∞,时,()0f x '>,()f x 单调递增;故当(),0x ∈-∞时,()0f x '<,()f x 单调递减,所以()f x 在()0+∞,上单调递增,在()0-∞,上单调递减; (2)当0x =时,不等式321()22f x x ax ≥-恒成立,可得a R ∈;当0x >时,由2321e 122xax x x ax ---≥-恒成立可得3211e 2x x x a x++-≥恒成立, 设3211e 2()xx x h x x++-=,则()4223333111e 222(2)1e e 22x x xh x x x x x x x x x x x⎛⎫⎛⎫+-⋅-⋅+'+=--+-- ⎪ ⎪⎝⎭⎭=⎝()()()33322211e 22e 1222x x x x x x x x x x x x ⎛⎫ ⎪⎝⎭=⎛⎫-+-+----- ⎪⎝⎭=-, 可设21e 12()x m x x x ---=,可得e 1()x x m x =--',设e 1,e 1()()x x k x k x x '-=--=,由0x >,可得()0k x '>恒成立,可得()k x 在()0+∞,递增,即()m x '在()0+∞,递增,所以()(0)0m x m ''>=,即()0m x '>恒成立,即()m x 在()0+∞,递增, 所以()(0)0m x m >=,再令()0h x '=,可得2x =,当02x <<时,()0h x '>,()h x 在()0,2上递增,当2x >时,()0h x '<,()h x 在()2,+∞递减,所以2max7e ()(2)4h x h -==,所以274e a -≥;综上可得274e a -≥. 【点睛】本题关键点在于参变分离构造函数求导后,通过因式分解将导数变为()321e 2()21xx x h x x x ⎛⎫⎪⎝⎭'--=--,再把分子的因式构造成函数21e 12()x m x x x ---=,确定()(0)0m x m >=后,即得()h x '的正负,进而求解.。

高考数学专题:导数大题专练(含答案)

高考数学专题:导数大题专练(含答案)

高考数学专题:导数大题专练(含答案) 一、解答题 1.

已知函数2ln0fxaxaxa

(1)求fx的最大值 (2)若0fx恒成立,求a的值 2.已知函数esincosxfxxxax. (1)若函数fx在0,上单调递增,求实数a的取值范围; (2)设函数ln1gxfxx,若0gx,求a的值.

3.已知2exxafx. (1)若fx在3x处取得极值,求fx的最小值; (2)若1fxx对1,x恒成立,求a的取值范围. 4.已知函数lnfxx,21gxxx. (1)求函数hxfxgx的单调区间; (2)若直线l与函数fx,gx的图象都相切,求直线l的条数. 5.已知函数1()(1)(0)xfxxexx,()ln()xgxxeaxaR,且1()0fx (1)若1a,且0()0gx,试比较0x与1x的大小关系,并说明理由; (2)若1a,且222(1)()()xfxgx,证明:

(i)25593xe;

(ii)12

2

1

3232xxxex

.

(参考数据:1ln31.098,ln51.609,0.368e) 6.已知函数exfxkx,28lnagxxxaRx. (1)当1k时,求函数fx在区间1,1的最大值和最小值; (2)当0fx在1,22有解,求实数k的取值范围; (3)当函数gx有两个极值点1x,212xxx,且11x时,是否存在实数m,总有

21

22

1

ln51axmxxx

成立,若存在,求出实数m的取值范围,若不存在,请说明

理由. 7.已知函数2()lnfxxxax. (1)若0fx恒成立,求实数a的取值范围; (2)若112212ln2ln200xaxxaxxx,证明:1212lnln10ln2xxxx. 8.已知函数322fxxaxbx在2x时取得极值,且在点1,1f处的切

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一兴趣导数大题目专项训练 班级 姓名 1.已知函数()fx是定义在[,0)(0,]ee上的奇函数,当(0,]xe时,有()lnfxaxx(其中e为自然对数的底,aR). (Ⅰ)求函数()fx的解析式; (Ⅱ)试问:是否存在实数0a,使得当[,0)xe,()fx的最小值是3如果存在,求出实数a的值;如果不存在,请说明理由; (Ⅲ)设ln||()||xgxx([,0)(0,]xee),求证:当1a时,1|()|()2fxgx;

, 2. 若存在实常数k和b,使得函数()fx和()gx对其定义域上的任意实数x分别满足:()fxkxb和()gxkxb,则称直线:lykxb为()fx和()gx的“隔离直线”.已知

2()hxx

,()2lnxex(其中e为自然对数的底数).

(1)求()()()Fxhxx的极值; (2) 函数()hx和()x是否存在隔离直线若存在,求出此隔离直线方程;若不存在,请说明理由.

¥ 3. 设关于x的方程012mxx有两个实根α、β,且。定义函数.12)(2xmxxf(I)求)(f的值;(II)判断),()(在区间xf上单调性,并加以证明; (III)若,为正实数,①试比较)(),(),(fff的大小;

②证明.|||)()(|ff :

4. 若函数22()()()xfxxaxbexR在1x处取得极值. (I)求a与b的关系式(用a表示b),并求()fx的单调区间; (II)是否存在实数m,使得对任意(0,1)a及12,[0,2]xx总有12|()()|fxfx 、 21[(2)]1mame恒成立,若存在,求出m的范围;若不存在,请说明理由.

5.若函数2ln,fxxgxxx (1)求函数xgxkfxkR的单调区间; (2)若对所有的,xe都有xfxaxa成立,求实数a的取值范围.

》 6、已知函数.23)32ln()(2xxxf (I)求f(x)在[0,1]上的极值; (II)若对任意0]3)(ln[|ln|],31,61[xxfxax不等式成立,求实数a的取值范围;

(III)若关于x的方程bxxf2)(在[0,1]上恰有两个不同的实根,求实数b的取值范围 ~

7.已知 ()lnfxaxbx,其中0,0ab.(Ⅰ)求使)(xf在0,上是减函数的充要条件;(Ⅱ)求)(xf在0,上的最大值;(Ⅲ)解不等式11ln1ln21xxxx



.

(

8.已知函数21()ln2fxxx. (1)求函数()fx在[1,e]上的最大值、最小值; (2)求证:在区间[1,)上,函数()fx的图象在函数32()3gxx的图象的下方; / (3)求证:[()]()nnfxfx≥22(nnN*).

9.已知函数)0()(,ln)(axaxgxxf,设)()()(xgxfxF。 , (Ⅰ)求F(x)的单调区间;

(Ⅱ)若以)3,0)((xxFy图象上任意一点),(00yxP为切点的切线的斜率21k 恒成立,求实数a的最小值。 (Ⅲ)是否存在实数m,使得函数1)12(2mxagy的图象与)1(2xfy的图象恰好有四个不同的交点若存在,求出m的取值范围,若不存在,说名理由。

$ 10.已知函数21()2,()log2afxxxgxx-(a>0,且a≠1),其中为常数.如果()()()hxfxgx 是增函数,且()hx存在零点(()hx为()hx的导函数). (Ⅰ)求a的值;

(Ⅱ)设A(x1,y1)、B(x2,y2)(x1210

21

()yygxxx

(()g'x 为()gx的导函数),证明:102xxx. : 参考答案 1.解:(Ⅰ)当[,0)xe时,(0,]xe,故有()ln()fxaxx,由此及()fx是奇函数得()ln()()ln()fxaxxfxaxx,因此,函数()fx的解析式为

ln()(0)()ln(0)axxexfxaxxxe





(Ⅱ)当[,0)xe时,11()ln()()axfxaxxfxaxx: ①若10ae,则11111()0fxaxexee()fx在区间[,0)e上是增函数,故此时函数()fx在区间[,0)e上最小值为()()ln3feaee,得4ae,不符合10ae,舍去。②若1ae,则令1()0(,0)fxxea,且()fx在区间1,ea上

是减函数,而在区间1,0a上是增函数,故当1xa时,min11[()]1lnfxfaa. , 令21131ln3faeaa.

综上所述,当2ae时,函数()fx在区间[,0)e上的最小值是3. (Ⅲ)证明:令1()|()|()2Fxfxgx。当0xe时,注意到lnxx(设h(x)=x-lnx,利用导数求h(x)在0xe的最小值为1,从而证得x-lnx1),故有 ln1ln1()|ln|ln22xxFxxxxxxx.

①当02x时,注意到1lnxx,故 1111112()1ln1(1)02222xFxxxxxxxxx





②当2xe时,有222211ln1ln421ln2()10xxxxFxxxxx,故函数()Fx在区间[2,]e上是增函数,从而有

ln213()2ln2(1ln2)0222Fx。

因此,当0xe时,有1|()|()2fxgx。 又因为()Fx是偶函数,故当0ex时,同样有()0Fx,即1|()|()2fxgx. ¥ 综上所述,当1a时,有1|()|()2fxgx;

2. 【解】(Ⅰ) ()()()Fxhxx22ln(0)xexx, 22()()()2exexeFxxxx

. 当xe时,()0Fx.

当0xe时,()0Fx,此时函数()Fx递减;

当xe时,()0Fx,此时函数()Fx递增; ∴当xe时,()Fx取极小值,其极小值为0. (Ⅱ)解法一:由(Ⅰ)可知函数)(xh和)(x的图象在ex处有公共点,因此若存在)(xh和)(x的隔离直线,则该直线过这个公共点. 设隔离直线的斜率为k,则直线方程

为)(exkey,即 ekekxy. 由)()(Rxekekxxh,可

得02ekekxx当Rx时恒成立. 2)2(ek,

由0,得ek2. 下面证明exex2)(当0x时恒成

立. @ 令()()2Gxxexeexexe2ln2,则 22()()2eeexGxexx

, 当xe时,()0Gx.

当0xe时,()0Gx,此时函数()Gx递增;

当xe时,()0Gx,此时函数()Gx递减; ∴当xe时,()Gx取极大值,其极大值为0. 从而()2ln20Gxexexe,即)0(2)(xexex恒成立. ∴函数()hx和()x存在唯一的隔离直线2yexe. 解法二: 由(Ⅰ)可知当0x时,()()hxx (当且当xe时取等号) .……7分 若存在()hx和()x的隔离直线,则存在实常数k和b,使得 ()()hxkxbxR和()(0)xkxbx恒成立,

, 令xe,则ekeb且ekeb

kebe,即ekeb. 后面解题步骤同解法一.

3. (I)解:01,2mxx是方程的两个实根,

.1,m

.1)()(212)(22mf .1)(f …………3分

(II)12)(2xmxxf, .)1()1(2)1(2)2()1(2)(22222xmxxxxmxxxf …………4分

当.0))((1,),(2xxmxxx时 …………5分 而0)(xf, :

相关文档
最新文档