二次函数经典难题(含精解)
2023年中考数学专题复习课件: 二次函数线段问题

典例精析
例 如图,抛物线y=- 1 x2+ 5 x-2与x轴交于A
22
,B两点(点A在点B右侧),与y轴交于点C.
(1)如图①,点P是线段AC上方抛物线上一动点, 过点P作PG⊥x轴且交x轴于点F,交AC于点G, 当PF= 1 FG时,求点P的坐标;
2
例题图①
【思维教练】要求点P的坐标,用含x的函数解析式与点的特征设出点坐
D
第4题图①
∟
(3)如图②,直线BM与y轴交于点H,是否存在点M,使得2OH-OG=7. 若存在,求出点M的坐标;若不存在,请说明理由. (3)解:存在点M,使得2OH-OG=7. 如图,过点M作 ME⊥x轴,垂足为点E
∵M(m,-m2+4),∴OE=m,ME=-m2+4,∵B(2,0),∴OB=2,
∴AF=3.设点P的坐标为(n,-n2+4n+5), F
则点D的坐标为(n,-n+2),∴PD=-n2+4n+5-(-n+2)=-n2+5n+3 D
PN PD n2 5n 3 1 (n 5 )2 37
AN AF
3
3 2 12
第1题图②
∵- 1 <0,-1<n<5,
3
∴当n= 5 时,PN 有最大值,最大值为 37 .
将M,F的坐标代入,得
2k 5k
b b
0 3
,解得
k b
1 2
,∴射线MF的解析式为y=x-2(x≥2);
第1题图①
(2)在(1)的条件下,当抛物线与折线 EMF有两个交点时,设两个交点的
横坐标是x1,x2(x1<x2),求 x1+x2的值;
(2)如图,设折线EMF与抛物线的交点为P,Q.
∵抛物线的对称轴为直线x=-
专题05二次函数中的平移、旋转、对称(五大题型)解析版

专题05二次函数中的平移、旋转、对称(五大题型)通用的解题思路:1.二次函数的平移变换平移方式(n>0)一般式y=ax2+bx+c顶点式y=a(x–h)2+k平移口诀向左平移n个单位y=a(x+n)2+b(x+n)+c y=a(x-h+n)2+k左加向右平移n个单位y=a(x-n)2+b(x-n)+c y=a(x-h-n)2+k右减向上平移n个单位y=ax2+bx+c+n y=a(x-h)2+k+n上加向下平移n个单位y=ax2+bx+c-n y=a(x-h)2+k-n下减2.平移与增加性变化如果平移后对称轴不发生变化,则不影响增减性,但会改变函数最大(小)值.只对二次函数上下平移,不改变增减性,改变最值.只对二次函数左右平移,改变增减性,不改变最值.3.二次函数的翻转问题的解题思路:①根据二次函数上特殊点的坐标值求得二次函数的表达式;②根据翻转后抛物线与原抛物线的图像关系,确定新抛物线的表达式;③在直角坐标系中画出原抛物线及翻转后抛物线的简易图,根据图像来判断题目中需要求解的量的各种可能性;④根据图像及相关函数表达式进行计算,求得题目中需要求解的值。
4.二次函数图象的翻折与旋转y=a(x-h)²+k绕原点旋转180°y=-a(x+h)²-k a、h、k 均变号沿x 轴翻折y=-a(x-h)²-k a、k 变号,h 不变沿y 轴翻折y=a(x+h)²+ka、h 不变,h 变号题型一:二次函数中的平移问题1.(2024•牡丹区校级一模)如图,在平面直角坐标系xOy 中,抛物线21(0)y ax bx a a=+-<与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示).(2)当B 的纵坐标为3时,求a 的值;(3)已知点11(,2P a-,(2,2)Q ,若抛物线与线段PQ 恰有一个公共点,请结合函数图象求出a 的取值范围.【分析】(1)令0x =,求出点A 坐标根据平移得出结论;(2)将B 的纵坐标为3代入求出即可;(3)由对称轴为直线1x =得出212y ax ax a =--,当2y =时,解得1|1|a a x a ++=,2|1|a a x a-+=,结合图象得出结论;【解答】解:(1)在21(0)y ax bx a a =+-<中,令0x =,则1y a =-,∴1(0,)A a-,将点A 向右平移2个单位长度,得到点B ,则1(2,)B a-.(2)B 的纵坐标为3,∴13a-=,∴13a =-.(3)由题意得:抛物线的对称轴为直线1x =,2b a ∴=-,∴212y ax ax a=--,当2y =时,2122ax ax a=--,解得1|1|a a x a ++=,2|1|a a x a-+=,当|1|2a a a -+≤时,结合函数图象可得12a ≤-,抛物线与PQ 恰有一个公共点,综上所述,a 的取值范围为12a ≤-.【点评】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.2.(2024•平原县模拟)已知抛物线212:23C y ax ax a =++-.(1)写出抛物线1C 的对称轴:.(2)将抛物线1C 平移,使其顶点是坐标原点O ,得到抛物线2C ,且抛物线2C 经过点(2,2)A --和点B (点B 在点A 的左侧),若ABO ∆的面积为4,求点B 的坐标.(3)在(2)的条件下,直线1:2l y kx =-与抛物线2C 交于点M ,N ,分别过点M ,N 的两条直线2l ,3l 交于点P ,且2l ,3l 与y 轴不平行,当直线2l ,3l 与抛物线2C 均只有一个公共点时,请说明点P 在一条定直线上.【分析】(1)根据抛物线的对称轴公式直接可得出答案.(2)根据抛物线2C 的顶点坐标在原点上可设其解析式为2y ax =,然后将点A 的坐标代入求得2C 的解析式,于是可设B 的坐标为21(,)2t t -且(2)t <-,过点A 、B 分别作x 轴的垂线,利用4ABO OBN OAM ABNM S S S S ∆∆∆=--=梯形可求得t 的值,于是可求得点B 的坐标.(3)设1(M x ,1)y ,2(N x ,2)y ,联立抛物线与直线1l 的方程可得出12x x k +=-,124x x =-.再利用直线2l 、直线3l 分别与抛物线相切可求得直线2l 、直线3l 的解析式,再联立组成方程组可求得交点P 的纵坐标为一定值,于是可说明点P 在一条定直线上.【解答】解:(1)抛物线1C 的对称轴为:212ax a=-=-.故答案为:1x =-.故答案为:1x =-.(2) 抛物线1C 平移到顶点是坐标原点O ,得到抛物线2C ,∴可设抛物线2C 的解析式为:2y ax = 点(2,2)A --有抛物线2C 上,22(2)a ∴-=⋅-,解得:12a =-.∴抛物线2C 的解析式为:212y x =-.点B 在抛物线2C 上,且在点A 的左侧,∴设点B 的坐标为21(,)2t t -且(2)t <-,如图,过点A 、B 分别作x 轴的垂线,垂足为点M 、N .ABO OBN OAM ABNMS S S S ∆∆∆=-- 梯形2211111()()22(2)(2)22222t t t t =⨯-⨯-⨯⨯-⨯+⨯--32311122424t t t t =--++++212t t =+,又4ABO S ∆=,∴2142t t +=,解得:13t +=±,4(2t t ∴=-=不合题意,舍去),则2211(4)822t -=-⨯-=-,(4,8)B ∴--.(3)设1(M x ,1)y ,2(N x ,2)y ,联立方程组:2122y xy kx ⎧=-⎪⎨⎪=-⎩,整理得:2240x kx +-=,122x x k ∴+=-,124x x =-.设过点M 的直线解析式为y mx n =+,联立得方程组212y xy mx n⎧=-⎪⎨⎪=+⎩,整理得2220x mx n ++=.①过点M 的直线与抛物线只有一个公共点,∴△2480m n =-=,∴212n m =.∴由①式可得:221112202x mx m ++⨯=,解得:1m x =-.∴2112n x =.∴过M 点的直线2l 的解析式为21112y x x x =-+.用以上同样的方法可以求得:过N 点的直线3l 的解析式为22212y x x x =-+,联立上两式可得方程组2112221212y x x x y x x x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,解得1212212x x x y x x +⎧=⎪⎪⎨⎪=-⎪⎩,12x x k +=- ,124x x =-.∴(,2)2k P -∴点P 在定直线2y =上.(如图)【点评】本题考查了抛物线的对称轴、求二次函数的解析式、解一元二次方程、一元二次方程的根的情况、求直线交点坐标等知识点,解题的关键是利用所画图形帮助探索解法思路.3.(2024•和平区一模)已知抛物线21(y ax bx a =+-,b 为常数.0)a ≠经过(2,3),(1,0)两个点.(Ⅰ)求抛物线的解析式;(Ⅱ)抛物线的顶点为;(Ⅲ)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线.【分析】(Ⅰ)利用待定系数法即可求解;(Ⅱ)根据抛物线的顶点式即可求得;(Ⅲ)利用平移的规律即可求得.【解答】解:(1) 抛物线21y ax bx =+-经过(2,3),(1,0)两个点,∴421310a b a b +-=⎧⎨+-=⎩,解得10a b =⎧⎨=⎩,∴抛物线的解析式为21y x =-;(Ⅱ) 抛物线21y x =-,∴抛物线的顶点为(0,1)-,故答案为:(0,1)-;(Ⅲ)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线2(1)12y x =---,即2(1)3y x =--.故答案为:2(1)3y x =--.【点评】本题考查了待定系数法求二次函数的解析式,二次函数的性质,二次函数图象与几何变换,熟练掌握待定系数法是解题的关键.4.(2024•礼县模拟)如图,在平面直角坐标系中,抛物线23y ax bx =++交y 轴于点A ,且过点(1,2)B -,(3,0)C .(1)求抛物线的函数解析式;(2)求ABC ∆的面积;(3)将抛物线向左平移(0)m m >个单位,当抛物线经过点B 时,求m的值.【分析】(1)用待定系数法求函数解析式即可;(2)先求出点A 的坐标,然后切成直线BC 的解析式,求出点D 的坐标,再根据ABC ABD ACD S S S ∆∆∆=+求出ABC ∆的面积;(3)由(1)解析式求出对称轴,再求出点B 关于对称轴的对称点B ',求出BB '的长度即可;【解答】解:(1)把(1,2)B -,(3,0)C 代入23y ax bx =++,则933032a b a b ++=⎧⎨-+=⎩,解得1212a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的函数解析式为211322y x x =-++;(2) 抛物线23y ax bx =++交y 轴于点A ,(0,3)A ∴,设直线BC 的解析式为y kx n =+,把(1,2)B -,(3,0)C 代入y kx n =+得230k n k n -+=⎧⎨+=⎩,解得1232k n ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线BC 的解析式为1322y x =-+,设BC 交y 于点D,如图:则点D 的坐标为3(0,)2,33322AD ∴=-=,113()(31)3222ABC ABD ACD C B S S S AD x x ∆∆∆∴=+=-=⨯⨯+=,(3)211322y x x =-++ ,∴对称轴为直线122b x a =-=,令B 点关于对称轴的对称点为B ',(2,2)B ∴',3BB ∴'=,抛物线向左平移(0)m m >个单位经过点B ,3m ∴=.【点评】本题主要考查待定系数法求二次函数的解析式,二次函数图象与几何变换、二次函数的性质、三角形面积等知识,关键是掌握二次函数的性质和平移的性质.5.(2024•珠海校级一模)已知抛物线223y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.【分析】(1)化成顶点是即可求解;(2)根据平移的规律得到2(1)4y x m =-+-+,把原点代入即可求得m 的值.【解答】解:(1)2223(1)4y x x x =+-=+- ,∴抛物线的顶点坐标为(1,4)--.(2)该抛物线向右平移(0)m m >个单位长度,得到的新抛物线对应的函数表达式为2(1)4y x m =+--, 新抛物线经过原点,20(01)4m ∴=+--,解得3m =或1m =-(舍去),3m ∴=,故m 的值为3.【点评】本题考查了二次函数的性质,二次函数图象与几何变换,二次函数图象上点的坐标特征,求得平移后的抛物线的解析式是解题的关键.6.(2024•关岭县一模)如图,二次函数212y x bx c =++与x 轴有两个交点,其中一个交点为(1,0)A -,且图象过点(1,2)B ,过A ,B 两点作直线AB .(1)求该二次函数的表达式,并用顶点式来表示;(2)将二次函数212y x bx c =++向左平移1个单位,得函数2y =;函数2y 与坐标轴的交点坐标为;(3)在(2)的条件下,将直线AB 向下平移(0)n n >个单位后与函数2y 的图象有唯一交点,求n 的值.【分析】(1)将点(1,0)A -,点(1,2)B 坐标代入抛物线解析式即可求出b 、c 值,再转化为顶点式即可;(2)根据抛物线平移规则“左加右减”得到2y 解析式,令20y =求出与x 轴的交点坐标即可;(3)利用待定系数法求出直线AB 解析式,再根据直线平移法则“上加下减”得到直线平移后解析式,联立消去y ,根据判别式为0解出n 值即可.【解答】解:(1)将点(1,0)A -,点(1,2)B 坐标代入抛物线解析式得:2022b c b c -+=⎧⎨++=⎩,解得11b c =⎧⎨=-⎩,∴抛物线解析式为2219212()48y x x x =+-=+-.∴抛物线解析式为:21192()48y x =+-.(2)将二次函数1y 向左平移1个单位,得函数22592()48y x =+-,令20y =,则2592(048x +-=,解得112x =-,22x =-,∴平移后的抛物线与x 轴的交点坐标为1(2-,0)(2-,0).故答案为:22592()48y x =+-,1(2-,0)(2-,0).(3)设直线AB 的解析式为y kx b =+,将(1,0)A -,点(1,2)B 代入得:02k b k b -+=⎧⎨+=⎩,解得11k b =⎧⎨=⎩,∴直线AB 解析式为:1y x =+.将直线AB 向下平移(0)n n >个单位后的解析式为1y x n =+-,与函数2y 联立消去y 得:2592(148x x n +-=+-,整理得:22410x x n +++=,直线AB 与抛物线有唯一交点,△1642(1))0n =-⨯+=,解得1n =.【点评】本题考查了二次函数的图象与几何变换,熟练掌握函数的平移法则是解答本题的关键.7.(2024•温州模拟)如图,直线122y x =-+分别交x 轴、y 轴于点A ,B ,抛物线2y x mx =-+经过点A .(1)求点B 的坐标和抛物线的函数表达式.(2)若抛物线向左平移n 个单位后经过点B ,求n 的值.【分析】(1)由题意可得点A 、B 的坐标,利用待定系数法求解二次函数的表达式即可解答;(2)根据二次函数图象平移规律“左加右减,上加下减”得到平移后的抛物线的表达式,再代入B 的坐标求解即可.【解答】解:(1)令0x =,则1222y x =-+=,(0,2)B ∴,令0y =,则1202y x =-+=,解得4x =,(4,0)A ∴,抛物线2y x mx =-+经过点A ,1640m ∴-+=,解得4m =,∴二次函数的表达式为24y x x =-+;(2)224(2)4y x x x =-+=--+ ,∴抛物线向左平移n 个单位后得到2(2)4y x n =--++,经过点(0,2)B ,22(2)4n ∴=--++,解得2n =±,故n 的值为2-2+【点评】本题考查待定系数法求二次函数解析式、一次函数图象上点的坐标特征、二次函数的图象与几何变换,二次函数图象上点的坐标特征等知识,熟练掌握待定系数法求二次函数解析式是解答的关键.8.(2024•巴东县模拟)已知二次函数2y ax bx c =++图象经过(2,3)A ,(3,6)B 、(1,6)C -三点.(1)求该二次函数解析式;(2)将该二次函数2y ax bx c =++图象平移使其经过点(5,0)D ,且对称轴为直线4x =,求平移后的二次函数的解析式.【分析】(1)运用待定系数法即可求得抛物线解析式;(2)利用平移的规律求得平移后的二次函数的解析式.【解答】解:(1)把(2,3)A ,(3,6)B 、(1,6)C -代入2y ax bx c =++,得:4239366a b c a b c a b c ++=⎧⎪++=⎨⎪-+=⎩,解得:123a b c =⎧⎪=-⎨⎪=⎩,∴该二次函数的解析式为223y x x =-+;(2)若将该二次函数2y ax bx c =++图象平移后经过点(5,0)D ,且对称轴为直线4x =,设平移后的二次函数的解析式为2(4)y x k =-+,将点(5,0)D 代入2(4)y x k =-+,得2(54)0k -+=,解得,1k =-.∴将二次函数的图象平移后的二次函数的解析式为22(4)1815y x x x =--=-+.【点评】本题考查了待定系数法求解析式,抛物线的性质,熟知待定系数法和平移的规律是解题的关键.9.(2024•郑州模拟)在平面直角坐标系中,抛物线2y x bx c =-++经过点(1,2)A ,(2,1)B .(1)求抛物线的解析式;(2)直线y x m =+经过点A ,判断点B 是否在直线y x m =+上,并说明理由;(3)平移抛物线2y x bx c =-++使其顶点仍在直线y x m =+上,若平移后抛物线与y 轴交点的纵坐标为n ,求n 的取值范围.【分析】(1)利用待定系数法即可求解;(2)利用待定系数法求得直线y x m =+的解析式,然后代入点B 判断即可;(3)设平移后的抛物线为2()1y x p q =--++,其顶点坐标为(,1)p q +,根据题意得出2221511()24n p q p p p =-++=-++=-++,得出n 的最大值.【解答】解:(1) 抛物线2y x bx c =-++经过点(1,2)A ,(2,1)B ,∴12421b c b c -++=⎧⎨-++=⎩,解得21b c =⎧⎨=⎩,∴抛物线的解析式为:221y x x =-++;(2)点B 不在直线y x m =+上,理由:直线y x m =+经过点A ,12m ∴+=,1m ∴=,1y x ∴=+,把2x =代入1y x =+得,3y =,∴点(2,1)B 不在直线y x m =+上;(3)∴平移抛物线221y x x =-++,使其顶点仍在直线1y x =+上,设平移后的抛物线的解析式为2()1y x p q =--++,其顶点坐标为(,1)p q +, 顶点仍在直线1y x =+上,11p q ∴+=+,p q ∴=,抛物线2()1y x p q =--++与y 轴的交点的纵坐标为21n p q =-++,2221511(24n p q p p p ∴=-++=-++=-++,∴当12p =-时,n 有最大值为54.54n ∴ .【点评】本题考查了待定系数法求一次函数的解析式和二次函数的解析式,二次函数的图象与几何变换,二次函数的性质,题目有一定难度.10.(2024•鞍山模拟)已知抛物线2246y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.【分析】(1)将二次函数的解析式改写成顶点式即可.(2)将抛物线与x 轴的交点平移到原点即可解决问题.【解答】解:(1)由题知,2222462(21)82(1)8y x x x x x =+-=++-=+-,所以抛物线的顶点坐标为(1,8)--.(2)令0y =得,22460x x +-=,解得11x =,23x =-.又因为将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,所以30m -+=,解得3m =.故m 的值为3.【点评】本题考查二次函数的图象与性质,熟知利用配方法求二次函数解析式的顶点式及二次函数的图象与性质是解题的关键.11.(2023•原平市模拟)(1)计算:3211()(5)|2|3--+---⨯-;(2)观察表格,完成相应任务:x3-2-1-012221A x x =+-21-2-1-①72(1)2(1)1B x x =-+--721-2-②2任务一:补全表格;任务二:观察表格不难发现,当x m =时代数式A 的值与当1x m =+时代数式B 的值相等,我们称这种现象为代数式B 参照代数式A 取值延后,相应的延后值为1:换个角度来看,将代数式A ,B 变形,得到(A =③2)2-,22B x =-将A 与B 看成二次函数,则将A 的图象④(描述平移方式),可得到B 的图象.若代数式P 参照代数式A 取值延后,延后值为3,则代数式P =⑤.【分析】(1)先算乘方,负整数指数幂,绝对值,再算乘法,最后算加减法即可求解;(2)①把1x =分别代入代数式A ,B 即可求得;②根据代数式B 参照代数式A 取值延后,相应的延后值为1,即可得出二次函数A 、B 平移的规律是向右平移1个单位,据此即可得出代数式P 参照代数式A 取值延后,延后值为3的P 的代数式.【解答】解:(1)原式19(5)2=-+--⨯19(10)=-+--1910=-++18=;(2)任务一:将1x =代入2212A x x =+-=;代入2(1)2(1)11B x x =-+--=-,故答案为:①2,②1-;任务二:将代数式A ,B 变形,得到2(1)2A x =+-,22B x =-将A 与B 看成二次函数,则将A 的图象向右平移1个单位(描述平移方式),可得到B 的图象.若代数式P 参照代数式A 取值延后,延后值为3,则代数式22(13)2(2)2P x x =+--=--.故答案为:①2;②1-;③1x +;④向右平移1个单位;⑤2(2)2P x =--.【点评】本题考查二次函数图象与几何变换,二次函数图象上点的坐标特征,理解题意,能够准确地列出解析式,并进行求解即可.12.(2024•南山区校级模拟)数形结合是解决数学问题的重要方法.小明同学学习二次函数后,对函数2(||1)y x =--进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:【观察探究】:方程2(||1)1x --=-的解为:;【问题解决】:若方程2(||1)x a --=有四个实数根,分别为1x 、2x 、3x 、4x .①a 的取值范围是;②计算1234x x x x +++=;【拓展延伸】:①将函数2(||1)y x =--的图象经过怎样的平移可得到函数21(|2|1)3y x =---+的图象?画出平移后的图象并写出平移过程;②观察平移后的图象,当123y时,直接写出自变量x 的取值范围.【分析】(1)根据图象即可求得;(2)根据“上加下减”的平移规律,画出函数21(|21)3y x =---+的图象,根据图象即可得到结论.【解答】解:(1)观察探究:①由图象可知,当函数值为1-时,直线1y =-与图象交点的横坐标就是方程2(||1)1x --=-的解.故答案为:2x =-或0x =或2x =.(2)问题解决:①若方程2(|1)x a --=有四个实数根,由图象可知a 的取值范围是10a -<<.故答案为:10a -<<.②由图象可知:四个根是两对互为相反数.所以12340x x x x +++=.故答案为:0.(3)拓展延伸:①将函数2(||1)y x =--的图象向右平移2个单位,向上平移3个单位可得到函数21(|2|1)3y x =---+的图象,②当123y 时,自变量x 的取值范围是04x .故答案为:04x.【点评】本题主要考查了二次函数图象与几何变换,二次函数图象和性质,数形结合是解题的关键.13.(2023•花山区一模)已知抛物线2y x ax b =++的顶点坐标为(1,2).(1)求a ,b 的值;(2)将抛物线2y x ax b =++向下平移m 个单位得到抛物线1C ,存在点(,1)c 在1C 上,求m 的取值范围;(3)抛物线22:(3)C y x k =-+经过点(1,2),直线(2)y n n =>与抛物线2y x ax b =++相交于A 、B (点A 在点B 的左侧),与2C 相交于点C 、D (点C 在点D 的左侧),求AD BC -的值.【分析】(1)根据对称轴公式以及当1x =时2y =,用待定系数法求函数解析式;(2)根据(1)可知抛物线2223(1)2y x x x =-+=-+,再由平移性质得出抛物线1C 解析式,然后把点(,1)c 代入抛物线1C ,再根据方程有解得出m 的取值范围;(3)先求出抛物线2C 解析式,再求出A ,B ,C ,D 坐标,然后求值即可.【解答】解:(1)由题意得,1212aa b ⎧-=⎪⎨⎪++=⎩,解得23a b =-⎧⎨=⎩;(2)由(1)知,抛物线2223(1)2y x x x =-+=-+,将其向下平移m 个单位得到抛物线1C ,∴抛物线1C 的解析式为2(1)2y x m =-+-,存在点(,1)c 在1C 上,2(1)21c m ∴-+-=,即2(1)1c m -=-有实数根,10m ∴- ,解得1m,m ∴的取值范围为1m;(3) 抛物线22:(3)C y x k =-+经过点(1,2),2(13)2k ∴-+=,解得2k =-,∴抛物线2C 的解析式为2(3)2y x =--,把(2)y n n =>代入到2(1)2y x =-+中,得2(1)2n x =-+,解得1x =1x =(1A ∴-,)n ,(1B +)n ,把(2)y n n =>代入到2(3)2y x =--中,得2(3)2n x =--,解得3x =或3x =+(3C ∴)n ,(3D +,)n ,(3(12AD ∴=+--=+,(1(32BC =+--=-+,(2(24AD BC ∴-=+--+=.【点评】本题考查二次函数的几何变换,二次函数的性质以及待定系数法求函数解析式,直线和抛物线交点,关键对平移性质的应用.14.(2023•环翠区一模)已知抛物线2y x bx c =++经过点(1,0)和点(0,3).(1)求此抛物线的解析式;(2)当自变量x 满足13x -时,求函数值y 的取值范围;(3)将此抛物线沿x 轴平移m 个单位长度后,当自变量x 满足15x时,y 的最小值为5,求m 的值.【分析】(1)利用待定系数法求解;(2)先求出1x =-及3x =时的函数值,结合函数的性质得到答案;(3)设此抛物线沿x 轴向右平移m 个单位后抛物线解析式为(2)2y x m l =---,利用二次函数的性质,当25m +>,此时5x =时,5y =,即(52)215m ---=,设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为(2)21y x m =-+-,利用二次函数的性质得到2m l -<,此时1x =时,5y =,即(12)215m ---=,然后分别解关于m 的方程即可.【解答】解:(1) 抛物线2y x bx c =++经过点(1,0)和点(0,3),∴103b c c ++=⎧⎨=⎩,解得43b c =-⎧⎨=⎩,∴此抛物线的解析式为243y x x =-+;(2)当1x =-时,1438y =++=,当3x =时,91230y =-+=,2243(2)1y x x x =-+=-- ,∴函数图象的顶点坐标为(2,1)-,∴当13x -时,y 的取值范围是18y - ;(3)设此抛物线x 轴向右平移m 个单位后抛物线解析式为(2)y x m =--21-,当自变量x 满足15x时,y 的最小值为5,25m ∴+>,即3m >,此时5x =时,5y =,即(52)m --215-=,解得13m =+,23m =-(舍去);设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为(2)y x m =-+21-,当自变量x 满足15x时,y 的最小值为5,21m ∴-<,即1m >,此时1x =时,5y =,即2(12)15m ---=,解得11m =-+,21m =--(舍去),综上所述,m 的值为3+1+【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式,也考查了二次函数的性质.15.(2023•南宁一模)如图1,抛物线21y x c =-+的图象经过(1,3).(1)求c 的值及抛物线1y 的顶点坐标;(2)当132x - 时,求1y 的最大值与最小值的和;(3)如图2,将抛物线1y 向右平移m 个单位(0)m >,再向上平移2m 个单位得到新的抛物线2y ,点N 为抛物线1y 与2y 的交点.设点N 到x 轴的距离为n ,求n 关于m 的函数关系式,并直接写出当n 随m 的增大而减小时,m 的取值范围.【分析】(1)把(1,3)代入抛物线解析式求得c 的值;根据抛物线解析式可以直接得到顶点坐标;(2)根据抛物线的性质知:当0x =时,1y 有最大值为4,当3x =-时,1y 有最小值为5-.然后求1y 的最大值与最小值的和;(3)根据平移的性质“左加右减,上加下减”即可得出抛物线2y 的函数解析式;然后根据抛物线的性质分两种情况进行解答:当06m < 时,0y ,2211(2)4344n m m m =--+=-++.当6m >时,0y <,2211(2)4344n y m m m =-=--=--.【解答】解:(1)抛物线21y x c =-+的图象经过(1,3),∴当0x =时,2113y c =-+=,解得4c =.∴214y x =-+.顶点坐标为(0,4);(2)10-< ,∴抛物线开口向下.当0x =时,1y 有最大值为4.当3x =-时,21(3)45y =--+=-.当12x =时,21115()424y =-+=.∴当3x =-时,1y 有最小值为5-.∴最大值与最小值的和为4(5)1+-=-;(3)由题意知,新抛物线2y 的顶点为(,42)m m +,∴22()42y x m m =--++.当12y y =时,22()424x m m x --++=-+,化简得:2220mx m m -+=.又0m > ,∴112x m =-.∴2211(1)4(2)424y m m =--+=--+.当21(2)404m --+=时,解得12m =-;26m =, 104-<,∴抛物线开口向下.当06m < 时,0y ,2211(2)4344n m m m =--+=-++.当6m >时,0y <,2211(2)4344n y m m m =-=--=--.∴综上所述2213,06413,64m m m n m m m ⎧-++<⎪⎪=⎨⎪-->⎪⎩ (或21|(2)4|)4n m =--+.当26m <<时,n 随m 的增大而减小.【点评】本题属于二次函数综合题,主要考查了二次函数图象上点的坐标特征,二次函数图象与几何变换,二次函数的图象与性质以及二次函数最值的求法.难度偏大.16.(2023•奉贤区一模)如图,在平面直角坐标系xOy 中,抛物线23y ax bx =++的对称轴为直线2x =,顶点为A ,与x 轴分别交于点B 和点C (点B 在点C 的左边),与y 轴交于点D ,其中点C 的坐标为(3,0).(1)求抛物线的表达式;(2)将抛物线向左或向右平移,将平移后抛物线的顶点记为E ,联结DE .①如果//DE AC ,求四边形ACDE 的面积;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,当DQE CDQ ∠=∠时,求点Q的坐标.【分析】(1)利用待定系数法解答即可;(2)①依据题意画出图形,利用A ,C ,D 的坐标,等腰直角三角形的判定与性质和平行线的性质求得点E ,F 坐标,再利用四边形ACDE 的面积DFC EFCA S S ∆=+平行四边形解答即可;②依据题意画出图形,利用A ,C ,D 的坐标,等腰直角三角形的判定与性质,勾股定理求得点E 坐标和线段DE ,再利用等腰三角形的判定与性质求得线段FQ ,则结论可求.【解答】解:(1) 抛物线23y ax bx =++的对称轴为直线2x =,经过点(3,0)C ,∴229330b a a b ⎧-=⎪⎨⎪++=⎩,解得:14a b =⎧⎨=-⎩,∴抛物线的表达式为243y x x =-+;(2)①2243(2)1y x x x =-+=-- ,(2,1)A ∴-.设抛物线的对称轴交x 轴于点G ,1AG ∴=.令0x =,则3y =,(0,3)D ∴,3OD ∴=.令0y =,则2430x x -+=,解得:1x =或3x =,(1,0)B ∴.如果//DE AC ,需将抛物线向左平移,设DE 交x 轴于点F ,平移后的抛物线对称轴交x 轴于点H ,如图, 点C 的坐标为(3,0),3OC ∴=.由题意:45ACB ∠=︒,//DE AC ,45DFC ACB ∴∠=∠=︒.3OF OD ∴==,(3,0)F ∴-,由题意:1EH =,1FH EH ∴==,(4,1)E ∴--.//AE x 轴,//DE AC ,∴四边形EFCA 为平行四边形,2(4)6AE =--= ,616EFCA S ∴=⨯=平行四边形.1163922DFC S FC OD ∆=⨯⋅=⨯⨯= ,∴四边形ACDE 的面积6915DFC EFCA S S ∆=+=+=平行四边形;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,DQE CDQ ∠=∠,如图,当点Q 在x 轴的下方时,设平移后的抛物线的对称轴交x 轴于F ,由题意:1EF =.3OD OC == ,45ODC OCD ∴∠=∠=︒,45FCE OCD ∴∠=∠=︒,1CF EF ∴==,(4,1)E ∴-.CD ==,CE ==DE CD CE ∴=+=DQE CDQ ∠=∠ ,EQ DE ∴==1QF EF EQ ∴=+=,(4,1)Q ∴-;当点Q 在x 轴的上方时,此时为点Q ',DQ E CDQ ∠'=∠' ,EQ DE ∴'==,1Q F EQ EF ∴'='-=,(4Q ∴',1)-.综上,当DQE CDQ ∠=∠时,点Q 的坐标为(4,1)--或(4,1)-.【点评】本题是二次函数综合题,考查了二次函数图象和性质,待定系数法,三角形面积,直角三角形性质,勾股定理,相似三角形判定和性质等,解题的关键是熟练运用分类讨论思想和方程的思想解决问题.17.(2023•下城区校级模拟)如图已知二次函数2(y x bx c b =++,c 为常数)的图象经过点(3,1)A -,点(0,4)C -,顶点为点M ,过点A 作//AB x 轴,交y 轴于点D ,交二次函数2y x bx c =++的图象于点B ,连接BC .(1)求该二次函数的表达式及点M 的坐标:(2)若将该二次函数图象向上平移(0)m m >个单位,使平移后得到的二次函数图象的顶点落在ABC ∆的内部(不包括ABC ∆的边界),求m 的取值范围;(3)若E 为y 轴上且位于点C 下方的一点,P 为直线AC 上一点,在第四象限的抛物线上是否存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形?若存在,请求出点Q的横坐标:若不存在,请说明理由.【分析】(1)将点(3,1)A -,点(0,4)C -代入2y x bx c =++,即可求解;(2)求出平移后的抛物线的顶点(1,5)m -,再求出直线AC 的解析式4y x =-,当顶点在直线AC 上时,2m =,当M 点在AB 上时,4m =,则24m <<;(3)设(0,)E t ,(,4)P p p -,2(,24)Q q q q --,分三种情况讨论:当CE 为菱形对角线时,CP CQ =,22222342(2)p q t q q q q q q =-⎧⎪=--⎨⎪=+-⎩,Q 点横坐标为1;②当CP 为对角线时,CE CQ =,22222824(4)(2)p q p t q q t q q q =⎧⎪-=+--⎨⎪+=+-⎩,Q 点横坐标为2;③当CQ 为菱形对角线时,CE CP =,222284(4)2p q q q t p t q =⎧⎪--=+-⎨⎪+=⎩,Q点横坐标为3【解答】解:(1)将点(3,1)A -,点(0,4)C -代入2y x bx c =++,∴4931c b c =-⎧⎨++=-⎩,解得24b c =-⎧⎨=-⎩,224y x x ∴=--,2224(1)5y x x x =--=-- ,∴顶点(1,5)M -;(2)由题可得平移后的函数解析式为2(1)5y x m =--+,∴抛物线的顶点为(1,5)m -,设直线AC 的解析式为y kx b =+,∴431b k b =-⎧⎨+=-⎩,解得14k b =⎧⎨=-⎩,4y x ∴=-,当顶点在直线AC 上时,53m -=-,2m ∴=,//AB x 轴,(1,1)B ∴--,当M 点在AB 上时,51m -=-,4m ∴=,24m ∴<<;(3)存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形,理由如下:设(0,)E t ,(,4)P p p -,2(,24)Q q q q --,点E 在点C 下方,4t ∴<-,Q点在第四象限,01q ∴<<,①当CE 为菱形对角线时,CP CQ =,∴22222342(2)p q t q q q q q q =-⎧⎪=--⎨⎪=+-⎩,解得334q p t =⎧⎪=-⎨⎪=-⎩(舍)或116p q t =-⎧⎪=⎨⎪=-⎩,Q ∴点横坐标为1;②当CP 为对角线时,CE CQ =,∴22222824(4)(2)p q p t q q t q q q =⎧⎪-=+--⎨⎪+=+-⎩,解得222q p t =⎧⎪=⎨⎪=-⎩,Q ∴点横坐标为2,不符合题意;③当CQ 为菱形对角线时,CE CP =,∴222284(4)2p q q q t p t q =⎧⎪--=+-⎨⎪+=⎩,解得332p q t ⎧=⎪⎪=⎨⎪=-+⎪⎩(舍)或332p q t ⎧=-⎪⎪=-⎨⎪=--⎪⎩,Q ∴点横坐标为3-综上所述:Q 点横坐标为1或3-【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,菱形的性质,分类讨论是解题的关键.18.(2023•即墨区一模)如图,题目中的黑色部分是被墨水污染了无法辨认的文字,导致题目缺少一个条件而无法解答,经查询结果发现,该二次函数的解析式为243y x x =-+.已知二次函数2y ax bx c =++的图象经过点(0,3)A ,(1,0)B ,.求该二次函数的解析式.(1)请根据已有信息添加一个适当的条件:(2,1)C -(答案不唯一);(2)当函数值6y <时,自变量x 的取值范围:;(3)如图1,将函数243(0)y x x x =-+<的图象向右平移4个单位长度,与243(4)y x x x =-+ 的图象组成一个新的函数图象,记为L .若点(3,)P m 在L 上,求m 的值;(4)如图2,在(3)的条件下,点A 的坐标为(2,0),在L 上是否存在点Q ,使得9OAQ S ∆=.若存在,求出所有满足条件的点Q 的坐标;若不存在,请说明理由.【分析】(1)只需填一个在抛物线图象上的点的坐标即可;(2)求出6y =时,对应的x 值,再结合图象写出x 的取值范围即可;(3)求出抛物线向右平移4个单位后的解析式为2(6)3y x =--,根据题意可知3x =时,P 点在抛物线2(6)3y x =--的部分上,再求m 的值即可;(4)分两种情况讨论:当Q 点在抛物线2(6)3y x =--的部分上时,设2(,1233)Q t t t -+,由212(1233)92OAQ S t t ∆=⨯⨯-+=,求出Q 点坐标即可;当Q 点在抛物线243y x x =-+的部分上时,设2(,41)Q m m m -+,由212(41)92OAQ S m m ∆=⨯⨯-+=,求出Q 点坐标即可.【解答】解:(1)(2,1)C -,故答案为:(2,1)C -(答案不唯一);(2)243y x x =-+ ,∴当2436x x -+=时,解得2x =2x =-∴当6y <时,22x <<+,故答案为:22x -<<+;(3)2243(2)1y x x x =-+=-- ,∴抛物线向右平移4个单位后的解析式为2(6)1y x =--,当3x =时,点P 在抛物线2(6)1y x =--的部分上,8m ∴=;(4)存在点Q ,使得9OAQ S ∆=,理由如下:当Q 点在抛物线2(6)1y x =--的部分上时,设2(,1235)Q t t t -+,212(1235)92OAQ S t t ∆∴=⨯⨯-+=,解得6t =+6t =,4t ∴<,6t ∴=-(6Q ∴-,9);当Q 点在抛物线243y x x =-+的部分上时,设2(,43)Q m m m -+,212(43)92OAQ S m m ∆∴=⨯⨯-+=,解得2m =+或2m =-4m ,2m ∴=+,2Q ∴,9);综上所述:Q 点坐标为(6,9)或2+,9).【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,数形结合解题是关键.19.(2023•武侯区模拟)定义:将二次函数l 的图象沿x 轴向右平移t ,再沿x 轴翻折,得到新函数l '的图象,则称函数l '是函数l 的“t 值衍生抛物线”.已知2:23l y x x =--.(1)当2t =-时,①求衍生抛物线l '的函数解析式;②如图1,函数l 与l '的图象交于(M ,)n ,(,N m -两点,连接MN .点P 为抛物线l '上一点,且位于线段MN 上方,过点P 作//PQ y 轴,交MN 于点Q ,交抛物线l 于点G ,求QNG S ∆与PNG S ∆存在的数量关系.(2)当2t =时,如图2,函数l 与x 轴交于A ,B 两点,与y 轴交于点C ,连接AC .函数l '与x 轴交于D ,E 两点,与y 轴交于点F .点K 在抛物线l '上,且EFK OCA ∠=∠.请直接写出点K 的横坐标.【分析】(1)①利用抛物线的性质和衍生抛物线的定义解答即可;②利用待定系数法求得直线MN 的解析式,设2(,23)P m m m --+,则得到(,2)Q m m -,2(,23)G m m m --,利用m 的代数式分别表示出PQ ,QG 的长,再利用同高的三角形的面积比等于底的比即可得出结论;(2)利用函数解析式求得点A ,B ,C ,D ,E ,F 的坐标,进而得出线段OA ,OC ,OD ,OE ,AC ,OF 的长,设直线FK 的解析式为5y kx =-,设直线FK 交x 轴于点M ,过点M 作MN EF ⊥于点N ,用k 的代数式表示出线段OM .FM ,ME 的长,利用EFK OCA ∠=∠,得到sin sin EFK OCA ∠=∠,列出关于k 的方程,解方程求得k 值,将直线FK 的解析式与衍生抛物线l '的函数解析式联立即可得出结论.。
初中数学二次函数难题汇编附解析

初中数学二次函数难题汇编附解析一、选择题1.函数25y ax bx =++(0)a ≠,当1x =与7x =时函数值相等,则8x =时,函数值等于( )A .5B .52-C .52D .-5【答案】A【解析】【分析】根据二次函数的对称性,求得函数25y ax bx =++(0)a ≠的对称轴,进而判断与8x =的函数值相等时x 的值,由此可得结果.【详解】∵函数25y ax bx =++(0)a ≠,当1x =与7x =时函数值相等,∴函数25y ax bx =++(0)a ≠的对称轴为:1742x +==, ∴8x =与0x =的函数值相等,∴当8x =时,250055y ax bx a b =++=⨯+⨯+=,即8x =时,函数值等于5,故选:A .【点睛】本题主要考查二次函数的图象和对称性.掌握二次函数的对称性和对称轴的求法,是解题的关键.2.对于二次函数()21202y ax a x a ⎛⎫=+-< ⎪⎝⎭,下列说法正确的个数是( ) ①对于任何满足条件的a ,该二次函数的图象都经过点()2,1和()0,0两点; ②若该函数图象的对称轴为直线0x x =,则必有001x <<;③当0x ≥时,y 随x 的增大而增大;④若()14,P y ,()()24,0Q m y m +>是函数图象上的两点,如果12y y >总成立,则112a ≤-. A .1个B .2个C .3个D .4个 【答案】B【解析】【分析】根据二次函数的图象与性质(对称性、增减性)逐个判断即可.【详解】 对于()21202y ax a x a ⎛⎫=+-< ⎪⎝⎭当2x =时,142(2)12y a a =+-=,则二次函数的图象都经过点()2,1当0x =时,0y =,则二次函数的图象都经过点()0,0则说法①正确 此二次函数的对称轴为1212124a x a a-=-=-+ 0a <Q1114a∴-+> 01x ∴>,则说法②错误 由二次函数的性质可知,抛物线的开口向下,当114x a <-+时,y 随x 的增大而增大;当114x a ≥-+时,y 随x 的增大而减小 因11104a-+>> 则当1014x a <-≤+时,y 随x 的增大而增大;当114x a≥-+时,y 随x 的增大而减小 即说法③错误 0m >Q44m ∴+>由12y y >总成立得,其对称轴1144x a=-+≤ 解得112a ≤-,则说法④正确 综上,说法正确的个数是2个故选:B .【点睛】 本题考查了二次函数的图象与性质(对称性、增减性),熟练掌握二次函数的图象与性质是解题关键.3.如图是抛物线y=ax 2+bx+c (a≠0)的部分图象,其顶点是(1,n ),且与x 的一个交点在点(3,0)和(4,0)之间,则下列结论:①a -b+c >0;②3a+b=0;③b 2=4a (c-n );④一元二次方程ax 2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C【解析】【分析】 利用抛物线的对称性得到抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=-2b a=1,即b=-2a ,则可对②进行判断;利用抛物线的顶点的纵坐标为n 得到244ac b a-=n ,则可对③进行判断;由于抛物线与直线y=n 有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断.【详解】∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x=-1时,y >0,即a-b+c >0,所以①正确;∵抛物线的对称轴为直线x=-2b a=1,即b=-2a , ∴3a+b=3a-2a=a ,所以②错误;∵抛物线的顶点坐标为(1,n ), ∴244ac b a-=n , ∴b 2=4ac-4an=4a (c-n ),所以③正确;∵抛物线与直线y=n 有一个公共点,∴抛物线与直线y=n-1有2个公共点,∴一元二次方程ax 2+bx+c=n-1有两个不相等的实数根,所以④正确.故选C .【点睛】本题考查了二次函数图像与系数的关系,熟练掌握二次函数性质是解题的关键.4.如图是抛物线y =ax 2+bx +c (a ≠0)的部分图象,其顶点坐标为(1,n ),且与x 轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①4a ﹣2b +c >0;②3a +b >0;③b 2=4a (c ﹣n );④一元二次方程ax 2+bx +c =n ﹣1有两个互异实根.其中正确结论的个数是( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】 根据二次函数图象和性质,开口向下,可得a<0,对称轴x=1,利用顶点坐标,图象与x 轴的交点情况,对照选项逐一分析即可.【详解】①∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x =1,∴抛物线与x 轴的另一个交点在点(﹣2,0)和(﹣1,0)之间,∴当x =﹣2时,y <0,即4a ﹣2b +c <0,所以①不符合题意;②∵抛物线的对称轴为直线x =﹣2b a=1,即b =﹣2a , ∴3a +b =3a ﹣2a =a <0,所以②不符合题意;③∵抛物线的顶点坐标为(1,n ), ∴244ac b a=n , ∴b 2=4ac ﹣4an =4a (c ﹣n ),所以③符合题意;④∵抛物线与直线y =n 有一个公共点,∴抛物线与直线y =n ﹣1有2个公共点,∴一元二次方程ax 2+bx +c =n ﹣1有两个不相等的实数根,所以④符合题意.故选:B .【点睛】本题考查了二次函数的图象和性质的应用,二次函数开口方向,对称轴,交点位置,二次函数与一次函数图象结合判定方程根的个数,掌握二次函数的图象和性质是解题的关键.5.已知抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B ,将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则c 的值为( )A .BC .32D .52【答案】D【解析】【分析】先求出A(2,c-4),B(0,c),'(24),'(0)A c B c ---,,,,结合矩形的性质,列出关于c 的方程,即可求解.【详解】∵抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B , ∴A(2,c-4),B(0,c),∵将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,∴'(24),'(0)A c B c ---,,,, ∵四边形''ABA B 为矩形,∴''AA BB =,∴[][]2222(2)(4)(4)(2)c c c --+---=,解得:52c =. 故选D .【点睛】本题主要考查二次函数图象的几何变换以及矩形的性质,掌握二次函数图象上点的坐标特征,关于原点中心对称的点的坐标特征以及矩形的对角线相等,是解题的关键.6.将抛物线243y x x =-+平移,使它平移后图象的顶点为()2,4-,则需将该抛物线( )A .先向右平移4个单位,再向上平移5个单位B .先向右平移4个单位,再向下平移5个单位C .先向左平移4个单位,再向上平移5个单位D .先向左平移4个单位,再向下平移5个单位【答案】C【解析】【分析】先把抛物线243y x x =-+化为顶点式,再根据函数图象平移的法则进行解答即可. 【详解】∵抛物线243y x x =-+可化为()221y x =--∴其顶点坐标为:(2,−1),∴若使其平移后的顶点为(−2,4)则先向左平移4个单位,再向上平移5个单位.故选C.【点睛】本题考查二次函数图像,熟练掌握平移是性质是解题关键.7.将抛物线y=x2﹣4x+1向左平移至顶点落在y轴上,如图所示,则两条抛物线.直线y=﹣3和x轴围成的图形的面积S(图中阴影部分)是()A.5 B.6 C.7 D.8【答案】B【解析】【分析】B,C分别是顶点,A是抛物线与x轴的一个交点,连接OC,AB,阴影部分的面积就是平行四边形ABCO的面积.【详解】抛物线y=x2﹣4x+1=(x-2)2-3的顶点坐标C(2.-3), 向左平移至顶点落在y轴上,此时顶点B(0,-3),点A是抛物线与x轴的一个交点,连接OC,AB,如图,阴影部分的面积就是ABCO的面积,S=2×3=6;故选:B.【点睛】本题考查二次函数图象的性质,阴影部分的面积;能够将面积进行转化是解题的关键.8.如图,正方形ABCD中,AB=4cm,点E、F同时从C点出发,以1cm/s的速度分别沿CB﹣BA、CD﹣DA运动,到点A时停止运动.设运动时间为t(s),△AEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.【答案】D【解析】试题分析:分类讨论:当0≤t≤4时,利用S=S正方形ABCD﹣S△ADF﹣S△ABE﹣S△CEF可得S=﹣t2+4t,配成顶点式得S=﹣(t﹣4)2+8,此时抛物线的开口向下,顶点坐标为(4,8);当4<t≤8时,直接根据三角形面积公式得到S=(8﹣t)2=(t﹣8)2,此时抛物线开口向上,顶点坐标为(8,0),于是根据这些特征可对四个选项进行判断.解:当0≤t≤4时,S=S正方形ABCD﹣S△ADF﹣S△ABE﹣S△CEF=4•4﹣•4•(4﹣t)﹣•4•(4﹣t)﹣•t•t=﹣t2+4t=﹣(t﹣4)2+8;当4<t≤8时,S=•(8﹣t)2=(t﹣8)2.故选D.考点:动点问题的函数图象.9.已知二次函数y=ax2+bx+c的图像如图所示,则下列结论正确的个数有()①c>0;②b2-4ac<0;③ a-b+c>0;④当x>-1时,y随x的增大而减小.A.4个B.3个C.2个D.1个【答案】C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.10.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t01234567…h08141820201814…下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线92t ;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m. 其中正确结论的个数是()A.1 B.2 C.3 D.4【答案】B【解析】【分析】【详解】解:由题意,抛物线的解析式为y=ax(x﹣9),把(1,8)代入可得a=﹣1,∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故①错误,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,∵t=1.5时,y=11.25,故④错误,∴正确的有②③,故选B.11.如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?( )A.1 B.12C.43D.45【答案】D【解析】【分析】求出顶点和C的坐标,由三角形的面积关系得出关于k的方程,解方程即可.【详解】解:∵y=﹣x2+4x﹣k=﹣(x﹣2)2+4﹣k,∴顶点D(2,4﹣k),C(0,﹣k),∴OC=k,∵△ABC的面积=12AB•OC=12AB•k,△ABD的面积=12AB(4﹣k),△ABC与△ABD的面积比为1:4,∴k=14(4﹣k),解得:k=45.故选:D.【点睛】本题考查了抛物线与x 轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键.12.某二次函数图象的顶点为()2,1-,与x 轴交于P 、Q 两点,且6PQ =.若此函数图象通过()1,a 、()3,b 、()1,c -、()3,d -四点,则a 、b 、c 、d 之值何者为正?( ) A .aB .bC .cD .d【答案】D【解析】【分析】根据题意可以得到该函数的对称轴,开口方向和与x 轴的交点坐标,从而可以判断a 、b 、c 、d 的正负,本题得以解决.【详解】∵二次函数图象的顶点坐标为(2,-1),此函数图象与x 轴相交于P 、Q 两点,且PQ=6, ∴该函数图象开口向上,对称轴为直线x=2,∴图形与x 轴的交点为(2-3,0)=(-1,0),和(2+3,0)=(5,0),∵此函数图象通过(1,a )、(3,b )、(-1,c )、(-3,d )四点,∴a <0,b <0,c=0,d >0,故选:D .【点睛】此题考查抛物线与x 轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质解答.13.如图,已知()4,1A --,线段AB 与x 轴平行,且2AB =,抛物线2y x mx n =-++经过点()0,3C 和()3,0D ,若线段AB 以每秒2个单位长度的速度向下平移,设平移的时间为t (秒).若抛物线与线段AB 有公共点,则t 的取值范围是( )A .010t ≤≤B .210t ≤≤C .28t ≤≤D .210t <<【答案】B【解析】【分析】 直接利用待定系数法求出二次函数,得出B 点坐标,分别得出当抛物线l 经过点B 时,当抛物线l 经过点A 时,求出y 的值,进而得出t 的取值范围;【详解】解:(1)把点C (0,3)和D (3,0)的坐标代入y=-x 2+mx+n 中,得,23330n m n =⎧⎨-++=⎩ 解得32n m =⎧⎨=⎩ ∴抛物线l 解析式为y=-x 2+2x+3,设点B 的坐标为(-2,-1-2t ),点A 的坐标为(-4,-1-2t ),当抛物线l 经过点B 时,有y=-(-2)2+2×(-2)+3=-5,当抛物线l 经过点A 时,有y=-(-4)2+2×(-4)+3=-21,当抛物线l 与线段AB 总有公共点时,有-21≤-1-2t≤-5,解得:2≤t≤10.故应选B【点睛】此题主要考查了二次函数综合以及不等式组的解法等知识,正确利用数形结合分析得出关于t 的不等式是解题关键.14.若用“*”表示一种运算规则,我们规定:a *b =ab ﹣a +b ,如:3*2=3×2﹣3+2=5.以下说法中错误的是( )A .不等式(﹣2)*(3﹣x )<2的解集是x <3B .函数y =(x +2)*x 的图象与x 轴有两个交点C .在实数范围内,无论a 取何值,代数式a *(a +1)的值总为正数D .方程(x ﹣2)*3=5的解是x =5【答案】D【解析】【分析】根据题目中所给的运算法则列出不等式,解不等式即可判定选项A ;根据题目中所给的运算法则求得函数解析式,由此即可判定选项B ;根据题目中所给的运算法则可得a *(a +1)=a (a +1)﹣a +(a +1)=a 2+a +1=(a +12)2+34>0,由此即可判定选项C ;根据题目中所给的运算法则列出方程,解方程即可判定选项D.【详解】∵a *b =ab ﹣a +b ,∴(﹣2)*(3﹣x )=(﹣2)×(3﹣x )﹣(﹣2)+(3﹣x )=x ﹣1,∵(﹣2)*(3﹣x )<2,∴x ﹣1<2,解得x <3,故选项A 正确;∵y =(x +2)*x =(x +2)x ﹣(x +2)+x =x 2+2x ﹣2,∴当y =0时,x 2+2x ﹣2=0,解得,x 1=﹣x 2=﹣1B 正确;∵a*(a+1)=a(a+1)﹣a+(a+1)=a2+a+1=(a+12)2+34>0,∴在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数,故选项C正确;∵(x﹣2)*3=5,∴(x﹣2)×3﹣(x﹣2)+3=5,解得,x=3,故选项D错误;故选D.【点睛】本题是阅读理解题,根据题目中所给的运算法则得到相应的运算式子是解决问题的关键. 15.抛物线y=–x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:从上表可知,下列说法错误的是A.抛物线与x轴的一个交点坐标为(–2,0) B.抛物线与y轴的交点坐标为(0,6) C.抛物线的对称轴是直线x=0 D.抛物线在对称轴左侧部分是上升的【答案】C【解析】【分析】【详解】解:当x=-2时,y=0,∴抛物线过(-2,0),∴抛物线与x轴的一个交点坐标为(-2,0),故A正确;当x=0时,y=6,∴抛物线与y轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,∴对称轴为x=12,故C错误;当x<12时,y随x的增大而增大,∴抛物线在对称轴左侧部分是上升的,故D正确;故选C.16.若二次函数y=ax2+bx+c(a≠0)的图象于x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,对于以下说法:①b2﹣4ac>0②x=x0是方程ax2+bx+c=y0的解③x1<x0<x2④a(x0﹣x1)(x0﹣x2)<0其中正确的是()A .①③④B .①②④C .①②③D .②③【答案】B【解析】【分析】 ①根据二次函数图象与x 轴有两个不同的交点,结合根的判别式即可得出△=b 2-4ac >0,①正确;②由点M (x 0,y 0)在二次函数图象上,利用二次函数图象上点的坐标特征即可得出x=x 0是方程ax 2+bx+c=y 0的解,②正确;③分a >0和a <0考虑,当a >0时得出x 1<x 0<x 2;当a <0时得出x 0<x 1或x 0>x 2,③错误;④将二次函数的解析式由一般式转化为交点式,再由点M (x 0,y 0)在x 轴下方即可得出y 0=a (x 0-x 1)(x 0-x 2)<0,④正确.【详解】①∵二次函数y=ax 2+bx+c (a≠0)的图象于x 轴的交点坐标分别为(x 1,0),(x 2,0),且x 1<x 2,∴方程ax 2+bx+c=0有两个不相等的实数根,∴△=b 2-4ac >0,①正确;②∵图象上有一点M (x 0,y 0),∴a +bx 0+c=y 0,∴x=x 0是方程ax 2+bx+c=y 0的解,②正确;③当a >0时,∵M (x 0,y 0)在x 轴下方,∴x 1<x 0<x 2;当a <0时,∵M (x 0,y 0)在x 轴下方,∴x 0<x 1或x 0>x 2,③错误;④∵二次函数y=ax 2+bx+c (a≠0)的图象于x 轴的交点坐标分别为(x 1,0),(x 2,0), ∴y=ax 2+bx+c=a (x-x 1)(x-x 2),∵图象上有一点M (x 0,y 0)在x 轴下方,∴y 0=a (x 0-x 1)(x 0-x 2)<0,④正确;故选B .【点睛】本题考查了抛物线与x 轴的交点、二次函数图象上点的坐标特征以及二次函数图象与系数的关系,根据二次函数的相关知识逐一分析四条结论的正误是解题的关键.17.已知二次函数2()y x h =-- (h 为常数),当自变量x 的值满足25x ≤≤时,与其对应的函数值y 的最大值为-1,则h 的值为( )A .3或6B .1或6C .1或3D .4或6【答案】B【解析】分析:分h <2、2≤h≤5和h >5三种情况考虑:当h <2时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h >5时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论.综上即可得出结论.详解:如图,当h<2时,有-(2-h)2=-1,解得:h1=1,h2=3(舍去);当2≤h≤5时,y=-(x-h)2的最大值为0,不符合题意;当h>5时,有-(5-h)2=-1,解得:h3=4(舍去),h4=6.综上所述:h的值为1或6.故选B.点睛:本题考查了二次函数的最值以及二次函数的性质,分h<2、2≤h≤5和h>5三种情况求出h值是解题的关键.18.下面所示各图是在同一直角坐标系内,二次函数y=2ax+(a+c)x+c与一次函数y=ax+c的大致图象.正确的()A.B.C.D.【答案】D【解析】【分析】根据题意和二次函数与一次函数的图象的特点,可以判断哪个选项符合要求,从而得到结论.【详解】令ax2+(a+c)x+c=ax+c,解得,x1=0,x2=-ca,∴二次函数y=ax2+(a+c)x+c与一次函数y=ax+c的交点为(0,c),(−ca,0),选项A 中二次函数y=ax 2+(a+c )x+c 中a >0,c <0,而一次函数y=ax+c 中a <0,c >0,故选项A 不符题意,选项B 中二次函数y=ax 2+(a+c )x+c 中a >0,c <0,而一次函数y=ax+c 中a >0,c <0,两个函数的交点不符合求得的交点的特点,故选项B 不符题意,选项C 中二次函数y=ax 2+(a+c )x+c 中a <0,c >0,而一次函数y=ax+c 中a <0,c >0,交点符合求得的交点的情况,故选项D 符合题意,选项D 中二次函数y=ax 2+(a+c )x+c 中a <0,c >0,而一次函数y=ax+c 中a >0,c <0,故选项C 不符题意,故选:D .【点睛】考查一次函数的图象、二次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.19.在同一平面直角坐标系中,函数3y x a =+与2+3y ax x =的图象可能是( ) A . B .C .D .【答案】C【解析】【分析】根据一次函数及二次函数的图像性质,逐一进行判断.【详解】解:A.由一次函数图像可知a >0,因此二次函数图像开口向上,但对称轴302a -<应在y 轴左侧,故此选项错误;B. 由一次函数图像可知a <0,而由二次函数图像开口方向可知a >0,故此选项错误;C. 由一次函数图像可知a <0,因此二次函数图像开口向下,且对称轴302a->在y 轴右侧,故此选项正确;D. 由一次函数图像可知a >0,而由二次函数图像开口方向可知a <0,故此选项错误;故选:C.【点睛】本题考查二次函数与一次函数图象的性质,解题的关键是利用数形结合思想分析图像,本题属于中等题型.20.平移抛物线y=﹣(x﹣1)(x+3),下列哪种平移方法不能使平移后的抛物线经过原点()A.向左平移1个单位B.向上平移3个单位C.向右平移3个单位D.向下平移3个单位【答案】B【解析】【分析】先将抛物线解析式转化为顶点式,然后根据顶点坐标的平移规律即可解答.【详解】解:y=﹣(x﹣1)(x+3)=-(x+1)2+4A、向左平移1个单位后的解析式为:y=-(x+2)2+4,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意;B、向上平移3个单位后的解析式为:y=-(x+1)2+7,当x=0时,y=3,即该抛物线不经过原点,故本选项符合题意;C、向右平移3个单位后的解析式为:y=-(x-2)2+4,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意.;D、向下平移3个单位后的解析式为:y=-(x+1)2+1,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意.【点睛】本题考查了二次函数图像的平移,函数图像平移规律:上移加,下移减,左移加,右移减.。
二次函数29个难题的解法

二次函数精选1、如图,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,动点P从点C出发沿CD方向向点D运动,动点Q同时以相同速度从点D出发沿DA方向向终点A运动,其中一个动点到达端点时,另一个动点也随之停止运动.(1)求AD的长;(2)设CP=x,问当x为何值时△PD Q的面积达到最大,并求出最大值;(3)探究:在BC边上是否存在点M使得四边形PD Q M是菱形?若存在,请找出点M,并求出BM的长;不存在,请说明理由.2、我州有一种可食用的野生菌,上市时,外商李经理按市场价格20元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160元,同时,平均每天有3千克的野生菌损坏不能出售.(1)设x到后每千克该野生菌的市场价格为y元,试写出y与x之间的函数关系式.(2)若存放x天后,将这批野生菌一次性出售,设这批野生菌的销售总额为P元,试写出P与x之间的函数关系式.(3)李经理将这批野生茵存放多少天后出售可获得最大利润W元?(利润=销售总额-收购成本-各种费用)3、王亮同学善于改进学习方法,他发现对解题过程进行回顾反思,效果会更好.某一天他利用30分钟时间进行自主学习.假设他用于解题的时间x(单位:分钟)与学习收益量y的关系如图甲所示,用于回顾反思的时间x(单位:分钟)与学习收益量y的关系如图乙所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.(1)求王亮解题的学习收益量y与用于解题的时间x之间的函数关系式,并写出自变量x的取值范围;(2)求王亮回顾反思的学习收益量y与用于回顾反思的时间x之间的函数关系式;(3)王亮如何分配解题和回顾反思的时间,才能使这30分钟的学习收益总量最大?(学习收益总量=解题的学习收益量+回顾反思的学习收益量)4、如图,已知抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,3)。
二次函数多结论压轴小题精选30道(必考点分类集训)(解析版)—2024-2025学年九年级数学上册

二次函数多结论压轴小题精选30道1.(2024春•岳麓区校级期末)已知抛物线y=ax2+bx+c的图象如图所示,则下列结论中,正确的有( )①abc>0;②b2>4ac;③a﹣b+c<0;④2a﹣b>0;⑤a+c<1.A.1个B.2个C.3个D.4个【分析】根据图上给的信息,结合二次函数的性质去判断对错即可.【解答】解:①如图所示,图象开口向上,∴a>0,∵图象与y轴的交点在x轴下方∴c<0,∵图象的对称轴在y轴的左边,且a>0,∴b>0,∴abc<0,故①错误;②根据图象可知,抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,故②正确;③由图可得,当x=﹣1时,y<0,∴a﹣b+c<0,故③正确;④由图可得,―b2a>―1,∵a>0,∴2a>b,∴2a﹣b>0,故④正确;⑤当x=1时,a+b+c=2,∴a+c=2﹣b,∵a﹣b+c<0,∴2﹣b﹣b<0,解得:b>1,∴2﹣b<1,∴a+c<1,故⑤正确;综上所述,共有4个是正确的;故选:D.2.(2024•宝安区校级模拟)已知抛物线y=ax2+bx+c(a≠0)的图象如图所示,则下列结论①abc<0,②a+b+c=2,③a>12④0<b<1中正确的有( )A.①②B.①②③C.①②④D.①②③④【分析】根据抛物线开口方向,对称轴的位置,与y轴的交点的位置,可以得出a、b、c的符号,进而确定abc的符号,对①做出判断;把(1,2)代入可对②做出判断;而无法判断③④一定正确,综合得出答案.【解答】解:因为抛物线开口向上,可知a>0,对称轴在y轴的左侧,a、b同号.故b>0,抛物线与y轴的交点在负半轴,因此c<0,∴abc<0,故①正确;把(1,2)代入得a+b+c=2,故②正确;当x=﹣1时,y=a﹣b+c<0,又∵a+b+c=2,∴2b>2,即:b>1,因此④不正确,因为对称轴x=―b2a介在﹣1与0之间,因此―b2a>―1,得2a>b,而b>1,∴a>12,因此③正确.故选:B.3.(2024•凤凰县模拟)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列5个结论:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m(am+b)(m≠1的实数).其中正确结论个数有( )A.4个B.3个C.2个D.1个【分析】根据抛物线的开口方向、对称轴、与y轴的交点判定系数符号,及运用一些特殊点解答问题.【解答】解:开口向下,a<0;对称轴在y轴的右侧,a、b异号,则b>0;抛物线与y轴的交点在x轴的上方,c>0,∴abc<0,所以①正确,符合题意;当x=﹣1时图象在x轴下方,则y=a﹣b+c<0,即a+c<b,所以②不正确,不符合题意;对称轴为直线x=1,则x=2时图象在x轴上方,则y=4a+2b+c>0,所以③正确,符合题意;x=―b2a=1,则a=―12b,而a﹣b+c<0,则―12b―b+c<0,2c<3b,所以④正确,符合题意;开口向下,当x=1,y有最大值a+b+c;当x=m(m≠1)时,y=am2+bm+c,则a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1),所以⑤错误,不符合题意.故①③④正确,故选:B.4.(2024•汝阳县一模)图形结合法既可以由数解决形的问题,也可以由形解决数的问题.如图所示,已知二次函数y=ax2+bx+c的图象如图所示.下列结论:①ab>0;②4a﹣2b+c<0;③2a﹣b<0;④|a+c|<|b|.其中正确的个数有( )A.1B.2C.3D.4【分析】根据所给函数图象,可得出a,b,c的正负,再根据抛物线的对称性和增减性对四个结论依次进行判断即可.【解答】解:由所给函数图象可知,a<0,b<0,所以ab>0.故①正确.抛物线上横坐标为﹣2的点在x轴下方,所以4a﹣2b+c<0.故②正确.因为抛物线的对称轴在直线x=﹣1和y轴之间,所以―b2a>―1,则2a﹣b<0.故③正确.当x=1时,函数值小于零,则a+b+c<0;当x=﹣1时,函数值大于零,则a﹣b+c>0;所以(a+b+c)(a﹣b+c)<0,即(a+c)2﹣b2<0,所以(a+c)2<b2,所以|a+c|<|b|.故④正确.故选:D.5.(2024•斗门区校级模拟)二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc>0;②3a+c>0;③(a+c)2﹣b2<0;④a+b≤m(am+b)(m为实数).其中结论正确的为( )A.①④B.②③④C.①②④D.①②③④【分析】由抛物线开口方向,对称轴位置,抛物线与y轴交点位置判断①,由a与b的关系及x=﹣1时y<0可判断②,利用(a+c)2﹣b2=(a+b+c)(a﹣b+c),根据x=﹣1时y>0,x=1时y<0可判断③,由x=1时y取最小值可判断④.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=―b2a=1>0∴b=﹣2a<0,∵抛物线与y轴交点在x轴下方,∴c<0∴abc>0,故①正确.∵x=﹣1时,y=a﹣b+c=3a+c=0,故②不正确.∵(a+c)2﹣b2=(a+b+c)(a﹣b+c),且a+b+c<0,a﹣b+c=0,∴(a+c)2﹣b2=0,故③不正确.∵x=1时,y=a+b+c为最小值,∴a+b≤m(am+b),故④正确.故选:A.6.(2024•岚山区二模)已知二次函数y=ax2+bx+c(a≠0)与x轴的一个交点为(4,0),其对称轴为直线x=1,其部分图象如图所示,有下列5个结论:①abc<0;②b2﹣4ac<0;③8a+c=0;④若关于x 的方程ax2+bx+c=﹣1有两个实数根x1x2,且满足x1<x2,则x1<﹣2,x2>4;⑤直线y=kx﹣4k(k≠0)经过点(0,c),则关于x的不等式ax2+(b﹣k)x+c+4k>0的解集是0<x<4.其中正确结论的个数为( )A.5B.4C.3D.2【分析】根据抛物线与方程、不等式的关系及二次函数的性质求解.【解答】解:由图象得:a<0,c>0,b=﹣2a>0,∴abc<0,故①是正确的;∵抛物线与x轴有两个交点,∴0=ax2+bx+c有两个不相等的实数根,∴b2﹣4ac>0,故②是错误的;根据抛物线的对称性,抛物线与x轴的交点的横坐标分别为:﹣2,4,∴当x=﹣2时,4a﹣2b+c=8a+c=0,故③是正确的;由图象得:抛物线与y=﹣1的交点的横坐标分别位于﹣2的左边,4的右边,∴x1<﹣2,x2>4;故④是正确的;∵直线y=kx﹣4k(k≠0)经过点(0,c)和(4,0),∴于x的不等式ax2+(b﹣k)x+c+4k>0即:ax2+bx+c>kx﹣4k的解集是0<x<4,故⑤是正确的;故选:B.7.(2024•旺苍县三模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b2<4ac;③2c<3b;④a+b>m(am+b)(m≠1);⑤若方程|ax2+bx+c|=1有四个根,则这四个根的和为2.其中正确的结论有( )A.2个B.3个C.4个D.5个【分析】①由二次函数图象性质知,开口向下,则a<0.再结合对称轴―b2a>0,得b>0.据二次函数图象与y轴正半轴相交得c>0;②由于二次函数图象与x轴交于不同两点,则b2﹣4ac>0,即b2>4ac;③由―b2a=1,得b=﹣2a,当x=﹣1时,y<0,即a﹣b+c<0,所以2a﹣2b+2c<0,把b替换成a计算;④x=1时函数有最大值,所以当x=1时的y值大于当x=m(m≠1)时的y值,即a+b+c>m(am+b)+c,所以a+b>m(am+b)(m≠1)成立;⑤将x轴下方二次函数图象翻折到x轴上方,则与直线y=1有四个交点即可,由二次函数图象的轴对称性知:关于对称轴对称的两个根的和为2,四个根的和为4.【解答】解:∵图象开口向下,∴a<0,∵对称轴在y轴的右侧,a与b异号,∴b>0,∵与y轴交于正半轴,∴c>0,∴abc<0,故①错误;∵二次函数图象与x轴交于不同两点,则Δ=b2﹣4ac>0.∴b2>4ac.故②错误;∵―b2a=1,∴b=﹣2a.又∵当x=﹣1时,y<0.即a﹣b+c<0.∴2a﹣2b+2c<0.∴﹣3b+2c<0.∴2c<3b.故③正确;∵x=1时函数有最大值,∴当x=1时的y值大于当x=m(m≠1)时的y值,即a+b+c>m(am+b)+c∴a+b>m(am+b)(m≠1)成立,故④正确.将x轴下方二次函数图象翻折到x轴上方,则与直线y=1有四个交点即可,由二次函数图象的轴对称性知:关于对称轴对称的两个根的和为2,四个根的和为4,故⑤错误.综上:③④正确,8.(2023秋•龙港区期中)函数y =ax 2+bx +c 与y =kx 的图象如图所示,下列结论:①b 2﹣4ac >0;②a +b +c =0;③x =﹣2时,函数y =﹣ax 2+(k ﹣b )x ﹣c 有最大值;④关于x 的方程ax 2+(b ﹣k )x +c =0的根是x 1=﹣1,x 2=﹣3,其中正确的个数是( )A .1B .2C .3D .4【分析】根据抛物线与x 轴交点个数与Δ=b 2﹣4ac 的关系即可判断①;由x =1时,二次函数的函数值即可判断②;由抛物线与直线的两个交点的横坐标为﹣3,﹣1得到9a ―3b +c =―3k①a ―b +c =―k②,解得k ﹣b =﹣4a ,代入y =﹣ax 2+(k ﹣b )x ﹣c 得到y =﹣ax 2+(k ﹣b )x ﹣c =﹣ax 2﹣4ax ﹣c =﹣a (x +2)2+4a ﹣c ,根据二次函数的性质即可判断③;抛物线与直线的交点的坐标与函数解析式的关系即可判断④.【解答】解:∵抛物线与x ∴Δ=b 2﹣4ac <0,故选项①错误;由图象可知,当x =1时,y =a +b +c >0,故选项②错误;∵抛物线与直线的两个交点的横坐标为﹣3,﹣1,∴9a ―3b +c =―3k①a ―b +c =―k②,②﹣①得﹣8a +2b =2k ,即k ﹣b =﹣4a ,∴y =﹣ax 2+(k ﹣b )x ﹣c =﹣ax 2﹣4ax ﹣c =﹣a (x +2)2+4a ﹣c ,∵﹣a <0.∴x =﹣2时,函数y =﹣ax 2+(k ﹣b )x ﹣c 有最大值,故选项③正确;∵抛物线与直线的两个交点的横坐标为﹣3,﹣1,∴方程ax 2+bx +c 与y =kx 的解为x 1=﹣1,x 2=﹣3,∴关于x 的方程ax 2+(b ﹣k )x +c =0的根是x 1=﹣1,x 2=﹣3,故选项④正确.9.(2023•石城县模拟)二次函数y=ax2+bx+c(a≠0)的图象如图所示.下列结论:①abc>0;②2a+b=0;③m为任意实数,则a+b>am2+bm;④a﹣b+c>0;⑤若ax21+bx1=ax22+bx2且x1≠x2,则x1+x2=2.其中正确的有( )A.①④B.③④C.②⑤D.②③⑤【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①抛物线开口方向向下,则a<0.抛物线对称轴位于y轴右侧,则a、b异号,即ab<0.抛物线与y轴交于正半轴,则c>0.所以abc<0.故①错误.②∵抛物线对称轴为直线x=b2a=1,∴b=﹣2a,即2a+b=0,故②正确;③∵抛物线对称轴为直线x=1,∴函数的最大值为:y=a+b+c;∴a+b+c≥am2+bm+c,即a+b≥am2+bm,故③错误;④∵抛物线与x轴的一个交点在(3,0)的左侧,而对称轴为直线x=1,∴抛物线与x轴的另一个交点在(﹣1,0)的右侧,∴当x=﹣1时,y<0,∴a﹣b+c<0,故④错误;⑤∵ax21+bx1=ax22+bx2,∴ax21+bx1―ax22―bx2=0,∴a(x1+x2)(x1﹣x2)+b(x1﹣x2)=0,∴(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,∴a(x1+x2)+b=0,即x1+x2=―b a ,∵b=﹣2a,∴x1+x2=2,故⑤正确.综上所述,正确的有②⑤.故选:C.10.(2024•苍溪县模拟)如图,已知二次函数y=ax2+bx+c(a,b,c是常数)的图象关于直线x=﹣1对称,则下列五个结论:①abc>0;②2a﹣b=0;③9a﹣3b+c<0;④a(m2﹣1)+b(m+1)≤0(m为任意实数);⑤3a+c<0.其中结论正确的个数为( )A.2个B.3个C.4个D.5个【分析】根据所给函数图象可得出a,b,c的正负,再结合抛物线的对称性及增减性,利用数形结合的思想对所给结论依次进行判断即可.【解答】解:由函数图象可知,a<0,b<0,c>0,所以abc>0.故①正确.因为抛物线的对称轴为直线x=﹣1,所以―b2a=―1,即2a﹣b=0.因为抛物线的对称轴为直线x =﹣1,且x =1时,函数值小于零,所以x =﹣3时,函数值小于零,则9a ﹣3b +c <0.故③正确.因为抛物线的对称轴为直线x =﹣1,且开口向下,所以当x =m 时,am 2+bm +c ≤a ﹣b +c ,即am 2﹣a +bm +b ≤0,所以a (m 2﹣1)+b (m +1)≤0.故④正确.由函数图象可知,当x =1时,函数值小于零,则a +b +c <0,又因为b =2a ,所以3a +c <0.故⑤正确.故选:D .11.(2024•y =ax 2+bx +c 的图象中,观察得出了下面五条信息:①c <0;②abc >0;③a ﹣b +c >0;④2a ﹣3b =0;⑤c ﹣4b >0,你认为其中正确信息的个数有( )A .2个B .3个C .4个D .5个【分析】观察图象易得a >0,―b 2a =13>0,所以b <0,2a ﹣3b >0,因此abc >0,由此可以判定①②是正确的,而④是错误的;当x =﹣1,y =a ﹣b +c ,由点(﹣1,a ﹣b +c )在第二象限可以判定a ﹣b +c >0③是正确的;当x =2时,y =4a +2b +c =2×(﹣3b )+2b +c =c ﹣4b ,由点(2,c ﹣4b )在第一象限可以判定c ﹣4b >0⑤【解答】解:∵抛物线开口方向向上,∴a>0,∵与y轴交点在x轴的下方,∴c<0,∵―b2a=13>0,∵a>0,∴b<0,2a﹣3b>0,∴abc>0,∴①②是正确的,④对称轴x=―b2a=13,∴3b=﹣2a,∴2a+3b=0,∴④是错误的;当x=﹣1,y=a﹣b+c,而点(﹣1,a﹣b+c)在第二象限,∴a﹣b+c>0是正确的;当x=2时,y=4a+2b+c=2×(﹣3b)+2b+c=c﹣4b,而点(2,c﹣4b)在第一象限,∴c﹣4b>0.故选:C.12.(2024•沂源县一模)已知二次函数y=ax2+bx+c(a≠0)的图象的一部分如图所示,其中对称轴为:x =1,下列结论:①abc>0;②a+c>0;③2a+3b>0;④a+b>am2+bm(m≠1);上述结论中正确结论的个数为( )A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向可判定a的符号;结合抛物线的对称轴b的符号可判断①;通过x=﹣1和x=3的对称性判断②;将不等式的两边加上c,进而判断出③;将b=﹣2a,a﹣b+c=0可推出④.【解答】解:∵抛物线的开口向下,∴a<0,∵对称轴为:x=―b2a=1,∴b=﹣2a>0,∵抛物线与y轴交于y轴的正半轴,∴c>0,∴abc<0,故①不正确;∵2×1﹣3=﹣1,当x=3时,y>0,∴当x=﹣1时,a﹣b+c>0,∴a+c>b,∵b=﹣2a>0,∴a+c>0,故②正确;∵b=﹣2a,∴2a+3b=2a﹣6a=﹣4a>0,故③正确,∵当x=1时,y=a+b+c,a<0,∴函数的最大值为:a+b+c,∴a+b+c>am2+bm+c(m≠0),∴a+b>am2+bm,∴②③④正确,故选:C.13.(2024•桃江县一模)抛物线y=ax2+bx+c的顶点坐标为(2,﹣a)(如图所示),则下列说法:①abc <0;②(a+b)2≥c;③关于x的方程ax2+bx=0有两个不相等的实数根;④﹣1≤a≤0.则正确的结论有( )A.1个B.2个C.3个D.4个【分析】由二次函数图象的性质及二次函数图象与系数的关系逐一判定即可.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的顶点坐标为(2,﹣a),∴―b2a=2,∴b=﹣4a>0,∵抛物线交y轴的负半轴,∴c<0,∴abc>0,故①错误;∵抛物线的顶点坐标为(2,﹣a),∴4a+2b+c=﹣a,∵b=﹣4a,∴4a﹣8a+c=﹣a,即c=3a,∴(a+b)2﹣c=9a2﹣3a=3a(3a﹣1),∴3a (3a ﹣1)>0,∴(a +b )2﹣c >0,∴(a +b )2>c ,故②错误;由图可知抛物线与直线y =c 有两个交点,∴关于x 的方程ax 2+bx +c =c ,即ax 2+bx =0有两个不相等的实数根,故③正确;∵a 为抛物线二次项系数,∴a ≠0,故④错误.故选:A .14.(2023秋•中山市校级期末)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示.下列结论:①2a +b =0;②3a +c >0;③m 为任意实数,则a +b >am 2+bm ;④若A (x 1,0),B (x 2,0),则x 1+x 2=2,其中正确的有( )A .①②B .①③C .①④D .②④【分析】根据对称轴为直线x =x =1时取得最大值,即可判断①③,根据x =3时,y <0,即可判断②,根据对称性即可判断④.【解答】解:∵抛物线对称轴为直线x =―b 2a=1,∴b =﹣2a ,即2a +b =0,所以①正确;∵x =3时,y =9a +3b +c <0,即9a +3×(﹣2a )+c <0,∴3a +c <0,故②不正确;抛物线对称轴为直线x =1,开口向下,∴函数的最大值为a +b +c ,∴a +b +c ≥am 2+bm +c (m 为任意实数),即a +b ≥am 2+bm ,故③不正确;∵A (x 1,0),B (x 2,0),对称轴为直线x =1,则x 1+x 2=2,故④正确,15.(2023秋•西城区校级月考)已知二次函数y=ax2+bx+c的图象如图所示,则下列结论:①a<0;②9a+3b+c>0;③c>0;④﹣3<―b2a<0其中正确的有( )A.4个B.3个C.2个D.1个【分析】根据开口方向判断a的符号,当x=3时,判断9a+3b+c>0;根据抛物线与y轴的交点位置判断c的符号;根据抛物线对称轴的位置判断④.【解答】解:∵抛物线开口向下,∴a<0,故①正确;由图可以看出,对称轴﹣3<x=―b2a<0,故④正确;设抛物线与x1,由题意得,对称轴x=x1―32<0,解得x1<3,∴当x=3时,y=9a+3b+c<0,故②错误;∵抛物线与y轴交于正半轴,∴c>0,故③正确.综上所述,①③④正确.故选:B.16.(2023•东港区校级三模)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c=0;③2b+c+3=0;④当1<x<3时,x2+(b﹣1)x+c<0其中正确的有( )个.A.4B.3C.2D.1【分析】①根据开口方向判定a的符号,根据对称轴判断b的符号,根据抛物线与y轴的交点判断c的符号,根据抛物线与x轴的交点情况判断b2﹣4ac的符号;②当x=1时,y=1,判断b+c+1的符号,由b+c+1=1,可得b+c=0;③根据对称轴求b的值,由b+c=0,代入可作判定;④由抛物线和直线所处的位置判断x2+bx+c<x,得出x2+(b﹣1)x+c<0.【解答】解:①∵函数y=x2+bx+c与x轴没交点,∴Δ=b2﹣4ac<0,∵a=1,∴Δ=b2﹣4c<0,故①错误;②∵函数y=x2+bx+c与y=x的交点的横坐标为1,∴交点为:(1,1),(3,3),∴b+c+1=1,∴b+c=0;故②正确;③由图象得:抛物线的对称轴是:x=32,且a=1,∴―b2=32,∴b=﹣3,∴2b+c+3=b+0+3=0,故③正确;④由图象可知:当1<x<3时,抛物线在直线的下方,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0,故选:B.17.(2023•双台子区校级一模)二次函数y=ax2+bx+c的图象如图所示,给出四个结论:①abc>0;②4a﹣2b+c>0;③对于任意实数m,有am2+bm+c<a﹣b+c;④ca>―3,其中正确的有( )A.①②B.①④C.②③D.③④【分析】二次函数y=ax2+bx+c的系数确定了抛物线开口方向、对称轴、与y轴的交点等.对于①,先根据二次函数图象的性质判断a,b,c的正负,进而得出答案;对于②,令x=﹣2求出y值,判断即可;对于③,先求出当x=﹣1时,求初最大值,再比较即可;对于④,根据对称轴求出a,b的关系,再将x=1,y=0代入关系式,即可判断.【解答】解:①∵对称轴位于x轴的左侧,∴―b2a<0,∴即ab>0.∵与y轴交于正半轴,∴c>0,∴abc>0.故①正确;②∵x=﹣2时,y>0,∴4a﹣2b+c>0,故②正确;③当x=﹣1时,y最大=a﹣b+c,当x=m时,y=am2+bm+c,∴有am2+bm+c≤a﹣b+c,故③错误;④∵抛物线的对称轴为直线x=―b2a=―1,∵x=1时,y=0,∴a+b+c=0,∴c=﹣3a,∴ca=―3aa=―3,故④错误;正确的结论有:①②,故选:A.18.(2023•遂溪县模拟)如图是二次函数y=ax2+bx+c的图象,对称轴是直线l,则以下说法:①a﹣b+c=0;②4a+b=0;③abc>0;④16a+5b+2c>0,其中正确的个数是( )A.1B.2C.3D.4【分析】先由抛物线与x5,0),对称轴为x=2,可以得到抛物线与x轴的另一交点为(﹣1,0)可以判断①;利用抛物线的对称轴为x=2,判断出结论②;先由抛物线的开口方向判断出a>0,进而判断出b<0,再用抛物线与y轴的交点的位置判断出c>0,判断出结论③;先求出b=﹣4a,c=﹣5a,然后代入16a+5b+2c即可判断.【解答】解:有图象知,抛物线过点(5,0),对称轴为直线x=2,∴抛物线过点(﹣1,0),∴a﹣b+c=0,故①正确;∵抛物线的对称轴为直线x=2,∴―b2a=2,∴4a+b=0,故②正确;由图象知,抛物线开口向上,∴a>0,∵4a+b=0,∴b<0,而抛物线与y轴的交点在y轴的负半轴上,∴c<0,∴abc>0,故③正确;∵4a+b=0,∴b=﹣4a,∵a﹣b+c=0,∴c=﹣5a,∴16a+5b+2c=16a﹣20a﹣10a=﹣14a<0,故④错误.故选:C.19.(2023秋•义乌市期中)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc >0;②b2>4ac;③a(m2﹣1)+b(m﹣1)<0(m≠1);④关于x的方程|ax2+bx+c|=1有四个根,且这四个根的和为4A.①②③B.②③④C.①④D.②③【分析】由抛物线开口方向,对称轴位置,抛物线与y轴交点位置可判断①,由抛物线与x轴有两个交点可判断②,由当x=1时函数取最大值可判断③,由函数最大值大于1且抛物线开口向下可判断④.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x=1,∴―b2a=1,∴b=﹣2a>0,∵抛物线与y轴交点在x轴上方,∴c>0,∴abc<0,①错误;∵抛物线与x轴有2个交点,∴b2﹣4ac>0,∴b2>4ac,②正确;∵x=1时函数取最大值,∴am2+bm+c<a+b+c(m≠1),∴am2﹣a+bm﹣b<0,即a(m2﹣1)+b(m﹣1)<0(m≠1),③正确.∴由图象可得函数最大值大于2,∴ax2+bx+c=1有两个不相等的实数根x1,x2,ax2+bx+c=﹣1有两个不相等的实数根x3,x4,∵图象对称轴为直线x=1,∴x1+x2=2,x3+x4=2.∴x1+x2+x3+x4=4,∴④正确.故选:B.20.(2023秋•铜梁区校级期中)二次函数y=ax2+bx+c的图象如图所示,给出下列结论:①abc>0;②2a+b<0;③若﹣1<m<n<1,则m+n<―b a ;④3|a|+|c|<2|b|.其中正确的结论有( )A.1个B.2个C.3个D.4个【分析】分别根据二次函数开口方向以及对称轴位置和图象与y轴交点得出a,b,c的符号,再利用特殊值法分析得出各选项.【解答】解:∵抛物线开口向下,∴a<0,∴2a<0,∵对称轴x=―b2a>1,b>0,∵抛物线与y轴交于负半轴,∴c<0,∴abc>0,故选项①正确;对称轴x=―b2a>1,又a<0,则﹣b<2a,则2a+b>0,故②错误;∵﹣1<m<n<1,则﹣2<m+n<2,∴抛物线对称轴为:x=―b2a>1,―ba>2,m+n<―ba,故选项③正确;当x=1时,a+b+c>0,2a+b>0,则3a+2b+c>0,∴3a+c>﹣2b,∴﹣3a﹣c<2b,∵a<0,b>0,c<0(图象与y轴交于负半轴),∴3|a|+|c|=﹣3a﹣c<2b=2|b|④选项正确.故选:C.21.(2023•仁怀市模拟)如图,根据二次函数y=ax2+bx+c的图象得到如下结论:①abc>0 ②2a﹣b=0 ③a+b+c=0 ④3a+c<0 ⑤当x>﹣2时,y随x的增大而增大⑥一定存在实数x0,使得ax20+bx0>a﹣b 成立.上述结论,正确的是( )A.①②⑤B.②③④C.②③⑥D.③④⑤【分析】由开口方向、对称轴及抛物线与y轴的交点位置可判断结论①;由对称轴为直线x=﹣1即可得到,2a﹣b=0,即可判断②;由抛物线的对称性即可判断③④;由抛物线的增减性可判断结论⑤;函数的最值即可判断结论⑥.【解答】解:∵抛物线开口向上、顶点在y轴左侧、抛物线与y轴交于负半轴,∴a>0,b>0,c<0,∴abc<0,故①错误;∵―b2a=―1,∴b=2a,∴2a﹣b=0,故②正确;∵抛物线过点(﹣3,0),对称轴为直线x=﹣1,∴抛物线过点(1,0),∴a+b+c=0,故③正确;∴b=2a,a+b+c=0,∴3a+c=0,故④错误;∵抛物线开口向上,对称轴是直线x=﹣1,∴当x>﹣1时,y随x的增大而增大;故⑤错误;∵函数最小值为a﹣b+c,∴当x0≠﹣1时,则ax20+bx0c a﹣b+c,即ax20+bx0>a﹣b,∴一定存在实数x0,使得ax20+bx0>a﹣b成立,故⑥正确;故选:C.22.(2023•广东模拟)二次函数y=ax2+bx+c的图象如图所示,有如下结论:①abc<0;②2a﹣b+c≤0;③3b﹣2c<0;④对任意实数m,都有2am2+2bm﹣b≥0.其中正确的有( )A.①②B.②③C.②④D.③④【分析】由抛物线开口方向,对称轴位置,抛物线与y轴的交点位置可判断①;由x=﹣1时y>0及a>0,可判断②;由x=﹣1时y>0及a与b的数量关系可判断③,由x=1时函数取最小值可判断④.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=1,∴―b2a=1,∴b=﹣2a<0,∵抛物线与y轴交点在x轴下方,∴c<0,∴abc>0,故①错误;∵x=﹣1时,y>0,∴a﹣b+c>0,∵a>0,∴2a﹣b+c>0,故②错误;∵b=﹣2a,∴a=―b 2,由图象可得x=﹣1时,y=a﹣b+c=―32b+c>0,∴3b﹣2c<0,故③正确;由x=1时函数取最小值可得am2+bm+c≥a+b+c,∴am2+bm≥a+b,∵a=―b 2,∴am2+bm≥b 2,∴2am2+2bm﹣b≥0,故④正确.故选:D.23.(2023•凤凰县模拟)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论①abc<0;②3a+b>―13c;③2c<3b;④(k+1)(ak+a+b)≤a+b,其中正确的是( )A.①③④B.①②④C.①④D.②③④【分析】根据二次函数图象与性质,先判断a<0,b=﹣2a,即b>0,c>0,即可判断①正确;根据图象得出x=3时y<0,即可得出9a+3b+c<0,通过变形可判断②错误;根据9a+3b+c<0结合b=﹣2a 可以判断③正确;根据x=1时,y=a+b+c是函数的最大值,可以判断④正确.【解答】解:∵抛物线开口向下,∴a<0,∵对称轴是直线x=1,∴―b2a=1,即b=﹣2a,∴b>0,∵抛物线与y轴交点在正半轴,∴c>0,∴abc<0,故①正确;由图象可知,抛物线与x轴左侧的交点在(﹣1,0)的右侧,∵抛物线的对称轴为x=1,∴抛物线与x轴右侧的交点在(3,0)的左侧,∴当x=3时,y<0,∴9a+3b+c<0,∴3a+b<―13 c,故②错误;∵9a+3b+c<0,b=﹣2a,∴―92b+3b+c<0,∴2c<3b,故③正确;当x=1时,y=a+b+c是函数的最大值,∴a(k+1)2+b(k+1)+c≤a+b+c,∴a(k+1)2+b(k+1)≤a+b,∴(k+1)(ak+a+b)≤a+b,故④正确;∴正确的有①③④,故选:A.24.(2024•黄石模拟)已知抛物线y=ax2+bx+c(a<0)与x轴交于点(x1,0),(2,0),其中﹣1<x1<0.下列四个结论:①abc<0;②a﹣b+c>0;③2b﹣c<0;④不等式ax2+bx+c>―c2x+c的解集为0<x<2.其中正确结论的序号为( )A.①②B.①③C.②③D.①④【分析】根据题意画出函数图象,得到a、b异号,c>0,可判断①结论;根据当x=﹣1时,y<0,可判断②结论;根据抛物线y=ax2+bx+c(a<0)过点(2,0),得到a=―12b―14c,可判断③结论;令y1=―c2x+c,画出一次函数图象,利用图象可判断④结论.【解答】解:根据题意画出函数图象如下:∵抛物线y=ax2+bx+c(a<0x轴交于点(x1,0),(2,0),其中﹣1<x1<0,∴抛物线开口向下,对称轴在12~1之间,与y轴交点在正半轴,∴a、b异号,c>0,∴abc<0,①结论正确;由图象可知,当x=﹣1时,y<0,∴a﹣b+c<0,②结论错误;∵抛物线y=ax2+bx+c(a<0)过点(2,0),∴4a+2b+c=0,∴a=―2b+c4=―12b―14c,∴a―b+c=―12b―14c―b+c=―32b+34c=―34(2b―c)<0,∴2b﹣c>0,③结论错误;令y1=―c2x+c,当x=0时,y=c;当y=0,x=2,函数图象如下:由图象可知,当0<x<2时,抛物线y=ax2+bx+c图象在一次函数y1=―c2x+c的上方,∴不等式ax2+bx+c>―c2x+c的解集为0<x<2,④结论正确,故选:D.25.(2024•殷都区模拟)如图,在平面直角坐标系中,直线y1=mx+n与抛物线y2=ax2+bx―3相交于点A,B.结合图象,判断下列结论:①当﹣3<x<2时,y1>y2;②x=﹣3是方程ax2+bx﹣3=0的一个解;③若(﹣4,t1),(1,t2t1>t2;④对于抛物线y2=ax2+bx―3,当﹣3<x<2时,y2的取值范围是0<y2<5.其中正确结论的个数是( )A.4个B.3个C.2个D.1个【分析】根据函数图象即可判断①②④;求出对称轴,再由开口向上得到离对称轴越远函数值越大,即可判断③.【解答】解:由函数图象可知,当一次函数图象在二次函数图象上方时,自变量的取值范围为﹣3<x<2,∴当﹣3<x<2时,y1>y2,故①正确;∵二次函数与x轴的一个交点坐标为当(﹣3,0),∴x=﹣3是方程ax2+bx﹣3=0的一个解,故②正确;∵抛物线经过(2,5),(﹣3,0)∴4a+2b﹣3=5,9a﹣3b﹣3=0,∴a=1,b=2,∴抛物线对称轴为直线x=b―2a=―1,∵函数开口向上,∴离对称轴越远,函数值越大,∵﹣1﹣(﹣4)=3>1﹣(﹣1)=2,∴t1>t2,故③正确;由函数图象可知,当﹣3<x<2时,y2的取值范围是不是0<y2<5,故④错误,故选:B.26.(2024•东港区校级一模)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)和(0,3)两点之间(包含端点).下列结论中正确的是( )①不等式ax2+c<﹣bx的解集为x<﹣1或x>3;②9a2﹣b2<0;③一元二次方程cx2+bx+a=0的两个根分别为x1=13,x2=﹣1;④6≤3n﹣2≤10.A.①②③B.①②④C.②③④D.①③④【分析】由已知求出b=﹣2a,c=﹣3a,由抛物线的对称性可求抛物线与x轴的另一个的交点为(3,0),则不等式ax2+c<﹣bx的解集为x<﹣1或x>3;再将b=﹣2a,c=﹣3a,代入9a2﹣b2,即可判断②;将一元二次方程cx2+bx+a=0化为﹣3ax2﹣ax+a=0,即可求方程的根;由已知可得2≤c≤3,再由抛物线的顶点坐标可求n=﹣4a,从而进一步可求n的范围为83≤n≤4,即可求出6≤3n﹣2≤10.【解答】解:∵顶点坐标为(1,n),∴b=﹣2a,∵与x轴交于点A(﹣1,0),∴a﹣b+c=0,∴c=﹣3a,∵对称轴为直线x=1,经过点(﹣1,0),∴抛物线与x轴的另一个的交点为(3,0),∵抛物线开口向下,∴不等式ax2++bx+c<0的解集为x<﹣1或x>3,即不等式ax2+c<﹣bx的解集为x<﹣1或x>3,故①正确;∵9a2﹣b2=9a2﹣(﹣2a)2=5a2>0,故②不正确;∵一元二次方程cx2+bx+a=0可化为﹣3ax2﹣2ax+a=0,即3x2+2x﹣1=0,∴方程的根为x1=13,x2=﹣1,故③正确;∵抛物线与y轴的交点在(0,2)和(0,3)两点之间,∴2≤c≤3,∵顶点坐标为(1,n),∴n=﹣4a,∵c=﹣3a,∴n=43 c,∴83≤n≤4,∴6≤3n﹣2≤10;故④正确;故选:D.27.(2024•射洪市一模)二次函数y =ax 2+bx +c (a ≠0)的大致图象如图所示(1<x =h <2,0<x A <1).下列结论:①abc <0;②2a +b >0;③若OC =2OA ,则2b ﹣ac =4;④3a ﹣c <0.其中正确的有 ②③④ .(只填写序号)【分析】①根据抛物线的开口向下即可得出a <0,再根据抛物线的对称轴在x =1和x =2之间即可得出b >﹣2a ,②正确;②由b >﹣2a 可得出b >0,再根据抛物线与y 轴交于y 轴负半轴可得出c <0,由此即可得出abc >0,①错误;③将A(―c 2,0)代入抛物线解析式中,整理后可得出2b ﹣ac =4,③正确;④根据抛物线的对称轴1<―b 2a<2可得出﹣2a <b <﹣4a ,再由当x =1时y >0即可得出a +b +c >0,进而即可得出3a ﹣c <0,④正确.综上即可得出结论.【解答】解:∵抛物线的开口向下,∴a <0.∵抛物线的对称轴―b 2a>1,∴b >﹣2a ,即2a +b >0,②成立;∵b >﹣2a ,a <0,∴b >0,∵抛物线与y 轴的交点在y 轴的负半轴,∴c <0,∴abc >0,①错误;∵OC =2OA ,∴A(―c 2,0),∴14ac 2―14bc +c =0,整理得:2b ﹣ac =4,③成立;∵抛物线的对称轴1<―b 2a<2,∴﹣2a <b <﹣4a ,∵当x =1时,y =a +b +c >0,∴a ﹣4a +c >0,即3a ﹣c <0,④正确.综上可知正确的结论为②③④.故答案为:②③④.28.(2023秋•太康县期末)已知二次函数y =ax 2+bx +c (a ≠0,a 、b 、c 为常数)的图象如图所示.下列4个结论:①b >0;②b <a +c ;③c <4b ;④a +b <k 2a +kb (k 为常数,且k ≠1).其中正确的结论序号是 ①③ .【分析】由抛物线的开口方向判断a 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【解答】解:由图象可知,a <0,―b 2a=1,∴b =﹣2a ,∴b >0,故①正确;由图象可知,当x =﹣1时,y <0,即a ﹣b +c <0,∴b >a +c ,故②错误;∵二次函数y =ax 2+bx +c 图象的对称轴为直线x =1,∴当x =3时,函数值小于0,y =9a +3b +c <0,且b =﹣2a ,即a =―b 2,代入得9(―b 2)+3b +c <0,得c <32b ,∵b >0,∴c <4b ,故③正确;当x=1时,y的值最大.此时,y=a+b+c,而当x=k时,y=ak2+bk+c,∵k为常数,且k≠1,所以a+b+c>ak2+bk+c,故a+b>ak2+bk,故④错误.故①③正确.故答案为:①③.29.(2023秋•青山区期末)已知抛物线y=ax2+bx+c经过点(2,c),且满足a﹣b+c=0.下列四个结论:①抛物线的对称轴是直线x=1;②b与c同号;③若a+2b+4c>0,则不等式ax2+bx+c<﹣2ax﹣a﹣b的解集﹣2<x<2;④抛物线上的两个点M(m﹣1,y1),N(m+2,y2),当c<0,且y1>y2时,m<1 2.其中一定正确的是 .(填写序号)【分析】根据二次函数的性质及抛物线与不等式的关系求解.【解答】解:由题意得:4a+2b+c=c,∴b=﹣2a∴―b2a=1,故①是正确的;又∵a﹣b+c=0,∴c=﹣3a,∴a、c异号,a、b异号,∴b、c同号,故②是正确的;∵a+2b+4c>0,∴a﹣4a﹣12a=﹣15a>0,∴a<0,∴不等式化为:x2﹣4>0,解得:﹣2<x <2,故③是正确的;∵c <0,∴a >0,抛物线开口向上,∵m ﹣1<m +2,y 1>y 2,∴m +2≤1,或1﹣(m ﹣1)>m +2﹣1解得:m ≤﹣1或m <12,故④是错误的;故答案为:①②③.30.(2023秋•城厢区校级月考)如图,是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分,抛物线的顶点坐标为A (1,3),与x 轴的一个交点为B (4,0),点A 和点B 均在直线y 2=mx +n (m ≠0)上.①2a +b =0;②abc >0;③抛物线与x 轴的另一个交点是(﹣4,0);④方程ax 2+bx +c =﹣3有两个不相等的实数根;⑤a ﹣b +c <4m +n ;⑥不等式mx +n >ax 2+bx +c 的解集为1<x <4.其中正确的是 .【分析】利用抛物线的对称轴方程得到―b 2a=1,则可对①进行判断;由抛物线开口向下得到a <0,则b >0,由抛物线与y 轴的交点在x 轴上方得到c >0,则可对②进行判断;利用抛物线的对称性得到抛物线与x 轴的一个交点为(﹣2,0),则可对③进行判断;利用抛物线与直线y =﹣3只有一个交点可对④进行判断;利用x =﹣1时,y 1>0,即a ﹣b +c >0,x =4时,y 2=0,即4m +n =0,则可对⑤进行判断;结合函数图象可对⑥进行判断.【解答】解:∵抛物线的对称轴为直线x =―b 2a=1,∴b=﹣2a,即2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=﹣2a>0,∵抛物线与y轴的交点在x轴下方,∴c>0,∴abc<0,所以②错误;∵抛物线的对称轴为直线x=1,抛物线与x轴的一个交点为B(4,0),∴抛物线与x轴的一个交点为(﹣2,0),所以③错误;∵抛物线的顶点坐标为(1,3),∴抛物线与直线y=﹣3有两个交点,∴方程ax2+bx+c=﹣3有两个不相等的实数根,所以④正确;∵x=﹣1时,y1>0,即a﹣b+c>0,而x=4时,y2=0,即4m+n=0,∴a﹣b+c>4m+n;所以⑤错误;∵当1<x<4时,y2<y1,∴不等式mx+n>ax2+bx+c的解集为x<1或x>4.所以⑥错误.故答案为:①④.。
2023年中考数学解答题专项复习:二次函数(附答案解析)

2023年中考数学解答题专项复习:二次函数1.(2021•牡丹江)抛物线y=﹣x2+bx+c经过点A(﹣3,0)和点C(0,3).(1)求此抛物线所对应的函数解析式,并直接写出顶点D的坐标;
(2)若过顶点D的直线将△ACD的面积分为1:2两部分,并与x轴交于点Q,则点Q 的坐标为.
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标(﹣)
2.(2021•嘉兴)已知二次函数y=﹣x2+6x﹣5.
(1)求二次函数图象的顶点坐标;
(2)当1≤x≤4时,函数的最大值和最小值分别为多少?
(3)当t≤x ≤t+3时,函数的最大值为m,最小值为n,若m﹣n =3,求t的值.3.(2021•湘潭)如图,一次函数y=x﹣图象与坐标轴交于点A、B,二次函数y=x2+bx+c图象过A、B两点.
(1)求二次函数解析式;
(2)点B关于抛物线对称轴的对称点为点C,点P是对称轴上一动点,在抛物线上是否存在点Q,使得以B、C、P、Q为顶点的四边形是菱形?若存在,求出Q点坐标;若不存在,请说明理由.
第1 页共25 页。
中考压轴题-二次函数综合(八大题型+解题方法)——冲刺2024年中考数学考点押题(全国通用)(解析)
中考压轴题-二次函数综合 (八大题型+解题方法)1、求证“两线段相等”的问题:借助于函数解析式,先把动点坐标用一个字母表示出来;然后看两线段的长度是什么距离即是“点点”距离,还是“点轴距离”,还是“点线距离”,再运用两点之间的距离公式或点到x 轴y 轴的距离公式或点到直线的距离公式,分别把两条线段的长度表示出来,分别把它们进行化简,即可证得两线段相等;2、“平行于y 轴的动线段长度的最大值”的问题:由于平行于y 轴的线段上各个点的横坐标相等常设为t,借助于两个端点所在的函数图象解析式,把两个端点的纵坐标分别用含有字母t 的代数式表示出来,再由两个端点的高低情况,运用平行于y 轴的线段长度计算公式-y y 下上,把动线段的长度就表示成为一个自变量为t,且开口向下的二次函数解析式,利用二次函数的性质,即可求得动线段长度的最大值及端点坐标;3、求一个已知点关于一条已知直线的对称点的坐标问题:先用点斜式或称K ,且与已知直线垂直的直线解析式,再求出两直线的交点坐标,最后用中点坐标公式即可;4、“抛物线上是否存在一点,使之到定直线的距离最大”的问题:方法1先求出定直线的斜率,由此可设出与定直线平行且与抛物线相切的直线的解析式注意该直线与定直线的斜率相等,因为平行直线斜率k 相等,再由该直线与抛物线的解析式组成方程组,用代入法把字母y 消掉,得到一个关于x 的的一元二次方程,由题有△=2b -4ac=0因为该直线与抛物线相切,只有一个交点,所以2b -4ac=0从而就可求出该切线的解析式,再把该切线解析式与抛物线的解析式组成方程组,求出x 、y 的值,即为切点坐标,然后再利用点到直线的距离公式,计算该切点到定直线的距离,即为最大距离; 方法2该问题等价于相应动三角形的面积最大问题,从而可先求出该三角形取得最大面积时,动点的坐标,再用点到直线的距离公式,求出其最大距离;方法3先把抛物线的方程对自变量求导,运用导数的几何意义,当该导数等于定直线的斜率时,求出的点的坐标即为符合题意的点,其最大距离运用点到直线的距离公式可以轻松求出;5、常数问题:1点到直线的距离中的常数问题:“抛物线上是否存在一点,使之到定直线的距离等于一个 固定常数”的问题:先借助于抛物线的解析式,把动点坐标用一个字母表示出来,再利用点到直线的距离公式建立一个方程,解此方程,即可求出动点的横坐标,进而利用抛物线解析式,求出动点的纵坐标,从而抛物线上的动点坐标就求出来了;2三角形面积中的常数问题:“抛物线上是否存在一点,使之与定线段构成的动三角形的面积等于一个定常数”的问题:先求出定线段的长度,再表示出动点其坐标需用一个字母表示到定直线的距离,再运用三角形的面积公式建立方程,解此方程,即可求出动点的横坐标,再利用抛物线的解析式,可求出动点纵坐标,从而抛物线上的动点坐标就求出来了;3几条线段的齐次幂的商为常数的问题:用K 点法设出直线方程,求出与抛物线或其它直线的交点坐标,再运用两点间的距离公式和根与系数的关系,把问题中的所有线段表示出来,并化解即可;6、“在定直线常为抛物线的对称轴,或x 轴或y 轴或其它的定直线上是否存在一点,使之到两定点的距离之和最小”的问题:先求出两个定点中的任一个定点关于定直线的对称点的坐标,再把该对称点和另一个定点连结得到一条线段,该线段的长度〈应用两点间的距离公式计算〉即为符合题中要求的最小距离,而该线段与定直线的交点就是符合距离之和最小的点,其坐标很易求出利用求交点坐标的方法;7、三角形周长的“最值最大值或最小值”问题:① “在定直线上是否存在一点,使之和两个定点构成的三角形周长最小”的问题简称“一边固定两边动的问题:由于有两个定点,所以该三角形有一定边其长度可利用两点间距离公式计算,只需另两边的和最小即可;② “在抛物线上是否存在一点,使之到定直线的垂线,与y 轴的平行线和定直线,这三线构成的动直角三角形的周长最大”的问题简称“三边均动的问题:在图中寻找一个和动直角三角形相似的定直角三角形,在动点坐标一母示后,运用=C C 动动定定斜边斜边,把动三角形的周长转化为一个开口向下的抛物线来破解;8、三角形面积的最大值问题:① “抛物线上是否存在一点,使之和一条定线段构成的三角形面积最大”的问题简称“一边固定两边动的问题”:方法1:先利用两点间的距离公式求出定线段的长度;然后再利用上面3的方法,求出抛物线上的动点到该定直线的最大距离;最后利用三角形的面积公式= 12底×高;即可求出该三角形面积的最大值,同时在求解过程中,切点即为符合题意要求的点;方法2:过动点向y 轴作平行线找到与定线段或所在直线的交点,从而把动三角形分割成两个基本模型的三角形,动点坐标一母示后,进一步可得到)()(左(定)右(定)下(动)上(动)动三角形x x y y 21−⋅−=S ,转化为一个开口向下的二次函数问题来求出最大值;②“三边均动的动三角形面积最大”的问题简称“三边均动”的问题:先把动三角形分割成两个基本模型的三角形有一边在x 轴或y 轴上的三角形,或者有一边平行于x 轴或y 轴的三角形,称为基本模型的三角形面积之差,设出动点在x 轴或y 轴上的点的坐标,而此类题型,题中一定含有一组平行线,从而可以得出分割后的一个三角形与图中另一个三角形相似常为图中最大的那一个三角形;利用相似三角形的性质对应边的比等于对应高的比可表示出分割后的一个三角形的高;从而可以表示出动三角形的面积的一个开口向下的二次函数关系式,相应问题也就轻松解决了;9、“一抛物线上是否存在一点,使之和另外三个定点构成的四边形面积最大的问题”:由于该四边形有三个定点,,即可得到一个定三角形的面积之和,所以只需动三角形的面积最大,就会使动四边形的面积最大,而动三角形面积最大值的求法及抛物线上动点坐标求法与7相同;10、“定四边形面积的求解”问题: 有两种常见解决的方案:方案一:连接一条对角线,分成两个三角形面积之和;方案二:过不在x 轴或y 轴上的四边形的一个顶点,向x 轴或y 轴作垂线,或者把该点与原点连结起来,分割成一个梯形常为直角梯形和一些三角形的面积之和或差,或几个基本模型的三角形面积的和差11、“两个三角形相似”的问题: 两个定三角形是否相似:(1)已知有一个角相等的情形:运用两点间的距离公式求出已知角的两条夹边,看看是否成比例 若成比例,则相似;否则不相似;(2)不知道是否有一个角相等的情形:运用两点间的距离公式求出两个三角形各边的长,看看是否成比例若成比例,则相似;否则不相似;一个定三角形和动三角形相似:(1)已知有一个角相等的情形:先借助于相应的函数关系式,把动点坐标表示出来一母示,然后把两个目标三角形题中要相似的那两个三角形中相等的那个已知角作为夹角,分别计算或表示出夹角的两边,让形成相等的夹角的那两边对应成比例要注意是否有两种情况,列出方程,解此方程即可求出动点的横坐标,进而求出纵坐标,注意去掉不合题意的点;2不知道是否有一个角相等的情形:这种情形在相似性中属于高端问题,破解方法是,在定三角形中,由各个顶点坐标求出定三角形三边的长度,用观察法得出某一个角可能是特殊角,再为该角寻找一个直角三角形,用三角函数的方法得出特殊角的度数,在动点坐标“一母示”后,分析在动三角形中哪个角可以和定三角形中的那个特殊角相等,借助于特殊角,为动点寻找一个直角三角形,求出动点坐标,从而转化为已知有一个角相等的两个定三角形是否相似的问题了,只需再验证已知角的两边是否成比例若成比例,则所求动点坐标符合题意,否则这样的点不存在;简称“找特角,求动点标,再验证”;或称为“一找角,二求标,三验证”;12、“某函数图象上是否存在一点,使之与另两个定点构成等腰三角形”的问题:首先弄清题中是否规定了哪个点为等腰三角形的顶点;若某边底,则只有一种情况;若某边为腰,有两种情况;若只说该三点构成等腰三角形则有三种情况;先借助于动点所在图象的解析式,表示出动点的坐标一母示,按分类的情况,分别利用相应类别下两腰相等,使用两点间的距离公式,建立方程;解出此方程,即可求出动点的横坐标,再借助动点所在图象的函数关系式,可求出动点纵坐标,注意去掉不合题意的点就是不能构成三角形这个题意;13、“某图象上是否存在一点,使之与另外三个点构成平行四边形”问题:这类问题,在题中的四个点中,至少有两个定点,用动点坐标“一母示”分别设出余下所有动点的坐标若有两个动点,显然每个动点应各选用一个参数字母来“一母示”出动点坐标,任选一个已知点作为对角线的起点,列出所有可能的对角线显然最多有3条,此时与之对应的另一条对角线也就确定了,然后运用中点坐标公式,求出每一种情况两条对角线的中点坐标,由平行四边形的判定定理可知,两中点重合,其坐标对应相等,列出两个方程,求解即可;进一步有:①若是否存在这样的动点构成矩形呢先让动点构成平行四边形,再验证两条对角线相等否若相等,则所求动点能构成矩形,否则这样的动点不存在;②若是否存在这样的动点构成棱形呢先让动点构成平行四边形,再验证任意一组邻边相等否若相等,则所求动点能构成棱形,否则这样的动点不存在;③若是否存在这样的动点构成正方形呢先让动点构成平行四边形,再验证任意一组邻边是否相等和两条对角线是否相等若都相等,则所求动点能构成正方形,否则这样的动点不存在;14、“抛物线上是否存在一点,使两个图形的面积之间存在和差倍分关系”的问题:此为“单动问题”〈即定解析式和动图形相结合的问题〉,后面的19实为本类型的特殊情形;先用动点坐标“一母示”的方法设出直接动点坐标,分别表示如果图形是动图形就只能表示出其面积或计算如果图形是定图形就计算出它的具体面积,然后由题意建立两个图形面积关系的一个方程,解之即可;注意去掉不合题意的点,如果问题中求的是间接动点坐标,那么在求出直接动点坐标后,再往下继续求解即可;15、“某图形〈直线或抛物线〉上是否存在一点,使之与另两定点构成直角三角形”的问题:若夹直角的两边与y轴都不平行:先设出动点坐标一母示,视题目分类的情况,分别用斜率公式算出夹直角的两边的斜率,再运用两直线没有与y轴平行的直线垂直的斜率结论两直线的斜率相乘等于-1,得到一个方程,解之即可;若夹直角的两边中有一边与y 轴平行,此时不能使用斜率公式;补救措施是:过余下的那一个点没在平行于y轴的那条直线上的点直接向平行于y的直线作垂线或过直角点作平行于y轴的直线的垂线与另一相关图象相交,则相关点的坐标可轻松搞定;16、“某图象上是否存在一点,使之与另两定点构成等腰直角三角形”的问题;①若定点为直角顶点,先用k点法求出另一直角边所在直线的解析式如斜率不存在,根据定直角点,可以直接写出另一直角边所在直线的方程,利用该解析式与所求点所在的图象的解析式组成方程组,求出交点坐标,再用两点间的距离公式计算出两条直角边等否若等,该交点合题,反之不合题,舍去;②若动点为直角顶点:先利用k点法求出定线段的中垂线的解析式,再把该解析式与所求点所在图象的解析式组成方程组,求出交点坐标,再分别计算出该点与两定点所在的两条直线的斜率,把这两个斜率相乘,看其结果是否为-1 若为-1,则就说明所求交点合题;反之,舍去;17、“题中含有两角相等,求相关点的坐标或线段长度”等的问题:题中含有两角相等,则意味着应该运用三角形相似来解决,此时寻找三角形相似中的基本模型“A”或“X”是关键和突破口;18、“在相关函数的解析式已知或易求出的情况下,题中又含有某动图形常为动三角形或动四边形的面积为定常数,求相关点的坐标或线段长”的问题:此为“单动问题”〈即定解析式和动图形相结合的问题〉,本类型实际上是前面14的特殊情形;先把动图形化为一些直角梯形或基本模型的三角形有一边在x 轴或y轴上,或者有一边平行于x 轴或y 轴面积的和或差,设出相关点的坐标一母示,按化分后的图形建立一个面积关系的方程,解之即可;一句话,该问题简称“单动问题”,解题方法是“设点动点标,图形转化分割,列出面积方程”;19、“在相关函数解析式不确定系数中还含有某一个参数字母的情况下,题中又含有动图形常为动三角形或动四边形的面积为定常数,求相关点的坐标或参数的值”的问题:此为“双动问题”即动解析式和动图形相结合的问题;如果动图形不是基本模型,就先把动图形的面积进行转化或分割转化或分割后的图形须为基本模型,设出动点坐标一母示,利用转化或分割后的图形建立面积关系的方程或方程组;解此方程,求出相应点的横坐标,再利用该点所在函数图象的解析式,表示出该点的纵坐标注意,此时,一定不能把该点坐标再代入对应函数图象的解析式,这样会把所有字母消掉;再注意图中另一个点与该点的位置关系或其它关系,方法是常由已知或利用2问的结论,从几何知识的角度进行判断,表示出另一个点的坐标,最后把刚表示出来的这个点的坐标再代入相应解析式,得到仅含一个字母的方程,解之即可;如果动图形是基本模型,就无须分割或转化了,直接先设出动点坐标一母式,然后列出面积方程,往下操作方式就与不是基本模型的情况完全相同;一句话,该问题简称“双动问题”,解题方法是“转化分割,设点标,建方程,再代入,得结论”;常用公式或结论:1横线段的长 = 横标之差的绝对值 =-x x 大小=-x x 右左纵线段的长=纵标之差的绝对值=-y y 大小=-y y 下上 2点轴距离:点P 0x ,0y 到X 轴的距离为0y ,到Y 轴的距离为o x ; 3两点间的距离公式:若A 11,x y ,B 2,2x y , 则AB=目录:题型1:存在性问题 题型2:最值问题 题型3:定值问题 题型4:定点问题题型5:动点问题综合 题型6:对称问题 题型7:新定义题 题型8:二次函数与圆题型1:存在性问题1.(2024·四川广安·二模)如图,抛物线2y x bx c =−++交x 轴于()4,0A −,B 两点,交y 轴于点()0,4C .(1)求抛物线的函数解析式.(2)点D 在线段OA 上运动,过点D 作x 轴的垂线,与AC 交于点Q ,与抛物线交于点P ,连接AP 、CP ,求四边形AOCP 的面积的最大值.(3)在抛物线的对称轴上是否存在点M ,使得以点A 、C 、M 为顶点的三角形是直角三角形?若存在,请求出点M【答案】(1)234y x x =−−+;(2)四边形AOCP 的面积最大为16;(3)点M 的坐标为35,22⎛⎫−− ⎪⎝⎭或311,22⎛⎫− ⎪⎝⎭.【分析】本题主要考查了二次函数综合,熟练掌握用待定系数法求解函数解析式的方法和步骤,以及二次函数的图象和性质,是解题的关键. (1)把()4,0A −,()0,4C 代入2y x bx c =−++,求出b 和c 的值,即可得出函数解析式; (2)易得182AOCSOA OC =⋅=,设()2,34P t t t −−+,则(),4Q t t +,求出24PQ t t =−−,则()()212282ACP C A S PQ x x t =⋅−=−++,根据四边形AOCP 的面积()22216ACP AOCS St =+=−++,结合二次函数的增减性,即可解答;(3)设3,2M m ⎛⎫− ⎪⎝⎭,根据两点之间距离公式得出232AC =,22254AM m =+,229(4)4CM m =+−,然后分情况根据勾股定理列出方程求解即可.【解析】(1)解:把()4,0A −,()0,4C 代入2y x bx c =−++得:01644b c c =−−+⎧⎨=⎩,解得:34b c =−⎧⎨=⎩,∴该二次函数的解析式234y x x =−−+;(2)解:∵()4,0A −,()0,4C ,∴4,4OA OC ==,∴1144822AOC S OA OC =⋅=⨯⨯=△,设直线AC 的解析式为4y kx =+, 代入()4,0A −得,044k =−+,解得1k =,∴直线AC 的解析式为4y x =+, 设()2,34P t t t −−+,则(),4Q t t +,∴()223444PQ t t t t t=−−+−+=−−∴()()()22114422822ACPC A SPQ x x t t t =⋅−=−−⨯=−++,∴四边形AOCP 的面积()22216ACP AOCSSt =+=−++,∵20−<,∴当2t =−时,四边形AOCP 的面积最大为16; (3)解:设3,2M m ⎛⎫− ⎪⎝⎭,∵()4,0A −,()0,4C ,∴2224432AC =+=,2222325424AM m m ⎛⎫=−++=+ ⎪⎝⎭,()()2222394424CM m m ⎛⎫=−+−=+− ⎪⎝⎭,当斜边为AC 时,AM CM AC 222+=,即()2225943244m m +++−=,整理得:24150m m ++=,无解;当斜边为AM 时,222AC CM AM +=,即2292532(4)44m m ++−=+,解得:112m =;∴311,22M ⎛⎫− ⎪⎝⎭当斜边为CM 时,222AC AM CM +=,即2225932(4)44m m ++=+−, 解得:52m =−;∴35,22M ⎛⎫−− ⎪⎝⎭综上:点M 的坐标为35,22⎛⎫−− ⎪⎝⎭或311,22⎛⎫− ⎪⎝⎭.2.(2024·内蒙古乌海·模拟预测)如图(1),在平面直角坐标系中,抛物线()240y ax bx a =+−≠与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,点A 的坐标为()1,0−,且OC OB =,点D 和点C 关于抛物线的对称轴对称.(1)分别求出a ,b 的值和直线AD 的解析式;(2)直线AD 下方的抛物线上有一点P ,过点P 作PH AD ⊥于点H ,作PM 平行于y 轴交直线AD 于点M ,交x 轴于点E ,求PHM 的周长的最大值;(3)在(2)的条件下,如图2,在直线EP 的右侧、x 轴下方的抛物线上是否存在点N ,过点N 作NG x ⊥轴交x 轴于点G ,使得以点E 、N 、G 为顶点的三角形与AOC 相似?如果存在,请直接写出点G 的坐标;如果不存在,请说明理由.【答案】(1)1a =,3b =−,=1y x −−(2)4+(3)存在,点G的坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭【分析】本题主要考查的是二次函数的综合应用,掌握二次函数的交点式、配方法求二次函数的最值、相似三角形的判定、等腰直角三角形的判定、一元二次方程的求根公式,列出PM 的长与a 的函数关系式是解题的关键.(1)先求得C 的坐标,从而得到点B 的坐标,设抛物线的解析式为()()14y a x x =+−,将点C 的坐标代入求解即可;先求得抛物线的对称轴,从而得到点()3,4D −,然后可求得直线AD 的解析式=1y x −−;(2)求得45BAD ∠=︒,接下来证明PMD △为等腰直角三角形,所当PM 有最大值时三角形的周长最大,设()2,34P a a a −−,()1M a −−,则223PM aa =−++,然后利用配方可求得PM 的最大值,最后根据MPH△的周长(1PM=求解即可;(3)当90EGN ∠=︒时,如果OA EG OC GN = 或OA GNOC EN =时,则AOC ∽EGN △,设点G 的坐标为(),0a ,则()2,34N a a a −−,则1EG a =−,234NG aa =−++,然后根据题意列方程求解即可.【解析】(1)点A 的坐标为()1,0−,1OA ∴=.令0x =,则4y =−,()0,4C ∴−,4OC =,OC OB =Q , 4OB ∴=,()4,0B ∴,设抛物线的解析式为()()14y a x x =+−,将0x =,4y =−代入得:44a −=−,解得1a =,∴抛物线的解析式为234y x x =−−;1a ∴=,3b =−; 抛物线的对称轴为33212x −=−=⨯,()0,4C −,点D 和点C 关于抛物线的对称轴对称,()3,4D ∴−;设直线AD 的解析式为y kx b =+.将()1,0A −、()3,4D −代入得:034k b k b −+=⎧⎨+=−⎩,解得1k =−,1b =-,∴直线AD 的解析式=1y x −−;(2)直线AD 的解析式=1y x −−,∴直线AD 的一次项系数1k =−,45BAD ∴∠=︒. PM 平行于y 轴,90AEP ∴∠=︒,45PMH AME ∴∠=∠=︒.MPH ∴的周长(122PM MH PH PM MP PM PM =++=++=. 设()2,34P a a a −−,则(),1M a a −−, 则()22213423(1)4PM a a a a a a =−−−−−=−++=−−+.∴当1a =时,PM 有最大值,最大值为4.MPH ∴的周长的最大值(414=⨯=+(3)在直线EP 的右侧、x 轴下方的抛物线上存在点N ,过点N 作NG x ⊥轴交x 轴于点G ,使得以点E 、N 、G 为顶点的三角形与AOC 相似;理由如下:设点G 的坐标为(),0a ,则()2,34N a a a −−①如图2.1,若OA EG OC GN = 时,AOC ∽EGN △. 则 211344a a a −=−++,整理得:280a a +−=.得:a =负值舍去),∴点G为⎫⎪⎪⎝⎭; ②如图2.2,若OA GN OC EN =时,AOC ∽NGE ,则21434a a a −=−++,整理得:2411170a a −−=,得:a =负值舍去),∴点G为⎫⎪⎪⎝⎭, 综上所述,点G的坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭. 3.(2024·重庆·一模)如图,在平面直角坐标系中,抛物线2y ax bx =+x 轴交于点()1,0A −,()5,0B ,与y 轴交于点C ,连接BC ,AC .(1)求抛物线的表达式;(2)P 为直线BC 上方抛物线上一点,过点P 作PD BC ⊥于点D ,过点P 作PE x 轴交抛物线于点E,求4+PD PE 的最大值及此时点P 的坐标; (3)点C 关于抛物线对称轴对称的点为Q ,将抛物线沿射线CAy ',新抛物线y '与y 轴交于点M ,新抛物线y '的对称轴与x 轴交于点N ,连接AM ,MN ,点R 在直线BC 上,连接QR .当QR 与AMN 一边平行时,直接写出点R 的坐标,并写出其中一种符合条件的解答过程.【答案】(1)2y x x =++(2)当154t =时,PE的最大值,15,416P ⎛ ⎝⎭, (3)R点的坐标为⎛ ⎝⎭或6,⎛ ⎝⎭或(.【分析】(1)利用待定系数法求抛物线解析式即可;(2)先求得2y x =2x =,过点P 作PG x ⊥轴交BC 于点F ,利用勾股定理求得BC ==DPF OBC ∽,得PF DP BC OB =即PF PD=,从而得PF =,求出设直线BC的解析式后,设2,P t ⎛+ ⎝,则,F t ⎛+ ⎝,从而2PF =+,当点P在E 点右侧时()424PE t t t =−−=−,从而得2154t ⎫=−⎪⎝⎭,利用二次函数的性质即可求解;当点P 在E 点左侧时:442PE t t t =−−=−时,同理可求.然后比较4+PE 的最大值即可得出答案. (3)先求得1OA=,OC AC =设抛物线2y =H ⎛ ⎝⎭平移后为P ,过点P 作PW ⊥直线2x =,则AOC PWH ∽,得1OA OC AC WP HW PH ====,进而得平移后的抛物线2y x +'=,从而求得()1,0N,M ⎛ ⎝⎭,然后分QR AM ∥,QR MN ∥,QR AN ∥三种情况,利用二次函数的性质及一次函数的与二元一次方程的关系求解即可得解.【解析】(1)解:∵抛物线2y ax bx =+x 轴交于点()1,0A −,()5,0B 两点,代入坐标得:02550a b a b ⎧−=⎪⎨+=⎪⎩,解得:a b ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线的函数表达式为255y x x =−++(2)解:∵)2225555y x x x =−+=−−+,∴2y x =2x=,顶点为⎛ ⎝⎭ 过点P 作PG x ⊥轴交BC 于点F ,当0x =时,200y =∴(C ∵()5,0B ∴BC ==∵PG x ⊥轴,PD BC ⊥,x 轴y ⊥轴,∴909090CBO BFG DPF PFD PDF BOC ∠∠∠∠∠∠+=︒+=︒==︒,,∵PFD BFG ∠∠=∴DPF CBO ∠∠=∴DPF OBC ∽,∴PF DP BC OB =即PF PD =,∴PF PD =∴44+PD PE =PF +PE ,设直线BC :y kx b =+,把(C ,()5,0B 代入得:05k b b =+⎧⎪=,解得5k b ⎧=−⎪⎨⎪=⎩, ∴直线BC:y =设2,P t ⎛ ⎝,则,F t ⎛+ ⎝,∴22PF ⎛⎛=−+=+ ⎝⎝,∵2y x =2x =,PE x 轴,∴24,E t ⎛−+ ⎝当点P 在E 点右侧时:()424PE t t t =−−=−,当24PE t =−时:∴+PD PE =PF +()221524545416t t ⎛⎫=−+−=−−+ ⎪⎝⎭ ∴当154t =时,的最大值∴2151544⎛⎫= ⎪⎝⎭,∴154P ⎛ ⎝⎭; 当点P 在E 点左侧时:442PE t t t =−−=−时,∴+PD PE =PF +()225424t t ⎫=−=−⎪⎝⎭, ∴当54t =时,的最大值.2,55P t ⎛−+ ⎝∴25544⎛⎫ ⎪⎝⎭∴5,416P ⎛ ⎝⎭,∵> 综上所诉,当点P 在E 点右侧时:即154t =时,的最大值,154P ⎛ ⎝⎭, (3)解:设直线AC :y mx n =+,把()1,0A −,(C , ∴1OA =,OC =∴AC ==设抛物线2y x =H ⎛ ⎝⎭平移后为P , 过点P 作PW ⊥直线2x =,则AOC PWH ∽,∴1OA OC AC WP HW PH ====∴1PW =,HW=∴21,5P ⎛−⎝即1,5P ⎛ ⎝⎭,∴平移后的抛物线)22155555y x x x =−−+=−++', ∴()1,0N令0x =,y '=,∴M ⎛ ⎝⎭ 如图,当QR AM ∥时,设直线AM 的解析式为:y px q =+,把M ⎛ ⎝⎭,()1,0A −代入得:0p q q =−+⎧=解得p q ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线AM的解析式为:y =, ∴设直线QR的解析式为:y x n =∵(C ,Q 和C 关于2x =对称,∴(Q把(Q代入5y x n =+45n +,解得n =,∴直线QR的解析式为:y = 联立直线QR的解析式y =与直线BC:y x =+55y x y x ⎧=−⎪⎪⎨⎪=⎪⎩,解得3x y =⎧⎪⎨=⎪⎩,∴R ⎛ ⎝⎭ 同理可得:当QR MN ∥时,6,5R ⎛− ⎝⎭ 当QR AN ∥时,(R所有符合条件的R点的坐标为⎛ ⎝⎭或6,⎛ ⎝⎭或(. 【点睛】本题考查待定系数法求抛物线解析式,勾股定理,抛物线的性质,抛物线平移,一次函数的平移,相似三角形的判定及性质,图形与坐标,掌握待定系数法求抛物线解析式,抛物线的性质,抛物线平移,相似三角形的判定及性质,图形与坐标,利用辅助线画出准确图形是解题关键.题型2:最值问题4.(2024·安徽合肥·二模)在平面直角坐标系中,O 为坐标原点,抛物线23y ax bx =+−与x 轴交于()1,0A −,()3,0B 两点,与y 轴交于点C ,连接BC .(1)求a ,b 的值;(2)点M 为线段BC 上一动点(不与B ,C 重合),过点M 作MP x ⊥轴于点P ,交抛物线于点N . (ⅰ)如图1,当3PA PB=时,求线段MN 的长; (ⅱ)如图2,在抛物线上找一点Q ,连接AM ,QN ,QP ,使得PQN V 与APM △的面积相等,当线段NQ 的长度最小时,求点M 的横坐标m 的值.【答案】(1)1a =,2b =−(2)(ⅰ)2MN =;(ⅱ)m 的值为32或12【分析】本题考查诶粗函数的图象和性质,掌握待定系数法和利用函数性质求面积是解题的关键.(1)运用待定系数法求函数解析式即可;(2)(ⅰ)先计算BC 的解析式,然后设(),3M m m −,则3PM PB m ==−,1PA m =+,根据题意得到方程133m m +=−求出m 值,即可求出MN 的长;(ⅱ)作QR PN ⊥于点R ,由(ⅰ)可得1PA m =+,3PB PM m =−−,223PN m m =−++,然后分为点Q 在PN 的左侧和点Q 在PN 的右侧两种情况,根据勾股定理解题即可.【解析】(1)由题意得309330a b a b −−=⎧⎨+−=⎩,解得12a b =⎧⎨=−⎩;(2)(ⅰ)当0x =时,3y =−,∴()0,3C −,设直线BC 为3y kx =−,∵点()3,0B ,∴330k −=,解得1k =,∴直线BC 为3y x =−,设(),3M m m −,则3PM PB m ==−,1PA m =+, ∵3PA PB =, ∴133m m +=−,解得2m =,经检验2m =符合题意,当2m =时,222233y =−⨯−=−, ∴3PN =,31PM PB m ==−=,∴2MN =;(ⅱ)作QR PN ⊥于点R ,由(ⅰ)可得1PA m =+,3PB PM m =−−,223PN m m =−++,PQN V 的面积为()21232m m QR −++⋅,APM △的面积为()()1312m m −+,∴()()()211233122m m QR m m −++⋅=−+,解得1QR =;当点Q 在PN 的左侧时,如图1,Q 点的横坐标为1m QR m −=−,纵坐标为()()2212134m m m m −−⨯−−=−,∴R 点的坐标为()2,4m mm−,∵N 点坐标为()2,23m mm −−,∴32RN m =−,∴()22231NQ m =−+,∴当32m =时,NQ 取最小值;当点Q 在PN 的右侧时,如图2,Q 点的横坐标为1m QR m +=+,纵坐标为()()2212134m m m +−⨯+−=−,∴R 点的坐标为()2,4m m−,∵N 点的坐标为()2,23m mm −−,∴21RN m =−, ∴()222211NQ m =−+,∴当12m =时,NQ 取最小值.综上,m 的值为32或12.。
初中数学《二次函数综合压轴题》常考知识点含答案解析
2025年中考数学复习:二次函数综合压轴题常考热点试题汇编1.如图,已知抛物线y =-x 2+bx +c 与一直线相交于A -1,0 ,C 2,3 两点,与y 轴交于点N .其顶点为D .(1)求抛物线及直线AC 的函数表达式;(2)设点M 3,m ,求使MN +MD 的值最小时m 的值;(3)若点P 是抛物线上位于直线AC 上方的一个动点,过点P 作PQ ⊥x 轴交AC 于点Q ,求PQ 的最大值.【答案】(1)解:由抛物线y =-x 2+bx +c 过点A -1,0 ,C 2,3 得-1-b +c =0-4+2b +c =3,解得b =2c =3 ,∴抛物线为y =-x 2+2x +3;设直线为y =kx +n 过点A -1,0 ,C 2,3 ,得-k +n =02k +n =3,解得k =1n =1 ,∴直线AC 为y =x +1;(2)解:∵y =-x 2+2x +3=-x -1 2+4,∴D 1,4 ,令y =0,则0=-x 2+2x +3,解得x =-1或x =3,即抛物线与x 轴的另一个交点为3,0 ,作直线x =3,作点D 关于直线x =3的对称点D ,得D 坐标为5,4 ,如图,连接ND 交直线x =3于点M ,此时N 、M 、D 三点共线时,NM +MD 最小,即NM +MD 最小,设直线ND 的关系式为:y =ax +b ,把点N 0,3 和D 5,4 代入得b =35a +b =4 ,1∴直线NM 的函数关系式为:y =15x +3,当x =3时,y =185,∴m =185;(3)解:如图,∵PQ ⊥x 轴交AC 于点Q ,∴设Q x ,x +1 ,则P x ,-x 2+2x +3 ,∴PQ =-x 2+2x +3 -x +1 =-x 2+x +2=-x -12 2+94,∵-1<0,∴PQ 有最大值,最大值为94.2.如图,在平面直角坐标系中,已知点B 的坐标为-1,0 ,且OA =OC =5OB ,抛物线y =ax 2+bx +c a ≠0 图象经过A ,B ,C 三点.(1)求A ,C 两点的坐标;(2)求抛物线的解析式;(3)若点P 是直线AC 下方的抛物线上的一个动点,作PD ⊥AC 于点D ,当PD 的值最大时,求此时点P 的坐标及PD 的最大值.【答案】(1)解:∵点B 的坐标为-1,0 ,∴OB =1,∵OA =OC =5OB ,∴OA =OC =5,∴点A 5,0 ,C 0,-5 ;把点C0,-5代入得:-5a=-5,解得:a=1,故抛物线的表达式为:y=x+1x-5=x2-4x-5;(3)解:∵直线CA过点C0,-5,∴可设其函数表达式为:y=kx-5,将点A5,0代入得:5k-5=0解得:k=1,故直线CA的表达式为:y=x-5,过点P作y轴的平行线交CA于点H,∵OA=OC=5,∴∠OAC=∠OCA=45°,∵PH∥y轴,∴∠PHD=∠OCA=45°,∴PD=PH,∵PD⊥AC,∴PD=22PH,设点P x,x2-4x-5,则点H x,x-5,∴PD=22x-5-x2+4x+5=-22x2+522x=-22x-522+2528,∵-22<0,∴PD有最大值,当x=52时,其最大值为252 8,此时点P52,-354 .3.如图抛物线y=ax2+bx+c经过点A(-1,0),点C(0,3),且OB=OC.(1)求抛物线的解析式及其对称轴;(2)点D、E是直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长的最小(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBP A 的面积分为3:5两部分,求点P 的坐标.【答案】(1)解:∵OB =OC ,点C (0,3),∴点B (3,0),则抛物线的表达式为:y =a (x +1)(x -3)=a (x 2-2x -3)=ax 2-2ax -3a ,将点C (0,3)代入得,故-3a =3,解得:a =-1,故抛物线的表达式为:y =-x 2+2x +3,∵y =-x 2+2x +3=-x -1 2+4,函数的对称轴为:x =1;(2)四边形ACDE 的周长=AC +DE +CD +AE ,其中AC =AO 2+CO 2=12+32=10、DE =1是常数,故CD +AE 最小时,周长最小,取点C 关于直线x =1对称点C (2,3),则CD =C D ,如图所示,取点A -1,1 ,则A D =AE ,点C 与C 关于x =1对称,则C 2,3 ,∴A C =32+22=13,∴CD +AE =A D +DC ,则当A 、D 、C 三点共线时,CD +AE =A D +DC 最小,周长也最小,四边形ACDE 的周长的最小值=AC +DE +CD +AE=10+1+A D +DC=10+1+A C 10+1+13;(3)如图,设直线CP 交x 轴于点E ,直线CP 把四边形CBP A 的面积分为3:5两部分,又∵S △PCB :S △PCA =12EB ×(y C -y P ):12AE ×(y C -y P )=BE :AE ,则AE=52或32,即:点E的坐标为32,0或12,0,∵C0,3,设直线CP的表达式:y=kx+3,将点E的坐标代入直线CP的表达式:y=kx+3,解得:k=-6或-2,故直线CP的表达式为:y=-2x+3或y=-6x+3,联立y=-x2+2x+3y=-2x+3,y=-x2+2x+3y=-6x+3,解得:x=4或x=8(x=0舍去),故点P的坐标为(4,-5)或(8,-45).4.如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A(-1,0),B(3,0),与y轴交于点C,作直线BC,点P是抛物线在第四象限上一个动点(点P不与点B,C重合),连结PB,PC,以PB,PC为边作▱CPBD,点P的横坐标为m.(1)求抛物线对应的函数表达式;(2)当▱CPBD有两个顶点在x轴上时,则点P的坐标为;(3)当▱CPBD是菱形时,求m的值.(4)当m为何值时,▱CPBD的面积有最大值?【答案】(1)解:∵抛物线y=x2+bx+c与x轴交于点A(-1,0),B(3,0),∴抛物线的解析式为y=(x+1)(x-3),即y=x2-2x-3,(2)解:∵抛物线的解析式为y=x2-2x-3,令x=0,则y=-3,∴C(0,-3),∵▱CPBD有两个顶点在x轴上时,∴点D在x轴上,∵四边形CPBD是平行四边形,∴CP∥BD,∴点P和点C为抛物线上的对称点,∵抛物线y=x2-2x-3的对称轴为x=--22×1=1,C(0,-3),∴P(2,-3),故答案为:(2,-3);(3)解:设点P的坐标为(m,y),∵B(3,0),C(0,-3),∴BP2=(3-m)2+y2,CP2=m2+(m+3)2,∵▱CPBD 是菱形,∴BP =CP ,∴BP 2=CP 2,∴(3-m )2+y 2=m 2+(y +3)2,9-2m +m 2+y 2=m 2+y 2+6y +9,m +y =0,∵y =m 2-2m -3,∴m +m 2-2m -3=0,m 2-m -3=0,m =-(-1)±(-1)2-4×1×(-3)2×1=1±132,即m 1=1+132,m 2=1-132,∵点P 是抛物线在第四象限上一个动点(点P 不与点B ,C 重合),∴0<m <3,∴m =1+132;(4)解:如图所示,过点P 作PE ∥y 轴交直线BC 于点E ,设直线BC 的解析式为y =kx +b (k ≠0),将B (3,0),C (0,-3)代入得,3k +b =0b =-3 ,解得,k =1b =-3 ,∴直线BC 的解析式为y =x -3,设P (m ,m 2-2m -3),则E (m ,m -3),∴PE =-m 2+3m ,∴S △PBC =12×3(-m 2+3m ),∵S ▱CPBD =2S △PBC=2×12×3(-m 2+3m )=-3m 2+9m=-3m -32 2+274,∴当m =32时,平行四边形CPBD 的面积有最大值.5.二次函数y =ax 2+bx +4a ≠0 的图象经过点A -4,0 ,B 1,0 ,与y 轴交于点C ,点P 为第二象限内抛物线上一点,连接BP 、AC ,交于点Q ,过点P 作PD ⊥x 轴于点D .(1)求二次函数的表达式;(2)在对称轴上是否存在一个点M ,使MB +MC 的和最小,存在的话,请求出点M 的坐标.不存在的话请说明理由.(3)连接BC ,当∠DPB =2∠BCO 时,求直线BP 的表达式.【答案】(1)解:把A -4,0 ,B 1,0 代入y =ax 2+bx +4a ≠0 得:16a -4b +4=0a +b +4=0 ,解得a =-1b =-3 ,∴二次函数的表达式为y =-x 2-3x +4;(2)在对称轴上存在一个点M ,使MB +MC 的和最小,理由如下:连接AC 交对称轴于M ,则MB +MC 的和最小,如图:∵MA =MB ,∴MB +MC =MA +MC ,而C ,M ,A 共线,∴此时MB +MC 最小,在y =-x 2-3x +4中,令x =0得y =4,∴C 0,4 ,设直线AC 的表达式为y =rx +s ,由A -4,0 ,C 0,4 可得-4r +s =0s =4解得r =1s =4 ∴直线AC 解析式为y =x +4,由y =-x 2-3x +4=-x +32 2+254知抛物线对称轴为直线x =-32,在y =x +4中,令x =-32得y =52,∴M -32,52;(3)设BP 交y 轴于K ,如图:∵PD⊥x轴,∴∠DPB=∠OKB,∵∠DPB=2∠BCO,∴∠OKB=2∠BCO,∴∠CBK=∠BCO,∴BK=CK,设OK=m,则CK=BK=4-m,∵OB2+OK2=BK2,∴12+m2=4-m2,解得m=15 8,∴K0,158,设直线BP的表达式为y=px+q,由B1,0,K0,15 8得到p+q=0q=158解得p=-158 q=158∴直线BP的表达式为y=-158x+158.6.如图,抛物线y=14x2-32x交x轴正半轴于点A,M是抛物线对称轴上的一点,过点M作x轴的平行线交抛物线于点B,C(B在C左边),交y轴于点D,连结OM,已知OM=5.(1)求OD的长.(2)P是第四象限内抛物线上的一点,连结P A,AC,OC,PO.设点P的横坐标为m,四边形OCAP的面积为S.①求S关于m的函数表达式.②当∠POC=∠DOC时,求S的值.【答案】解:(1)抛物线对称轴为x=-b2a=3,∴DM=3,OA=6;∵OM =5,∴OD =OM 2-DM 2=52-32=4.(2)过点P 作PN ⊥OA 于N ,①由y =0得,0=14x 2-32x解得:x =0(舍去),x =6∴OA =6,∴S 四边形OCAF =S △OAC +S △OAP=12⋅OA ⋅OD +12⋅OA ⋅PN=12×6×4+12×6-14m 2-32m=12+3-14m 2+32m=-34m 2+92m +12所以,S 关于m 的表达式为:S =-34m 2+92m +12②MC =CD -DM =5=OM ,∴∠MOC =∠MCO .∵BC ∥x 轴,∴∠AOC =∠MCO =∠MOC .∵∠POC =∠DOC ,∴∠POC -∠AOC =∠DOC -∠MOC ,∴∠POE =∠DOM ,∴tan ∠POA =tan ∠DOM =34,∴-y p x P =34∴y P =-34x p ,代入抛物线解析式得-34x p =14x 2p -32x p解得x P =0(舍去)或x P =3,∴y P =-34x p =-34×3=-94∴S 四边形OCAF =S △OAC +S △OAP=12⋅OA ⋅OD +12⋅OA ⋅PN =18.757.如图,已知抛物线y =-x 2+bx +c 经过B -3,0 ,C 0,3 两点,与x 轴的另一个交点为A .(1)求抛物线的解析式;(2)在抛物线对称轴上找一点E ,使得AE +CE 的值最小,求点E 的坐标;(3)设点P 为x 轴上的一个动点,写出所有使△BPC 为等腰三角形的点P 的坐标,并把求其中一个点P 的坐标的过程写出来.【答案】(1)解:将点B -3,0 ,C 0,3 代入抛物线解析式得-9-3b +c =0c =3,解得b =-2c =3 ,∴抛物线的解析式为y =-x 2-2x +3;(2)解:∵抛物线解析式为y =-x 2-2x +3=-x +1 2+4,∴抛物线的对称轴为直线x =-1,∵点A 、B 关于对称轴对称,∴BE =AE ,∴AE +CE =BE +CE ,∴当B 、C 、E 三点共线时,BE +CE 最小,即此时AE +CE 最小,∴BC 与对称轴的交点即为点E ,如下图,设直线BC 解析式为y =mx +n ,∴-3m +n =0n =3,解得m =1n =3 ,∴直线BC 的解析式为y =x +3;当x =-1时,y =x +3=2,∴E -1,2 ;(3)解:∵B -3,0 ,C 0,3 ,∴OB =OC =3,∴BC =32+32=32,当B 为顶点时,则PB =BC =32,∴点P 的坐标为32-3,0 或-32-3,0 ;当C为顶点时,则PC=BC,∴点P与点B关于y轴对称,∴点P的坐标为3,0;当BC为底边时,则PC=PB,设点P的坐标为m,0,∴-3-m2=m2+32,解得m=0∴点P的坐标为0,0;综上,点P的坐标为0,0或3,0或32-3,0或-32-3,0.8.如图,在平面直角坐标系xOy中,将抛物线y=12x2平移,使平移后的抛物线仍经过原点O,新抛物线的顶点为M(点M在第四象限),对称轴与抛物线y=12x2交于点N,且MN=4.(1)求平移后抛物线的表达式;(2)如果点N平移后的对应点是点P,判断以点O、M、N、P为顶点的四边形的形状,并说明理由;(3)抛物线y=12x2上的点A平移后的对应点是点B,BC⊥MN,垂足为点C,如果△ABC是等腰三角形,求点A的坐标.【答案】(1)解:由题意得,平移后的抛物线表达式为:y=12x2+bx,则点M的坐标为:-b,-1 2 b2,当x=-b时,y=12x2=12b2,即点N-b,12b2,则MN=12b2+12b2=4,解得:b=2(舍去)或b=-2,则平移后的抛物线表达式为:y=12x2-2x;(2)解:四边形OMPN是正方形,根据题意可得O0,0,M2,-2,N2,2,P4,0,记MN与OP交于点G,则G2,0,∴OG=GP=2,MG=NP=2,MN=OP=4,NO=NP=22,∴四边形OMPN是平行四边形,∵MN=OP=4,∴四边形OMPN是矩形,∵NO=NP=22,∴四边形OMPN是正方形;(3)解:设A a ,12a 2 ,B a +2,12a 2-2 ,C 2,12a 2-2 ,可得AB =22,AC =a -2 2+22,BC =a 2,①AB =AC ,22=a -2 2+22,即a 2-4a =0,解得a 1=4,a 1=0(舍去0),∴A 4,8 ;②AB =BC ,22=a 2,解得a 1=22,a 1=-22,∴A 22,4 或A -22,4 ;③AC =BC ,a -2 2+22=a 2,解得a =2,∴A 2,2 ;综上,点A 的坐标是4,8 、22,4 、-22,4、2,2 .9.综合与探究如图,抛物线y =12x 2-32x -2与x 轴交于A ,B 两点,与y 轴交于点C .过点A 的直线与抛物线在第一象限交于点D 5,3 .(1)求A ,B ,C 三点的坐标,并直接写出直线AD 的函数表达式.(2)点P 是线段AB 上的一个动点,过点P 作x 轴的垂线,交抛物线于点E ,交直线AD 于点F .试探究是否存在一点P ,使线段EF 最大.若存在,请求出EF 的最大值;若不存在,请说明理由.(3)若点M 在抛物线上,点N 是直线AD 上一点,是否存在以点B ,D ,M ,N 为顶点的四边形是以BD 为边的平行四边形?若存在,请直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.【答案】(1)解:令y =0,则12x 2-32x -2=0,解得x =4或x =-1,∴A -1,0 ,B 4,0 ,令x =0,则y =-2,∴C 0,-2 ,设直线AD 的函数表达式为y =kx +b ,将A -1,0 ,D 5,3 的坐标代入得,-k +b =05k +b =3 ,解得:k =12b =12,∴y =12x +12;(2)解:存在,理由如下:设P a ,0 ,则E a ,12a 2-32a -2 ,F a ,12a +12,∵P 线段AB 上的一个动点,∴E 在x 轴下方,∴EF =12a +12-12a 2-32a -2 =-12a 2+2a +52=-12a -2 2+92,∵-12<0,∴当a =2时,EF 有最大值,最大值为92;(3)解:存在,点M 的坐标为0,-2 ,2+14,4+142 或2-14,4-142;设M m ,12m 2-32m -2 ,N n ,12n +12,∵B 4,0 ,D 5,3 ,①当平行四边形对角线为BN 和DM 时,则4+n 2=5+m 20+12n +122=3+12m 2-32m -22 ,解得:m =0n =1 或m =4n =5 (当m =4时,M 4,0 与B 点重合,不符合题意,舍去)∴点M 的坐标为0,-2 ;②当平行四边形对角线为BM 和DN 时,则4+m 2=5+n 20+12m 2-32m -22=3+12n +122 ,解得:m =2+14n =1+14 或m =2-14n =1-14 ,∴点M 的坐标为2+14,4+142 或2-14,4-142,综上所述,点M 的坐标为0,-2 ,2+14,4+142 或2-14,4-142 .10.如图,已知直线y =34x +3与x 轴交于点D ,与y 轴交于点C ,经过点C 的抛物线y =-14x 2+bx +c 与x 轴交于A -6,0 、B 两点,顶点为E .(1)求该抛物线的函数解析式;(2)连接DE ,求tan ∠CDE 的值;(3)设P 为抛物线上一动点,Q 为直线CD 上一动点,是否存在点P 与点Q ,使得以D 、E 、P 、Q 为顶点的四边形是平行四边形?如果存在,请求出点Q 的坐标;如果不存在,请说明理由.【答案】(1)解:对于y =34x +3,由x =0,得y =3,∴C 0,3 ,∵抛物线过点A -6,0 、C 0,3 ,-14×-6 2-6b +c =0c =3 ,解得:b =-1c =3 ,∴该抛物线为y =-14x 2-x +3;(2)解:由y =-14x 2-x +3=-14x +2 2+4得顶点E -2,4 ,过点E 分别作EF ⊥x 轴于F ,作EG ⊥y 轴于G ,连接EC ,则EF =4,DF =2,EG =2,CG =1,∴DF EF =12=CG EG,∵∠DFE =∠CGE =90°,∴△DFE ∽△CGE∴∠DEF =∠CEG ,EC DE =CG DF=12.∵∠CEG +∠CEF =90°,∠DEF +∠CEF =90°,∴∠DEC =90°,∴tan ∠CDE =EC DE =12;(3)设Q m ,34m +3 ①若DE 为平行四边形的一边,且点P 在点Q 的上方,∵D -4,0 ,E -2,4 ,Q m ,34m +3 ,∴P m +2,34m +7 ,代入抛物线得:34m +7=-14m +2 2-m +2 +3,解得m 1=-7,m 2=-4(舍去)∴Q -7,-94;②若DE 为平行四边形的一边,且点P 在点Q 的下方,∵D -4,0 ,E -2,4 ,Q m ,34m +3 ,∴P m -2,34m -1 ,同理得Q -3+892,15+3898或Q -3-892,15-3898 ,③若DE 为平行四边形的对角线∵∵D -4,0 ,E -2,4 ,Q m ,34m +3 ,∴P -m -6,-34m +1 代入抛物线得:-34m +1=-14-m -6 2--m -6 +3,解得m 1=-1,m 2=-4(舍去)∴Q -1,94,综上所述,点Q 的坐标为-7,-94 Q -3+892,15+3898 或Q -3-892,15-3898或-1,94 .11.如图,已知抛物钱经过点A (-1,0),B (3,0),C (0,3)三点.(1)求抛物线的解析式;(2)点M 是线段BC 上的点(不与B ,C 重合),过M 作MN ∥y 轴交抛物线于点N .若点M 的横坐标为m ,请用含m 的代数式表示MN 的长;(3)在(2)的条件下,连接NB 、NC ,当m 为何值时,△BNC 的面积最大,最大面积是多少?【答案】(1)解:根据题意,抛物钱与x 轴交于点A (-1,0),B (3,0)设抛物线解析式为y =a x +1 x -3将C (0,3)代入可得:-3a =3,解得a =-1即y =-x +1 x -3 =-x 2+2x +3;(2)设直线BC 的解析式为y =kx +b将B (3,0)、C (0,3)代入可得:3k +b =0b =3 ,解得k =-1b =3即y =-x +3,则M (m ,-m +3),N (m ,-m 2+2m +3),MN =-m 2+2m +3--m +3 =-m 2+3m ;(3)由题意可得:S △BNC =S △BNM +S △MNC =12×MN ×OB =32-m 2+3m =-32m 2+92m∵-32<0,开口向下,∴m =-92-2×32=32时,S △BNC 面积最大,∴最大面积为S △BNC =-32×32 2+92×32=278.12.如图,已知抛物线y =-x 2+bx +c 与x 轴交于A ,B 两点,与y 轴交于C 点,顶点为D ,其中A 1,0 ,C 0,3 .直线y =mx +n 经过B ,C 两点.(1)求直线BC 和抛物线的解析式;(2)在抛物线对称轴上找一点M ,使MA +MC 最小,直接写出点M 的坐标;(3)连接BD ,CD ,求△BCD 的面积.【答案】解:(1)将点A 1,0 ,C 0,3 代入y =-x 2+bx +c ,得-1+b +c =0,c =3,解这个方程组,得b =-2,c =3.∴抛物线的解析式为y =-x 2-2x +3.当y =0时,0=-x 2-2x +3=-x +3 x -1 ,解得x 1=-3,x 2=1,∴点B 的坐标为-3,0 ,∵直线y =mx +n 经过B ,C 两点,∴-3m +n =0n =3,解得m =1n =3 ,∴直线BC 解析式为y =x +3;∴当点M是直线BC和对称轴的交点时,MA+MC取得最小值,∵抛物线y=-x2-2x+3=-x+12+4,∴点D的坐标为-1,4,对称轴为直线x=1,将x=1代入直线y=x+3,得:y=-1+3=2,∴点M的坐标为-1,2;(3)∵点D-1,4,点M-1,2,∴DM=4-2=2,∵点B-3,0,∴BO=3,∴S△BCD=S△DMB+S△DMC=12DM⋅BO=12×2×3=3.13.抛物线y=ax2+bx-4(a≠0)与x轴交于点A-2,0和B4,0,与y轴交于点C,连接BC.点P是线段BC下方抛物线上的一个动点(不与点B,C重合),过点P作y轴的平行线交BC于M,交x轴于N,设点P的横坐标为t.(1)求该拋物线的解析式;(2)用关于t的代数式表示线段PM,求PM的最大值及此时点M的坐标;(3)过点C作CH⊥PN于点H,S△BMN=9S△CHM,①求点P的坐标;②连接CP,在y轴上是否存在点Q,使得△CPQ为直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.2∴4a-2b-4=016a+4b-4=0,即2a-b=24a+b=1,∴a=12 b=-1∴抛物线的解析式为:y=12x2-x-4;(2)解:令x=0得y=-4,∴C0,-4设直线BC的解析式为y=kx+b,∴b=-44k+b=0∴k=1b=-4 ,∴直线BC的解析式为:y=x-4 ∵P的横坐标为t,PM∥y轴,∴P t,12t2-t-4,M t,t-4,∴PM=t-4-12t2-t-4=-12t2+2t=-12t-22+2,∵-12<0,∴当t=2时,PM有最大值2,此时M2,-2;(3)解:①∵B4,0、C0,-4,∴OB=OC=4,∵∠BOC=90°,∴∠OBC=∠OCB=45°,∵PN∥y轴∴∠NMB=∠OCB=45°,∠MNB=∠COB=90°,∴∠NBM=∠NMB,∴BN=MN,∴S△BMN=12BN2,又∠CMH=∠NMB=45°,∠CHM=90°,∴△CHM是等腰直角三角形∴S△CHM=12CH2∵S△BMN=9S△CHM∴12BN 2=9×12CH 2∴BN =3CH ,∵BN +CH =OB =4,∴CH =1∴P 1,-92 ;②设Q 0,m ,则CQ 2=4+m 2,CP 2=1+-4+92 2=54,PQ 2=1+m +92 2,(Ⅰ)当∠CQP =90°时,54=4+m 2+1+m +92 2,解得:m =-4(舍去)或m =-92,∴Q 0,-92 ;(Ⅱ)当∠CPQ =90°时,54+1+m +92 2=4+m 2,解得:m =-132, ∴Q 0,-132(Ⅲ)当∠PCQ =90°时54+4+m 2=1+m +92 2解得:m =-4(舍去)综上所述,存在点Q 0,-132 或Q 0,-92使得△CPQ 为直角三角形.14.如图,抛物线y =ax 2+bx +c a >0 交x 轴于A 、B 两点(点A 在点B 左侧),交y 轴于点C .(1)若A(-1,0),B(3,0),C(0,-3),①求抛物线的解析式;②若点P为x轴上一点,点Q为抛物线上一点,△CPQ是以CQ为斜边的等腰直角三角形,求出点P的坐标;(2)若直线y=bx+t t>c与抛物线交于点M、N(点M在对称轴左侧),直线AM交y轴于点E,直线AN交y轴于点D.试说明点C是线段DE的中点.【答案】解:(1)①把A(-1,0),B(3,0),C(0,-3)分别代入y=ax2+bx+c,得a-b+c=09a+3b+c=0c=-3,解得a=1b=-2 c=-3 ,∴抛物线的解析式为y=x2-2x-3.②设P(m,0),过Q作QH⊥x轴于H,则∠PHQ=90°,∵△CPQ是以CQ为斜边的等腰直角三角形,∴PC=PQ,∠CPQ=90°,∴∠OPC+∠HPQ=90°,∠HQP+∠HPQ=90°,∴∠OPC=∠HQP,在△POC和△QHP中∠OPC=∠HQP∠COP=∠PHQCP=QP,∴△POC≌△QHP AAS,∴QH=OP=m,PH=OC=3.当点H在点P的右侧时,OH=m+3,∴Q(m+3,-m),把Q(m+3,-m)代入y=x2-2x-3,得-m=m+32-2m+3-3,解得m=0或-5,此时,P(0,0)或P(-5,0).当点H在点P的左侧时,H(m-3,0),∴Q (m -3,m ),代入y =x 2-2x -3,得m =m -3 2-2m -3 -3,整理,得m 2-9m +12=0,解得m =9±332,此时P 9+332,0 或9-332,0 综上,点P 的坐标为P (0,0)或P (-5,0)或P 9+332,0或9-332,0 (2)设直线AM 为y =kx +m ,直线AN 为y =k 1x +m 1,联立y =bx +t y =ax 2+bx +c ,得ax 2+c -t =0,∴x M +x N =0.联立y =kx +m y =ax 2+bx +c ,得ax 2+b -k x +c -m =0,∴x A x M =c -m a .同理,得x A x N =c -m 1a.∴x A x M +x A x N =x A x M +x N =0,∴c -m a +c -m 1a=0,∴c -m =m 1-c .∵D (0,m 1),E (0,m ),C (0,c ),∴CD =m 1-c ,CE =c -m ,∴CE =CD ,∴点C 为线段DE 的中点.15.如图,二次函数y =-x 2+c 的图象交x 轴于点A 、点B ,其中点B 的坐标为(2,0),点C 的坐标为(0,2),过点A 、C 的直线交二次函数的图象于点D .(1)求二次函数和直线AC的函数表达式;(2)连接DB,则△DAB的面积为;(3)在y轴上确定点Q,使得∠AQB=135°,点Q的坐标为;(4)点M是抛物线上一点,点N为平面上一点,是否存在这样的点N,使得以点A、点D、点M、点N为顶点的四边形是以AD为边的矩形?若存在,请你直接写出点N的坐标;若不存在,请说明理由.【答案】解:(1)∵二次函数y=-x2+c的图象过点B(2,0),∴0=-22+c,解得c=4∴二次函数解析式为y=-x2+4∴A点坐标为(-2,0)设直线AC的解析式为y=kx+b∴0=-2k+b2=b,解得:k=1b=2∴直线AC的解析式为y=x+2(2)∵直线AC:y=x+2与二次函数交于点A、D∴联立y=-x2+4y=x+2,解得x=-2y=0或x=1y=3∴D点坐标为:(1,3)∵AB=4∴S△DAB=12AB×y D =12×3×4=6(3)∵C(0,2),A点坐标为(-2,0)∴∠CAB=45°当Q在正半轴时,∵∠AQB=135°,QA=QB∴∠QAO=22.5°=12∠CAO∴AQ平分∠CAO过Q作PQ⊥AC于P设OQ =x ,则OQ =PQ =x ,CQ =2PQ =2x∴OC =OQ +CQ =2x +x =2解得x =22-2∴Q 点坐标为(0,22-2)当Q 在与轴负半轴时,根据对称性可得Q 点坐标为(0,2-22)∴Q 点坐标为(0,2-22)或(0,22-2)(4)当AD 是矩形边长时过A 作AM ⊥AD 交抛物线于M∵直线AC 的解析式为y =x +2∴设直线AM 的解析式为y =-x +b 1代入A 点(-2,0)得b 1=-2∴直线AM 的解析式为y =-x -2∴联立y =-x 2+4y =-x -2,解得x =-2y =0 或x =3y =-5 ∴M 点坐标为(3,-5)∵此时MN 平行且等于AD∴由A (-2,0)平移到D (1,3)与由M (3,-5)平移到N 的平移方式一致∴N 点坐标为(6,-2)同理::过D 作DM ⊥AD 交抛物线于M ,此时M (0,4),N (-3,1)综上所述,存在,N 点坐标为(6,-2)或(-3,1)16.如图,在平面直角坐标系中,抛物线y =-x 2+bx +c 与x 轴交于A ,B 两点,与y 轴交于点C ,顶点为D(2,1),抛物线的对称轴交直线BC 于点E.(1)求抛物线y =-x 2+bx +c 的表达式;(2)把上述抛物线沿它的对称轴向下平移,平移的距离为h (h >0),在平移过程中,该抛物线与直线BC 始终有交点,求h 的最大值;(3)M 是(1)中抛物线上一点,N 是直线BC 上一点.是否存在以点D ,E ,M ,N 为顶点的四边形是平行四边形?若存在,求出点N 的坐标;若不存在,请说明理由.【答案】(1)解:由D (2,1)可知,-b 2×-1 =24×-1 c -b 24×-1 =1,解得:b =4c =-3 ,∴y =-x 2+4x -3.(2)分别令y =-x 2+4x -3中,x =0,y =0得,B (3,0),C (0,-3);设BC 的表达式为:y =kx +n k ≠0 ,将B (3,0),C (0,-3)代入y =kx +n 得,0=3k +n -3=0+n 解得:k =1n =-3 ;∴BC 的表达式为:y =x -3;抛物线平移后的表达式为:y =-x 2+4x -3-h ,根据题意得,y =-x 2+4x -3-h y =x -3,即x 2-3x +h =0,∵该抛物线与直线BC 始终有交点,∴-3 2-4×1×h ≥0,∴h ≤94,∴h 的最大值为94.(3)存在,理由如下:将x =2代入y =x -3中得E 2,-1 ,①当DE 为平行四边形的一条边时,∵四边形DEMN 是平行四边形,∴DE ∥MN ,DE =MN ,∵DE ∥y 轴,∴MN ∥y 轴,∴设M m,-m2+4m-3,N m,m-3,当-m2+4m-3-m-3=2时,解得:m1=1,m2=2(舍去),∴N1,-2,当m-3--m2+4m-3=2时,解得:m1=3+172,m2=3-172,∴N3+172,17-3 2或N3-172,-17+32;②当DE为平行四边形的对角线时,设M p,-p2+4p-3,N q,q-3,∵D、E的中点坐标为:(2,0),∴M、N的中点坐标为:(2,0),∴p+q2=2-p2+4p-3+q-32=0 ,解得:p1=1 q1=3,p2=2q2=2(舍去),∴此时点N的坐标为(3,0);综上分析可知,点N的坐标为:1,-2或3+172,17-32或3-172,-17+32或(3,0).。
专题07 二次函数的最值问题-九年级数学上册(解析版)
专题07二次函数的最值问题考点1:定轴动区间;考点2:动轴定区间。
1.在二次函数y =x 2﹣2x ﹣3中,当0≤x ≤3时,y 的最大值和最小值分别是()A .0,﹣4B .0,﹣3C .﹣3,﹣4D .0,0解:抛物线的对称轴是直线x =1,则当x =1时,y =1﹣2﹣3=﹣4,是最小值;当x =3时,y =9﹣6﹣3=0是最大值.答案:A .2.(易错题)已知二次函数y =a (x ﹣1)2﹣a (a ≠0),当﹣1≤x ≤4时,y 的最小值为﹣4,则a 的值为()A .12或4B .43或−12C .−43或4D .−12或4解:y =a (x ﹣1)2﹣a 的对称轴为直线x =1,顶点坐标为(1,﹣a ),当a >0时,在﹣1≤x ≤4,函数有最小值﹣a ,∵y 的最小值为﹣4,∴﹣a =﹣4,∴a =4;当a <0时,在﹣1≤x ≤4,当x =4时,函数有最小值,∴9a ﹣a =﹣4,解得a =−12;综上所述:a 的值为4或−12,答案:D.3.(易错题)当a ≤x ≤a +1时,函数y =x 2﹣2x +1的最小值为1,则a 的值为()A .﹣1B .2C .0或2D .﹣1或2解:当y =1时,有x 2﹣2x +1=1,解得:x 1=0,x 2=2.题型01定轴动区间∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,答案:D.4.已知函数y=﹣3(x﹣2)2+4,当x=2时,函数取得最大值为4.解:∵y=﹣3(x﹣2)2+4,∴抛物线的顶点坐标为(2,4),又∵a=﹣3<0,∴抛物线的开口向下,顶点是它的最高点,∴x=2时,函数有最大值为4.答案:2,4.5.若函数y=x2﹣6x+5,当2≤x≤6时的最大值是M,最小值是m,则M﹣m=9.解:原式可化为y=(x﹣3)2﹣4,可知函数顶点坐标为(3,﹣4),当y=0时,x2﹣6x+5=0,即(x﹣1)(x﹣5)=0,解得x1=1,x2=5.如图:m=﹣4,当x=6时,y=36﹣36+5=5,即M=5.则M﹣m=5﹣(﹣4)=9.故答案为9.6.已知二次函数y=ax2﹣4ax+3a(1)若a=1,则函数y的最小值为﹣1.(2)若当1≤x≤4时,y的最大值是4,则a的值为43或﹣4.解:(1)当a=1时,y=x2﹣4x+3=(x﹣2)2﹣1∵a=1>0∴抛物线的开口向上,当x=2时,函数y的最小值为﹣1.(2)∵二次函数y=ax2﹣4ax+3a=a(x﹣2)2﹣a∴抛物线的对称轴是直线x=2,∵1≤x≤4,∴当a>0时,抛物线开口向上,在对称轴直线x=2右侧y随x的增大而增大,当x=4时y有最大值,a×(4﹣2)2﹣a=4,解得a=43,当a<0时,抛物线开口向下,x=2时y有最大值,a×(2﹣2)2﹣a=4,解得a=﹣4.答案:(1)﹣1;(2)43或−4.7.(易错题)设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于任何一个二次函数,它在给定的闭区间上都有最小值.(1)函数y=﹣x2+4x﹣2在区间[0,5]上的最小值是﹣7(2)求函数=(+12)2+34在区间[0,32]上的最小值.(3)求函数y=x2﹣4x﹣4在区间[t﹣2,t﹣1](t为任意实数)上的最小值y min的解析式.解:(1)y=﹣x2+4x﹣2其对称轴为直线为x=2,顶点坐标为(2,2),函数图象开口向下.如图1所示:当x=5时,函数有最小值,最小值为﹣7.答案:﹣7.(2)=(+12)2+34,其对称轴为直线=−12,顶点坐标(−12,34),且图象开口向上.其顶点横坐标不在区间[0,32]内,如图2所示:当x=0时,函数y有最小值m=1.(3)将二次函数配方得:y=x2﹣4x﹣4=(x﹣2)2﹣8其对称轴为直线:x=2,顶点坐标为(2,﹣8),图象开口向上若顶点横坐标在区间[t﹣2,t﹣1]左侧,则2<t﹣2,即t>4.当x=t﹣2时,函数取得最小值:m=(−4)2−8=2−8+8若顶点横坐标在区间[t﹣2,t﹣1]上,则t﹣2≤2≤t﹣1,即3≤t≤4.当x=2时,函数取得最小值:y min=﹣8若顶点横坐标在区间[t﹣2,t﹣1]右侧,则t﹣1<2,即t<3.当x=t﹣1时,函数取得最小值:m=(−3)2−8=2−6+1综上讨论,得m=2−8+8(>4)−8(3≤≤4)2−6+1(<3).8.(易错题)已知二次函数y =﹣x 2+6x ﹣5.(1)求二次函数图象的顶点坐标;(2)当1≤x ≤4时,函数的最大值和最小值分别为多少?(3)当t ≤x ≤t +3时,函数的最大值为m ,最小值为n ,若m ﹣n =3,求t 的值.解:(1)∵y =﹣x 2+6x ﹣5=﹣(x ﹣3)2+4,∴顶点坐标为(3,4);(2)∵a =﹣1<0,∴抛物线开口向下,∵顶点坐标为(3,4),∴当x =3时,y 最大值=4,∵当1≤x ≤3时,y 随着x 的增大而增大,∴当x =1时,y 最小值=0,∵当3<x ≤4时,y 随着x 的增大而减小,∴当x =4时,y 最小值=3.∴当1≤x ≤4时,函数的最大值为4,最小值为0;(3)当t ≤x ≤t +3时,对t 进行分类讨论,①当t +3<3时,即t <0,y 随着x 的增大而增大,当x =t +3时,m =﹣(t +3)2+6(t +3)﹣5=﹣t 2+4,当x =t 时,n =﹣t 2+6t ﹣5,∴m ﹣n =﹣t 2+4﹣(﹣t 2+6t ﹣5)=﹣6t +9,∴﹣6t +9=3,解得t =1(不合题意,舍去),②当0≤t <3时,顶点的横坐标在取值范围内,∴m =4,i )当0≤t ≤32时,在x =t 时,n =﹣t 2+6t ﹣5,∴m ﹣n =4﹣(﹣t 2+6t ﹣5)=t 2﹣6t +9,∴t2﹣6t+9=3,解得t1=3−3,t2=3+3(不合题意,舍去);ii)当32<t<3时,在x=t+3时,n=﹣t2+4,∴m﹣n=4﹣(﹣t2+4)=t2,∴t2=3,解得t1=3,t2=−3(不合题意,舍去),③当t≥3时,y随着x的增大而减小,当x=t时,m=﹣t2+6t﹣5,当x=t+3时,n=﹣(t+3)2+6(t+3)﹣5=﹣t2+4,.m﹣n=﹣t2+6t﹣5﹣(﹣t2+4)=6t﹣9,∴6t﹣9=3,解得t=2(不合题意,舍去),综上所述,t=3−3或3.9.已知二次函数y=ax2+4x+a﹣1的最小值为2,则a的值为()A.3B.﹣1C.4D.4或﹣1解:∵二次函数y=ax2+4x+a﹣1有最小值2,∴a>0,y最小值=4a−24=4oK1)−424=2,整理,得a2﹣3a﹣4=0,解得a=﹣1或4,∵a>0,∴a=4.答案:C.10.设二次函数y=a(x﹣m)(x﹣m﹣k)(a>0,m,k是实数),则()A.当k=2时,函数y的最小值为﹣aB.当k=2时,函数y的最小值为﹣2aC.当k=4时,函数y的最小值为﹣aD.当k=4时,函数y的最小值为﹣2a题型02动轴定区间解:令y=0,则(x﹣m)(x﹣m﹣k)=0,∴x1=m,x2=m+k,∴二次函数y=a(x﹣m)(x﹣m﹣k)与x轴的交点坐标是(m,0),(m+k,0),∴二次函数的对称轴是:=1+22=rr2=2r2,∵a>0,∴y有最小值,当=2r2时y最小,即=o2r2−p(2r2−−p=−24,当k=2时,函数y的最小值为=−224=−;当k=4时,函数y的最小值为=−424=−4,答案:A.11.在平面直角坐标系中,二次函数y=x2+mx+m2﹣m(m为常数)的图象经过点(0,6),其对称轴在y轴左侧,则该二次函数有()A.最大值5B.最大值154C.最小值5D.最小值154解:由题意可得:6=m2﹣m,解得:m1=3,m2=﹣2,∵二次函数y=x2+mx+m2﹣m,对称轴在y轴左侧,∴m>0,∴m=3,∴y=x2+3x+6,∴二次函数有最小值为:4a−24=4×1×6−324×1=154.答案:D.12.已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是()A.32B.2C.32或2D.−32或2解:y=x2﹣2mx=(x﹣m)2﹣m2,①若m<﹣1,当x=﹣1时,y=1+2m=﹣2,解得:m=−32;②若m>2,当x=2时,y=4﹣4m=﹣2,解得:m=32<2(舍);③若﹣1≤m≤2,当x=m时,y=﹣m2=﹣2,解得:m=2或m=−2<−1(舍),∴m的值为−32或2,答案:D.13.(易错题)当﹣1≤x≤2时,二次函数y=x2+2kx+1的最小值是﹣1,则k的值可能是32或−解:对称轴:x=−22=−k,分三种情况讨论:①当﹣k<﹣1时,即k>1时,此时﹣1≤x≤2在对称轴的右侧,y随x的增大而增大,=(﹣1)2+2k×(﹣1)+1=﹣1,∴当x=﹣1时,y有最小值,y小k=32,②当﹣1≤﹣k≤2时,即﹣2≤k≤1,对称轴在﹣1≤x≤2内,此时函数在﹣1≤x≤﹣k,y随x的增大而减小,在﹣k≤x≤2时,y随x的增大而增大,=(﹣k)2+2k•(﹣k)+1=﹣1,∴当x=﹣k时,y有最小值,y小k2﹣2k2+2=0,k2﹣2=0,k=±2,∵﹣2≤k≤1,∴k=−2,③当﹣k>2时,即k<﹣2,此时﹣1≤x≤2在对称轴的左侧,y随x的增大而减小,∴当x=2时,y有最小值,y=22+2k×2+1=﹣1,小k=−32(舍),综上所述,k的值可能是32或−2,答案:32或−2.14.已知y=﹣x(x+3﹣a)是关于x的二次函数,当x的取值范围在1≤x≤5时,若y在x=1时取得最大值,则实数a的取值范围是a≤5.解:第一种情况:当二次函数的对称轴不在1≤x≤5内时,此时,对称轴一定在1≤x≤5的左边,函数方能在这个区域取得最大值,x=K32<1,即a<5,第二种情况:当对称轴在1≤x≤5内时,对称轴一定是在顶点处取得最大值,即对称轴为x=1,∴K32=1,即a=5综合上所述a≤5.答案:a≤5.15.(易错题)已知二次函数y=x2﹣2hx+h,当自变量x的取值在﹣1≤x≤1的范围中时,函数有最小值n,则n的最大值是14.解:二次函数y=x2﹣2hx+h图象的对称轴为直线x=h.当h≤﹣1时,x=﹣1时y取最小值,此时n=1+2h+h=1+3h≤﹣2;当﹣1<h<1时,x=h时y取最小值,此时n=h2﹣2h2+h=﹣h2+h=﹣(h−12)2+14≤14;当h≥1时,x=1时y取最小值,此时n=1﹣2h+h=1﹣h≤0.综上所述:n的最大值为14.答案:14.16.(易错题)已知二次函数y=x2﹣2x+2在t≤x≤t+1时的最小值是t,则t的值为1或2.解:y=x2﹣2x+2=(x﹣1)2+1,分类讨论:(1)若顶点横坐标在范围t≤x≤t+1右侧时,有t+1<1,即t<0,此时y随x的增大而减小,=t=(t+1)2﹣2(t+1)+2,∴当x=t+1时,函数取得最小值,y最小值方程无解.(2)若顶点横坐标在范围t≤x≤t+1内时,即有t≤1≤t+1,=1,解这个不等式,即0≤t≤1.此时当x=1时,函数取得最小值,y最小值∴t=1.(3)若顶点横坐标在范围t≤x≤t+1左侧时,即t>1时,y随x的增大而增大,=t=t2﹣2t+2,解得t=2或1(舍弃),∵当x=t时,函数取得最小值,y最小值∴t=1或2.答案:1或2.17.已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.解:(1)把(0,﹣3),(﹣6,﹣3)代入y=﹣x2+bx+c,得b=﹣6,c=﹣3.(2)∵y=﹣x2﹣6x﹣3=﹣(x+3)2+6,又∵﹣4≤x≤0,∴当x=﹣3时,y有最大值为6.(3)①当﹣3<m≤0时,当x=0时,y有最小值为﹣3,当x=m时,y有最大值为﹣m2﹣6m﹣3,∴﹣m2﹣6m﹣3+(﹣3)=2,∴m=﹣2或m=﹣4(舍去).②当m≤﹣3时,当x=﹣3时y有最大值为6,∵y的最大值与最小值之和为2,∴y最小值为﹣4,∴﹣(m+3)2+6=﹣4,∴m=−3−10或m=−3+10(舍去).综上所述,m=﹣2或−3−10.18.(易错题)已知二次函数y=x2+bx+c(b,c为常数).(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.解:(Ⅰ)当b=2,c=﹣3时,二次函数的解析式为y=x2+2x﹣3=(x+1)2﹣4,∴当x=﹣1时,二次函数取得最小值﹣4;(Ⅱ)当c=5时,二次函数的解析式为y=x2+bx+5,由题意得,x2+bx+5=1有两个相等是实数根,∴△=b2﹣16=0,解得,b1=4,b2=﹣4,∴二次函数的解析式y=x2+4x+5,y=x2﹣4x+5;(Ⅲ)当c=b2时,二次函数解析式为y=x2+bx+b2,图象开口向上,对称轴为直线x=−2,①当−2<b,即b>0时,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而增大,∴当x=b时,y=b2+b•b+b2=3b2为最小值,∴3b2=21,解得,b1=−7(舍去),b2=7;②当b≤−2≤b+3时,即﹣2≤b≤0,∴x=−2,y=34b2为最小值,∴34b2=21,解得,b1=﹣27(舍去),b2=27(舍去);③当−2>b+3,即b<﹣2,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而减小,故当x=b+3时,y=(b+3)2+b(b+3)+b2=3b2+9b+9为最小值,∴3b2+9b+9=21.解得,b1=1(舍去),b2=﹣4;∴b=7时,解析式为:y=x2+7x+7b=﹣4时,解析式为:y=x2﹣4x+16.综上可得,此时二次函数的解析式为y=x2+7x+7或y=x2﹣4x+16.。
二次函数与几何交点问题(解析版)-2024年中考数学压轴题重难点突破
二次函数与几何交点问题1(2023·黑龙江大庆·中考真题)如图,二次函数y =ax 2+bx +c 的图象与x 轴交于A ,B 两点,且自变量x 的部分取值与对应函数值y 如下表:x ⋯-101234⋯y⋯-3-4-35⋯备用图(1)求二次函数y =ax 2+bx +c 的表达式;(3)若将线段AB 先向上平移3个单位长度,再向右平移1个单位长度,得到的线段与二次函数y =1t(ax 2+bx +c )的图象只有一个交点,其中t 为常数,请直接写出t 的取值范围.【详解】(1)解:由表格可知,二次函数y =ax 2+bx +c 的图象经过点-1,0 ,0,-3 ,1,-4 ,代入y =ax 2+bx +c 得到a -b +c =0c =-3a +b +c =-4 ,解得a =1b =-2c =-3,∴二次函数y =ax 2+bx +c 的表达式为y =x 2-2x -3;(3)由表格可知点A -1,0 、B 3,0 ,将线段AB 先向上平移3个单位长度,再向右平移1个单位长度,得到A 0,3 、B 4,3 ,由题意可得,二次函数y =1t (x 2-2x -3)=1t x -1 2-4t ,与线段A B 只有一个交点,当t >0时,抛物线y =1t (x 2-2x -3)=1t x -1 2-4t 开口向上,顶点1,-4t在A B 下方,当x =4时,1t(x 2-2x -3)≥y B ,即-3t<3,解得t ≤53,∴t ≤53,当x =0时,1t (x 2-2x -3)<y A,即-3t<3,解得t >-1,∴0<t≤53,此时满足题意,当t<0时,抛物线y=1t(x2-2x-3)=1tx-12-4t开口向下,顶点1,-4t在A B 上时,-4t=3,解得t=-4 3,此时满足题意,将点A 0,3代入y=1t(x2-2x-3)得到3=-3t,解得t=-1,将点B 4,3代入y=1t(x2-2x-3)得到3=1t(16-8-3),解得t=53,∴-1<t<0,此时满足题意,综上可知,-1<t≤53且t≠0或t=-43.2(2023·四川德阳·中考真题)已知:在平面直角坐标系中,抛物线与x轴交于点A(-4,0),B(2,0),与y 轴交于点C(0,-4).(1)求抛物线的解析式;(2)如图1,如果把抛物线x轴下方的部分沿x轴翻折180°,抛物线的其余部分保持不变,得到一个新图象.当平面内的直线y=kx+6与新图象有三个公共点时,求k的值;【详解】(1)设抛物线的解析式为y=ax2+bx+c,∵C(0,-4),∴c=-4,y=ax2+bx-4,把A(-4,0),B(2,0)代入y=ax2+bx+c,得:16a-4b-4=0 4a+2b-4=0,解得:a=12 b=1,∴抛物线的解析式为y=12x2+x-4(2)∵直线表达式y=kx+6,∴直线经过定点0,6,∴将过点0,6的直线旋转观察和新图象的公共点情况∵把抛物线x轴下方的部分沿x轴翻折180°,抛物线的解析式为y=12x2+x-4,∴新图象表达式为:-4<x<2时,y=-12x2-x+4;x≤-4或x≥2时,y=12x2+x-4,如下图当直线y=kx+6与翻折上去的部分抛物线相切时,和新图象有三个公共点,联立y=-12x2-x+4y=kx+6,得:-12x2-x+4=kx+6,整理得:x2+21+kx+4=0Δ=0,41+k2-16=0,41+k2=16,1+k=±2,k=±2-1,k1=2-1=1时,即如上图所示,符合题意,k2=-2-1=-3时,如下图所示,经过点B,不符合题意,故舍去,如下图,当直线y=kx+6经过点A时,和新图象有三个公共点,把A (-4,0)代入y =kx +6,得:-4k +6=0,解得:k =32,综上所述,当平面内的直线y =kx +6与新图象有三个公共点时,k 的值为1或323(2023·山东济南·中考真题)在平面直角坐标系xOy 中,正方形ABCD 的顶点A ,B 在x 轴上,C 2,3 ,D -1,3 .抛物线y =ax 2-2ax +c a <0 与x 轴交于点E -2,0 和点F .(1)如图1,若抛物线过点C ,求抛物线的表达式和点F 的坐标;(2)如图2,在(1)的条件下,连接CF ,作直线CE ,平移线段CF ,使点C 的对应点P 落在直线CE 上,点F 的对应点Q 落在抛物线上,求点Q 的坐标;(3)若抛物线y =ax 2-2ax +c a <0 与正方形ABCD 恰有两个交点,求a 的取值范围.【答案】(1)y =-38x 2+34x +3,F 4,0 ;(2)-4,-6 ;(3)-13<a <0或-35<a <-38【分析】(1)将点C 2,3 ,E -2,0 代入抛物线y =ax 2-2ax +c ,利用待定系数法求出抛物线的表达式,再令y =0,求出x 值,即可得到点F 的坐标;(2)设直线CE 的表达式为y =kx +b ,将点C 2,3 ,E -2,0 代入解析式,利用待定系数法求出直线CE 的表达式为:y =34x +32,设点Q t ,-38t 2+34t +3 ,根据平移的性质,得到点P t -2,-38t 2+34t +6 ,将点P 代入y =34x +32,求出t 的值,即可得到点Q 的坐标;(3)根据正方形和点C 的坐标,得出BC =3,OB =2,OA =1,将E -2,0 代入y =ax 2-2ax +c ,求得y =ax 2-2ax -8a =a x -1 2-9a ,进而得到顶点坐标1,-9a ,分两种情况讨论:①当抛物线顶点在正方形内部时,②当抛物线与直线BC 交点在点C 上方,且与直线AD 交点在点D 下方时,分别列出不等式组求解,即可得到答案.【详解】(1)解:∵抛物线y =ax 2-2ax +c 过点C 2,3 ,E -2,0 ∴4a -4a +c =34a +4a +c =0 ,解得:a =-38c =3 ,∴抛物线表达式为y =-38x 2+34x +3,当y =0时,-38x 2+34x +3=0,解得:x 1=-2(舍去),x 2=4,∴F 4,0 ;(2)解:设直线CE 的表达式为y =kx +b ,∵直线过点C 2,3 ,E -2,0 ,∴2k +b =3-2k +b =0 ,解得:k =34b =32,∴直线CE 的表达式为:y =34x +32,∵点Q 在抛物线y =-38x 2+34x +3上,∴设点Q t ,-38t 2+34t +3 ,∵C 2,3 ,F 4,0 ,且PQ 由CF 平移得到,∴点Q 向左平移2个单位,向上平移3个单位得到点P t -2,-38t 2+34t +6 ,∵点P 在直线CE 上,∴将P t -2,-38t 2+34t +6 代入y =34x +32,∴34t -2 +32=-38t 2+34t +6,整理得:t 2=16,解得:t 1=-4,t 2=4(舍去),当x =-4时,y =-38×-4 2+34×-4 +3=-6∴Q 点坐标为-4,-6 ;(3)解:∵四边形ABCD 是正方形,C 2,3 ,∴BC =AB =3,OB =2,∴OA =AB -OB =1,∴点A 和点D 的横坐标为-1,点B 和点C 的横坐标为2,将E -2,0 代入y =ax 2-2ax +c ,得:c =-8a ,∴y =ax 2-2ax -8a =a x -1 2-9a ,∴顶点坐标为1,-9a ,①如图,当抛物线顶点在正方形内部时,与正方形有两个交点,∴-9a <3-9a >0,解得:-13<a <0;②如图,当抛物线与直线BC 交点在点C 上方,且与直线AD 交点在点D 下方时,与正方形有两个交点,∴a ×22-2a ×2-8a >3a ×-1 2-2a ×-1 -8a <3 ,解得:-35<a <-38,综上所述,a 的取值范围为-13<a <0或-35<a <-38.4(2023·山东日照·中考真题)在平面直角坐标系xOy 内,抛物线y =-ax 2+5ax +2a >0 交y 轴于点C ,过点C 作x 轴的平行线交该抛物线于点D .(1)求点C ,D 的坐标;(3)坐标平面内有两点E 1a,a +1,F 5,a +1 ,以线段EF 为边向上作正方形EFGH .①若a =1,求正方形EFGH 的边与抛物线的所有交点坐标;②当正方形EFGH 的边与该抛物线有且仅有两个交点,且这两个交点到x 轴的距离之差为52时,求a 的值.【分析】(1)先求出C 0,2 ,再求出抛物线对称轴,根据题意可知C 、D 关于抛物线对称轴对称,据此求出点D 的坐标即可;(3)分图3-1,图3-2,图3-3三种情况,利用到x轴的距离之差即为纵坐标之差结合正方形的性质列出方程求解即可.【详解】(1)解:在y=-ax2+5ax+2a>0中,当x=0时,y=2,∴C0,2,∵抛物线解析式为y=-ax2+5ax+2a>0,∴抛物线对称轴为直线x=-5a-2a =52,∵过点C作x轴的平行线交该抛物线于点D,∴C、D关于抛物线对称轴对称,∴D5,2;(3)解:①当a=1时,抛物线解析式为y=-x2+5x+2,E1,2,F5,2,∴EH=EF=FG=4,∴H1,6,G5,6,当x=1时,y=-12+5×1+2=6,∴抛物线y=-x2+5x+2恰好经过H1,6;∵抛物线对称轴为直线x=52,由对称性可知抛物线经过4,6,∴点4,6时抛物线与正方形的一个交点,又∵点F与点D重合,∴抛物线也经过点F5,2;综上所述,正方形EFGH的边与抛物线的所有交点坐标为1,6,4,6,5,2;②如图3-1所示,当抛物线与GH、GF分别交于T、D,∵当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为52,∴点T的纵坐标为2+2.5=4.5,∴5-1a+a+1=4.5,∴a2+1.5a-1=0,解得a=-2(舍去)或a=0.5;如图3-2所示,当抛物线与GH 、EF 分别交于T 、S ,∵当正方形EFGH 的边与该抛物线有且仅有两个交点,且这两个交点到x 轴的距离之差为52,∴5-1a=2.5,解得a =0.4(舍去,因为此时点F 在点D 下方)如图3-3所示,当抛物线与EH 、EF 分别交于T 、S ,∵当正方形EFGH 的边与该抛物线有且仅有两个交点,且这两个交点到x 轴的距离之差为52,∴-a ⋅1a 2+5a ⋅1a+2=a +1+2.5,∴7-1a=a +3.5,∴a 2-3.5a +1=0,解得a =7+334或a =7-334(舍去);当x =52时,y =-ax 2+5ax +2=6.25a +2,当a =7+334时,6.25a +2>7-1a ,∴a =7+334不符合题意;综上所述,a =0.5.5(2022·吉林长春·中考真题)在平面直角坐标系中,抛物线y =x 2-bx (b 是常数)经过点2,0 .点A 在抛物线上,且点A 的横坐标为m (m ≠0).以点A 为中心,构造正方形PQMN ,PQ =2m ,且PQ ⊥x 轴.(1)求该抛物线对应的函数表达式:(2)若点B 是抛物线上一点,且在抛物线对称轴左侧.过点B 作x 轴的平行线交抛物线于另一点C ,连接BC .当BC =4时,求点B 的坐标;(3)若m >0,当抛物线在正方形内部的点的纵坐标y 随x 的增大而增大时,或者y 随x 的增大而减小时,求m 的取值范围;(4)当抛物线与正方形PQMN 的边只有2个交点,且交点的纵坐标之差为34时,直接写出m 的值.【答案】(1)y =x 2-2x (2)B -1,3(3)0<m ≤12或m ≥3(4)m =-38或m =12或m =32.【分析】(1)将点2,0 代入y =x 2-bx ,待定系数法求解析式即可求解;(2)设B m ,m 2-2m ,根据对称性可得C 2-m ,m 2-2m ,根据BC =4,即可求解;(3)根据题意分两种情况讨论,分别求得当正方形PQMN 点Q 在x 轴上时,此时M 与O 点重合,当PQ 经过抛物线的对称轴x =1时,进而观察图像即可求解;(4)根据题意分三种情况讨论,根据正方形的性质以及点的坐标位置,即可求解.【详解】(1)解:∵抛物线y =x 2-bx (b 是常数)经过点2,0 ∴4-2b =0解得b =2∴y =x 2-2x (2)如图,由y =x 2-2x =x -1 2-1则对称轴为直线x =1,设B m ,m 2-2m ,则C 2-m ,m 2-2m ∵BC =2-m -m =4解得m =-1∴B -1,3(3)∵点A 在抛物线上,且点A 的横坐标为m (m ≠0).以点A 为中心,构造正方形PQMN ,PQ =2m ,且PQ ⊥x 轴∴MN =PQ =2m ,且M ,N 在y 轴上,如图,①当抛物线在正方形内部的点的纵坐标y随x的增大而增大时,如图,当正方形PQMN点Q在x轴上时,此时M与O点重合,∵PN=PQ∴OP的解析式为y=x∴A m,m代入y=x2-2x,将A m,m即m2-2m-m=0解得m1=0,m2=3∵m>0∴A3,3观察图形可知,当m≥3时,抛物线在正方形内部的点的纵坐标y随x的增大而增大;②当抛物线在正方形内部的点的纵坐标y随x的增大而减小时,当PQ经过抛物线的对称轴x=1时,∵MQ=PQ=2m ,m>0∴2m=1解得m=1 2,观察图形可知,当0<m≤12时,抛物线在正方形内部的点的纵坐标y随x的增大而增大;综上所述,m的取值范围为0<m≤12或m≥3(4)①如图,设正方形与抛物线的交点分别为E,F,当y E-y F=34时,则MN=3 4∵A是正方形PQMN的中心,A m,m2-2m∴x A =12MN=38即m=-3 8②如图,当A点在抛物线对称轴左侧,y轴右侧时,∵A m,m2-2m∴MN=2m∴y E=y A+12MN=y A+m=m2-2m+m=m2-m∵交点的纵坐标之差为34,∴F的纵坐标为m2-m-34∵F的横坐标为MQ=PQ=2m∴F 2m ,m 2-m -34∵F 在抛物线y =x 2-2x 上,∴m 2-m -34=2m 2-2×2m 解得m =12③当A 在抛物线对称轴的右侧时,正方形与抛物线的交点分别为O ,S ,设直线AM 交x 轴于点T ,如图,则y N =y S =34∴OM =OT =34即M 0,34 ,N 34,0 设直线MN 解析式为y =kx +b ,则34k +b =0b =34,解得k =-1b =34 ∴直线MN 解析式为y =-x +34联立y =x 2-2x解得x 1=32,x 2=-12(舍去)即A 的横坐标为32,即m =32,综上所述,m =-38或m =12或m =32.【点睛】本题考查了二次函数的综合问题,二次函数的对称性,正方形的性质,掌握二次函数图像的性质是解题的关键.6(2022·湖南永州·中考真题)已知关于x 的函数y =ax 2+bx +c .(1)若a =1,函数的图象经过点1,-4 和点2,1 ,求该函数的表达式和最小值;(2)若a =1,b =-2,c =m +1时,函数的图象与x 轴有交点,求m 的取值范围.(3)阅读下面材料:设a >0,函数图象与x 轴有两个不同的交点A ,B ,若A ,B 两点均在原点左侧,探究系数a ,b ,c 应满足的条件,根据函数图像,思考以下三个方面:①因为函数的图象与x 轴有两个不同的交点,所以Δ=b 2-4ac >0;②因为A ,B 两点在原点左侧,所以x =0对应图象上的点在x 轴上方,即c >0;③上述两个条件还不能确保A ,B 两点均在原点左侧,我们可以通过抛物线的对称轴位置来进一步限制抛物线的位置:即需-b 2a<0.综上所述,系数a ,b ,c 应满足的条件可归纳为:a >0Δ=b 2-4ac >0c >0-b 2a <0请根据上面阅读材料,类比解决下面问题:若函数y =ax 2-2x +3的图象在直线x =1的右侧与x 轴有且只有一个交点,求a 的取值范围.【答案】(1)y =x 2+2x +1或y =x +1 2,0(2)m ≤0(3)-1<a ≤0或a =13【分析】(1)利用待定系数法即可求得函数解析式,然后化顶点式即可求得最小值;(2)利用函数的图象与x 轴有交点△≥0,即可得出结论;(3)根据a >0、a =0、a <0,分别讨论,再利用△,x =1处函数值的正负、函数对称轴画出草图,结合图象分析即可.【详解】(1)根据题意,得1+b +c =-44+2b +c =1a =1解之,得a =1b =2c =-7,所以y =x 2+2x -7=x +1 2-8函数的表达式y =x 2+2x -7或y =x +1 2-8,当x =-1时,y 的最小值是-8.(2)根据题意,得y =x 2-2x +m +1而函数的图象与x 轴有交点,所以Δ=b 2-4ac =-2 2-4m +1 ≥0所以m ≤0.(3)函数y =ax 2-2x +3的图象图1:a <0-2 2-12a >0--22a <1a -2+3>0即a <0a <13a >1a >-1 ,所以,a 的值不存在.图2:a <0-2 2-12a >0--22a >1a -2+3>0即a <0a <13a <1a >-1 的值-1<a <0.图3:a <0-2 2-12a =0--22a >1a -2+3<0即a <0a =13a <1a <-1 所以a 的值不存在图4:a >0-2 2-12a >0--22a >1a -2+3<0即a >0a <13a <1a <-1 所以a 的值不存在.图5:a >0-2 2-12a =0--22a >1a -2+3>0即a >0a =13a <1a >-1所以a的值为1 3图6:y=-2x+3函数与x轴的交点为 1.5,0所以a的值为0成立.综上所述,a的取值范围是-1<a≤0或a=1 3.【点睛】本题考查二次函数的应用.(1)中掌握待定系数法是解题关键;(2)中掌握二次函数与x轴交点个数与△的关系是解题关键;(3)中需注意分类讨论,结合图象分析更加直观.7(2022·湖南衡阳·中考真题)如图,已知抛物线y=x2-x-2交x轴于A、B两点,将该抛物线位于x 轴下方的部分沿x轴翻折,其余部分不变,得到的新图象记为“图象W”,图象W交y轴于点C.(1)写出图象W位于线段AB上方部分对应的函数关系式;(2)若直线y=-x+b与图象W有三个交点,请结合图象,直接写出b的值;(3)P为x轴正半轴上一动点,过点P作PM∥y轴交直线BC于点M,交图象W于点N,是否存在这样的点P,使△CMN与△OBC相似?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)y=-x2+x+2-1<x<2(2)b=2或b=3(3)存在,1,0或1+172,0或1+5,0【分析】(1)先求出点A、B、C坐标,再利用待定系数法求解函数关系式即可;(2)联立方程组,由判别式△=0求得b值,结合图象即可求解;(3)根据相似三角形的性质分∠CNM=90°和∠NCM=90°讨论求解即可.【详解】(1)解:由翻折可知:C0,2.令x2-x-2=0,解得:x1=-1,x2=2,∴A-1,0,B2,0,设图象W的解析式为y=a x+1x-2,代入C0,2,解得a=-1,∴对应函数关系式为y=-x+1x-2=-x2+x+2-1<x<2.(2)解:联立方程组y=-x+by=-x2+x+2 ,整理,得:x2-2x+b-2=0,由△=4-4(b-2)=0得:b=3,此时方程有两个相等的实数根,由图象可知,当b=2或b=3时,直线y=-x+b与图象W有三个交点;(3)解:存在.如图1,当CN∥OB时,△OBC∽△NMC,此时,N与C关于直线x=12对称,∴点N的横坐标为1,∴P1,0;如图2,当CN∥OB时,△OBC∽△NMC,此时,N点纵坐标为2,由x2-x-2=2,解得x1=1+172,x2=1-172(舍),∴N的横坐标为1+172,所以P1+172,0 ;如图3,当∠NCM=90°时,△OBC∽△CMN,此时,直线CN的解析式为y=x+2,联立方程组:y=x+2y=x2-x-2,解得x1=1+5,x2=1-5(舍),∴N的横坐标为1+5,所以P1+5,0,因此,综上所述:P点坐标为1,0或1+172,0或1+5,0.【点睛】本题考查二次函数的综合,涉及翻折性质、待定系数法求二次函数解析式、二次函数与一次函数的图象交点问题、相似三角形的性质、解一元二次方程等知识,综合体现数形结合思想和分类讨论思想的运用,属于综合题型,有点难度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用标准文案 文档 二次函数经典难题(含精解)
一•选择题(共1小题) 1 •顶点为P的抛物线y=x2 - 2x+3与y轴相交于点A,在顶点不变的情况下,把该抛物线 绕顶点P旋转180 °得到一个新的抛物线,且新的抛物线与 y轴相交于点B,则△ PAB的面 积为( ) A • 1 B. 2 C • 3 D • 6
二.填空题(共12小题) 2 .作抛物线C1关于x轴对称的抛物线 C2,将抛物线C2向左平移2个单位,向上平移1 个单位,得到的抛物线 C的函数解析式是y=2 ( x+1 ) 2 - 1,则抛物线C1所对应的函数解
析式是 _____________ •
3 .抛物线_专/+牡2关于原点对称的抛物线解析式为 _ _ • 4 •将抛物线y=x 2+1的图象绕原点0旋转180 °则旋转后的抛物线解析式是 __________________ 5 .如图,正方形 ABCD的顶点A、B与正方形EFGH的顶点G、H同在一段抛物线上,且 抛物线的顶点在 CD上,若正方形ABCD边长为10 ,则正方形EFGH的边长为 _________________ D C
1 A E 尸. B 实用标准文案 文档 6 .如果一条抛物线 y=ax 2+bx+c (a丸)与x轴有两个交点,那么以该抛物线的顶点和这 两个交点为顶点的三角形称为这条抛物线的“抛物线三角形” .在抛物线y=ax 2+bx+c中,
系数a、b、c为绝对值不大于1的整数,则该抛物线的“抛物线三角形”是等腰直角三角 形的概率为 — _ .
7 .抛物线y=ax 2+bx+c 经过直角厶ABC的顶点A (- 1 , 0), B ( 4, 0),直角顶点 C在y 轴上,若抛物线的顶点在△ ABC的内部(不包括边界),贝U a的范围是 _________________ .
8 .已知抛物线y=x 2 - 6x+a的顶点在x轴上,则a= _________________ ;若抛物线与x轴有两 个交点,贝U a的范围是 _____________ .
9 .抛物线y=x2 - ^ax+a 2的顶点在直线y=2上,则a= ___________________ .
10 .若抛物线y=x2 - 2 J^x+a 2的顶点在直线x=2上,贝U a的值是 ___________________ .
11 .若抛物线_£+nrt2的顶点在x轴上方,则m的值是 ____________________________ . 实用标准文案
文档 12 .如图,二次函数y=ax 2+c图象的顶点为B,若以0B为对角线的正方形 ABCO的另两 个顶点A、C也在该抛物线上,则 a?c的值是
三•解答题(共17小题) 14 .已知抛物线 C1的解析式是y=2x 2 - 4x+5,抛物线C2与抛物线C1关于x轴对称,求 抛物线C2
的解析式.
15 .将抛物线C1 : y=-; (x+1 ) 2-2绕点P (t, 2)旋转180。得到抛物线 C2,若抛物线
C1的顶点在抛物线 C2上,同时抛物线 C2的顶点在抛物线 C1上,求抛物线 C2的解析式.
16 •如图,抛物线y1= - x2+2向右平移1个单位得到抛物线 y2,回答下列问题: (1) _______________________________ 抛物线 y2的顶点坐标 (2 )阴影部分的面积 S= _____________ ;
13 .抛物线y=ax 2+bx - 1经过点(2, 5 ),则代数式6a+3b+1 的值为 实用标准文案
文档 (3)若再将抛物线y2绕原点0旋转180 °得到抛物线y3,求抛物线y3的解析式.
17 .已知抛物线L: y=ax2+bx+c (其中a、b、c都不等于0),它的顶点P的坐标是 2 兰二~~ ),与y轴的交点是M (0, c).我们称以M为顶点,对称轴是y 2a 4a
轴且过点P的抛物线为抛物线 L的伴随抛物线,直线 PM为L的伴随直线. (1 )请直接写出抛物线 y=2x 2 - 4x+1的伴随抛物线和伴随直线的解析式:
伴随抛物线的解析式 _____________ ,伴随直线的解析式 ______________ ; (2 )若一条抛物线的伴随抛物线和伴随直线分别是 y= - x2 - 3和y= - x - 3,则这条抛物
线的解析式是 ______________ ; (3 )求抛物线L: y=ax 2+bx+c (其中a、b、c都不等于0)的伴随抛物线和伴随直线的
解析式; (4 )若抛物线L与x轴交于A (xi, 0 )、B (X2 , 0)两点,X2> xi > 0,它的伴随抛物线 与x轴交于C、D两点,且AB=CD .请求出a、b、c应满足的条件.
18 .设抛物线y=x 2+2ax+b 与x轴有两个不同的交点 实用标准文案
文档 (1) 将抛物线沿y轴平移,使所得抛物线在 x轴上截得的线段的长是原来的 2倍,求平移 所得抛物线的解析式; (2 )通过(1)中所得抛物线与 x轴的两个交点及原抛物线的顶点作一条新的抛物线,求 新抛物线的表达式.
19 .已知抛物线 C: y=ax2+bx+c (av 0)过原点,与 x轴的另一个交点为 B (4 , 0 ), A 为抛物线C的顶点. (1 )如图1,若/AOB=60。,求抛物线C的解析式; (2) 如图2 ,若直线OA的解析式为y=x ,将抛物线C绕原点O旋转180。得到抛物线C 求抛物线C、C'的解析式; (3 )在(2)的条件下,设 A '为抛物线C'的顶点,求抛物线C或C'上使得PB=PA '的点P 的坐标.
20 .如图,已知抛物线 y=ax 2+bx+打:.交x轴正半轴于 A , B两点,交y轴于点C,且/ 实用标准文案
文档 BC的解析式. 实用标准文案
文档 21 .已知:如图,抛物线 y - x2+bx+c经过直线y= - x+3与坐标轴的两个交点 A、B, 此抛物线与x轴的另一个交点为 C,抛物线的顶点为 D . (1 )求此抛物线的解析式; (2 )点M为抛物线上的一个动点,求使得厶 ABM的面积与厶ABD的面积相等的点 M的坐
22 .已知抛物线C]; 7=^(时2)2 - 5的顶点为P,与x轴正半轴交于点 B,抛物线C2 与抛物线C1
关于x轴对称,将抛物线 C2向右平移,平移后的抛物线记为 C3 , C3的顶点为
23 .如图,抛物线y=x2+bx - c经过直线y=x - 3与坐标轴的两个交点 A , B,此抛物线与 x轴的另一个交点为 C,抛物线的顶点为 D . (1 )求此抛物线的解析式;
(2 )点P为抛物线上的一个动点,求使 SZAPC: SZACD=5 : 4的点P的坐标.
M,当点P、M关于点B成中心对称时,求 C3的解析式. 实用标准文案
文档 24 .已知一抛物线经过 0 (0, 0), B (1,1 )两点,且解析式的二次项系数为- 丄(a>0). 甘
(I)当a=1时,求该抛物线的解析式,并用配方法求出该抛物线的顶点坐标;
(n)已知点A (0 , 1),若抛物线与射线 AB相交于点M,与x轴相交于点N (异于原点), 当a在什
么范围内取值时, ON+BM 的值为常数?当a在什么范围内取值时, ON - BM的 值为常数? (川)若点P (t, t)在抛物线上,则称点 P为抛物线的不动点.将这条抛物线进行平移, 使其只有一个不动点,此时抛物线的顶点是否在直线 y=x 上,请说明理由. 4
25 .如图,已知抛物线 C1: y=a ( x+2 ) 2 -5的顶点为P,与x轴相交于A、B两点(点A 在点B的左侧),点B的横坐标是1 ; (1 )求a的值; (2 )如图,抛物线 C2与抛物线C1关于x轴对称,将抛物线 C2向右平移,平移后的抛物 线记为C3,抛物线C3的顶点为M,当点P、M关于点O成中心对称时,求抛物线 C3的 解析式. 实用标准文案
文档 26 .如图,抛物线 y=ax 2+bx+3 经过 A (- 3, 0), B (- 1 , 0)两点. (1 )求抛物线的解析式; (2) 设抛物线的顶点为 M,直线y= - 2x+9与y轴交于点C,与直线OM交于点D .现 将抛物线平移,保持顶点在直线 OD上•若平移的抛物线与射线 CD (含端点C)只有一个 公共点,求它的顶点横坐标的值或取值范围.
27 .如图,抛物线y=a (x+1 ) 2的顶点为A,与y轴的负半轴交于点 B,且OB=OA
(1 )求抛物线的解析式; S/ABC的值. 实用标准文案
文档 28 .如图,抛物线 y=x2 - 2x+c的顶点 A在直线I: y=x - 5 上. (1 )求抛物线顶点 A的坐标及c的值; (2 )设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断厶ABD
29 •如果抛物线 m的顶点在抛物线 n上,同时抛物线 n的顶点在抛物线 m上,那么我们 就称抛物线m与n为交融抛物线. (1 )已知抛物线 a: y=x 2 - 2x+1 .判断下列抛物线 b : y=x 2 - 2x+2 , c: y= - x2+4x - 3 与已知抛
物线a是否为交融抛物线?并说明理由; (2 )在直线y=2上有一动点P (t, 2 ),将抛物线a : y=x 2 - 2x+1绕点P (t, 2)旋转
180 °得到抛物线I,若抛物线a与I为交融抛物线,求抛物线 I的解析式; (3) M为抛物线a; y=x 2 - 2x+1的顶点,Q为抛物线a的交融抛物
线的顶点,是否存在 以MQ为斜边的等腰直角三角形 MQS,使其直角顶点 S在y轴上?若存在,求出点 S的 坐标;若不存在,请说明理由; (4) 通过以上问题的探究解决,相信你对交融抛物线的概念及性质有了一定的认识,请你 提出一个有关交融抛物线的问题.