线性系统的状态方程

合集下载

现代控制理论---状态反馈和状态观测器

现代控制理论---状态反馈和状态观测器
第五章 系统的状态反馈及观测器
现代控制理论基础
主讲人: 主讲人:荣军 mail:rj1219 163. 1219@ E-mail:rj1219@
第五章 系统的状态反馈及观测器
在第二章, 在第二章,研究的是在己知系统的结构和参数情况下系统的 运动,从而了解系统的运动形态。 运动,从而了解系统的运动形态。第三章介绍了系统的能控性和 能观测性。第四章是系统稳定性问题。 能观测性。第四章是系统稳定性问题。如果将上述研究的内容概 括起来说,就是在已知系统的结构和参数情况下, 括起来说,就是在已知系统的结构和参数情况下,研究系统的性 能或特性,即所谓系统分析问题。 能或特性,即所谓系统分析问题。 本章将研究线性定常系统的综合。 本章将研究线性定常系统的综合。这是一个与系统分析相反 的命题,是在给定被控对象的情况下, 的命题,是在给定被控对象的情况下,通过设计控制器的结构和 参数,使系统满足预先规定的性能指标要求。 参数,使系统满足预先规定的性能指标要求。采用的方法是先测 量系统的状态,再用状态来确定被控对象上所加的控制输人, 量系统的状态,再用状态来确定被控对象上所加的控制输人,从 而构成状态反馈系统。 而构成状态反馈系统。
第五章 系统的状态反馈及观测器
采用状态反馈, 采用状态反馈,对系统能控性和能观测性有 无影响呢?这是本章讨论的重要内容之一 这是本章讨论的重要内容之一。 无影响呢 这是本章讨论的重要内容之一。同时 研究一个能控的系统, 研究一个能控的系统,引入状态反馈可以任意配 置状态反馈系统的极点, 置状态反馈系统的极点,保证系统具有所希望的 瞬态性能和稳态性; 瞬态性能和稳态性;对于系统的状态变量无法测 量但又要用它来实现反馈的情况, 量但又要用它来实现反馈的情况,通过状态重构 方法。设计状态观测器。 方法。设计状态观测器。

控制工程技术基础 第7章现代控制理论简介

控制工程技术基础 第7章现代控制理论简介
上一页 返回
7.2控制系统的状态空间表达式
7.2.1状态、状态变量
状态:系统运动信息的集合。 状态变量:可以完全确定系统的运动状态且数目最小的一组变量。所 谓完全确定,是指只要给定t0时刻的这组变量的值和系统在t ≥t0时系 统的输入函数,则系统在t > t0的任意时刻的状态就可完全确定。所谓 数目最小是指:如果变量数目大于该值,则必有不独立的变量;小于 该值,又不足以描述系统的运动状态。 状态向量:n个状态变量x1 (t),x2 (t),…, xn (t)所构成的向量X(t)就 是系统的状态向量,记作X(t)=[x1 (t),x2 (t),…, xn (t)]T
上一页
ห้องสมุดไป่ตู้下一页
返回
7.4最优控制
以上可见,邦特略京极小值原理实际上是把一个求性能指标J的 最小值问题,转化成一个求哈密顿函数H的最小值问题。 当系统的状态方程为
第7章现代控制理论简介
7.1概述 7.2控制系统的状态空间表达式 7.3状态反馈与输出反馈 7.4最优控制
7.1概述
现代控制理论的基本内容包括五个方面,简单说明如下。 1.最优控制 在图7-1所示系统中,有一组输入函数u (t)作用在受控系统上,其 相应状态变量是x (t),通过量测系统可得到这些状态的某种组合y (t), 此即系统输出。根据实际需要,可为受控系统指定一些目标(性能指 标)。 2.最优估计 图7-1所示系统中,输出量y (t)是通过量测系统由状态转换过来 的。但实际的量测系统常受到噪声v (t)的干扰,如图7-2所示。如果将 整个系统看成是一个信息传递系统,用输入噪声w( t)表示这个系统的 模型误差,也称动态噪声,则从y (t)中,克服w( t)和v (t)的影响估计 出状态x (t)来,称为最优状态估计问题。

最优控制第五章习题答案

最优控制第五章习题答案

1. ·2.已知二阶系统的状态方程122()(),()()x t x t x t u t ==性能泛函3222221212120111[(3)2(3)][2()4()2()()()]222J x x x t x t x t x t u t dt =+++++⎰求最优控制。

解:把状态方程和性能指标与标准状态方程和标准性能指标比较,可得0,101,02,11,,,,0,010,21,42A B P Q R ⎡⎤⎡⎤⎡⎤⎡⎤=====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦考虑到()K t 是对称阵,设11121222,(),k k K t k k ⎡⎤=⎢⎥⎣⎦代入黎卡提方程1()()()()()()()()()()()T T K t K t A t A t K t K t B t R t B t K t Q t -=--+-即1112111211121112111212221222122212221222,,,,,0,10,002,12[0,1],0,01,0,,1,1,4,k k k k k k k k k k k k k k k k k k k k ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=--+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦令上式等号左右端的对应元相等,得211121211122222212222221224k k k k k k k k k =-=-+-=-+-这是一组非线性微分方程。

由边界条件(3)K P =即11121222(3),(3)1,0(3),(3)0,2k k k k ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦ 最优控制为11112112122212222()()(),()2*[0,1]2()2(),()T u t R B K t X t k k x t k x t k x t k k x t -=-⎡⎤⎡⎤=-=--⎢⎥⎢⎥⎣⎦⎣⎦3. )4.能控的系统状态方程为122()(),()()x t x t x t u t ==这是一种双积分系统,其输出为1()x t ,其输入为()u t ,其传递函数为12()1()()x s G s u s s==其性能泛函为222112201[()2()()()()]2J x t bx t x t ax t u t dt ∞=+++⎰其中220a b ->求最优控制。

线性系统理论(第一章)

线性系统理论(第一章)

x1(k +1) 0.9696 0.0202 x1(k) x (k +1) = 0.0404 0.9898 x (k) , k = 0,1,2,L 2 2 7 x1(0) 10 x (0) = 7 2 9×10
016
向量方程的形式:
Y = g (x,u,t)
, t ≥ t0
008
第一章
Ø线性系统的状态空间描述为:
& = A (t ) x + B (t )u x t ≥ t0 y = C (t ) x + D (t )u
其中:
a11 (t ) L a1n (t ) A(t ) = M M an1 (t ) L ann (t )
线性系统。
017
第一章
& = A(t ) x + B (t )u x t ≥ t0 y = C (t ) x + D (t )u
D(t ) + B(t ) +
+ +
u

A(t )
C (t )
y
018
第一章
若向量函数中 f 为变量
( x,u,t)

g ( x, u , t ) 至少包含一个元
其中: ai 和 b j 为实常数,i = 0 ,1, L , n
j = 0 ,1, L , n − 1
003
第一章
假定初始条件为零,取拉氏变换。 复频率域描述,即传递函数。
bn −1 s + L + b1 s + b0 G (s) = n n −1 s + a n − 1 s + L + a1 s + a 0

状态方程特征根

状态方程特征根

状态方程特征根
状态方程是用于描述系统动态行为的数学方程,通常用于自动控制、信号处理等领域。

在状态方程中,特征根是方程的根,它们反映了系统的稳定性和动态特性。

求解状态方程的特征根,可以帮助我们了解系统的性能和设计控制策略。

状态方程的特征根求解方法如下:
1. 首先,给出状态方程的矩阵形式。

假设状态方程为:
dx/dt = Ax + Bu
其中,x是状态向量,u是输入向量,A和B是矩阵。

2. 对状态方程进行线性变换,将其转化为标准形式。

标准形式的状态方程为:
dx/dt = Ax + Bu = E*diag(λ1, λ2, ..., λn)*x + F*u
其中,λ1、λ2、...、λn是特征根,E是单位矩阵,F是矩阵。

3. 求解特征根。

根据线性变换后的状态方程,可以得到特征根的表达式:
λ_i = -B^T*E^T*diag(λ1, λ2, ..., λn)^(-1)
其中,i=1,2,...,n。

4. 求解特征向量。

对于每个特征根λ_i,可以求解对应的特征向量vi,满足:
E*vi = diag(λ1, λ2, ..., λn)^(-1)
5. 分析特征根和特征向量。

特征根和特征向量反映了系统的稳定性和动态特性。

例如,如果特征根的模大于1,说明系统存在不稳定状态;如果特征根的模接近1,说明系统趋于稳定但响应较慢;如果特征根为零,说明系统是稳定的但可能存在慢变现象。

总之,求解状态方程的特征根可以帮助我们了解系统的稳定性和动态特性,从而为控制策略的设计提供依据。

在实际应用中,特征根的求解通常采用数值方法,如根轨迹法、频域法等。

2.3线性连续时间状态空间表达式的离散化

2.3线性连续时间状态空间表达式的离散化

§2.3 线性连续时间状态空间表达式的离散化如果用数字计算机对连续时间状态方程求解,或者对连续受控对象采用数字计算机进行在线控制,都要碰到一个将连续时间系统化为离散时间系统的问题。

本节将讨论线性连续时间状态空间表达式的离散化方法。

一、线性时变系统的离散化 设原线性系统的状态空间表达式为:).()t (u )t (D )t (X )t (C Y )t (u )t (B )t (X )t (A X612⎩⎨⎧+=+=离散化后状态空间表达式为:[]).()kT (u )kT (D )kT (X )kT (C )kT (Y )kT (u )kT (H )kT (X )kT (G T )k (X 6221⎩⎨⎧⋅+⋅=+=+式(2.61)、(2.62)之间的系数关系如下[][]).()t (D )kT (D )t (C )kT (C d )(B ,T )k ()kT (H kT ,T )k ()kT (G kTt kT t T)k (kT632111==+==+=+=⎰τττφφ式中[]kT ,T )k (1+φ表示)t ,t (0φ在kT t T )k (≤≤+1区段内的状态转移矩阵,而)t ,t (0φ则表示原连续系统(2.61)式的状态转移矩阵。

证明:由上节(2.60)式可知(2.61)式的解为:).(d )(u )(B ),t (X )t ,t ()t (X t t 642000ττττφφ⎰+=对上式离散化,令hT t ,T )k (t =+=01,T 为采样周期,则得[][][]).(d )(u )(B ,T )k (X hT ,T )k (T )k (X T )k (hT65211110ττττφφ+++=+⎰+再以hT t ,kT t ==0代入(2.64)式,则得 ).(d )(u )(B ),kT (X )hT ,kT ()kT (X kT hT 6620ττττφφ⎰+=将(2.66)式两边同左乘[]kT ,T )k (1+φ,得[][][][][]).(d )(u )(B ,T )k (X hT ,T )k (d )(u )(B ),kT (kT ,T )k (X )hT ,kT (kT ,T )k ()kT (X kT ,T )k (kT hT kT hT 6721111100ττττφφττττφφφφφ+++=++⋅+=+⎰⎰将(2.65)式减去(2.67)式得:[][][]).(d )(u )(B ,T )k ()kT (X kT ,T )k (T )k (X T )k (kT 6821111ττττφφ+++=+⎰+上式中,令[][]τττφφd )(B ,T )k ()kT (H kT ,T )k ()kT (G T)k (kT⎰+=+=+111设在区间[]T )k (,kT 1+内,)kT (u )(u =τ,则(2.68)式可简写成: [])kT (u )kT (H )kT (X )kT (G T )k (X ⋅+⋅=+1 同时,对(2.61)式输出方程离散化,则证明了)kT (u )kT (D )kT (X )kT (C )kT (Y ⋅+=二、线性时不变系统的离散化 对于线性时不变系统).(uD X C Y u B X A X692⎩⎨⎧+=+=离散化状态空间表达式为).()kT (u D )kT (X C )kT (Y )kT (u )T (H )kT (X )T (G T )k (X 7021⎩⎨⎧+=+=+其中D ,C ),T (H ),T (G 均为常数阵,且).(B)d e ()T (H e)T (G A T AT 7120⎪⎩⎪⎨⎧==⎰ττ证明:由于时不变系统是时变系统的一种特殊情况,所以只需要证明式(2.71)成立即可。

状态空间表达式

2.5 控制系统的状态空间表达式2.5 控制系统的状态空间表达式随着科学技术的发展,被控制的对象越来越复杂,对自动控制的要求也越来越高。

面对时变系统,多输入多输出系统、非线性系统等被控量和对控制系统高精度、高性能的严格要求,传统的控制理论已不能适用。

同时,计算机技术的发展也要求控制系统地分析,设计中采用计算机技术并在控制系统的组成中使用计算机。

因此,适用这些要求的控制系统的另一种数学描述方法----状态空间就应运而生。

2.5.1 状态变量在对系统动态特性描述中,足以表征系统全部运动状态的最少一组变量,称之为状态变量。

只要确定了这组变量在t=时刻的值以及时的输入函数,则系统在任何时刻的运动状态就会全部确定。

状态变量互相间是独立的,但对同一个系统,状态变量的选取并不是唯一的。

一个用n 阶微分方程描述的系统,有n个独立变量,这n个独立变量就是该系统的状态变量。

若用表示这n个状态变量,则可以把这n个状态变量看作是向量x(t)的分量。

我们称x(t)为状态变量,它是一个n维向量,记为分别以状态变量作为坐标而构成的n维空间,称为状态空间。

系统在t时刻的状态,就是状态空间的一点。

系统在时刻的状态称为初始点,随着时间的变化,x(t)从初始点出发在状态空间描述出一条轨迹,称为状态轨迹。

状态魁及表征了系统状态的变化过程。

2.5.2 状态空间表达式1. 状态方程由系统的状态变量和输入函数构成的一阶微分方程组,称为系统的状态方程。

对于线性系统,可以写成如下形式(2.59)记为(2.60)式中x(t)是n维列向量u(t)是r维输入向量A是n*n维矩阵,称为系数矩阵B是n*r矩阵,称为输入矩阵或控制矩阵若矩阵A和B的元素都是常数,则状态方程是线性定常的。

若A和B中有随时间变化的元素,状态方程就是线性时变的。

状态方程中不能含有x(t)的高于一阶导数的项和输入函数的导数项。

对于非线性系统,状态方程可以写成如下形式(2.61)记为(2.62)式中f为向量函数。

状态、状态变量、状态空间、状态方程和动态方程

系统输入U(t)以及时间t的关系的方程就称作系统的输出方程,
如式(2-2)所示。
其中,G=(g1,g2,…,gm ),G 是一个函数矢量。
第2章 状态空间分析法
在现代控制理论中,用系统的状态方程和输出方程来描
述系统的动态行为,状态方程和输出方程合起来称作系统的
状态空间表达式或动态方程。
根据函数向量F 和G 的不同情况,一般控制系统可以分
取每个积分器的输出端信号为状态变量x1 和x2,积分器的输
入端即ሶ 1 和ሶ 2,从图可得系统状态方程:
第2章 状态空间分析法
第2章 状态空间分析法
例2-6 求如图2-10(a)所示系统的动态方程。
图2-10 方块图
第2章 状态空间分析法
第2章 状态空间分析法
第2章 状态空间分析法
2.4 由系统的微分方程或传递函数求其动态方程
第2章 状态空间分析法
第2章 状态空间分析法
第2章 状态空间分析法
例2-2-电路如图2-6所示。以ei 作为系统的控制输入u(t),
eo 作为系统输出y(t)。建立系统的动态方程。
图2-6 RLC 电路
第2章 状态空间分析法
解 该RLC 电路有两个独立的储能元件L 和C,我们可以
取电容C 两端电压和流过电感L 的电流作为系统的两个状态
性,因此会产生一定程度上的结构差异,这也会导致动态方程
差异的产生;从系统微分方程或传递函数出发的系统实现问
题,更是会导致迥然不同的系统内部结构的产生,因而也产生
了不同的动态方程。所以说系统动态方程是不唯一的。
第2章 状态空间分析法
例如图2-11所示的传递函数的直接法实现,按照图上所
示各状态变量的取法,我们有式(2-24)所示动态方程。如果将

现代控制理论总结

现代控制理论总结第一章:控制系统的状态空间表达式1、状态变量,状态空间与状态轨迹的概念:在描述系统运动的所有变量中,必定可以找到数目最少的一组变量,他们足以描述系统的全部运动,这组变量就称为系统的状态变量。

以状态变量X1,,X2,X3,……X n为坐标轴所构成的n维欧式空间(实数域上的向量空间)称为状态空间。

随着时间的推移,x(t)在状态空间中描绘出一条轨迹,称为状态轨迹。

2、状态空间表达式:状态方程和输出方程合起来构成对一个系统完整的动态描述,称为系统的状态空间表达式。

3、实现问题:由描述系统输入输出关系的运动方程或传递函数建立系统的状态空间表达式,这样的问题称为实现问题单入单出系统传函:W(s)=,实现存在的条件是系统必须满足m<=n,否则是物理不可实现系统最小实现是在所有的实现形式中,其维数最低的实现。

即无零,极点对消的传函的实现。

三种常用最小实现:能控标准型实现,能观标准型实现,并联型实现(约旦型)4、能控标准型实现,能观标准型实现,并联型实现(约旦型)传函无零点系统矩阵A的主对角线上方元素为1,最后一行元素是传函特征多项式系数的负值,其余元素为0,A为友矩阵。

控制矩阵b除最后一个元素是1,其他为0,矩阵A,b具有上述特点的状态空间表达式称为能控标准型。

将b与c矩阵元素互换,另输出矩阵c除第一个元素为1外其他为0,矩阵A,c具有上述特点的状态空间表达式称为能观标准型。

传函有零点见书p17页……..5、建立空间状态表达式的方法:①由结构图建立②有系统分析基里建立③由系统外部描述建立(传函)6、子系统在各种连接时的传函矩阵:设子系统1为子系统2为1)并联:另u1=u2=u,y=y1+y2的系统的状态空间表达式所以系统的传递函数矩阵为:2)串联:由u1=u,u2=y1,y=y2得系统的状态空间表达式为:W(S)=W2(S)W1(S)注意不能写反,应为矩阵乘法不满足交换律3)反馈:系统状态空间表达式:第二章:状态空间表达式的解:1、状态方程解的结构特征:线性系统的一个基本属性是满足叠加原理,把系统同时在初始状态和输入u作用下的状态运动x(t)分解为由初始状态和输入u分别单独作用所产生的运动和的叠加。

现代控制理论_第1章

ɺ + a0 y = bm u ( m ) + bm −1u ( m −1) + ⋯ + b1u ɺ + b0u y ( n ) + an −1 y ( n −1) + ⋯ + a1 y m≤n
现代控制理论 机械工程硕士研究生学位课
状态空间表达式
ɺ = Ax + bu x y = cx
x1 0 x 0 2 x = ⋮ , A = ⋮ xn −1 0 xn −a0 1 0 ⋮ 0 −a1 0 1 ⋮ ⋯ ⋯ ⋱ 0 0 0 0 ⋮ , b = ⋮ , c = [1 0 ⋯ 0] 1 0 −an −1 b0
现代控制理论 机械工程硕士研究生学位课
实现问题
实现问题:由描述系统输入-输出动态关系 的运动方程式或传递函数,建立系统的状态 空间表达式。 揭示系统的内部关系 讨论单输入单输出线性定常系统
ɺ = Ax + bu x y = cx + du
现代控制理论 机械工程硕士研究生学位课
两类实现问题
di 1 Ri + L + ∫ idt = u dt C
本例子中 1. 输入和输出都已 明确; 2. 选择两个独立的 储能元件作为状 态变量; 3. 根据电路的基本 定律列出方程
现代控制理论 机械工程硕士研究生学位课
1 y = uc = ∫ idt C
系统状态方程的建立
设状态变量为电感器电流和电容器电压,即
现代控制理论 Modern Control Theory
现代控制理论 机械工程硕士研究生学位课
本课程主要内容
系统描述:状态空间表示法 系统分析:状态方程的解、线性系统的能 控和能观测性、稳定性分析 系统设计:状态反馈和状态观测器 最优控制:最优控制系统及其解法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档