锅炉燃烧调整方法

合集下载

锅炉燃烧调整技术

锅炉燃烧调整技术

2.4 燃煤对环境的污染特性
燃煤发电锅炉的环境污染: • 烟尘污染,超细粉尘污染; • 有害气体污染:SO2,NOx,CO,N2O等; • 温室气体CO2污染; • 热污染; • 重金属污染; • 污水排放;
3、 锅炉炉型及其燃烧设备特点
• 切园燃烧锅炉(四角切园、六角切园、 直流燃烧器); • 墙式燃烧锅炉,旋流燃烧器,前墙布 置,前后墙对冲布置; • “W”火焰锅炉; • 循环流化床燃烧锅炉
燃煤对受热面腐蚀性能的变化;
燃煤磨制性能的变化。
2.2 煤的破碎和磨制性能
煤的磨制性能影响制粉过程的电耗、制
粉设备的磨损消耗、制粉系统的出力能力以 及煤粉的粒度分布状态等。 制粉系统形式的选择需要考虑燃煤的磨 制性能。
2.3 燃煤对受热面的影响
•煤的积灰和结渣特性; •燃煤对受热面的高温腐蚀和低温腐蚀; •煤灰对受热面的磨损;
3.2、墙式燃烧锅炉
• 锅炉结构特点:燃烧器布置在墙面上; • 燃烧器种类及特点:独立燃烧性能;煤 种适应性能和调整性能; • 燃烧器的配风调整:均匀要求、着火距 离、洁净燃烧; • 启停过程的节油; • 炉内温度分布和烟温偏差;
3.2、墙式燃烧锅炉
3.3、“W”火焰锅炉燃烧设备特点
3.3、“W”火焰锅炉燃烧设备特点
——混煤燃烧特性及配煤技术
• 目前,世界许多国家对配煤技术和混煤的燃烧 性能进行了深入地研究。配煤已经成为一项不
可忽视的火力发电技术。
• 在我国,由于煤炭市场状况以及对配煤技术的
认识和研究不深,在配煤方面的技术和资源投
入不足,管理投入也比较欠缺,大都处于一种 被动状态,仅仅是解决煤源不足的问题,锅炉 燃烧混煤的总体效果较差。
——混煤燃烧特性及配煤技术

锅炉燃烧优化调整方案

锅炉燃烧优化调整方案

锅炉燃烧优化调整方案萨拉齐电厂的2×300MW CFB锅炉是采用哈尔滨锅炉股份有限公司具有自主知识产权的CFB锅炉技术设计和制造的,锅炉型号HG-1065/17.6-L.MG,是亚临界参数、一次中间再热自然循环汽包炉、紧身封闭、平衡通风、固态排渣、全钢架悬吊结构的循环流化床锅炉,燃用混合煤质,锅炉以最大连续负荷(即BMCR工况)为设计参数,锅炉的最大连续蒸发量为1065t/h。

循环物料的分离采用高温绝热旋风分离器,锅炉采用支吊结合的固定方式,受热面采用全悬吊方式,空气预热器、分离器采用支撑结构;锅炉启动采用床下和床上联合点火启动方式。

萨拉齐电厂锅炉主要技术参数:一、优化燃烧调整机构为了积极响应公司号召,使我厂锅炉燃烧优化调整工作有序进行,做到调整后锅炉更加安全、经济运行,我厂成立了锅炉优化燃烧调整小组:1、组织机构:组长: 杨彦卿副组长:冀树芳、贺建平成员:刘玉俊、蔚志刚、李京荣、范海水、谷威、孔凡林、薛文祥、于斌2、工作职责:1)负责制定锅炉优化燃烧调整的工作计划;2)负责编制锅炉优化燃烧调整方案及锅炉运行中问题的检查汇总;3)负责组织实施锅炉优化燃烧调整工作,保证锅炉长周期连续稳定运行。

二、优化燃烧调整工作内容:1、入炉煤粒度调整:1)CFB锅炉对入炉煤粒径分布要求很高,合理的粒径分布是影响锅炉燃烧安全稳定和经济的最重要因素之一,入炉煤粒径对锅炉的影响有以下几点:a)入炉煤细粒径比例较少,粗颗粒比例多,阻力相应增加锅炉流化所需一次风量增大,细颗粒逃逸出炉内的几率增高,锅炉飞灰含碳量上升;b)入炉煤细颗粒比例多,粗颗粒比例少,在相同的一次风量下锅炉床层上移,床温升高,锅炉排烟温度也相应提高;c)入炉煤粒径过粗还会影响到锅炉的正常流化和排渣,粒径过粗容易使排渣不畅导致流化不良甚至结焦,为此我厂应严格控制入炉煤粒度;每星期对入炉煤粒度进行分析两次,并根据入炉煤粒度分析及时检查高幅筛筛条或调整碎煤机间隙。

锅炉运行及燃烧调整

锅炉运行及燃烧调整

5、垃圾焚烧装置设备概述 • SLC300二段式垃圾焚烧装置系针对中国城市生 活垃圾低热值、高水份的特点而设计,具有适 应热值广、负荷调节能力大、可操纵性好和自 动化程度高等特点,可广泛用于处理不分拣的 生活垃圾。垃圾焚烧装置在逆推区域烘干、充 分燃烧、燃尽。其主要流程为:抓斗将垃圾从 垃圾坑送入落料槽,在给料机的推送下进入炉 膛落在倾斜的逆推炉排上,垃圾在逆推炉排上 不断翻滚、搅拌,完成干燥、着火和燃烧过程, 在的炉排末端落入顺推炉排上燃尽、冷却,最 后灰渣推入出渣通道经出渣机排出炉外。
(4)各电动阀门的传动装置及连杆接头完整,各 部分销子固定牢固,开关灵活,方向及位置指示 正确。 • (5)炉排液压系统所有油管路连接完好,无漏 油现象。 •
14检查汽包水位计应符合下列要求
• • • (1)汽水连通管保温良好。 (2)水位计完整清晰,照明充足。 (3)汽门、水门、放水门严密不漏,开关灵活。
6垃圾焚烧炉燃烧自控系统操作(PLC控 制柜)

对炉排、出渣机、小风室风门、推料器、炉排漏 灰清理装置、料斗门以及它们的液压装置的控制可 以通过就地的焚烧炉PLC控制柜操作,也可通过主 控室的DCS来控制,主要讲解PLC控制柜的操作: • (1)手动:按F9。屏幕出现“手动”字样。此时 按“逆推1前进”,则1#逆推炉排前进;再按“逆 推1前进”,则1#逆推炉排停止。其余3个键操作相 同。
16水压试验 • 1锅炉承压部件经过检修后必须进行水压试验。 试验压力为汽包工作压力,以检验受热面,汽水 管道及其阀门的严密性。 • 2新安装的或者有特殊要求的锅炉须进行超水压 实验。超水压试验按《SD167-85电力工业锅炉 监察规程》的有关规定进行,试验压力为工作压 力的1.25倍。 • 3水压试验时至少应有二个经过校验的压力表,并 且以汽包上的压力为准。 • 4水压试验前阀门开关状态应符合下列要求,并 根据现场情况,做出具体规定,应有防止安全门 动作措施。

锅炉燃烧优化调整技术

锅炉燃烧优化调整技术

2)掺冷风量对排烟温度影响
②运行控制磨煤机出口温度偏低 按照《电站磨煤机及制粉系统选型导则》(DL/T 466-
2004)规定的磨煤机出口温度,见表1。 锅炉设计时热风温度的选择主要取决于燃烧的需要; 所选定的热风温度往往高于所要求的磨煤机入口的干
燥剂温度,因此要求在磨煤机入口前掺入一部分温度 较低的介质; 运行中磨煤机出口温度控制的越低,则冷一次风占的 比例越大,即流过空预器的风量流量降低,这样引起 排烟温度升高。
➢ 排烟热损失主要取决于排烟温度与排烟氧量 (过剩空气系数)
➢ 排烟热损失是锅炉各项热损失中最大的 (5%~7%);
➢ 排烟温度每升高10℃.排烟损失约增加0.5%~ 0.7%);机组发电煤耗升高约1.7 ~2.2 g/kWh。
➢ 过高的排烟温度,对锅炉后电除尘及脱硫设备 的安全运行也构成威胁。
烟气余热利于系统图
~180
贫煤 130 烟煤、褐煤 70
褐煤 90 烟煤 120
烟煤 70~75 褐煤 70 Vdaf≤15%的煤 100
当Vdaf<40%时,tM2=[(82-Vdaf)×5/3±5] 当Vdaf≥40%时,tM2<70
高热值烟煤<82,低热质烟煤<77,次烟煤、褐煤 <66
备注:燃用混煤的,可允许tM2较低的相应煤种取值;无烟煤只受设备允许 温度的限制
W火焰燃烧方式
➢ 无烟煤这种反应特性极低的煤种 (可燃基挥发分低于10%),
➢ 采用“W”火焰的燃烧方式,通过 提高炉膛的热负荷,延长火焰行程 等手段来获得满意的燃烧效果。
左侧墙
右侧墙
燃尽风口
燃烧器
➢ ➢
前后墙对冲燃烧方式 ➢
沿炉膛宽度方向热负荷分布均匀 过热器、再热器区炉宽方向的烟温 分布更加均匀 燃烧器具有自稳燃能力

生物质锅炉的燃烧调整思路

生物质锅炉的燃烧调整思路

燃生物质锅炉燃烧调整的思路一、 生物质的燃烧过程生物质的燃烧通常可以分为三个阶段,即预热起燃阶段、挥发分燃烧阶段、炭燃烧阶段。

(1)预热起燃阶段在该阶段,生物质(湿物料)被加热,水分逐渐蒸发后变为干物料。

当生物质被加热到160℃时,开始释放出挥发分。

挥发分的组成为:二氧化碳、一氧化碳、低分子碳氢化合物(如:甲烷、乙烯等)、还有氢气、氧气和氮气等气体。

挥发分中的氢气、低分子碳氢化合物和一氧化碳是可燃成分,二氧化碳和氮气是不可燃成分。

(2)挥发分燃烧阶段生物质经加热所释放出的挥发分在高温下开始燃烧,同时释放出大量热量,由于挥发分的成分比较复杂,其燃烧反应也比较复杂。

几种主要挥发分气体的燃烧反应方程式如下:O H O H 22221=+ 2221CO O CO =+ O H CO O CH 222422+=+O H CO O H C 22242323+=+ O H CO O H C 2226232213+=+(3)炭燃烧阶段挥发分在燃烧初期将固定碳包裹着,氧气不能接触到炭的表面,因而炭在挥发分的燃烧初期是不燃烧的,经过一段时间以后,挥发分燃烧结束,剩下的炭与氧气接触并发生燃烧反应。

炭燃烧时的反应方程式如下:CO CO O C 223422+=+ O H O H 22222=+CO C CO 22=+ 22H CO O H C +=+ (3)对于生物质燃烧的基本过程的认识,其他人员有不同的观点。

如:A.Williams 等认为,生物质的水分对燃烧过程影响很大,甚至主宰整个燃烧过程,所以将水分的干燥作为一个独立的过程,并将生物质燃烧的基本过程分为三步:生物质脱挥发分、挥发分燃烧和炭的燃烧。

二、 生物质在振动炉排上燃烧的过程1、炉排锅炉的燃烧特点(1) 分区供风 (2) 分区燃烧 2、生物质在振动炉排上的燃烧过程生物质在振动炉排上的燃烧过程分为预热干燥区、燃烧区和燃尽区,这可以与振动炉排的高、中和低端相对应。

火力发电厂锅炉调整吹灰技术与燃烧调整技术方法①

火力发电厂锅炉调整吹灰技术与燃烧调整技术方法①

火力发电厂锅炉调整吹灰技术与燃烧调整技术方法①劳动强度。

随着新兴科技的不断出现,当前的火力发电厂全部使用专业的锅炉,提升了电厂的发电效率。

其中两大控制技术占据了主要位置,它们的运用提高了火力发电厂的发电效率,为火力发电厂的可持续发展提供了助力。

1.2 构建精密驱动设备精准运转火力发电厂锅炉主要由外壳部分和燃煤锅炉的控制部分组成。

外壳部分主要由壳面和底面组成,底壳的作用主要是为了稳固燃烧器,而底壳的膨胀水箱等部件与底壳相连接,并固定在墙体上;壳面的作用主要是为了防止风尘的污染,让其部件得到保护。

燃煤锅炉的控制部分也是火力发电厂锅炉至关重要的构成要素,其作用主要是对燃料的燃烧进行控制。

以往的控制方式一般通过人工完成,在温度控制方面较为薄弱,经常出现数值失真的情况,而目前的控制系统中电子控制技术应用较为广泛,电子控制技术能让其操作更加准确,保证了控制效果最优化。

2 火力发电厂锅炉热电转换的描述热能动力的核心是热电能的转换,通过能量的不断转换和循环利用,减少资源的消耗,降低对环境的污染,从而真正实现火力发电厂的可持续发展。

如图1所示,当前我国发电方式主要是火力发电,在进行热电转换的过程中消耗了大量的资源,同时普遍存在资源的浪费,这背离了我国当前的发展理念。

如果想要从根本上解决火力发电造成的资源浪费,需要加强对热能动力技术的研究,热能动力技术的应用过程是燃料通过燃烧释放热量,水吸收热量后形成水蒸气,然后将水蒸气中的热能转化为机械能,最终机械能转化为电能。

在进行热电转换过程中,锅炉承担着重要角色,发电企业通常将锅炉效率作为衡量企业发展的经济水平,据有关调查显示:发电厂锅炉效率每提高1%,发电效率会提高0.3%~0.4%,同时燃料的使用会有所降低,实现锅炉热电的高效转换。

3 影响锅炉热电转换效率的原因火力发电厂在发电的过程中,水通过循环系统送入锅炉,燃料通过燃烧释放热能将热量传递到水中,水吸收热量形成了水蒸气,进入到汽轮机中转化成机械能。

350MW超临界机组直流锅炉的燃烧优化调整

350MW超临界机组直流锅炉的燃烧优化调整1. 引言1.1 研究背景燃烧优化是锅炉运行中至关重要的一环,直流锅炉作为目前主流的燃煤发电设备,其燃烧系统的性能和稳定性直接影响着整个电厂的运行效率和经济效益。

随着环保政策的不断加强和燃煤电厂的规模不断扩大,如何有效地优化直流锅炉的燃烧系统,提高燃烧效率,减少污染排放,成为当前研究的热点问题之一。

目前国内外对于直流锅炉燃烧优化调整的研究已经取得了一些进展,但仍存在一些挑战和问题。

直流锅炉燃烧系统特点复杂,燃烧调整方法不够精准,燃烧优化技术应用还不够广泛,实验结果分析缺乏系统性,经济效益评价缺乏客观性等。

本文旨在通过对350MW超临界机组直流锅炉的燃烧优化调整进行深入研究,探讨其相关特点和问题,并提出相应的解决方法和技术,以期为直流锅炉的燃烧优化提供一定的参考和借鉴。

1.2 研究意义燃烧优化调整是保障电厂安全稳定运行的重要措施,其研究意义在于提高机组的燃烧效率、减少排放污染物,提高能源利用率,降低能源消耗成本,进一步推动清洁能源发展。

通过燃烧优化调整,可以有效降低机组运行中出现的燃烧不稳定、过量空气、低效燃烧等问题,提高设备运行的稳定性和可靠性。

燃烧优化调整还可以降低机组运行过程中的燃烧损失,减少设备的维护成本,延长设备寿命。

对350MW超临界机组直流锅炉的燃烧优化调整研究具有重要的意义,将为提高电厂的经济效益和环境友好型发电做出贡献。

2. 正文2.1 机组直流锅炉燃烧系统特点分析超过限制、字数不足、重复内容等。

感谢配合!机组直流锅炉是一种高效能、低排放的锅炉设备,其燃烧系统具有独特的特点。

机组直流锅炉采用超临界技术,使得燃烧过程中的热效率达到了极高水平,能够更好地利用燃料。

燃烧系统采用先进的控制技术,能够实时监测和调整燃烧参数,确保燃烧效果稳定而高效。

机组直流锅炉的燃烧系统还具有较强的适应性,可以适应不同种类的燃料,如煤、燃气、油等,使得其在不同工况下表现优异。

锅炉燃烧调整与各项指标的控制措施

锅炉燃烧调整及各项指标的控制措施防止锅炉结焦和降低污染排放指标措施——针对此题目进行内容的增减细化和完善,要充分发挥合力团队和专工及主任层面作用,总结经验,真正发挥指导运行人员操作的目的!而不是为完成我布置的工作去应付!建议妥否请考虑!在锅炉运行调整中,在每一个运行工况下,对每一个参数的调整及控制的好坏,直接反映出锅炉燃烧调整的水平,最终反映在整台机组运行的稳定性上。

针对我公司情况,锅炉调整主要是对燃烧系统的调整,其次是各个参数的调整及控制。

下面将详细介绍锅炉调整的每一个环节。

燃烧调整部分:一、送、引风量的调整及控制在平衡通风的燃煤锅炉风量的调整中,原则上直接采用调节送、引风机动叶或静叶开度的大小来调整。

总风量的大小,主要依据锅炉所带负荷的高低、氧量的大小以及炉膛负压来控制。

目前#1、2炉引风量的调节,在稳定工况运行时主要是投入自动调节。

送风量的调节,在负荷稳定时投入自动调节,在负荷波动大时手动调节。

在点炉前吹扫条件中规定风量大于30%所对应的风量的质量流量为280T/H,根据这一基准,在正常调整中,按照负荷高低和规定氧量的大小来控制送风量。

将炉膛负压调节在-19.8Pa~-98Pa为基准来控制引风量。

二、燃料量的调整及控制1、锅炉负荷小幅度变动时调节原则:通过调节运行着的制粉系统的出力来进行。

调节过程(以少量加负荷为例)1)在给煤量不变的情况下,首先将A磨煤机的调整做为燃烧稳定的基础,然后通过适当开B、C磨煤机容量风门开度来调整负荷,调整时不要大幅度开容量风门,根据负荷情况,可单侧或双侧调整,调整幅度控制在2%开度左右,调整后,密切注意汽包压力或主汽压力以及氧量的变化趋势,如果压力上升快,可适当对单侧容量风门回调来进行控制。

2)在各台磨煤机容量风门开至40-45%时,此时应根据磨煤机料位及电流情况,来增加给煤量,根据长时间观察,每台磨煤机给煤量最稳定工况出力在54-56T/H之间,在掺烧劣质煤(如金生小窑煤)时,出力在48-50T/H之间。

燃烧器工作原理及调整方法

燃烧器工作原理及调整方法燃烧器是一种用于将燃料燃烧产生热能的设备,广泛应用于各种热能转换系统中,如锅炉、工业炉等。

它的工作原理主要包括供给燃料与空气混合、点火和调整燃烧过程三个方面。

下面我将详细介绍燃烧器的工作原理及调整方法。

首先,燃烧器的工作原理是将燃料与空气混合并点火的过程。

燃料可以是液体燃料(如柴油、重油等)、固体燃料(如木材、煤炭等)或气体燃料(如天然气、液化石油气等)。

当燃料进入燃烧器后,通过喷嘴、旋流器等装置喷射或喷雾,使其与空气混合。

混合后的燃料和空气形成一个可燃混合物,并通过点火装置点火。

燃烧时,燃料的化学能被释放出来,产生高温气体和热能。

其次,燃烧器的工作过程中需要进行燃料供给与空气量调整,以保证燃烧过程的稳定与高效。

燃烧器的调整主要包括燃料供给量的调整和空气燃料比的调整两个方面。

燃料供给量的调整是指调整燃料的流量或压力,以满足燃烧系统的热负荷需求。

通常采用调节阀或控制器来实现燃料供给量的调整。

在调整时,需要根据实际运行情况和热负荷需求,逐渐调整燃料供给量,以达到燃烧器的最佳工作状态。

空气燃料比的调整是指调整空气和燃料的配比,以实现燃烧效率的最大化。

空气燃料比通常用过量空气系数(即空气理论量与实际所需空气量之比)来表示。

过多或过少的空气都会导致燃烧效率降低、能源浪费和污染物排放增加。

因此,通过调整空气燃料比,可以实现燃烧系统的高效、节能和环保。

燃烧器的调整方法主要包括机械调整和自动调整两种方式。

机械调整是指通过手动调节燃料供给量和风门开度等机械装置来调整燃烧器的工作状态。

在进行机械调整时,需要根据燃料性质、热负荷需求和燃烧器的技术指标等参数,逐步调整燃料供给量和风门开度,以达到燃烧器的最佳工作状态。

自动调整是指通过自动控制器和传感器等设备来实现燃烧器的自动调整。

自动调整可以根据燃料性质、燃烧系统的热负荷需求和环境条件等参数,自动调整燃料供给量和空气燃料比,以实现燃烧器的自动化、智能化和高效化。

锅炉燃烧调整方法步骤.

锅炉燃烧调整方法步骤北极星电力网技术频道作者: 2012-12-5 9:01:50 (阅31次)所属频道: 火力发电关键词: 锅炉燃烧调整制粉系统燃料量调节中间储仓式制粉系统:当汽轮机负荷变动不大时,一般通过调节给粉机转速改变燃料量;当汽轮机负荷变动较大时,可以通过调节改变给粉机运行台数改变燃料量。

燃料量。

正常燃烧时,炉内火焰应分布均匀,火焰不直接冲刷水冷壁,也不得伸入灰渣斗内。

调整燃烧时应注意防止结渣。

正常运行中应根据锅炉负荷均匀分配各燃烧器的给粉量。

燃烧器应对角投入或切除,投入、切除燃烧器时应逐只进行,严禁缺角或断层运行。

风量调节一般通过送风机入口挡板开度调节供给炉内的总风量,根据炉内燃烧工况需要调节分风门开度,满足各燃烧器之间风量分配。

当负荷增加时,应先增加风量、后增加燃料;负荷减少时,应先减燃料,再减风量,但在低负荷时,因炉内过剩氧量较多,故在增加负荷时,应先增加燃料,后加风量;减负荷时,则先减风量,后减燃料。

运行时应保持炉膛负压为正常值,在加负荷时,原则上应先增加吸风量,而后应及时增加送风量和燃料量;在减负荷时,原则上应先减燃料量和送风量,再减吸风量。

正常运行时,锅炉燃烧室负压应保持20~40Pa。

在锅炉增减负荷或进行对燃烧有影响的操作(如吹灰、打渣等)时应适当保持较高的燃烧室负压。

锅炉省煤器泄漏的现象处理方法北极星电力网技术频道作者: 2012-12-4 15:18:21 (阅95次)所属频道: 火力发电关键词: 省煤器锅炉事故现象:1、汽包水位下降,给水流量不正常地大于蒸汽流量;2、炉膛负压变小、变正,引风机投自动时,引风机电流增大;3、各段烟温、蒸汽压力和流量下降;4、泄漏初期,在泄漏处可以听到声响,随着泄漏点扩大响声以也逐渐增大;处理方法:1、轻微泄漏,应加大给水流量,尽可能维持正常水位,保持炉膛负压降低负荷,必要时投油助燃,汇报值长,请示停炉;2、泄漏严重,不能维持水位应紧急停炉;3、停炉后,继续上水,保留风机运行,待烟道内烟气蒸汽排除后,停风机;4、如炉管的漏水量很大,停炉后无法保持汽包水位,应立即停止上水,严禁开启省煤器再循环门;5、停止电除尘器;汇报上级领导,做好记录锅炉一台引风机掉闸(RB拒动)的处理方法北极星电力网技术频道作者: 2012-12-4 15:16:03 (阅18次)所属频道: 火力发电关键词: 引风机锅炉锅炉事故1.将掉闸引风机开关,联跳的送风机开关复位;2.当RB动作后,自动切粉投油;自动降负荷至120MW;3.此时加强汽温、水位、燃烧的监视与调整;4.当RB拒动时,增大运行引风机的入口开度;5.迅速从上至下切除部分给粉机;6.视情况投入助燃油;7.联系汽机降负荷;8.加强一次风压的监视与调整,严禁一次风压过低而造成堵管;9. 强汽温的监视与调整;10. 强水位的监视与调整;11. 加强汽压的监视与调整;12. 加强炉膛负压的调整,严禁运行风机过负荷及两侧烟温偏差超限;13. 迅速查明原因,汇报班长;14. 及时联系检修人员,迅速处理;15. 作好记录,待故障消除后,迅速恢复机组正常运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

资料范本
本资料为word版本,可以直接编辑和打印,感谢您的下载
锅炉燃烧调整方法
地点:__________________
时间:__________________
说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容
锅炉燃烧调整方法
锅炉运行调整中,在保证安全运行基础上,还要做到经济运行,提高锅炉效率。

一般的锅炉机组,效率基本可以达到92%以上,各项损失之和不到8%,最大损失是:排烟热损失,一般5—6%,其次是机械未完全燃烧热损失不到1-1.5%,散热损失和灰渣物理热损失两项1%左右。

(对高灰份煤灰渣物理热损失会更大)。

从指标量化看,要提高锅炉效率,重点是降低排烟损失和机械未完全燃烧热损失。

注意排烟温度的变化,排烟温度过高,影响锅炉效率,过低容易造成空预器的低温腐蚀,所以要求在运行中根据负荷的变化加强调整。

在煤质变化比较大,燃料量明显增加时,及时调整总风量和一二次风温高于设计煤种下的温度。

(1)控制好锅炉总风量
锅炉风量的使用,不仅影响锅炉效率的高低,而且,过量的空气量还会增加送、引风机的单耗,增加厂用电率,影响供电煤耗升高。

要保持合适的风量可通过观察氧量值,一般在3-4%左右,对于不同煤种在飞灰含碳量不增加的情况下可考虑低氧燃烧,实现降低排烟损失的目的。

但要根据锅炉所烧煤种的结渣特性,注意尽量保持锅炉出口烟温低于灰渣的软化温度,以减轻结渣的程度,对于易结渣煤种,可以适当保持氧量高一些,避免出现还原性气氛,减少结渣。

(2)降低排烟温度
a.锅炉吹灰器正常运行,及时吹灰,保证受热面清洁;
b.防止空预器堵灰,可从出入口压差判断,当压差增大时就有可能是堵灰,要及时吹灰;
c.控制锅炉火焰中心位置,在过热汽温和再热汽温不低的情况下可调火焰中心下移,可以通过对上中下各层喷燃器的配风量进行调整,
d.要尽量提高进入预热器的空气温度,一般不低于20℃(冬季投入暖风器),以利于强化燃烧。

特别是在低负荷阶段,往往出现锅炉氧量过高的情况,既对燃烧不利,也增加了风机单耗。

(3)降低飞灰含碳量
飞灰含碳量是指飞灰中碳的质量百分比(%)。

飞灰越大,损失也越大,影响飞灰损失的因素很多,包括:可磨性系数,煤粉细度,燃烧动力场,炉膛内温度水平、风煤比、锅炉总用风量、一次风量、一二次风量配比、一次风速、二次风速等,这些因素必须通过试验进行合理配比,实现最佳运行工况,以获得飞灰损失最小。

燃用发热量一般在18000-21000kj/kg,挥发份30%,灰份20%左右,应确定经济的煤粉细度,即:做出煤粉细度与飞灰曲线、煤粉细度制粉单耗曲线,两曲线的交点所对应的细度就是经济煤粉细度,即煤粉燃烬和制粉耗电率之间的最佳组合。

最佳煤粉细度一般维持R90=20%-- R90=25%。

在锅炉调整中,一次风的使用应根据煤种特性,一次风量的确定原则上应满足燃料中挥发份着火的需要,同时要兼顾磨煤机的干燥出力和通风出力,三者之间寻找一个最佳点。

确定适当的风煤比曲线,是保证制粉系统安全、经济运行的重要基础工作,强调在主燃烧区适当欠一点氧量,在燃尽阶段补充一定的氧量,实现完成燃烧。

发电部锅炉专业。

相关文档
最新文档