三角函数、数列、导数试题及详解

合集下载

三角函数练习题及答案

三角函数练习题及答案

三角函数练习题及答案一、填空题1.已知球O 的表面积为16π,点,,,A B C D 均在球O 的表面上,且,4ACB AB π∠=则四面体ABCD 体积的最大值为___________.2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,1a =,34A π=,若b c λ+有最大值,则实数λ的取值范围是_____.3.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .D 、E 是线段AB 上满足条件1()2CD CB CE =+,1()2CE CA CD =+的点,若2CD CE c λ⋅=,则当角C 为钝角时,λ的取值范围是______________4.通信卫星与经济、军事等密切关联,它在地球静止轨道上运行,地球静止轨道位于地球赤道所在平面,轨道高度为km h (轨道高度是指卫星到地球表面的距离).将地球看作是一个球(球心为O ,半径为km r ),地球上一点A 的纬度是指OA 与赤道平面所成角的度数,点A 处的水平面是指过点A 且与OA 垂直的平面,在点A 处放置一个仰角为θ的地面接收天线(仰角是天线对准卫星时,天线与水平面的夹角),若点A 的纬度为北纬30,则tan θ________.5.在ABC 中,sin 2sin B C =,2BC =.则CA CB ⋅的取值范围为___________.(结果用区间表示)6.已知函数()()2sin 06f x x πωω⎛⎫=+> ⎪⎝⎭,若()f x 的图象关于直线3x π=对称,且在3,164ππ⎛⎫⎪⎝⎭上单调,则ω的最大值是______.7.关于函数())cos sin f x x x x =+①其表达式可写成()cos 26f x x π⎛⎫=+ ⎪⎝⎭;②直线12x π=-是曲线()y f x =的一条对称轴;③()f x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增;④存在0,2πα⎛⎫∈ ⎪⎝⎭使()()3f x f x αα+=+恒成立.其中正确的是______(填写正确的番号).8.如图,在边长为2的正方形ABCD 中,M ,N 分别为边BC ,CD 上的动点,以MN 为边作等边PMN ,使得点A ,P 位于直线MN 的两侧,则PN PB ⋅的最小值为______.9.已知直线y m =与函数3()sin (0)42f x x πωω⎛⎫=++> ⎪⎝⎭的图象相交,若自左至右的三个相.邻交点...A ,B ,C 满足2AB BC =,则实数m =______. 10.已知1OB →=,,A C 是以O 为圆心,220BA BC →→⋅=,设平面向量OA →与OB →的夹角为θ(π04θ≤≤),则平面向量OA →在BC →方向上的投影的取值范围是_____.二、单选题11.已知函数()|sin |(0)f x x ωω=>在区间,53ππ⎡⎤⎢⎥⎣⎦上单调递减,则实数ω的取值范围为( ) A .5,32⎡⎤⎢⎥⎣⎦B .30,2⎛⎤ ⎥⎝⎦C .8,33⎡⎤⎢⎥⎣⎦D .50,4⎛⎤ ⎥⎝⎦12.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=,则a c +的取值范围是( ) A .33⎝ B .332⎛ ⎝C .33⎡⎤⎢⎥⎣ D .332⎡⎢⎣13.已知O 是三角形ABC 的外心,若()22AC ABAB AO AC AO m AO AB AC⋅+⋅=,且sin sin 3B C +=,则实数m 的最大值为( )A .3B .35C .75D .3214.已知函数()()sin f x x ωφ=+π0,02ωφ⎛⎫><< ⎪⎝⎭在π5π,88⎛⎫ ⎪⎝⎭上单调,且π3π088f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,则π2f ⎛⎫⎪⎝⎭的值为( ) A 22B .1C .1-D .22-15.已知F 是椭圆2221(1)x y a a+=>的左焦点,A 是该椭圆的右顶点,过点F 的直线l (不与x 轴重合)与该椭圆相交于点M ,N .记MAN α∠=,设该椭圆的离心率为e ,下列结论正确的是( ) A .当01e <<时,2πα<B .当202e <<时,2πα>C .当1222e <<时,23πα>D .当212e <<时,34πα> 16.如图,长方形ABCD 中,152AB =,1AD =,点E 在线段AB (端点除外)上,现将ADE 沿DE 折起为A DE '.设ADE α∠=,二面角A DE C '--的大小为β,若π2αβ+=,则四棱锥A BCDE '-体积的最大值为( )A .14B .23C 151-D 51-17.在ABC 中,若22sin cos 1A B +=,则8cos AB BCBC A AC+的取值范围为( )A .)43,8⎡⎣B .)43,7⎡⎣C .()7,8D .(0,4318.设函数242,0()sin ,60x x x f x x x ⎧-+≥=⎨-≤<⎩,对于非负实数t ,函数()y f x t =-有四个零点1x ,2x ,3x ,4x .若1234x x x x <<<,则1234x x x x ++的取值范围中的整数个数为( )A .0B .1C .2D .319.已知1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过点1F 且垂直于x 轴的直线与双曲线交于A ,B 两点,若2ABF 是钝角三角形,则该双曲线离心率的取值范围是( ) A .(21,)+∞B .(12,)+∞C .(1,12)D .(31,)+∞20.在锐角ABC 中,若cos cos sin sin 3sin A C B C a c A+=3cos 2C C +=,则a b +的取值范围是( ) A .(6,23⎤⎦B .(0,43C .(23,43D .(6,43三、解答题21.若函数()y f x =的图像上存在两个不同的点关于y 轴对称,则称函数()y f x =图像上存在一对“偶点”.(1)写出函数()sin f x x =图像上一对“偶点”的坐标;(不需写出过程) (2)证明:函数()ln(2)2g x x x =+-+图像上有且只有一对“偶点”;(3)若函数()2()x h x e mx m =--∈R 图像上有且只有一对“偶点”,求m 的取值范围.22.已知函数()()()()2cos +2cos 02f x x x x πϕϕϕϕ⎛⎫=+++<< ⎪⎝⎭.(1)求()f x 的最小正周期;(2)若13f π⎛⎫= ⎪⎝⎭,求当()2f x =时自变量x 的取值集合.23.已知函数2()2sin cos ()f x x x x a a R =-++∈,且(0)f = (1)求a 的值;(2)若()f x ω在[0,]π上有且只有一个零点,0>ω,求ω的取值范围.24.已知(3cos ,sin ),(sin ,0),0a x x b x ωωωω==>,设()(),f x a b b k k R =+⋅+∈. (1)若()f x 图象中相邻两条对称轴间的距离不小于2π,求ω的取值范围; (2)若()f x 的最小正周期为π,且当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 的最大值是12,求()f x 的解析式,并说明如何由sin y x =的图象变换得到()y f x =的图象.25.已知函数()2sin 2cos 3f x x a x =+-.(1)当1a =时,求该函数的最大值;(2)是否存在实数a ,使得该函数在闭区间0,2π⎡⎤⎢⎥⎣⎦上的最大值为1?若存在,求出对应a的值;若不存在,试说明理由. 26.已知函数()sin 2coscos 2sin33f x x x ππ=+.(1)若对任意,63x ππ⎡⎤∈⎢⎥⎣⎦,都有4f x m π⎛⎫- ⎪⎝⎭成立,求实数m 的取值范围;(2)设函数()1226g x f x π⎛⎫=- ⎪⎝⎭()g x 在区间[],3ππ-内的所有零点之和.27.已知函数 2()sin 2cos 1f x x m x =--- [0,]2x π∈()1若()f x 的最小值为 - 3,求m 的值;()2当2m =时,若对任意 12,[0,]2x x π∈ 都有()()12124f x f x a -≤-恒成立,求实数a 的取值范围.28.已知函数())2sin cos 0f x x x x ωωωω=+>的最小正周期为π.将函数()y f x =的图象上各点的横坐标变为原来的4倍,纵坐标变为原来的2倍,得到函数()y g x =的图象.(1)求ω的值及函数()g x 的解析式; (2)求()g x 的单调递增区间及对称中心29.已知函数()()sin ,f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象如图所示:(1)求函数()f x 的解析式及其对称轴的方程;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,方程()23f x a =-有两个不等的实根12,x x ,求实数a 的取值范围,并求此时12x x +的值.30.已知函数()()()24sin sin cos sin cos sin 142x f x x x x x x π⎛⎫=+++-- ⎪⎝⎭.(1)求函数()f x 的最小正周期; (2)若函数()()()12122g x f x af x af x a π⎡⎤⎛⎫=+---- ⎪⎢⎥⎝⎭⎣⎦在,42ππ⎡⎤-⎢⎥⎣⎦的最大值为2,求实数a 的值.【参考答案】一、填空题1.3(21)22.22⎝ 3.12(,)369- 4.2rr h-+ 5.8,83⎛⎫ ⎪⎝⎭6.137.②③8.14-9.1或2##2或110.⎡⎢⎣⎦二、单选题 11.A 12.A 13.D 14.D 15.A 16.A 17.A 18.B 19.B 20.D 三、解答题21.(1)()(),0,0ππ-(2)见解析(3)()1,+∞ 【解析】(1)根据题意即正弦函数的性质即可直接求解;(2)要证:函数数()2x h x e mx =--图象上有且只有一对“偶点”,只需证:())()()y Q x g x g x ==--=在(0,2)上有且只有一个零点,结合导数及函数的性质即可证明;(3)由题意,问题可转化为函数()()y h x h x =--只有一个零点,结合函数的性质及导数可求. 【详解】(1)函数()sin f x x =图像上一对“偶点”的坐标为()(),0,0ππ-, (2)设()()()()()ln 2ln 22Q x g x g x x x x =--=+--+-, 因为()y Q x =的定义域为()2,2-,且()()Q x Q x -=-, 所以函数()y Q x =为奇函数,要证:函数()ln(2)2g x x x =+-+图像上有且只有一对“偶点”, 只需证:()y Q x =在()0,2上有且只有一个零点, 令()()222204x Q x x -'==-,得x =所以,函数()Q x 在(上为单调减函数,在)2上为单调增函数,(ln 30Q=+-<,4441122ln 40Q e e e ⎛⎫⎛⎫-=-+> ⎪ ⎪⎝⎭⎝⎭,所以函数()Q x 在41e ⎫-⎪⎭上有且只有一个零点,所以函数()ln(2)2g x x x =+-+图像上有且只有一对“偶点”,(3)设()()()2x xF x h x h x e e mx -=--=--,()00F =,因为()y F x =的定义域为R ,且()()F x F x -=-, 所以函数()y F x =为奇函数,因为函数()2()x h x e mx m =--∈R 图像上有且只有一对“偶点”, 所以函数()y F x =在()0,∞+有且只有一个零点, ()12x xF x e m e '=+-,()0,x ∈+∞, ①当1m 时,因为()220F x m '>-≥,所以函数()y F x =在()0,∞+上为单调增函数,所以()()00F x F >=, 所以函数()F x 在()0,∞+无零点,②当1m 时,由()212120x x xx xe me F x e m e e -+'=+-==,得:(0ln x m =,所以函数()y F x =在()00,x 上单调减函数,在()0,x +∞上单调增函数, 所以()()000F x F <=, 设()ln H x x x =-,()1xH x x-'=, 所以函数()H x 在()0,1上单调增函数,在()1,+∞上单调减函数, 所以()()110H x H ≤=-<,所以ln x x <,所以(ln ln 22m m m +<<,设()()211x m x e x x =-->,设()()2xM x m x e x '==-, 因为()220xM x e e '=->->,所以函数()M x 在()1,+∞单调增函数,所以()()120M x M e >=->,所以函数()m x 在()1,+∞单调增函数, 所以()()120m x m e >=->,所以当1x >时,21x e x >+, ()22222124140m m m F m e m e m e=-->-->, 因为函数()y F x =在()0,x +∞上单调增函数,所以函数()F x 在()0,2x m 上有且仅有一个1x ,使得()10F x =, 综上:m 的取值范围为()1,+∞. 【点睛】本题中综合考查了函数的性质及导数的综合应用,体现了分类讨论思想的应用,试题具有一定的综合性.22.(1)π;(2)12x x k ππ⎧=-+⎨⎩或()4x k k Z ππ⎫=+∈⎬⎭【解析】 【分析】(1)由辅助角公式可得()f x 2sin 2216x πϕ⎛⎫=+++ ⎪⎝⎭,再求周期即可;(2)由13f π⎛⎫= ⎪⎝⎭求出12πϕ=,再解方程2sin 2123x π⎛⎫++= ⎪⎝⎭即可.【详解】解:(1)()()()()2cos 2cos f x x x x ϕϕϕ=++++()()2cos21x x ϕϕ=++++2sin 2216x πϕ⎛⎫=+++ ⎪⎝⎭,则()f x 的最小正周期为2T ππω==.(2)因为13f π⎛⎫= ⎪⎝⎭,所以2sin 221136ππϕ⎛⎫⨯+++= ⎪⎝⎭,即()526k k Z πϕπ+=∈, 解得()5212k k Z ππϕ=-∈. 因为02πϕ<<,所以12πϕ=.因为()2f x =,所以2sin 2123x π⎛⎫++= ⎪⎝⎭,即1sin 232x π⎛⎫+= ⎪⎝⎭,则2236x k πππ+=+或()52236x k k Z πππ+=+∈, 解得12x k ππ=-+或()4x k k Z ππ=+∈.故当()2f x =时,自变量x 的取值集合为12x x k ππ⎧=-+⎨⎩或()4x k k Z ππ⎫=+∈⎬⎭.【点睛】本题考查了三角恒等变换,重点考查了解三角方程,属中档题.23.(1)a =(2)15,36⎡⎫⎪⎢⎣⎭【解析】 【分析】(1)利用降次公式、辅助角公式化简()f x 表达式,利用(0)f =a 的值.(2)令()0f x ω=,结合x 的取值范围以及三角函数的零点列不等式,解不等式求得ω的取值范围. 【详解】(1)2()2sin cos f x x x x a =-++sin 2x x a =+2sin 23x a π⎛⎫=++- ⎪⎝⎭(0)f =(0)2sin3f a π∴=+=即a =(2)令()0f x ω=,则sin 203x πω⎛⎫+= ⎪⎝⎭,[0,]x π∈,2,2333πππωπω⎡⎤∴+∈+⎢⎥⎣⎦,()f x 在[0,]π上有且只有一个零点,223πππωπ∴+<,1536ω∴<, ω∴的取值范围为15,36⎡⎫⎪⎢⎣⎭. 【点睛】本小题主要考查三角恒等变换,考查三角函数零点问题,考查化归与转化的数学思想方法,属于基础题.24.(1)01ω<≤;(2)()sin 26f x x π⎛⎫=- ⎪⎝⎭;平移变换过程见解析.【解析】 【分析】(1)根据平面向量的坐标运算,表示出()f x 的解析式,结合辅助角公式化简三角函数式.结合相邻两条对称轴间的距离不小于2π及周期公式,即可求得ω的取值范围; (2)根据最小正周期,求得ω的值.代入解析式,结合正弦函数的图象、性质与()f x 的最大值是12,即可求得()f x 的解析式.再根据三角函数图象平移变换,即可描述变换过程.【详解】∵(3cos ,sin ),(sin ,0)a x x b x ωωω== ∴(3cos sin ,sin )a b x x x ωωω+=+∴2()()3sin cos sin f x a b b k x x x k ωωω=+⋅+=++1cos21122cos2222x x k x x k ωωωω-=++=-++ 1sin 262x k πω⎛⎫=-++ ⎪⎝⎭(1)由题意可知222T ππω=≥, ∴1ω≤ 又0>ω, ∴01ω<≤ (2)∵T πω=, ∴1ω=∴1()sin 262f x x k π⎛⎫=-++ ⎪⎝⎭∵,66x ππ⎡⎤∈-⎢⎥⎣⎦,∴2,626x πππ⎡⎤-∈-⎢⎥⎣⎦∴当266x ππ-=即6x π=时max 11()sin 16622f x f k k ππ⎛⎫==++=+= ⎪⎝⎭∴12k =-∴()sin 26f x x π⎛⎫=- ⎪⎝⎭将sin y x =图象上所有点向右平移6π个单位,得到sin 6y x π⎛⎫=- ⎪⎝⎭的图象;再将得到的图象上所有点的横坐标变为原来的12倍,纵坐标不变,得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象(或将sin y x =图象上所有点的横坐标变为原来的12倍,纵坐标不变,得到sin 2y x =的图象;再将得到的图象上所有点向右平移12π个单位,得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象) 【点睛】本题考查了正弦函数图像与性质的综合应用,根据最值求三角函数解析式,三角函数图象平移变换过程,属于中档题.25.(1)1-;(2)存在,且2a =. 【解析】 【分析】(1)将1a =代入函数()y f x =的解析式,得出()()2cos 11f x x =---,由1cos 1x -≤≤结合二次函数的基本性质可得出该函数的最大值;(2)换元[]cos 0,1t x =∈,将问题转化为二次函数()222t at g t -+-=在区间[]0,1上的最大值为1,然后分0a ≤、01a <<和1a ≥三种情况讨论,利用二次函数的基本性质求出函数()222t at g t -+-=在区间[]0,1上最大值,进而求得实数a 的值.【详解】(1)当1a =时,()()22sin 2cos 3cos 11f x x x x =+-=---,1cos 1x -≤≤,当cos 1x =时,该函数取得最大值,即()max 1f x =-;(2)()22sin 2cos 3cos 2cos 2x a x x a x f x =+-=-+-,当0,2x π⎡⎤∈⎢⎥⎣⎦时,设[]cos 0,1t x =∈,设()222t at g t -+-=,[]0,1t ∈,二次函数()y g t =的图象开口向下,对称轴为直线t a =.当0a ≤时,函数()y g t =在[]0,1上单调递减,所以0=t 时,()()max 021g t g ==-≠,0a ∴≤不符合题意;当1a ≥时,函数()y g t =在[]0,1上单调递增,所以1t =时,()()max 1231g t g a ==-=,2a ∴=满足1a ≥;当01a <<时,函数()y g t =在[]0,a 上单调递增,在(],1a 上单调递减, ∴当t a =时,()()2max 21g t g a a ==-=,a ∴=01a <<.综上,存在2a =符合题意. 【点睛】本题考查二次型余弦函数的最值,将问题转化为二次函数的最值来求解是解题的关键,第二问要对二次函数图象的对称轴与区间的位置关系进行分类讨论,结合二次函数的单调性求解,考查分类讨论思想的应用,属于中等题. 26.(1)1,2⎛⎤-∞ ⎥⎝⎦;(2)2π【解析】(1)首先根据两角和的正弦公式得到()sin 23f x x π⎛⎫=+ ⎪⎝⎭,从而得到4f x π⎛⎫- ⎪⎝⎭的解析式,根据正弦函数的性质求出其值域,从而得到参数的取值范围; (2)首先求出()g x 的解析式,根据正弦函数的对称性即可解答. 【详解】解:(1)因为()sin 2coscos 2sin33f x x x ππ=+()sin 23f x x π⎛⎫∴=+ ⎪⎝⎭, 所以sin 2sin 24436f x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.又,63x ππ⎡⎤∈⎢⎥⎣⎦,所以2,662x πππ⎡⎤-∈⎢⎥⎣⎦, 故1sin 2,162x π⎛⎫⎡⎤-∈ ⎪⎢⎥⎝⎭⎣⎦,即min 142f x π⎛⎫-= ⎪⎝⎭,12m, 所以实数m 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦.(2)由(1)得()1122sin 22sin 26263g x f x x x πππ⎡⎤⎛⎫⎛⎫=-=-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦令()0g x =,得sin x =sin x =[],3ππ-上有4个零点 这4个零点从小到大不妨设为1x ,2x ,3x ,4x ,则由对称性得1222x x π+=-,34322x x π+=, 从而所有零点和为12342x x x x π+++=. 【点睛】本题考查两角和的正弦公式的应用,三角函数的性质的应用,属于基础题. 27.(1)1m =;(2)13[,)8a ∈+∞【解析】 【分析】(1)将函数化为2()cos 2cos 2f x x m x =--,设cos [0,1]t x =∈,将函数转化为二次函数,利用二次函数在给定的闭区间上的最值问题的解法求解.(2) 对任意 12,[0,]2x x π∈ 都有()()12124f x f x a -≤-恒成立, 等价于12max1()()24f x f x a -≤-,然后求出函数()f x 的最值即可解决.【详解】(1)2()cos 2cos 2f x x m x =--,[0,]2x π∈令 cos [0,1]t x =∈, 设222()22()2g t t mt t m m =--=---, ①0m <,则min g(0)2()3g t ==-≠-,②01m ≤≤,则2min )3(2t m g =--=-,∴1m =± ∴1m =③1m ,则min g(1)21()3g m t ==--=-,∴1m =.(舍) 综上所述:1m =.(2)对任意12,[0,]2x x π∈都有()()12124f x f x a -≤-恒成立,等价于12max1()()24f x f x a -≤-,2m =,∴2g()(2)6t t =--,[0,1]t ∈max ()g(0)2f x ==-,min ()g(1)5f x ==-12max ()(25)()3f x f x =---=- ∴ 1234a -≥,∴ 138a ≥, 综上所述:13[,)8a ∈+∞.本题考查三角函数中的二次“型”的最值问题,和双参恒成立问题,属于中档题.28.(1)1ω=,()2sin()23x g x π=+;(2)单调递增区间为54,433k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈,对称中心为2(2,0)()3k k ππ-∈Z . 【解析】 【分析】(1)整理()f x 可得:()sin(2)3f x x πω=+,利用其最小正周期为π即可求得:1ω=,即可求得:()sin(2)3f x x π=+,再利用函数图象平移规律可得:()2sin()23x g x π=+,问题得解. (2)令222232x k k πππππ-≤+≤+,k Z ∈,解不等式即可求得()g x 的单调递增区间;令23x k ππ+=,k Z ∈,解方程即可求得()g x 的对称中心的横坐标,问题得解. 【详解】解:(1)1()2sin 2sin(2)23f x x x x πωωω=+=+, 由22ππω=,得1ω=. 所以()sin(2)3f x x π=+.于是()y g x =图象对应的解析式为()2sin()23x g x π=+.(2)由222232x k k πππππ-≤+≤+,k Z ∈得 54433k x k ππππ-≤≤+,k Z ∈ 所以函数()g x 的单调递增区间为54,433k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. 由23x k ππ+=,解得22()3x k k ππ=-∈Z . 所以()g x 的对称中心为2(2,0)()3k k ππ-∈Z . 【点睛】本题主要考查了二倍角公式、两角和的正弦公式应用及三角函数性质,考查方程思想及转化能力、计算能力,属于中档题.29.(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,()62k x k Z ππ=+∈;(2)522a ≤<,3π.【解析】(1)根据图像得A=2,利用412562T πππω=-=,求ω值,再利用6x π=时取到最大值可求φ,从而得到函数解析式,进而求得对称轴方程;(2)由0,2x π⎡⎤∈⎢⎥⎣⎦得72,666x πππ⎡⎤+∈⎢⎥⎣⎦,方程f (x )=2a ﹣3有两个不等实根转为f (x )的图象与直线y =2a ﹣3有两个不同的交点,从而可求得a 的取值范围,利用图像的性质可得12x x +的值. 【详解】(1)由图知,2,A =4156242=T ππππω=-=,解得ω=2,f(x)=2sin(2x+φ), 当6x π=时,函数取得最大值,可得2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭,即sin 13πϕ⎛⎫+= ⎪⎝⎭,2,32k k Z ππϕπ+=+∈,解得2,6k k Z πϕπ=+∈ ,又(0,)2πϕ∈所以6π=ϕ, 故()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,令262x k πππ+=+则()62k x k Z ππ=+∈, 所以()f x 的对称轴方程为()62k x k Z ππ=+∈; (2)70,2,2666x x ππππ⎡⎤⎡⎤∈∴+∈⎢⎥⎢⎥⎣⎦⎣⎦,所以方程()23f x a =-有两个不等实根时,()y f x =的图象与直线23y a =-有两个不同的交点,可得1232,a ≤-<522a ∴≤<, 当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()12f x f x =,有122266x x πππ+++=,故123x x π+=.【点睛】本题考查由y =A sin (ωx +φ)的部分图象确定函数解析式,考查函数y =A sin (ωx +φ)的图象及性质的综合应用,属于中档题. 30.(1) 2T π=;(2)2a =-或6a = 【解析】 【分析】(1)根据二倍角公式进行整理化简可得()2sin f x x =,从而可得最小正周期;(2)将()g x通过换元的方式变为21112y t at a =-+--,1t ≤;讨论对称轴的具体位置,分别求解最大值,从而建立方程求得a 的值. 【详解】(1)()2221cos sin cos sin 12f x x x x x π⎡⎤⎛⎫=-++-- ⎪⎢⎥⎝⎭⎣⎦()222sin sin 12sin 12sin x x x x =++--= ∴最小正周期2T π=(2)()1sin2sin cos 12g x a x a x x a =+---令sin cos x x t -=,则()22sin 21sin cos 1x x x t =--=-22221111122242a a y t at a t at a t a ⎛⎫∴=-+--=-+-=--+- ⎪⎝⎭sin cos 4t x x x π⎛⎫=-=- ⎪⎝⎭由42x ππ-≤≤得244x πππ-≤-≤1t ≤①当2a<a <-当t =max 122y a ⎫=--⎪⎭由1222a ⎫--=⎪⎭,解得()817a ==->-)②当12a≤,即2a -≤时 当2a t =时,2max 142a y a =- 由21242a a -=得2280a a --=,解得2a =-或4a =(舍去) ③当12a>,即2a >时 当1t =时,max 12a y =-,由122a-=,解得6a = 综上,2a =-或6a = 【点睛】本题考查正弦型函数最小正周期的求解、利用二次函数性质求解与三角函数有关的值域问题,解题关键是通过换元的方式将所求函数转化为二次函数的形式,再利用对称轴的位置进行讨论;易错点是忽略了换元后自变量的取值范围.。

高中数学三角函数练习题附答案

高中数学三角函数练习题附答案

高中数学三角函数练习题附答案一、填空题1.已知函数()1sin sin 34f x x x π⎛⎫=⋅+- ⎪⎝⎭定义域为[](),m n m n <,值域为11,24⎡⎤-⎢⎥⎣⎦,则n m-的最小值是________.2.已知球O 的表面积为16π,点,,,A B C D 均在球O的表面上,且,4ACB AB π∠=则四面体ABCD 体积的最大值为___________. 3.在ABC中,AB =BC =1cos 7BAC ∠=,动点D 在ABC 所在平面内且2π3BDC ∠=.给出下列三个结论:①BCD △②线段AD 的长度只有最小值,无最大值,且最小值为1;③动点D 的轨迹的长度为8π3.其中正确结论的序号为______. 4.已知)F为椭圆2222:1(0)x y C a b a b+=>>的右焦点,过点F 的直线l 与椭圆C 交于,A B 两点,P 为AB 的中点,O 为坐标原点.若△OFP 是以OF 为底边的等腰三角形,且△OFP 外接圆的面积为23π,则椭圆C 的长轴长为___________. 5.若函数()sin 12xf x x π=+,则(1)(2)(3)(2021)f f f f +++⋯⋯+=__________6.给出下列命题:①若函数()f x 的定义域为[]0,2,则函数(2)f x 的定义域为[]0,4; ②函数()tan f x x =在定义域内单调递增;③若定义在R 上的函数()f x 满足(1)()f x f x +=-,则()f x 是以2为周期的函数;④设常数a ∈R ,函数2log ,04()10,41x x f x x x ⎧<≤⎪=⎨>⎪-⎩若方程()f x a =有三个不相等的实数根1x ,2x ,3x ,且123x x x <<,则312(1)x x x +的值域为[64,)+∞.其中正确命题的序号为_____.7.已知函数()sin cos f x x x =+,()sin cos g x x x =:①函数()f x 的图象关于点(,0)4π对称;②函数|()|g x 的最小正周期是2π;③把函数f (2x )图象上所有点向右平移8π个单位长度得到的函数图象的对称轴与函数y=()g x 图象的对称轴完全相同;④函数1()()y f x g x =--在R 上的最大值为2.则以上结论正确的序号为_______________8.已知正四棱柱1111ABCD A B C D -中,2AB =,1AA =若M 是侧面11BCC B 内的动点,且AM MC ⊥,则1A M 的最小值为__________.9.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且23,3a A π==.若mb nc +(0,0m n >>)有最大值,则nm的取值范围是__________. 10.在三棱锥P ABC -中,4AB BC ==,8PC =,异面直线PA ,BC 所成角为π3,AB PA ⊥,AB BC ⊥,则该三棱锥外接球的表面积为______.二、单选题11.在ABC 中,角,,A B C 所对应的边分别为,,a b c ,设ABC 的面积为S ,则24Sa bc+的最大值为( ) A .216B .312C .316D .21812.若函数()f x 同时满足:①定义域内任意实数x ,都有()()110f x f x ++-=;②对于定义域内任意1x ,2x ,当12x x ≠时,恒有()()()12120x x f x f x -⋅->⎡⎤⎣⎦;则称函数()f x 为“DM 函数”.若“DM 函数”满足()()2sin cos 0f f αα-+>,则锐角α的取值范围为( ) A .0,4π⎛⎫ ⎪⎝⎭B .0,3π⎛⎫ ⎪⎝⎭C .,43ππ⎛⎫ ⎪⎝⎭D .2,43ππ⎛⎫ ⎪⎝⎭13.如图所示,已知△ABC ,D 是AB 的中点,沿直线CD 将△ACD 翻折成△ACD ',所成二面角A CD B '--的平面角为α,则( )A .A DB α'∠≤ B .A DB α'∠≥C .A CB α∠'≤D .A CB α'∠≥14.已知函数()sin 22cos f x x x =-,下列说法错误的是( ) A .函数()f x 是周期函数 B .6x π=是函数()f x 图象的一条对称轴C .函数()f x 的增区间为()72,266k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z D .函数()f x 3315.已知函数()()()sin 010f x x ωϕω=+<<,若存在实数1x 、2x ,使得()()122f x f x -=,且12x x π-=,则ω的最大值为( )A .9B .8C .7D .516.已知,42ππα⎡⎤∈⎢⎥⎣⎦,,32ππβ⎡⎤∈⎢⎥⎣⎦sin αβαβ=+,则tan()αβ-=( ) AB .1C.2+D217.已知函数()()3log 911x f x x+=-,下列说法正确的是( )A .()f x 既不是奇函数也不是偶函数B .()f x 的图象与sin y x =有无数个交点C .()f x 的图象与2y =只有一个交点D .()()21f f -<-18.设锐角ABC 的内角,,A B C 所对的边分别为,,a b c,若,3A a π=2b 2c bc ++的取值范围为( ) A .(1,9] B .(3,9] C .(5,9]D .(7,9]19.设函数242,0()sin ,60x x x f x x x ⎧-+≥=⎨-≤<⎩,对于非负实数t ,函数()y f x t =-有四个零点1x ,2x ,3x ,4x .若1234x x x x <<<,则1234x x x x ++的取值范围中的整数个数为( )A .0B .1C .2D .320.已知1F 、2F 是椭椭圆和双曲线共有焦点,P 为两曲线的一个公共点,且126F PF π∠=,记椭圆和双曲线的离心率分别1e ,2e ,则1212e e e e +⋅的最大值为 A .4B .2C .83D .163三、解答题21.函数()()03f x x πωω⎛⎫=+> ⎪⎝⎭在一个周期内的图象如图所示,A 为图象的最高点,B ,C 为图象与x 轴的交点,ABC ∆为等边三角形.将函数()f x 的图象上各点的横坐标变为原来的π倍后,再向右平移23π个单位,得到函数()y g x =的图象.(Ⅰ)求函数()g x 的解析式;(Ⅱ)若不等式()23sin 324x m g x m π⋅-≤+对任意x ∈R 恒成立,求实数m 的取值范围.22.若函数()y f x =的图像上存在两个不同的点关于y 轴对称,则称函数()y f x =图像上存在一对“偶点”.(1)写出函数()sin f x x =图像上一对“偶点”的坐标;(不需写出过程) (2)证明:函数()ln(2)2g x x x =+-+图像上有且只有一对“偶点”;(3)若函数()2()x h x e mx m =--∈R 图像上有且只有一对“偶点”,求m 的取值范围. 23.如图,湖中有一个半径为1千米的圆形小岛,岸边点A 与小岛圆心C 相距3千米,为方便游人到小岛观光,从点A 向小岛建三段栈道AB ,BD ,BE ,湖面上的点B 在线段AC 上,且BD ,BE 均与圆C 相切,切点分别为D ,E ,其中栈道AB ,BD ,BE 和小岛在同一个平面上.沿圆C 的优弧(圆C 上实线部分)上再修建栈道DE .记CBD ∠为θ.()1用θ表示栈道的总长度()f θ,并确定sin θ的取值范围;()2求当θ为何值时,栈道总长度最短.24.已知()sin ,2cos a x x =,()2sin ,sin b x x =,()f x a b =⋅ (1)求()f x 的解析式,并求出()f x 的最大值;(2)若0,2x π⎡⎤∈⎢⎥⎣⎦,求()f x 的最小值和最大值,并指出()f x 取得最值时x 的值.25.已知函数22cos 3sin 2f x xx a 的最小值为0.(1)求a 的值及函数()y f x =图象的对称中心;(2)若关于x 的方程()0f x m -=在区间70,6π⎡⎤⎢⎥⎣⎦上有三个不相等的实数根1x ,2x ,3x ,求m的取值范围及()123tan 2x x x ++的值.26.如图,半圆的直径2AB =,O 为圆心,C ,D 为半圆上的点.(Ⅰ)请你为C 点确定位置,使ABC ∆的周长最大,并说明理由; (Ⅱ)已知AD DC =,设ABD θ∠=,当θ为何值时, (ⅰ)四边形ABCD 的周长最大,最大值是多少? (ⅱ)四边形ABCD 的面积最大,最大值是多少27.已知向量9(sin ,1),(sin ,cos )8a x b x x ==-, 设函数(),0,2f x a b x π⎡⎤=⋅∈⎢⎥⎣⎦.(Ⅰ)求()f x 的值域(Ⅱ)设函数()f x 的图像向左平移2π个单位长度后得到函数()h x 的图像,若不等式()()sin 20f x h x x m ++-<有解,求实数m 的取值范围.28.设函数2()cos sin 2f x x a x a =-+++(a ∈R ). (1)求函数()f x 在R 上的最小值;(2)若不等式()0f x <在[0,]2π上恒成立,求a 的取值范围;(3)若方程()0f x =在(0,)π上有四个不相等的实数根,求a 的取值范围.29.函数()()2sin f x x ωϕ=+(其中0,2πωϕ><),若函数()f x 的图象与x 轴的任意两个相邻交点间的距离为2π,且函数()f x 的图象过点()0,1. (1)求()f x 的解析式; (2)求()f x 的单调增区间:(3)求()()2sin f x x ωϕ=+在,02π⎛⎫- ⎪⎝⎭的值域. 30.已知向量33cos ,sin 22a x x ⎛⎫= ⎪⎝⎭,cos ,sin 22x x b ⎛⎫=- ⎪⎝⎭,且0,2x π⎡⎤∈⎢⎥⎣⎦(1)求a ·b 及||a b +;(2)若3()||2f x a b a b =⋅-+,求()f x 的最小值【参考答案】一、填空题1.3π2 3.①③4.5.3032 6.③④ 7.②③④89.1,22⎛⎫ ⎪⎝⎭10.80π 二、单选题 11.A 12.A 13.B 14.B 15.A 16.D 17.C 18.D 19.B 20.A 三、解答题21.(Ⅰ)()12g x x =(Ⅱ)2,23⎡⎤-⎢⎥⎣⎦【解析】 【分析】(Ⅰ)利用等边三角形的性质,根据已知,可以求出函数的周期,利用正弦型函数的最小正周期公式求出ω,最后根据正弦型函数图象的变换性质求出()y g x =的解析式; (Ⅱ)根据函数()y g x =的解析式,原不等式等价于23cos 3cos 10x m x m +++≥在x ∈R 恒成立,利用换元法,构造二次函数,分类讨论进行求解即可. 【详解】(Ⅰ)点A ABC ∆为等边三角形,所以三角形边长为2,所以24T πω==,解得2πω=,所以()23f x x ππ⎛⎫+ ⎪⎝⎭,将函数()f x 的图象上各点的横坐标变为原来的π倍后,得到()123h x x π⎛⎫=+ ⎪⎝⎭,再向右平移23π个单位,得到()12g x x =.(Ⅱ)()22g x x x ππ⎛⎫-=-= ⎪⎝⎭,所以()223sin 233cos 3cos x g x x m x π⋅-=--,原不等式等价于23cos 3cos 10x m x m +++≥在x ∈R 恒成立. 令cos x t =,[]1,1t ∈-,即23310t mt m +++≥在[]1,1t ∈-上恒成立.设()2331t t mt m ϕ=+++,对称轴2m t =-, 当12m-≤-时,即2m ≥时,()1240m ϕ-=-+≥,解得2m ≤,所以2m =; 当12m-≥时,即2m ≤-时,()1440m ϕ=+≥,解得1m ≥-(舍); 当112m -<-<时,即22m -<<时,231024m m m ϕ⎛⎫-=-++≥ ⎪⎝⎭,解得223m -≤<.综上,实数m 的取值范围为2,23⎡⎤-⎢⎥⎣⎦.【点睛】本题考查了正弦型函数的图象变换和性质,考查了利用换元法、构造法解决不等式恒成立问题,考查了数学运算能力.22.(1)()(),0,0ππ-(2)见解析(3)()1,+∞ 【解析】(1)根据题意即正弦函数的性质即可直接求解;(2)要证:函数数()2x h x e mx =--图象上有且只有一对“偶点”,只需证:())()()y Q x g x g x ==--=在(0,2)上有且只有一个零点,结合导数及函数的性质即可证明;(3)由题意,问题可转化为函数()()y h x h x =--只有一个零点,结合函数的性质及导数可求. 【详解】(1)函数()sin f x x =图像上一对“偶点”的坐标为()(),0,0ππ-, (2)设()()()()()ln 2ln 22Q x g x g x x x x =--=+--+-, 因为()y Q x =的定义域为()2,2-,且()()Q x Q x -=-, 所以函数()y Q x =为奇函数,要证:函数()ln(2)2g x x x =+-+图像上有且只有一对“偶点”, 只需证:()y Q x =在()0,2上有且只有一个零点,令()()222204x Q x x-'==-,得x =所以,函数()Q x 在(上为单调减函数,在)2上为单调增函数,(ln 30Q=+-<,4441122ln 40Q e e e ⎛⎫⎛⎫-=-+> ⎪ ⎪⎝⎭⎝⎭,所以函数()Q x 在41e ⎫-⎪⎭上有且只有一个零点,所以函数()ln(2)2g x x x =+-+图像上有且只有一对“偶点”,(3)设()()()2x xF x h x h x e e mx -=--=--,()00F =,因为()y F x =的定义域为R ,且()()F x F x -=-, 所以函数()y F x =为奇函数,因为函数()2()x h x e mx m =--∈R 图像上有且只有一对“偶点”, 所以函数()y F x =在()0,∞+有且只有一个零点, ()12x xF x e m e '=+-,()0,x ∈+∞, ①当1m 时,因为()220F x m '>-≥,所以函数()y F x =在()0,∞+上为单调增函数,所以()()00F x F >=, 所以函数()F x 在()0,∞+无零点,②当1m 时,由()212120x x xx xe me F x e m e e-+'=+-==,得:(0ln x m =,所以函数()y F x =在()00,x 上单调减函数,在()0,x +∞上单调增函数, 所以()()000F x F <=, 设()ln H x x x =-,()1xH x x-'=, 所以函数()H x 在()0,1上单调增函数,在()1,+∞上单调减函数, 所以()()110H x H ≤=-<,所以ln x x <,所以(ln ln 22m m m +<<,设()()211x m x e x x =-->,设()()2xM x m x e x '==-, 因为()220xM x e e '=->->,所以函数()M x 在()1,+∞单调增函数,所以()()120M x M e >=->,所以函数()m x 在()1,+∞单调增函数, 所以()()120m x m e >=->,所以当1x >时,21x e x >+,()22222124140m m m F m e m e m e=-->-->, 因为函数()y F x =在()0,x +∞上单调增函数,所以函数()F x 在()0,2x m 上有且仅有一个1x ,使得()10F x =, 综上:m 的取值范围为()1,+∞. 【点睛】本题中综合考查了函数的性质及导数的综合应用,体现了分类讨论思想的应用,试题具有一定的综合性. 23.()1()1232sin tan f θπθθθ=-+++,1sin ,13θ⎡⎫∈⎪⎢⎣⎭;()2当3πθ=时,栈道总长度最短.【解析】()1连CD ,CE ,由切线长定理知:1tan tan CD BE BD θθ===,1sin sin CD BC θθ==,130sin AB AC BC θ=-=-≥,1sin 3θ≥,即01sin 3θ=,00,2πθ⎛⎫∈ ⎪⎝⎭, 则()1232sin tan f θπθθθ=-+++,0,2πθθ⎡⎫∈⎪⎢⎣⎭,进而确定sin θ的取值范围; ()2根据()12cos 23sin f θθθπθ-=-++求导得()()2cos 2cos 1sin f θθθθ--'=,利用增减性算出()min 533f πθ=+,进而求θ得取值. 【详解】解:()1连CD ,CE ,由切线长定理知:1tan tan CD BE BD θθ===,1sin sin CD BC θθ==, CBE CBD θ∠=∠=,又CD BD ⊥,CE BE ⊥,故2DCE πθ∠=-,则劣弧DE 的长为2πθ-,因此,优弧DE 的长为2πθ+, 又3AC =,故130sin AB AC BC θ=-=-≥,1sin 3θ≥,即01sin 3θ=,00,2πθ⎛⎫∈ ⎪⎝⎭, 所以,()1232sin tan f θπθθθ=-+++,0,2πθθ⎡⎫∈⎪⎢⎣⎭,则1sin ,13θ⎡⎫∈⎪⎢⎣⎭; ()2()12cos 23sin f θθθπθ-=-++,0,2πθθ⎡⎫∈⎪⎢⎣⎭,其中01sin 3θ=,00,2πθ⎛⎫∈ ⎪⎝⎭,()()2cos 2cos 1sin f θθθθ--'=故3πθ=时,()min 533f πθ=+ 所以当3πθ=时,栈道总长度最短.【点睛】本题主要考查导数在函数当中的应用,属于中档题.24.(1)()f x 214x π⎛⎫=-+ ⎪⎝⎭1.(2)0x =时,最小值0.38x π=1. 【解析】 【分析】(1)利用数量积公式、倍角公式和辅助角公式,化简()f x ,再利用三角函数的有界性,即可得答案; (2)利用整体法求出32444x πππ-≤-≤,再利用三角函数线,即可得答案. 【详解】(1)()22sin 2sin cos f x x x x =+1cos2sin2x x =-+214x π⎛⎫=-+ ⎪⎝⎭∴sin 214x π⎛⎫-≤ ⎪⎝⎭,()f x ∴1.(2)由(1)得()214f x x π⎛⎫=-+ ⎪⎝⎭,∵0,2x π⎡⎤∈⎢⎥⎣⎦,32444x πππ∴-≤-≤.sin 214x π⎛⎫≤-≤ ⎪⎝⎭, ∴当244x ππ-=-时,即0x =时,()f x 取最小值0.当242x ππ-=,即38x π=时,()f x 1. 【点睛】本题考查向量数量积、二倍角公式、辅助角公式、三角函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意整体法的应用.25.(1)1,,2212k ππ⎛⎫- ⎪⎝⎭,k Z ∈;(2)[)3,4, 【解析】(1)由题得()2sin 216f x x a π⎛⎫=+++ ⎪⎝⎭,求出a 的值即得函数()y f x =图象的对称中心;(2)作出函数()y f x =在70,6x π⎡⎤∈⎢⎥⎣⎦上的大致图象,求出123523x x x π++=即得解.【详解】(1)()cos 23sin 212sin 216x x a x a f x π⎛⎫=+++=+++ ⎪⎝⎭,由已知可得()2110a ⨯-++=,∴1a =,()2sin 226f x x π⎛⎫=++ ⎪⎝⎭,令26x k ππ+=可得()y f x =图象的对称中心为,2212k ππ⎛⎫- ⎪⎝⎭,k Z ∈. (2)()y f x =在70,6x π⎡⎤∈⎢⎥⎣⎦上的大致图象如图所示,由图可得[)3,4m ∈,所以123x x π+=,2343x x π+=,所以123523x x x π++=, 所以()1235tan 2tan33x x x π++==-.【点睛】本题主要考查三角恒等变换和三角函数的图象和性质,考查三角函数图象的综合应用,意在考查学生对这些知识的理解掌握水平和分析推理能力. 26.(Ⅰ)点C 是半圆的中点,理由见解析; (Ⅱ)(ⅰ)6πθ=时,最大值5(ⅱ)6πθ=33【解析】(Ⅰ)设BC a =,AC b =,AB c =,法一:依题意有222+=a b c ,再利用基本不等式求得2a b c +,从而得出结论;法二:由点C 在半圆上,AB 是直径,利用三角函数求出cos a c α=⋅,sin b c α=⋅,再利用三角函数的性质求出结论;(Ⅱ)(ⅰ)利用三角函数值表示四边形ABCD 的周长p ,再求p 的最大值;(ⅱ)利用三角函数值表示出四边形ABCD 的面积s ,再结合基本不等式求s 的最大值. 【详解】(Ⅰ)点C 在半圆中点位置时,ABC ∆周长最大.理由如下: 法一:因为点C 在半圆上,且AB 是圆的直径,所以2ACB π∠=,即ABC ∆是直角三角形,设BC a =,AC b =,AB c =,显然a ,b ,c 均为正数,则222+=a b c , 因为222a b ab +≥,当且仅当a b =时等号成立,所以()()2222222a b a b ab a b +≥++=+,所以()2222a b a b c +≤+=, 所以ABC ∆的周长为()21222a b c c ++≤+=+,当且仅当a b =时等号成立,即ABC ∆为等腰直角三角形时,周长取得最大值,此时点C 是半圆的中点. 法二:因为点C 在半圆上,且AB 是圆的直径, 所以2ACB π∠=,即ABC ∆是直角三角形,设BC a =,AC b =,AB c =,02ABC παα⎛⎫∠=<< ⎪⎝⎭,则cos a c α=⋅,sin b c α=⋅,a b c ++cos sin c c c αα=⋅+⋅+()2cos sin 2αα=++2224πα⎛⎫=++ ⎪⎝⎭,因为02πα<<,所以3444πππα<+<, 所以当42ππα+=,即4πα=时, ABC ∆周长取得最大值222,此时点C 是半圆的中点.(Ⅱ)(ⅰ)因为AD DC =,所以ABD DBC θ∠=∠=, 所以sin AD DC AB θ==⋅,cos2CB AB θ=⋅, 设四边形ABCD 的周长为p , 则p AD DC CB AB =+++2sin cos22AB AB θθ=++()2214sin 212sin 254sin 2θθθ⎛⎫=+-+=-- ⎪⎝⎭,显然0,4πθ⎛⎫∈ ⎪⎝⎭,所以当6πθ=时,p 取得最大值5;(ⅱ)过O 作OE BC ⊥于E ,设四边形ABCD 的面积为s ,四边形AOCD 的面积为1s ,BOC ∆的面积为2s ,则 121122s s s AC OD BC OE =+=⋅+⋅ 11sin 21cos 2sin 222AB AB θθθ=⋅+⋅ sin 2cos2sin 2θθθ=+⋅()sin 21cos2θθ=+, 所以()222sin 21cos2s θθ=+()()221cos 21cos 2θθ=-+()()31cos21cos2θθ=-+()()331cos 21cos 23θθ=-+()()()2231cos 21cos 211cos 232θθθ-++⎡⎤≤+⎢⎥⎣⎦()()()231cos 21cos 211cos 232θθθ-++⎡⎤=+⎢⎥⎣⎦()()()2231cos 21cos 21cos 21232θθθ⨯-++⎡⎤++⎢⎥≤⎢⎥⎢⎥⎢⎥⎣⎦()()()431cos 21cos 221cos 2134θθθ-++++⎡⎤=⎢⎥⎣⎦ 413273216⎛⎫==⎪⎝⎭; 当且仅当()31cos21cos2θθ-=+,即1cos 22θ=时,等号成立, 显然04πθ⎛⎫∈ ⎪⎝⎭,,所以202πθ⎛⎫∈ ⎪⎝⎭,,所以此时6πθ=,所以当6πθ=时,33s =,即四边形ABCD 33 【点睛】本题考查解三角形的应用问题,考查三角函数与基本不等式的应用,需要学生具备一定的计算分析能力,属于中档题. 27.(Ⅰ)11,88⎡⎤-⎢⎥⎣⎦(Ⅱ)9,4⎛⎫-+∞ ⎪⎝⎭(Ⅰ)根据向量的数量积的坐标运算可得函数()f x 的解析式,化成二次函数型函数,求得值域;(Ⅱ)首先根据三角函数的变换规则求得()h x 的解析式,要使()()sin 20f x h x x m ++-<在0,2x π⎡⎤∈⎢⎥⎣⎦有解,即不等式()()sin2m f x h x x >++在0,2x π⎡⎤∈⎢⎥⎣⎦有解,令()()sin2y f x h x x =++求出函数的最小值,即可得实数m 的取值范围.【详解】 解:(1)()222991sin cos 1cos cos cos cos 888f x x x x x x x =+-=-+-=-+- ()211cos 28f x x ⎛⎫∴=--+ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦0cos 1x ∴≤≤()1188f x ∴-≤≤ ()f x ∴的值域为11,88⎡⎤-⎢⎥⎣⎦(2)函数()21cos cos 8f x x x =-+-的图像向左平移2π个单位长度后得到函数()h x 的图像,()2211cos cos sin sin 2288h x x x x x ππ⎛⎫⎛⎫∴=-+++-=--- ⎪ ⎪⎝⎭⎝⎭,依题意,不等式()()sin2m f x h x x >++在0,2x π⎡⎤∈⎢⎥⎣⎦有解,设()()5sin2cos sin sin24y f x h x x x x x =++=--+52sin cos cos sin ,0,42y x x x x x π⎡⎤=+--∈⎢⎥⎣⎦,令[]cos sin ,0,1,142t x x x x t ππ⎛⎫⎡⎤=-=+∈∴∈- ⎪⎢⎥⎝⎭⎣⎦, 则[]2211,1,142y t t t t ⎛⎫=-+-=--∈- ⎪⎝⎭∴函数()()sin2y f x h x x =++的值域为9,04⎡⎤-⎢⎥⎣⎦.∴ min 94m y >=-故实数m 的取值范围为9,4⎛⎫-+∞ ⎪⎝⎭.本题考查正弦函数的性质,二次函数的性质以及辅助角公式,属于中档题.28.(1)2min2,2;()1,22;422,2.a af x a a a a >⎧⎪⎪=-++-≤≤⎨⎪+<-⎪⎩(2)(,1)a ∈-∞-(3)12a -<<-【解析】 【分析】(1)通过换元法将函数变形为二次函数,同时利用分类讨论的方法求解最大值; (2)恒成立需要保证max ()0f x <即可,对二次函数进行分析,根据取到最大值时的情况得到a 的范围;(3)通过条件将问题转化为二次函数在给定区间上有两个零点求a 的范围,这里将所有满足条件的不等式列出来,求解出a 的范围. 【详解】解:(1)令sin x t =,[1,1]t ∈-,则2()()1f x g t t at a ==+++,对称轴为2a t =-. ①12a -<-,即2a >,min ()(1)2f x g =-=.②112a -≤-≤,即22a -≤≤,2min ()()124a a f x g a =-=-++.③12a->,即2a <-,min ()(1)22f x g a ==+. 综上可知,2min2,2;()1,22;422,2.a af x a a a a >⎧⎪⎪=-++-≤≤⎨⎪+<-⎪⎩ (2)由题意可知,max ()0f x <,2()()1f xg t t at a ==+++,[0,1]t ∈的图象是开口向上的抛物线,最大值一定在端点处取得,所以有(0)10,(1)220,g a g a =+<⎧⎨=+<⎩故(,1)a ∈-∞-. (3)令sin x t =,(0,)x π∈.由题意可知,当01t <<时,sin x t =有两个不等实数解,所以原题可转化为2()10g t t at a =+++=在(0,1)内有两个不等实数根.所以有201,24(1)0,12(0)10,(1)220,a a a a g a g a ⎧<-<⎪⎪⎪∆=-+>⇒-<<-⎨⎪=+>⎪=+>⎪⎩【点睛】(1)三角函数中,形如2()sin sin f x a x b x c =++或者2()cos cos f x a x b x c =++都可以采用换元法求解函数最值;(2)讨论二次函数的零点的分布,最好可以采用数形结合的方法解决问题,这样很大程度上减少了遗漏条件的可能.29.(1)2sin(2)6y x π=+;(2),,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(3)[)2,1-【解析】 【分析】(1)依据题意可得函数周期为π,利用周期公式算出ω,又函数过定点()0,1,即可求出ϕ,进而得出解析式;(2)利用正弦函数的单调性代换即可求出函数()f x 的单调区间;(3)利用换元法,设26t x π=+,结合2sin y t =在5,66t ππ⎛⎫∈-⎪⎝⎭上的图象即可求出函数()()2sin f x x ωϕ=+在,02π⎛⎫- ⎪⎝⎭的值域【详解】(1)因为函数()f x 的图象与x 轴的任意两个相邻交点间的距离为2π,所以函数()f x 的周期为π,由2T ππω==,得2ω=,又函数()f x 的图象过点()0,1,所以(0)1f =,即2sin 1=ϕ,而,所以6π=ϕ, 故()f x 的解析式为2sin(2)6y x π=+.(2)由sin y x =的单调增区间是2,2,22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦可得222262k x k πππππ-+≤+≤+,解得36k x k ππππ-+≤≤+故故函数()f x 的单调递增区间是,,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.(3)设 26t x π=+,,02x π⎛⎫∈- ⎪⎝⎭,则5,66t ππ⎛⎫∈-⎪⎝⎭ ,由2sin y t =在5,66t ππ⎛⎫∈- ⎪⎝⎭上的图象知,当2t π=-时,min 2f =- 当t 趋于6π时,函数值趋于1,故()()2sin f x x ωϕ=+在,02π⎛⎫- ⎪⎝⎭的值域为[)2,1- . 【点睛】本题主要考查正弦型函数解析式的求法,正弦函数性质的应用,以及利用换元法结合图象解决给定范围下的三角函数的范围问题,意在考查学生数学建模以及数学运算能力. 30.(1)见解析; (2)178-. 【解析】 【分析】(1)运用向量数量积的坐标表示,求出a ·b ;运用平面向量的坐标运算公式求出a b +,然后求出模.(2)根据上(1)求出函数()f x 的解析式,配方,利用二次函数的性质求出最小值. 【详解】(1)33cos cos sin sin cos22222x xa b x x x ⋅=⋅-⋅=cos a b ⎛+= ⎝ =∵0,2x π⎡⎤∈⎢⎥⎣⎦∴cos 0x ∴2cos a b x +=(2)()cos23cos f x x x =- 223172cos 13cos 2cos 48x x x ⎛⎫=--=-- ⎪⎝⎭∵0,2x π⎡⎤∈⎢⎥⎣⎦∴0cos 1x ∴()min 317cos 48x f x ==-【点睛】本题考查了平面向量数量积的坐标表示,以及平面向量的坐标加法运算公式.重点是二次函数求最小值问题.。

数列和三角函数综合题

数列和三角函数综合题

以下是一个综合题,涉及到数列和三角函数的应用:
题目:已知数列 {an} 的通项公式为 an = 2n + 1,其中 n 为正整数。

求证:当 n 为正整数时,三角函数 sin⁡(π/2 - an) = cos⁡(πn/2)。

解答:
根据已知数列 {an} 的通项公式 an = 2n + 1,我们可以将三角函数中的角度表示进行替换,即将 an 替换为 2n + 1。

首先,我们将左边的三角函数进行展开:
sin⁡(π/2 - an) = sin⁡(π/2 - (2n + 1))
根据三角函数的差化积公式,我们可以将 sin⁡(π/2 - (2n + 1)) 转化为 cos⁡((2n + 1) - π/2):
sin⁡(π/2 - (2n + 1)) = cos⁡((2n + 1) - π/2)
进一步化简右边的式子:
cos⁡((2n + 1) - π/2) = cos⁡(2n + 1 - π/2)
我们知道,cos⁡(π/2 - θ) = sin⁡θ,将上式进行变换得到:
cos⁡(2n + 1 - π/2) = sin⁡(π/2 - (2n + 1))
最后,我们得到:
sin⁡(π/2 - (2n + 1)) = cos⁡(2n + 1 - π/2) = sin ⁡(π/2 - (2n + 1))
由此可证,当 n 为正整数时,三角函数 sin⁡(π/2 - an) = cos⁡(πn/2) 成立。

这道题结合了数列的通项公式和三角函数的差化积公式,考查了学生对数列和三角函数概念的理解,并要求学生进行符号替换和化简推导。

三角函数与数列(高考题)

三角函数与数列(高考题)

三角函数与数列(高考题)1.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=. (1)证明:sin A sin B=sin C;(2)若b2+c2-a2=bc,求tan B.2.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c. (1)求C; (2)若c=,△ABC的面积为,求△ABC的周长.3.在△ABC中,a2+c2=b2+ac.(1)求∠B的大小; (2)求cos A+cos C的最大值.4.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin 2B=b sin A. (1)求B; (2)若cos A=,求sin C的值.5.设f(x)=2sin(π-x)sin x-(sin x-cos x)2.(1)求f(x)的单调递增区间;(2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g的值.6.设f(x)=sin x cos x-cos2.(1)求f(x)的单调区间;(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c.若f=0,a=1,求△ABC面积的最大值.7.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.8.已知向量=,=(sinx,cos2x),x∈R,设函数f(x)=·.(1) 求f(x)的最小正周期. (2) 求f(x) 在上的最大值和最小值.9.已知ΔABC的角A,B,C所对的边分别是a,b,c,设向量,,.(1)若//,求证:ΔABC为等腰三角形;(2)若⊥,边长c= 2,角C=,求ΔABC的面积.10.已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.(1)求数列{b n}的通项公式;(2)令c n=.求数列{c n}的前n项和T n.11.设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N*.(1)求通项公式a n;(2)求数列{|a n-n-2|}的前n项和.12.已知数列的前项和为,且对一切正整数都成立。

高考数学导数与三角函数压轴题综合归纳总结教师版

高考数学导数与三角函数压轴题综合归纳总结教师版

高考数学导数与三角函数压轴题综合归纳总结教师版导数与三角函数的问题在近几年的高考数学试题中频繁出现,主要包括函数零点个数的确定、根据函数零点个数求参数围、隐零点问题及零点存在性赋值理论。

这些问题的形式逐渐多样化、综合化。

一、零点存在定理例1.【2019全国Ⅰ理20】函数$f(x)=\sin x-\ln(1+x)$,$f'(x)$为$f(x)$的导数。

证明:1)$f'(x)$在区间$(-1,)$存在唯一极大值点;2)$f(x)$有且仅有2个零点。

解析】(1)设$g(x)=f'(x)$,则$g(x)=\cos x-\frac{1}{1+x}$,$g'(x)=-\sin x+\frac{1}{(1+x)^2}$。

当$x\in(-1,\frac{\pi}{2})$时,$g'(x)$单调递减,而$g'(0)>0$,$g'(\frac{\pi}{2})<0$,可得$g'(x)$在$(-1,\frac{\pi}{2})$有唯一零点,设为$\alpha$。

则当$x\in(-1,\alpha)$时,$g'(x)>0$;当$x\in(\alpha,\frac{\pi}{2})$时,$g'(x)<0$。

所以$g(x)$在$(-1,\alpha)$单调递增,在$(\alpha,\frac{\pi}{2})$单调递减,故$g(x)$在$(-1,\frac{\pi}{2})$存在唯一极大值点,即$f'(x)$在$(-1,\frac{\pi}{2})$存在唯一极大值点。

2)$f(x)$的定义域为$(-1,+\infty)$。

i) 由(1)知,$f'(x)$在$(-1,0)$单调递增,而$f'(0)=0$,所以当$x\in(-1,0)$时,$f'(x)<0$,故$f(x)$在$(-1,0)$单调递减,又$f(0)=0$,从而$x=0$是$f(x)$在$(-1,0]$的唯一零点。

专题五 导数与三角函数

专题五      导数与三角函数

专题五 导数与三角函数一、零点的判定与证明1. 已知函数2()cos 4a f x x x a =+-,当1a ≥时,求证:对任意的[]0,2x ∈都有()0f x ≤。

2(2019全国Ⅰ)已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明: (1)()f x '在区间(1,)2π-存在唯一极大值点; (2)()f x 有且仅有2个零点.解析:(1)设,则,. ()()g x f 'x =1()cos 1g x x x=-+21sin ())(1x 'x g x =-++当时,单调递减,而,可得在有唯一零点,设为.则当时,;当时,. 所以在单调递增,在单调递减,故在存在唯一极大值点,即在存在唯一极大值点. (2)的定义域为.(i )当时,由(1)知,在单调递增,而,所以当时,,故在单调递减,又,从而是在的唯一零点.(ii )当时,由(1)知,在单调递增,在单调递减,而,,所以存在,使得,且当时,;当时,.故在单调递增,在单调递减.又,,所以当时,. 从而 在没有零点. (iii )当时,,所以在单调递减.而,,所以在有唯一零点. (iv )当时,,所以<0,从而在没有零点. 综上,有且仅有2个零点.1,2x π⎛⎫∈- ⎪⎝⎭()g'x (0)0,()02g'g'π><()g'x 1,2π⎛⎫- ⎪⎝⎭α(1,)x α∈-()0g'x >,2x α⎛π⎫∈ ⎪⎝⎭()0g'x <()g x (1,)α-,2απ⎛⎫ ⎪⎝⎭()g x 1,2π⎛⎫- ⎪⎝⎭()f 'x 1,2π⎛⎫- ⎪⎝⎭()f x (1,)-+∞(1,0]x ∈-()f 'x (1,0)-(0)0f '=(1,0)x ∈-()0f 'x <()f x (1,0)-(0)=0f 0x =()f x (1,0]-0,2x ⎛π⎤∈ ⎥⎝⎦()f 'x (0,)α,2απ⎛⎫ ⎪⎝⎭(0)=0f '02f 'π⎛⎫< ⎪⎝⎭,2βαπ⎛⎫∈ ⎪⎝⎭()0f 'β=(0,)x β∈()0f 'x >,2x βπ⎛⎫∈ ⎪⎝⎭()0f 'x <()f x (0,)β,2βπ⎛⎫⎪⎝⎭(0)=0f 1ln 1022f ππ⎛⎫⎛⎫=-+>⎪ ⎪⎝⎭⎝⎭0,2x ⎛π⎤∈ ⎥⎝⎦()0f x >()f x 0,2⎛⎤ ⎥⎝⎦π,2x π⎛⎤∈π⎥⎝⎦()0f 'x <()f x ,2π⎛⎫π ⎪⎝⎭02f π⎛⎫> ⎪⎝⎭()0f π<()f x ,2π⎛⎤π⎥⎝⎦(,)x ∈π+∞ln(1)1x +>()f x ()f x (,)π+∞()f x3. (2020深圳)已知函数22()2cos f x x ax =+.(1)当=1a 时,求函数()f x 的导函数()f x ’在,22ππ⎡⎤-⎢⎥⎣⎦上的零点个数;(2)若关于x 的不等式222cos(2sin )()x a x af x +≤在R 上恒成立,求实数a 的取值范围.4. 已知函数()1()sin ,0,,'()f x x x f x xπ=-∈为()f x 的导函数,证明:()f x 有且仅有两个零点.练习1:已知函数()cos x f x e x =-,试判定函数()f x 在,2π⎛⎫-+∞ ⎪⎝⎭上零点的个数,并给予证明。

导数和三角函数练习题(有答案)

复习题1.已知集合{230}A x x =∈-≥R ,集合2{320}B x x x =∈-+<R ,则A B =( )(A )32x x ⎧⎫≥⎨⎬⎩⎭ (B )322x x ⎧⎫≤<⎨⎬⎩⎭ (C ){}12x x << (D )322x x ⎧⎫<<⎨⎬⎩⎭2.已知2log 3a =,12log 3b =,123c -=,则A.c b a >> B .c a b >> C.a b c >> D.a c b >> 3.[2014·太原模拟]函数y =(12)x 2+2x -1的值域是( ) A.(-∞,4) B.(0,+∞) C.(0,4] D.[4,+∞)4.已知0.6log 0.5a =,ln0.5b =,0.50.6c =.则( )(A )>>a b c (B )>>a c b (C )>>c a b (D )>>c b a5.函数y=x 2﹣2x ﹣1在闭区间[0,3]上的最大值与最小值的和是( ) A .﹣1 B .0 C .1 D .26.[2014·郑州质检]要得到函数y =cos2x 的图象,只需将函数y =sin2x 的图象沿x 轴( )A.向右平移4π个单位 B.向左平移4π个单位 C.向右平移8π个单位 D.向左平移8π个单位7.(5分)(2011•湖北)已知函数f (x )=sinx ﹣cosx ,x ∈R ,若f (x )≥1,则x的取值范围为( ) A.{x|k π+≤x≤k π+π,k ∈Z} B.{x|2k π+≤x≤2k π+π,k ∈Z} C.{x|k π+≤x≤k π+,k ∈Z} D.{x|2k π+≤x≤2k π+,k ∈Z}8.函数()si ()n f x A x ωϕ=+(000A ωϕπ>><<,,)的图象如图所示,则(0)f 的值为 ( )A .1B .0C D9.已知函数)sin()(ϕω+=x A x f ),0,0(πϕπω<<->>A 的部分图象如图所示,则函数)(x f 的解析式为( )A .)421sin(2)(π+=x x fB .)4321sin(2)(π+=x x fC .)421sin(2)(π-=x x fD .)4321sin(2)(π-=x x f10.已知函数)2||,0,0)(sin()(πϕωϕω<>>+=A x A x f ,其导函数)(x f '的部分图象如图所示,则函数)(x f 的解析式为( )A .)421sin(2)(π+=x x fB .)421sin(4)(π+=x x fC .)421sin(2)(π-=x x fD .)421sin(4)(π-=x x f11.函数f(x)=Asin(ωx +φ)(A >0,ω>0)的图象如图所示.为了得到g(x)=-Acosωx(A >0,ω>0)的图象,可以将f(x)的图象( )A .向右平移12π个单位长度B .向右平移512π个单位长度 C .向左平移12π个单位长度 D .向左平移512π个单位长度12.若1tan()47πα+=,则tan α=( )(A )34 (B )43 (C )34- (D )43-13.已知函数x x f ωcos )(=)0,(>∈ωR x 的最小正周期为π,为了得到函数()=x g)4sin(πω+x 的图象,只要将()x f y =的图象( )A .向左平移8π个单位长度 B .向右平移8π个单位长度 C .向左平移4π个单位长度 D .向右平移4π个单位长度14.函数y =cos 2x 在下列哪个区间上是减函数( ) A.-4,4ππ⎤⎡⎥⎢⎣⎦, B.344ππ⎡⎤⎢⎥⎣⎦, C.02π⎡⎤⎢⎥⎣⎦, D.[,]2ππ15.为了得到sin 2y x =的图象,只需将sin(2)3y x π=+的图象 ( )A .向右平移3π个长度单位B .向右平移6π个长度单位C .向左平移6π个长度单位 D .向左平移3π个长度单位16.已知1sin(),(0,)22ππαα+=-∈,则cos α的值为 .17.设角α是第三象限角,且sin2α=-sin2α,则角2α是第________象限角. 18.若 tan α=3,则 sin 2α-2 sin αcos α+3 cos 2α=______. 19.若sin 3πα⎛⎫- ⎪⎝⎭=35,则cos 6πα⎛⎫+ ⎪⎝⎭=________.20.已知0<x<π,sinx +cosx =15. (1)求sinx -cosx 的值;(2)求tanx 的值.21.已知函数().1cos 2cos sin 322-+=x x x x f(I)求函数()x f 的单调增区间; (II)当⎥⎦⎤⎢⎣⎡∈2,0πx 时,求函数()x f 的最大值及相应的x 值.参考答案1.B 【解析】试题分析:3{230}[,).2A x x =∈-≥=+∞R 2{320}(1,2).B x x x =∈-+<=R 所以A B =322x x ⎧⎫≤<⎨⎬⎩⎭.考点:集合运算 2.D 【解析】试题分析:由对数函数的性质知1a >,0b <,由幂函数的性质知01c <<,故有a c b >>. 考点:对数、幂的比较大小 3.C【解析】设t =x 2+2x -1,则y =(12)t. 因为t =(x +1)2-2≥-2,y =(12)t为关于t 的减函数, 所以0<y =(12)t ≤(12)-2=4, 故所求函数的值域为(0,4].4.(B ) 【解析】 试题分析:由0.60.6log 0.5>log 0.6=1,1a >.ln 0.5ln10,0b <=<.0.5000.60.61,01c <<=∴<<.可得a c b >>.故选(B )考点:1.对数函数的性质.2.指数函数的性质.3.数的大小比较. 5.B【解析】∵y=x 2﹣2x ﹣1=(x ﹣1)2﹣2 ∴当x=1时,函数取最小值﹣2, 当x=3时,函数取最大值2 ∴最大值与最小值的和为0 故选B 6.B【解析】∵y =cos2x =sin(2x +2π),∴只需将函数y =sin2x 的图象沿x 轴向4π个单位,即得y =sin2(x +4π)=cos2x 的图象,故选B. 7.B 【解析】试题分析:利用两角差的正弦函数化简函数f (x )=sinx ﹣cosx ,为一个角的一个三角函数的形式,根据f (x )≥1,求出x 的范围即可.解:函数f (x )=sinx ﹣cosx=2sin (x ﹣),因为f (x )≥1,所以2sin (x ﹣)≥1,所以,所以f (x )≥1,则x 的取值范围为:{x|2k π+≤x≤2k π+π,k ∈Z}故选B点评:本题是基础题考查三角函数的化简,三角函数不等式的解法,考查计算能力,常考题型. 8.A 【解析】试题分析:由已知,4112,(),2,3126A T πππω==⨯-==,所以()2sin 2()f x x ϕ=+, 将(),26π代人得,()2,s 2si in(6)1n 23ππϕϕ==⨯++,所以,,326πππϕϕ==+, ()2sin 2(0)2sin 2(),(01662s n 6)i f x x f πππ⨯===+=+,故选A .考点:正弦型函数,三角函数求值.9.B 【解析】试题分析:由图象可知函数的最大值为2,最小值为-2,所以2A =; 由图象可知函数的周期324,22T πππ⎛⎫⎛⎫=⨯--= ⎪⎪⎝⎭⎝⎭所以221=42T ππωπ== 所以,13-+==2224πππϕϕ⎛⎫⨯∴ ⎪⎝⎭, 所以函数的解析式为:)4321sin(2)(π+=x x f 故答案选B.考点:三角函数的图象与性质. 10.B 【解析】试题分析:因为()()sin f x A x ωϕ=+,所以 ()()cos f x A x ωωϕ'=+由()f x ' 图象知32,4222T T ππππ⎛⎫=--=∴= ⎪⎝⎭,22142T ππωπ=== 2A ω=,4A ∴=10224ππϕϕ⎛⎫⨯-+=⇒= ⎪⎝⎭ ()14sin 24f x x π⎛⎫∴=+ ⎪⎝⎭故选B.考点:1、导数的求法;2、三角函数的图象与性质. 11.B【解析】由图象知,f(x)=sin 23x π⎛⎫+⎪⎝⎭,g(x)=-cos 2x ,代入B 选项得sin 52123x ππ⎡⎤⎛⎫-+ ⎪⎢⎥⎝⎭⎣⎦=sin 22x π⎛⎫- ⎪⎝⎭=-sin 22x π⎛⎫- ⎪⎝⎭=-cos 2x . 12.(C ) 【解析】试题分析:由1tan()47πα+=所以tan 113,tan 1tan 74ααα+=∴=--.故选(C ). 考点:1.角的和差公式.2.解方程的思想.13.B 【解析】试题分析:由于函数x x f ωcos )(=)0,(>∈ωR x 的最小正周期为π,所以2ω=.所以函数()cos 2f x x = sin(2)2x π=+.所以将函数()x f y =向右平移8π即可得到()sin(2)4g x x π=+.故选B.考点:1.函数的平移.2.函数的诱导公式. 14.C 【解析】试题分析:A :当[,]44x ππ∈-时,2[,]22x ππ∈-,不是减函数;B :当3[,]44x ππ∈时,32[,]22x ππ∈,不是减函数;C :当[0,]2x π∈时,2[0,]x π∈,是减函数;D :当[,]2x ππ∈时,2[,2]x ππ∈,不是减函数,故选C.考点:三角函数单调性判断.15.B 【解析】试题分析:sin(2)3y x π=+sin 2()6x π=+,所以向右平移6π个长度单位即可. 考点:三角函数的平移变换. 16.23 【解析】试题分析:1s i n ()s i n 2παα+=-=-,即1sin 2α=,又(0,)2πα∈,故c o s i α==.考点:诱导公式,同角三角函数的基本关系式. 17.四【解析】由α是第三象限角,知2k π+π<α<2k π+32π (k ∈Z),k π+2π<2α<k π+34π(k ∈Z),知2α是第二或第四象限角,再由sin 2α=-sin 2α知sin 2α<0,所以2α只能是第四象限角. 18.35【解析】sin 2α-2 sin αcos α+3 cos 2α=2222sin 2sin cos 3cos sin cos αααααα-++ =22tan 2tan 3tan 1ααα-++=12610-=35. 19.-35【解析】cos 6πα⎛⎫+⎪⎝⎭=cos 32ππα⎡⎤⎛⎫-+ ⎪⎢⎥⎝⎭⎣⎦=-sin 3πα⎛⎫- ⎪⎝⎭=-35. 20.(1)75(2)-43【解析】(1)∵sinx +cosx =15,∴1+2sinxcosx =125, ∴2sinxcosx =-2425,又∵0<x<π,∴sinx>0,2sinxcosx =-2425<0,∴cosx<0,∴sinx -cosx>0,∴sinx -cosx 75=.(2)111717sinx cosx tanx sinx cosx tanx ++=,=--,tanx =-43.21.(I) ()x f 的单调递增区间为()Z k k k ∈⎥⎦⎤⎢⎣⎡+-6.3ππππ(II)6π=x 时. ()x f 取最大值,最大值为2.【解析】试题分析:(I)()1cos 2cos sin 322-+=x x x x f x x 2cos 2sin 3+=⎪⎭⎫ ⎝⎛+=62sin 2πx令()Z k k x k ∈+≤+≤-226222πππππ得()Z k k x k ∈+≤≤-63ππππ∴()x f 的单调递增区间为()Z k k k ∈⎥⎦⎤⎢⎣⎡+-6.3ππππ (II)由⎥⎦⎤⎢⎣⎡∈2,0πx 可得67626πππ≤+≤x 所以当,262ππ=+x 即6π=x 时. ()x f 取最大值,最大值为2.考点:本题主要考查三角函数的和差倍半公式,三角函数的图象和性质。

导数与三角函数问题最新模拟试题与解析


综上所述:实数 a 取值范围是 [2 , ) .
3.(2020•泉州一模)已知函数 f (x) ex sin x ax2 2x .
(1)当 a 0 时,判断 f (x) 在 [0 , ) 上的单调性并加以证明;
(2)若 x 0 , f (x) 1 ,求 a 的取值范围.
【分析】(1)先对函数求导,然后结合导数与单调性的关系即可求解;
8.【2020•湖南模拟】已知函数 f (x) aex cos x(a R, x ) . 2
(1)证明:当 a 1 时, f (x) 有最小值,无最大值; (2)若在区间 ( , ) 上方程 f (x) 0 恰有一个实数根,求 a 的取值范围,
2
9.【2020 年湖北省武汉市江夏一中、汉阳一中高考数学模拟试卷(理科)(4 月份)】已知 函数 f (x) ex (x2 8x 4) . (1)求函数 f (x) 的单调区间; (2)若关于 x 的不等式 ex (x2 8x 4) m msin x 在[0 , ) 上恒成立,且 m 0 ,求实数
由零点存在性定理,存在唯一的
x0
(0,
2
)
,使得
h(
x0
)
0


x
(0,
x0
)

h(
x)
0

h(
x)
递减;
当x
x0
,
2
,
h
x
0,
h
x
递增

又因为 h(0)
h(
)
0 ,所以
x (0,
)
时,
f
(x)
h(x)
0
恒成立,
f
(x)

(完整版)三角函数、数列测试题

三角函数、解三角形、平面向量、数列专题测试题班级: 姓名: 学号:一、选择题 1. 若,且为第四象限角,则的值等于( ) A . B . C . D .2. sin20°cos10°-con160°sin10°= (A )(B(C ) (D ) 3. 函数f(x)=的部分图像如图所示,则f (x )的单调递减区间为 (A)(),k (b)(),k(C)(),k(D)(),k4. 设a ,b 是非零向量,“a b a b ⋅=”是“//a b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件5sin 13α=-αtan α125125-512512-12-125. 已知 ,若 点是 所在平面内一点,且,则 的最大值等于( )A .13B .15C .19D .21 6.已知M (x 0,y 0)是双曲线C :上的一点,F1、F 2是C 上的两个焦点,若<0,则y 0的取值范围是 (A )(-,) (B )(-,) (C )()(D )()7. 等比数列{a n }满足a 1=3, =21,则 ( )(A )21 (B )42 (C )63 (D )84 8. 设{}n a 是等差数列. 下列结论中正确的是A .若120a a +>,则230a a +>B .若130a a +<,则120a a +<C .若120a a <<,则2a >D .若10a <,则()()21230a a a a -->9. 设为等比数列的前项和,若,且成等差数列,则 .A, . B.2n-3 C. -3n-2 D. 3n-210 已知数列中,,(),则数列的前9项和等于 。

A. 17B. 27C. 37D. 471,,AB AC AB AC t t⊥==P ABC ∆4AB AC AP ABAC=+PB PC ⋅2212x y -=1MF •2MF 3366n S {}n a n 11a =1233,2,S S S n a =32+n -}{n a 11=a 211+=-n n a a 2≥n }{n a11. 在等差数列中,若,则= A. 5 B.6 C. 8 D .12.(15年福建理科)若 是函数 的两个不同的零点,且 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则 的值等于( ) A .6 B .7 C .8 D .10 二、填空题13.(15年江苏)已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______. 14.(15北京理科)在ABC △中,4a =,5b =,6c =,则sin 2sin A C=.15.(15北京理科)在ABC △中,点M ,N 满足2AM MC =,BN NC =.若MN x AB y AC =+,则x =;y = .16.(15年江苏)数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为 三、解答题17. 的内角,,所对的边分别为,,.向量与平行. (I )求;(II )若求的面积.18. 在ABC ∆中,已知 60,3,2===A AC AB .(1)求BC 的长; (2)求C 2sin 的值.{}n a 2576543=++++a a a a a 82a a +10,a b ()()20,0f x x px q p q =-+>>,,2a b -p q +C ∆AB A B C a b c (),3m a b =()cos ,sin n =A B A a =2b =C ∆AB19.已知函数2()cos 222x x x f x =.(Ⅰ) 求()f x 的最小正周期;(Ⅱ) 求()f x 在区间[π0]-,上的最小值.20. 已知等差数列{}n a 满足1210a a +=,432a a -=. (Ⅰ)求{}n a 的通项公式;(Ⅱ)设等比数列{}n b 满足23b a =,37b a =,问:6b 与数列{}n a 的第几项相等?21. 设数列{}n a 的前n 项和为n S ,已知23 3.n n S =+ (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足3log n n n a b a =,求数列{}n b 的前n 项和n T . 22. 已知数列是递增的等比数列,且 (1)求数列的通项公式; (2)设为数列的前n 项和,,求数列的前n 项和{}n a 14239,8.a a a a +=={}n a n S {}n a 11n n n n a b S S ++={}n b n T。

高考数学必考大题题型归纳及例题解析

精品基础教育教学资料,仅供参考,需要可下载使用!高考数学必考大题题型归纳及例题解析高考数学常考的大题分别是三角函数,概率,立体几何,解析几何,函数与导数,数列。

下面就这些题型做出具体分析,并对大题给以典型题型,希望大家仔细研究总结。

1数学高考大题题型有哪些必做题:1.三角函数或数列(必修4,必修5)2.立体几何(必修2)3.统计与概率(必修3和选修2-3)4.解析几何(选修2-1)5.函数与导数(必修1和选修2-2)选做题:1.平面几何证明(选修4-1)2.坐标系与参数方程(选修4-4)3.不等式(选修4-5)1数学高考大题题型归纳一、三角函数或数列数列是高中数学的重要内容,又是学习高等数学的基础。

高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。

有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。

本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。

(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。

(3)数列的应用问题,其中主要是以增长率问题为主。

试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

二、立体几何高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。

选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数、数列导数测试题及详解 一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是 符合题目要求的.

1.已知点A(-1,1),点B(2,y),向量a=(l,2),若//ABa,则实数y的值为 A.5 B.6 C.7 D.8 2.已知等比数列123456{},40,20,naaaaaaa中则前9项之和等于 A.50 B.70 C.80 D.90 3.2(sincos)1yxx是 A.最小正周期为2π的偶函数 B.最小正周期为2π的奇函数 C.最小正周期为π的偶函数 D.最小正周期为π的奇函数 4.在右图的表格中,如果每格填上一个数后,每一横行成等差数列, 每一纵列成等比数列,那么x+y+z的值为 A.1 B.2 C.3 D.4

5.已知各项均不为零的数列{}na,定义向量

*1(,),(,1),nnnncaabnnnN



,下列命题中真命题是

A.若*,//nnnNcb总有成立,则数列{}na是等差数列 B.若*,//nnnNcb总有成立,则数列{}na是等比数列 C.若*,nnnNcb总有成立,则数列{}na是等差数列 D.若*,nnnNcb总有成立,则数列{}na是等比数列 6.若sin2x、sinx分别是sinθ与cosθ的等差中项和等比中项,则cos2x的值为

A.1338 B.1338 C.1338 D.124

7.如图是函数sin()yx的图象的一部分,A,B是图象上的一个最高点和一个最低点,O为坐标原点,则OAOB的值为 A.12 B.2119 C.2119 D.2113 8.已知函数()cos((0,2))fxxx有两个不同的零点x1,x2,且方程()fxm有两个不同的实根x3,x4.若把这四个数按从小到大排列构成等差数列,则实数m的值为 A.12 B.12 C.32 D.—32 9.设函数f(x) =ex(sinx—cosx),若0≤x≤2012π,则函数f(x)的各极大值之和为 A.1006(1)1eee B.20122(1)1eee C.10062(1)1eee D.2012(1)1eee 10.设函数011()(),21xfxxAx为坐标原点,A为函数()yfx图象上横坐标为*()nnN 的点,向量11,(1,0),nnkknnkaAAiai向量设为向量与向量的夹

角,满足15tan3nkk的最大整数n是 A.2 B.3 C.4 D.5 二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上,题两空的题,其答案按先后次序填写,填错位置,书写不清,模棱两可均不得分.

11.设1(sincos)sin2,()3ff则的值为 .

12.已知曲线1*()()nfxxnN与直线1x交于点P,若设曲线y=f(x)在点P处的切线与x轴交点的横坐标为201212012220122011,logloglognxxxx则的值为____. 13.已知22sinsin,coscos,33xyxy且x,y为锐角,则tan(x -y)= . 14.如图放置的正方形ABCD,AB =1.A,D分别在x轴、y轴的正半 轴(含原点)上滑动,则OCOB的最大值是____. 15.由下面四个图形中的点数分别给出了四个数列的前四项,将每个图形 的层数增加可得到这四个数列的后继项,按图中多边形的边数依次称 这些数列为“三角形数列”、“四边形数列”„,将构图边数增加到n可 得到“n边形数列”,记它的第r项为P(n,r),则(1)使得P(3,r)>36的最 小r的取值是 ; (2)试推导P(n,r)关于,n、r的解析式是____.

三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 已知2(2sin,),(1,23sincos1)OAaxaOBxx,O为坐标原点,0,a设

(),.fxOAOBbba

(I)若0a,写出函数()yfx的单调速增区间; (Ⅱ)若函数y=f(x)的定义域为[,2],值域为[2,5],求实数a与b的值,

17.(本小题满分12分) 如图,某测量人员,为了测量西江北岸不能到达的两点A,B之间的距离,她在西江南岸找到一个点C,从C点可以观察到点A,B;找到一个点D,从D点可以观察到点A,C;到一个点E,从E点可以观察到点B,C;并测量得到数据:∠ACD=90°,∠ADC= 60°,∠ACB =15°,∠BCE =105°,∠CEB =45°,DC=CE =1(百米). (I)求△CDE的面积; (Ⅱ)求A,B之间的距离.

18.(本小题满分12分) 国家助学贷款是由财政贴息的信用贷款,旨在帮助高校家庭经济困难学生支付在校学习期间所需的学费、住宿费及生活费.每一年度申请总额不超过6000元.某大学2010届毕业生李顺在本科期间共申请了24000元助学贷款,并承诺在毕业后3年内(按36个月计)全部还清. 签约的单位提供的工资标准为第一年内每月1500元,第13个月开始,每月工资比前一个月增加5%直到4000元.李顺同学计划前12个月每个月还款额为500元,第13个月开始,每月还款额比前一月多x元. (I)若李顺恰好在第36个月(即毕业后三年)还清贷款,求x的值; (II)当x=50时,李顺同学将在第几个月还清最后一笔贷款?他还清贷款的那一个月的工资余额是多少? (参考数据:1.0518 =2.406,1.0519=2.526,1.0520 =2.653,1.0521=2.786)

19.(本小题满分12分) 已知函数()sin.fxxx

(I)当[0,],()xfx时求的值域; (II)设2()()1,()1[0,)gxfxgxax若在恒成立,求实数a的取值范围.

20.(本小题满分13分) 已知

211()(1),()10(1),{}2,()()()0,nnnnnfxxgxxaaaagafa数列满足

9(2)(1).10nnbna

(I)求证:数列{an,-1)是等比数列; (Ⅱ)当n取何值时,bn取最大值,并求出最大值;

(Ⅲ)若1*1mmmmttmNbb对任意恒成立,求实数t的取值范围.

21.(本小题满分14分) 设曲线C:()ln(2.71828),()()fxxexefxfx表示导函数. (I)求函数f(x)的极值; (Ⅱ)数列{an}满足111,2(3)nnaeafea.求证:数列{an}中不存在成等差数列的三项; (Ⅲ)对于曲线C上的不同两点A(x1,y1),B (x2,y2),x1

012(,)xxx,使直线AB的斜率等于0().fx

参考答案 一、选择题: 1.【考点分析】本题主要考查平面向量的运算和向量平行充要条件的基本运用. 【参考答案】 C

【解题思路】AB→=(3,y-1),∵AB→∥a,∴31=y-12,∴y=7. 2. 【考点分析】本题主要考查等比数列的基本运算性质. 【参考答案】 B.

【解题思路】3321654)(qaaaaaa,213q,

3654987)(qaaaaaa=10,即9s=70.

3.【考点分析】本题考查三角函数的性质和同角三角函数的基本关系式的运用,考查基本运算能力. 【参考答案】D

【解题思路】2(sincos)12sincossin2yxxxxx,所以函数

2(sincos)1yxx是最小正周期为的奇函数。

4.【考点分析】本题考查了等差数列和等比数列的通项公式,考查观察分析和运算能力. 【参考答案】B 【解题思路】第一行是以2为首项,以 1为公差的等差数列,第一列是以2为首项,并且每一列都是以21由为公比的等比数列,由等差数列和等比数列的通项公式可求得83,85,1zyx,所以它们的和等于2,故选B。

5.【考点分析】本题考查了等差数列和等比数列的判定,以及平行向量和垂直向量的基本结论. 【参考答案】A

【解题思路】:由//nncb,可得,nan+1=(n+1)an,即nnaann11,于是an=na1,故选A. 6.【考点分析】本题考查等差中项和等比中项的定义以及三角变换,考查方程思想和运算能力. 【参考答案】A 【解题思路】依题意有cossin2sin2x, ①

2sinsincosx ②

由①2-②×2得,022cos2cos42xx,解得133cos28x。 又由cossinsin2x,得02sin12cosx,所以8331不合题意。故选A。 7.【考点分析】本题主要考查正弦函数sin()yAx的图像与性质以及数量积的坐标表示,数形结合思想. 【参考答案】C

【解题思路】由图知T4=5π12-π6=π4,∴T=π, ∴ω=2,∴y=sin(2x+φ),

将点-π12,0的坐标代入得sin-π6+φ=0, ∴φ=π6, ∴Aπ6,1,B2π3,-1,∴OA→·OB→=π29-1,故选 C. 8.【考点分析】本题主要考查函数的零点和等差数列的定义,考查数形结合思想. 【参考答案】D

【解题思路】设两个根依次为)(,.而函数)(xfy的零点为23,2,则由图

象可得: 2322,232.∴可求

2365cos,65m.

相关文档
最新文档