教师资格考试(面试)高数试讲备课随机事件的概率
高中数学随机事件及其概率 教案

随机事件及其概率二、教学重点: 事件的分类与概率的统计定义.三、教学难点:概率统计定义的理解.四、教学方法:合作探究,启发式,发现法五、教学手段:多媒体课件六、教学过程:一)问题情境:1.在足球比赛前,主裁判以抛硬币的方式确定比赛场地,这公平吗?2.我们去购买福利彩票时,早去晚去对中奖的可能性有没有影响呢?3.在座的100多人中至少有两个人生日相同的概率又有多大呢?由此引出课题(板书课题)。
二)学生活动思考、讨论以上问题,学生活动贯穿于课堂教学中。
三)数学理论1.事件的含义幻灯片展示现象(1)~(4)图片:(1)木柴燃烧,产生热量;(2)明天,地球仍会转动;(3)实心铁块丢入水中,铁块浮起;(4)在标准大气压00C以下,雪融化。
引出概念:确定性现象——在一定条件下,事先就能断定发生或不发生某种结果,这种现象就是确定性现象。
幻灯片展示现象(5)、(6)图片:(5)转动转盘后,指针指向黄色区域(6)两人各买1张彩票,均中奖引出概念:随机现象——在一定条件下,某种现象可能发生也可能不发生,事先不能断定出现哪种结果,这种现象就是随机现象。
对于某个现象,如果能让其条件实现一次,就是进行了一次试验。
而试验的每一种可能的结果,都是一个事件。
2.事件的分类给出先前展示的六个现象对应的各个事件,判断它们发生的可能性。
由这些事件发生的可能性情况,引导学生归纳出必然事件、不可能事件和随机事件的定义。
必然事件:在一定条件下必然要发生的事件叫必然事件。
不可能事件:在一定条件下不可能发生的事件叫不可能事件。
随机事件:在一定条件下可能发生也可能不发生的事件叫随机事件。
由上述几个事件:(1)木柴燃烧,产生热量;(2)实心铁块丢入水中,铁块浮起;(3)两人各买1张彩票,均中奖,说明事件的条件和结果。
请学生讨论,举日常生活中这三种事件各一例。
3.事件的表示:我们用A、B、C等大写字母表示随机事件,简称事件。
注:对于必然事件和不可能事件也可以这样表示。
高中数学教师资格证面试阅读课逐字稿

高中数学教师资格证面试阅读课逐字稿作为高中数学教师资格证面试的一部分,阅读课是评估你的教学能力和知识水平的重要环节。
本文档将提供一份逐字稿,作为你准备阅读课的参考。
请记住,这只是一个示例,你可以根据自己的教学风格进行适当的修改和调整。
一、引言部分大家好。
今天我要讲解的是高中数学中的一项重要知识——概率。
概率是数学中非常有趣和实用的概念,它帮助我们预测事件发生的可能性。
在本次课堂中,我会通过一些例子和练,让同学们更好地理解概率的概念和应用。
二、概率的基本概念首先,让我们来了解一下概率的基本概念。
概率是指事件发生的可能性,通常用一个介于0和1之间的数来表示。
当事件发生的可能性接近0时,我们称之为低概率事件;当事件发生的可能性接近1时,我们称之为高概率事件。
三、概率的计算方法接下来,我们将研究一些计算概率的方法。
在概率计算中,我们使用了一些基本的数学公式和方法。
其中最常用的是通过事件发生的次数和总次数来计算概率的方法。
除此之外,我们还可以使用排列组合、树状图等方法来计算概率。
四、概率的应用除了了解概率的概念和计算方法,我们还需要了解概率的应用。
概率在日常生活中有着广泛的应用,例如在赌博、保险、统计调查等方面都可以看到概率的身影。
掌握概率的应用,可以帮助我们更好地做出决策和判断。
五、案例分析最后,我将给大家分享一个与概率相关的案例进行分析。
通过这个案例,我们可以进一步理解概率的概念和应用,同时也可以提高我们的问题解决能力和数学思维能力。
结语通过这堂课,我希望同学们能够对概率有一个更深入的理解,并能够运用所学的知识解决实际生活中的问题。
如果大家在研究过程中有任何问题,请随时提问。
谢谢大家!以上就是我准备的高中数学教师资格证面试阅读课的逐字稿。
希望能对你的准备有所帮助。
祝你在面试中取得好成绩!。
高中数学概率运算试讲教案

高中数学概率运算试讲教案
一、教学目标:
1. 理解概率的基本概念和计算方法。
2. 掌握概率的加法和乘法规则的运用。
3. 能够解决相关概率问题。
二、教学重点和难点:
1. 理解并运用概率的加法和乘法规则。
2. 解决实际问题中的概率计算。
三、教学准备:
1. 教师准备课件,题目和解析。
2. 学生准备笔记本,纸和笔。
四、教学过程:
1. 导入:向学生介绍概率的基本概念,如事件、样本空间和概率的定义。
2. 教学内容:
(1)概率的加法规则:P(A∪B) = P(A) + P(B) - P(A∩B)
(2)概率的乘法规则:P(A∩B) = P(A) * P(B|A)
3. 例题讲解:通过具体例题演示如何运用加法和乘法规则解决概率问题。
4. 练习:让学生做一些练习题,巩固所学知识。
5. 拓展:引导学生探讨更复杂的概率问题,并解决。
6. 总结:对本节课所学内容进行总结,概括概率的基本规则和运算方法。
五、课堂反思:
这堂课上,学生的参与度较高,能够理解和应用加法和乘法规则解决概率问题。
但还需要加强实际问题的训练,以提高解决问题的能力。
下节课将进一步讲解条件概率和贝叶斯定理,帮助学生更深入地理解概率运算。
概率的古典定义面试试讲

概率的古典定义面试试讲概率论是研究随机现象的数学理论。
在日常生活中,我们经常遇到不确定性,比如掷骰子、抽扑克牌等。
概率论为我们提供了一种量化这些不确定性的方法。
古典定义的基本概念1. 样本空间:所有可能结果的集合,通常用大写字母S表示。
2. 事件:样本空间的子集,代表一个或一组特定的结果。
3. 等可能性:假设样本空间中的每个结果发生的可能性相同。
古典定义的表述如果一个随机试验的所有可能结果都已知,并且每个结果发生的概率相等,那么一个事件A的概率P(A)可以定义为事件A中结果的个数除以所有可能结果的总数。
数学表达式为:\[ P(A) = \frac{\text{事件A中的结果数}}{\text{样本空间S中的总结果数}} \]举例说明假设我们掷一个均匀的六面骰子,样本空间S是{1, 2, 3, 4, 5, 6}。
如果我们想要计算掷出偶数的概率,事件A是{2, 4, 6}。
根据古典定义,事件A的概率是:\[ P(A) = \frac{3}{6} = \frac{1}{2} \]古典定义的局限性尽管古典定义在某些情况下非常有用,但它也有局限性。
它要求所有结果都已知且等可能,这在现实世界中并不总是成立。
例如,在实际生活中,掷骰子可能由于骰子的不均匀性或其他因素导致结果不等可能。
结论概率的古典定义为我们提供了一种在特定条件下计算概率的方法。
然而,理解其局限性并知道在何时使用这种定义是非常重要的。
随着概率论的发展,我们还引入了其他定义,如频率定义和主观定义,以适应更广泛的情况。
通过这堂试讲,我们希望学生能够理解概率的古典定义,掌握其计算方法,并认识到其适用条件和局限性。
高中数学(教案)随机事件与概率

随机事件与概率【第一课时】【教学目标】1.理解随机试验的概念及特点2.理解样本点和样本空间,会求所给试验的样本点和样本空间3.理解随机事件、必然事件、不可能事件的概念,并会判断某一事件的性质4.理解事件5种关系并会判断【教学重难点】1.随机试验2.样本空间3.随机事件4.事件的关系和运算【教学过程】一、问题导入预习教材内容,思考以下问题:1.随机试验的概念是什么?它有哪些特点?2.样本点和样本空间的概念是什么?3.事件的分类有哪些?4.事件的关系有哪些?二、基础知识1.随机试验(1)定义:把对随机现象的实现和对它的观察称为随机试验.(2)特点:①试验可以在相同条件下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些可能结果中的一个,但事先不能确定出现哪一个结果.2.样本点和样本空间(1)定义:我们把随机试验E的每个可能的基本结果称为样本点,全体样本点的集合称为试验E的样本空间.(2)表示:一般地,我们用Ω表示样本空间,用ω表示样本点.如果一个随机试验有n个可能结果ω1,ω2,…,ωn,则称样本空间Ω={ω1,ω2,…,ωn}为有限样本空间.3.事件的分类(1)随机事件:①我们将样本空间Ω的子集称为随机事件,简称事件,并把只包含一个样本点的事件称为基本事件.②随机事件一般用大写字母A,B,C,…表示.③在每次试验中,当且仅当A中某个样本点出现时,称为事件A发生.(2)必然事件:Ω作为自身的子集,包含了所有的样本点,在每次试验中总有一个样本点发生,所以Ω总会发生,我们称Ω为必然事件.(3)不可能事件:空集∅不包含任何样本点,在每次试验中都不会发生,我们称∅为不可能事件.名师点拨必然事件和不可能事件不具有随机性,它是随机事件的两个极端情况.名师点拨(1)如果事件B包含事件A,事件A也包含事件B,即B⊇A且A⊇B,则称事件A与事件B相等,记作A=B.(2)类似地,可以定义多个事件的和事件以及积事件.例如,对于三个事件A,B,C,A∪B∪C(或A+B+C)发生当且仅当A,B,C中至少一个发生,A∩B∩C(或ABC)发生当且仅当A,B,C同时发生.三、合作探究事件类型的判断例1:指出下列事件是必然事件、不可能事件还是随机事件.(1)中国体操运动员将在下届奥运会上获得全能冠军.(2)出租车司机小李驾车通过几个十字路口都将遇到绿灯.(3)若x∈R,则x2+1≥1.(4)抛一枚骰子两次,朝上面的数字之和小于2.【解】由题意知(1)(2)中事件可能发生,也可能不发生,所以是随机事件;(3)中事件一定会发生,是必然事件;由于骰子朝上面的数字最小是1,两次朝上面的数字之和最小是2,不可能小于2,所以(4)中事件不可能发生,是不可能事件.[规律方法]判断事件类型的思路要判定事件是何种事件,首先要看清条件,因为三种事件都是相对于一定条件而言的,第二步再看它是一定发生,还是不一定发生,还是一定不发生,一定发生的是必然事件,不一定发生的是随机事件,一定不发生的是不可能事件.样本点与样本空间例2:同时转动如图所示的两个转盘,记转盘①得到的数为x,转盘②得到的数为y,结果为(x,y).(1)写出这个试验的样本空间;(2)求这个试验的样本点的总数;(3)“x+y=5”这一事件包含哪几个样本点?“x<3且y>1”呢?(4)“xy=4”这一事件包含哪几个样本点?“x=y”呢?【解】(1)Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}.(2)样本点的总数为16.(3)“x+y=5”包含以下4个样本点:(1,4),(2,3),(3,2),(1,4);“x<3且y>1”包含以下6个样本点:(1,2),(1,3),(1,4),(2,2),(2,3),(2,4).(4)“xy=4”包含以下3个样本点:(1,4),(2,2),(4,1);“x=y”包含以下4个样本点:(1,1),(2,2),(3,3),(4,4).[规律方法]确定样本空间的方法(1)必须明确事件发生的条件;(2)根据题意,按一定的次序列出问题的答案.特别要注意结果出现的机会是均等的,按规律去写,要做到既不重复也不遗漏.事件的运算例3:盒子里有6个红球,4个白球,现从中任取3个球,设事件A={3个球中有1个红球2个白球},事件B={3个球中有2个红球1个白球},事件C={3个球中至少有1个红球},事件D={3个球中既有红球又有白球}.求:(1)事件D与A、B是什么样的运算关系?(2)事件C与A的交事件是什么事件?【解】(1)对于事件D,可能的结果为1个红球,2个白球或2个红球,1个白球,故D=A∪B.(2)对于事件C,可能的结果为1个红球,2个白球或2个红球,1个白球或3个均为红球,故C∩A=A.[变条件、变问法]在本例中,设事件E={3个红球},事件F={3个球中至少有一个白球},那么事件C与A、B、E是什么运算关系?C与F的交事件是什么?解:由事件C包括的可能结果有1个红球2个白球,2个红球1个白球,3个红球三种情况,故A⊆C,B⊆C,E⊆C,所以C=A∪B∪C,而事件F包括的可能结果有1个白球2个红球,2个白球1个红球,3个白球,所以C∩F={1个红球2个白球,2个红球1个白球}=D.[规律方法](1)利用事件间运算的定义.列出同一条件下的试验所有可能出现的结果,分析并利用这些结果进行事件间的运算.(2)利用Venn图.借助集合间运算的思想,分析同一条件下的试验所有可能出现的结果,把这些结果在图中列出,进行运算.互斥事件与对立事件的判定例4:某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,判断下列每对事件是不是互斥事件,如果是,再判别它们是不是对立事件.(1)恰有1名男生与恰有2名男生;(2)至少有1名男生与全是男生;(3)至少有1名男生与全是女生;(4)至少有1名男生与至少有1名女生.【解】判别两个事件是否互斥,就要考察它们是否能同时发生;判别两个互斥事件是否对立,就要考察它们是否必有一个发生.(1)因为“恰有1名男生”与“恰有2名男生”不可能同时发生,所以它们是互斥事件;当恰有2名女生时它们都不发生,所以它们不是对立事件.(2)因为恰有2名男生时“至少有1名男生”与“全是男生”同时发生,所以它们不是互斥事件.(3)因为“至少有1名男生”与“全是女生”不可能同时发生,所以它们互斥;由于它们必有一个发生,所以它们是对立事件.(4)由于选出的是1名男生1名女生时“至少有1名男生”与“至少有1名女生”同时发生,所以它们不是互斥事件.[规律方法](1)包含关系、相等关系的判定①事件的包含关系与集合的包含关系相似;②两事件相等的实质为相同事件,即同时发生或同时不发生.(2)判断事件是否互斥的两个步骤第一步,确定每个事件包含的结果;第二步,确定是否有一个结果发生会意味着两个事件都发生,若是,则两个事件不互斥,否则就是互斥的.(3)判断事件是否对立的两个步骤第一步,判断是互斥事件;第二步,确定两个事件必然有一个发生,否则只有互斥,但不对立.【课堂检测】1.下列事件:①如果a>b,那么a-b>0;②任取一实数a(a>0且a≠1),函数y=log a x是增函数;③某人射击一次,命中靶心;④从盛有一红、二白共三个球的袋子中,摸出一球观察结果是黄球.其中是随机事件的为()A.①②B.③④C.①④D.②③解析:选D.①是必然事件;②中a>1时,y=log a x单调递增,0<a<1时,y =log a x单调递减,故是随机事件;③是随机事件;④是不可能事件.2.(2019·四川省攀枝花市教学质量监测)从含有10件正品、2件次品的12件产品中,任意抽取3件,则必然事件是()A.3件都是正品B.3件都是次品C.至少有1件次品D.至少有1件正品解析:选D.从10件正品,2件次品,从中任意抽取3件,A:3件都是正品是随机事件,B:3件都是次品不可能事件,C:至少有1件次品是随机事件,D:因为只有2件次品,所以从中任意抽取3件必然会抽到正品,即至少有1件是正品是必然事件.故选D.3.(2019·广西钦州市期末考试)抽查10件产品,设“至少抽到2件次品”为事件A,则A的对立事件是()A.至多抽到2件次品B.至多抽到2件正品C.至少抽到2件正品D.至多抽到1件次品解析:选D.因为“至少抽到2件次品”就是说抽查10件产品中次品的数目至少有2个,所以A的对立事件是抽查10件产品中次品的数目最多有1个.故选D.4.写出下列试验的样本空间:(1)甲、乙两队进行一场足球赛,观察甲队比赛结果(包括平局)________;(2)从含有6件次品的50件产品中任取4件,观察其中次品数________.解析:(1)对于甲队来说,有胜、平、负三种结果;(2)从含有6件次品的50件产品中任取4件,其次品的个数可能为0,1,2,3,4,不可能再有其他结果.答案:(1)Ω={胜,平,负}(2)Ω={0,1,2,3,4}【第二课时】【教学目标】1.了解基本事件的特点2.理解古典概型的定义3.会应用古典概型的概率公式解决实际问题【教学重难点】1.基本事件2.古典概型的定义3.古典概型的概率公式【教学过程】一、问题导入预习教材内容,思考以下问题:1.古典概型的定义是什么?2.古典概型有哪些特征?3.古典概型的计算公式是什么?二、基础知识1.古典概型具有以下特征的试验叫做古典概型试验,其数学模型称为古典概率模型,简称古典概型.(1)有限性:样本空间的样本点只有有限个;(2)等可能性:每个样本点发生的可能性相等.名师点拨古典概型的判断一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特点:有限性和等可能性.并不是所有的试验都是古典概型.下列三类试验都不是古典概型:①样本点个数有限,但非等可能.②样本点个数无限,但等可能.③样本点个数无限,也不等可能.2.古典概型的概率公式一般地,设试验E是古典概型,样本空间Ω包含n个样本点,事件A包含其中的k个样本点,则定义事件A的概率P(A)=kn=n(A)n(Ω).其中,n(A)和n(Ω)分别表示事件A和样本空间Ω包含的样本点个数.三、合作探究样本点的列举例1:一只口袋内装有5个大小相同的球,白球3个,黑球2个,从中一次摸出2个球.(1)共有多少个样本点?(2)“2个都是白球”包含几个样本点?【解】(1)法一:采用列举法.分别记白球为1,2,3号,黑球为4,5号,则样本点如下:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10个(其中(1,2)表示摸到1号,2号球).法二:采用列表法.设5个球的编号分别为a,b,c,d,e,其中a,b,c为白球,d,e为黑球.列由于每次取2个球,每次所取2个球不相同,而摸到(b,a)与(a,b)是相同的事件,故共有10个样本点.(2)法一中“2个都是白球”包括(1,2),(1,3),(2,3),共3个样本点,法二中“2个都是白球”包括(a,b),(b,c),(a,c),共3个样本点.[规律方法]样本点的三种列举方法(1)直接列举法:把试验的全部结果一一列举出来.此方法适合于较为简单的试验问题.(2)列表法:将样本点用表格的方式表示出来,通过表格可以弄清样本点的总数,以及要求的事件所包含的样本点数.列表法适用于较简单的试验的题目,样本点较多的试验不适合用列表法.(3)树状图法:树状图法是使用树状的图形把样本点列举出来的一种方法,树状图法便于分析样本点间的结构关系,对于较复杂的问题,可以作为一种分析问题的主要手段,树状图法适用于较复杂的试验的题目.古典概型的概率计算例2:(1)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为()A.45 B.35C.25 D.15(2)(2018·高考江苏卷)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【解析】(1)从5支彩笔中任取2支不同颜色的彩笔,有10种不同取法:(红,黄),(红,蓝),(红,绿),(红,紫),(黄,蓝),(黄,绿),(黄,紫),(蓝,绿),(蓝,紫),(绿,紫).而取出的2支彩笔中含有红色彩笔的取法有(红,黄),(红,蓝),(红,绿),(红,紫),共4种,故所求概率P=410=2 5.(2)记2名男生分别为A,B,3名女生分别为a,b,c,则从中任选2名学生有AB,Aa,Ab,Ac,Ba,Bb,Bc,ab,ac,bc,共10种情况,其中恰好选中2名女生有ab,ac,bc,共3种情况,故所求概率为3 10.【答案】(1)C(2)3 10[规律方法]求古典概型概率的步骤(1)判断是否为古典概型.(2)算出样本点的总数n.(3)算出事件A中包含的样本点个数m.(4)算出事件A的概率,即P(A)=m n.在运用公式计算时,关键在于求出m,n.在求n时,应注意这n种结果必须是等可能的,在这一点上比较容易出错.数学建模——古典概型的实际应用例3:已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层随机抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.【解】(1)由已知,甲,乙,丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层随机抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(2)(i)从抽出的7名同学中随机抽取2名同学的所有可能结果为(A,B),(A,C),(A,D),(A,E),(A,F),(A,G),(B,C),(B,D),(B,E),(B,F),(B,G),(C,D),(C,E),(C,F),(C,G),(D,E),(D,F),(D,G),(E,F),(E,G),(F,G),共21种.(ii)由(1)设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为(A,B),(A,C),(B,C),(D,E),(F,G),共5种.所以事件M发生的概率P(M)=5 21.[规律方法]如何建立概率模型(古典概型)(1)在建立概率模型(古典概型)时,把什么看作一个样本点(即一个试验结果)是人为规定的.我们只要求每次试验有且只有一个样本点出现.对于同一个随机试验,可以根据需要(建立概率模型的主观原因)建立满足我们要求的概率模型.(2)注意验证是否满足古典概型的两个特性,即①样本点的有限性;②每个样本点发生的可能性相等.(3)求解时将其转化为互斥事件或对立事件的概率问题.【课堂检测】1.下列是古典概型的是()①从6名同学中,选出4人参加数学竞赛,每人被选中的可能性的大小.②同时掷两颗骰子,点数和为7的概率.③近三天中有一天降雨的概率.④10个人站成一排,其中甲、乙相邻的概率.A.①②③④B.①②④C.②③④D.①③④解析:选B.①②④为古典概型,因为都适合古典概型的两个特征:有限性和等可能性,而③不适合等可能性,故不为古典概型.2.甲、乙两人有三个不同的学习小组A,B,C可以参加,若每人必须参加并且仅能参加一个学习小组(两人参加各个小组的可能性相同),则两人参加同一个学习小组的概率为()A.13B.14 C.15 D.16解析:选A.甲乙两人参加学习小组,若以(A,B)表示甲参加学习小组A,乙参加学习小组B,则一共有如下情形:(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C),共有9种情形,其中两人参加同一个学习小组共有3种情形,根据古典概型概率公式,得P=1 3.3.从甲、乙、丙、丁、戊五个人中选取三人参加演讲比赛,则甲、乙都当选的概率为()A.25B.15 C.310 D.35解析:选C.从五个人中选取三人有10种不同结果:(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),而甲、乙都当选的结果有3种,故所求的概率为3 10.4.在1,2,3,4四个数中,可重复地选取两个数,其中一个数是另一个数的2倍的概率是________.解析:可重复地选取两个数共有16种可能,其中一个数是另一个数的2倍的有1,2;2,1;2,4;4,2共4种,故所求的概率为416=14.答案:1 45.一只口袋装有形状大小都相同的6只小球,其中2只白球,2只红球,2只黄球,从中随机摸出2只球,试求:(1)2只球都是红球的概率;(2)2只球同色的概率;(3)“恰有一只是白球”是“2只球都是白球”的概率的几倍?解:记两只白球分别为a1,a2;两只红球分别为b1,b2;两只黄球分别为c1,c2.从中随机取2只球的所有结果为(a1,a2),(a1,b1),(a1,b2),(a1,c1),(a1,c2),(a2,b1),(a2,b2),(a2,c1),(a2,c2),(b1,b2),(b1,c1),(b1,c2),(b2,c1),(b2,c2),(c1,c2)共15种结果.(1)2只球都是红球为(b1,b2)共1种,故2只球都是红球的概率P=1 15.(2)2只球同色的有:(a1,a2),(b1,b2),(c1,c2),共3种,故2只球同色的概率P=315=15.(3)恰有一只是白球的有:(a1,b1),(a1,b2),(a1,c1),(a1,c2),(a2,b1),(a2,b2),(a2,c1),(a2,c2),共8种,其概率P=8 15;2只球都是白球的有:(a1,a2),1种,故概率P=1 15,所以“恰有一只是白球”是“2只球都是白球”的概率的8倍.【第三课时】【教学目标】1.理解并识记概率的性质2.会用互斥事件、对立事件的概率求解实际问题【教学重难点】1.概率的性质2.概率性质的应用【教学过程】一、问题导入预习教材内容,思考以下问题:1.概率的性质有哪些?2.如果事件A与事件B互斥,则P(A∪B)与P(A),P(B)有什么关系?3.如果事件A与事件B为对立事件,则P(A)与P(B)有什么关系?二、基础知识概率的性质性质1:对任意的事件A,都有P(A)≥0;性质2:必然事件的概率为1,不可能事件的概率为0,即P(Ω)=1,P(∅)=0;性质3:如果事件A与事件B互斥,那么P(A∪B)=P(A)+P(B);性质4:如果事件A与事件B互为对立事件,那么P(B)=1-P(A),P (A)=1-P(B);性质5:如果A⊆B,那么P(A)≤P(B),由该性质可得,对于任意事件A,因为∅⊆A⊆Ω,所以0≤P(A)≤1.性质6:设A,B是一个随机试验中的两个事件,有P(A∪B)=P(A)+P(B)-P(A∩B).三、合作探究互斥事件与对立事件概率公式的应用例1:一名射击运动员在一次射击中射中10环,9环,8环,7环,7环以下的概率分别为0.24,0.28,0.19,0.16,0.13.计算这名射击运动员在一次射击中:(1)射中10环或9环的概率;(2)至少射中7环的概率.【解】设“射中10环”“射中9环”“射中8环”“射中7环”“射中7环以下”的事件分别为A ,B ,C ,D ,E ,可知它们彼此之间互斥,且P (A )=0.24,P (B )=0.28,P (C )=0.19,P (D )=0.16,P (E )=0.13.(1)P (射中10环或9环)=P (A ∪B )=P (A )+P (B )=0.24+0.28=0.52,所以射中10环或9环的概率为0.52.(2)事件“至少射中7环”与事件E “射中7环以下”是对立事件,则P (至少射中7环)=1-P (E )=1-0.13=0.87.所以至少射中7环的概率为0.87.[变问法]在本例条件下,求射中环数小于8环的概率.解:事件“射中环数小于8环”包含事件D “射中7环”与事件E “射中7环以下”两个事件,则P (射中环数小于8环)=P (D ∪E )=P (D )+P (E )=0.16+0.13=0.29.[规律方法]互斥事件、对立事件概率的求解方法(1)互斥事件的概率的加法公式P (A ∪B )=P (A )+P (B ).(2)对于一个较复杂的事件,一般将其分解成几个简单的事件,当这些事件彼此互斥时,原事件的概率就是这些简单事件的概率的和.(3)当求解的问题中有“至多”“至少”“最少”等关键词语时,常常考虑其反面,通过求其反面,然后转化为所求问题.[注意]有限个彼此互斥事件的和的概率,等于这些事件的概率的和,即P (∑ni =1A i )=∑n i =1P (A i ).互斥、对立事件与古典概型的综合应用例2:某学校的篮球队、羽毛球队、乒乓球队各有10名队员,某些队员不止参加了一支球队,具体情况如图所示,现从中随机抽取一名队员,求:(1)该队员只属于一支球队的概率;(2)该队员最多属于两支球队的概率.【解】分别令“抽取一名队员只属于篮球队、羽毛球队、乒乓球队”为事件A ,B ,C .由图知3支球队共有球员20名.则P (A )=520,P (B )=320,P (C )=420.(1)令“抽取一名队员,该队员只属于一支球队”为事件D .则D =A +B +C ,因为事件A ,B ,C 两两互斥,所以P (D )=P (A +B +C )=P (A )+P (B )+P (C )=520+320+420=35.(2)令“抽取一名队员,该队员最多属于两支球队”为事件E ,则E -为“抽取一名队员,该队员属于3支球队”,所以P (E )=1-P (E -)=1-220=910.[规律方法]求复杂事件的概率常见的两种方法(1)将所求事件转化成几个彼此互斥的事件的和事件;(2)若将一个较复杂的事件转化为几个互斥事件的和事件时,需要分类太多,而其对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”,它常用来求“至少…”或“至多…”型事件的概率.【课堂检测】1.若A 与B 为互斥事件,则( )A .P (A )+P (B )<1B .P (A )+P (B )>1C .P (A )+P (B )=1D .P (A )+P (B )≤1解析:选D.若A 与B 为互斥事件,则P (A )+P (B )≤1.故选D.2.甲、乙2人下棋,下成和棋的概率是12,乙获胜的概率是13,则甲获胜的概率是( )A.12B.56C.16D.23解析:选C.因为甲胜的概率就是乙不胜,故甲胜的概率为1-⎝ ⎛⎭⎪⎫12+13=16.故选C.3.(2019·黑龙江省齐齐哈尔市第八中学月考)从一箱苹果中任取一个,如果其重量小于200克的概率为0.2,重量在[200,300]内的概率为0.5,那么重量超过300克的概率为________.解析:设重量超过300克的概率为P,因为重量小于200克的概率为0.2, 重量在[200,300]内的概率为0.5,所以0.2+0.5+P=1,所以P=1-0.2-0.5=0.3.答案:0.34.一盒中装有各色球12个,其中5个红球、4个黑球、2个白球、1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.解:记事件A1={任取1球为红球};A2={任取1球为黑球};A3={任取1球为白球};A4={任取1球为绿球},则P(A1)=512,P(A2)=412,P(A3)=212,P(A4)=1 12.根据题意知,事件A1,A2,A3,A4彼此互斥.法一:(1)由互斥事件概率公式,得取出1球为红球或黑球的概率为P(A1+A2)=P(A1)+P(A2)=512+412=34.(2)取出1球为红球或黑球或白球的概率为P(A1+A2+A3)=P(A1)+P(A2)+P(A3)=512+412+212=1112.法二:(1)取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A1+A2的对立事件为A3+A4,所以取出1球为红球或黑球的概率为P(A1+A2)=1-P(A3+A4)=1-P(A3)-P(A4)=1-212-112=912=34.(2)A1+A2+A3的对立事件为A4,所以P(A1+A2+A3)=1-P(A4)=1-112=1112.高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
2022下半年全国教师资格证统考考试面试试讲高中数学教案:几何概型

2022下半年全国教师资格证统考考试面试试讲高中数学教案:几何概型教师资格证面试时间临近,推荐报名教师资格证面试网校高清课程(点击购买,随报随学,不限时间次数。
免费试听),来系统学习提升面试技能。
关于教师资格证面试考试相关最新资讯或备考点击进入备考专题。
一、教材分析1.教材所处的地位和作用"几何概型'这一节内容是安排在"古典概型'之后的第二类概率模型,是对古典概型内容的进一步拓展,是等可能事件的概念从有限向无限的延伸。
此节内容是为更广泛地满足随机模拟的需要而在新课本中增加的,这是与以往教材安排上的最大的不同之处。
这充分体现了数学与实际生活的紧密关系,来源生活,而又高于生活。
同时也暗示了它在概率论中的重要作用,在高考中的题型的转变。
2、教学的重点和难点重点:几何概型概念的理解和公式的运用;难点:几何概型的应用.二、教学目标分析1.知识与技能目标①通过探究,让学生理解几何概型试验的基本特征,并与古典概型相区别;②理解并掌握几何概型的定义;③会求简单的几何概型试验的概率.2、过程与方法通过学习运用几何概型的过程,初步体会几何概型的含义,体验几何概型与古典概型的联系与区别。
3、情感、态度与价值观通过对几何概型的教学,帮助学生树立科学的世界观和辩证的思想,养成合作交流的习惯。
三、教法与学法分析1、教法分析:结合本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、分析问题、解决问题等教学过程,观察对比、概括归纳几何概型的概念及其概率公式,再通过具体实际问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。
利用多媒体辅助教学。
2、学法指导:以学生活动为主,引导学生在动手操作、实践探索、合作交流的基础上,充分调动学生学习的积极性和主动性。
结合本课的实际需要,作如下指导:对于概念,学会几何概型与古典概型的比较;立足基础知识和基本技能,掌握好典型例题;注意数形结合思想的运用,把抽象的问题转化为熟悉的几何概型。
《随机事件的概率》教学设计(优质公开课一等奖)
《随机事件的概率》教学设计(优质公开课一等奖)高一数学065高一年级7班教师XXX飞学生《随机事件的概率》教学设计教学目标:1、知识与技能(1)了解随机事件发生的不确定性和频率的稳定性,进一步了解频率的意义及频率与概率的区别;(2)在正确理解随机事件发生的不确定性和频率的稳定性的基础上,能辨析生活中的随机现象,澄清生活中对概率的一些错误认识,并通过做大量重复试验,用频率对某些随机事件的概率进行估计。
2、过程与方法:通过对现实生活中“掷硬币”“游戏公平性”等问题的探究,体会随机事件发生的不确定性和频率的稳定性,理解概率的统计定义在实际生活中的作用,初步掌握利用数学知识思考和解决实际问题的方法。
3、情感、态度与价值观:通过本节的教学,引导学生用随机的观点认识世界,使学生了解偶然性与必然性的辩证统一,培养辩证唯物主义思想。
教学重点:通过实验活动丰富对频率与概率关系的认识,知道当试验次数较大时,频率稳定于理论概率。
教学难点:收集数据、分析折线图、辩证的理解频率与概率的关系。
教学方法:本节课采用交流合作法,辅之以其它教学法,在探索新知的过程中,通过抛硬币活动来组织学生进行有效的研究,调动学生的积极性,在实验的过程中实现对数据的收集、收拾整顿、观察、分析、讨论,最后通过合作交流等方式,归纳出当试验次数大很大时,事件发生的频率稳定一个常数附近。
教学手段:采用多媒体辅助教学,促进学生自主研究,丰富完善学生的认知过程,使有限的时间成为无限的空间。
事先教师准备图表、电脑、硬币等。
教学流程:1.创设情境,体会随机事件发生的不确定性生活实例1:“2016年2月28日,勇士对XXX,XXX超远三分绝杀,将比分定格为121:118”问题1:你能确定神奇的XXX在下一场XXX比赛中的超远三分一定能进吗?设计意图从学生感兴趣的生活实例引入,一方面是为了激发学生的听课热情,另一方面也是让学生体会研究随机事件及几率的原因和必要性.生活实例2:“2016年奥运会XXX摘得中国军团首金”问题2:为什么射击竞赛中每一枪都云云扣人心弦呢?设计意图:奥运会是社会热点话题,可以增强学生的国家自豪感.生活实例3:“足球比赛中我们常用抛硬币的方式决定优先权”问题3:那么能够预先确定谁获胜吗?设计意图:回到学生身边.从生活体验中归纳共性,包含了综合、概括、比较等分析过程,是形成概念的有效途径.因此在这一阶段通过创设情境唤起学生的兴趣,使他们身处现实情境中,为后续的思维活动建立起感性认识基础.2.归纳共性,形成随机事件的概念问题4:从结果能够预知的角度看,能够发现以上事件的共同点吗?设计意图有了前面的基础,此时学生能够有效的概括、抽取上述生活体验的共性.在数学上研究事件时,主要关注在相应的条件下,事件是否发生,因此在提问时明确思考的角度,让学生的思维直指概念的本质,避免不必要的发散.问题5:以上这些事件都是可能产生也可能不产生的事件.那么在自己的身边,还能找到此类的事件吗?(学生举例)问题6:有没有不属于此类的事件呢?(学生举例必然事件和不可能事件)通过以上思考,发现事件可以分为以下三类:必然事件:在一定的条件下必然要发生的事件;不可能事件:在一定的条件下不可能产生的事件;随机事件:在一定的条件下可能产生也可能不产生的事件.设计意图在形成概念之前,通过主动的思考,在自己身边举例,巩固学生对随机事件的思维基础;二是通过对比,明确事件分类的标准和概念之间的差异.例1判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?(1) “在地球上,抛出的石头会下落”;(2) “中山市明天天晴”;(3) “如果a>b,那么a-b>0”;(4) “打开电视机,正在播放新闻”;(5) “手电筒的的电池没电,灯泡发亮”;(6)“某电话机在1分钟内收到2次呼叫”;(7)“没有水份,种子能发芽”;(8) “随机选取一个实数x,得|x|≥0”.(9)“在三角形中,大边对大角”;(10)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;必然事件有;不可能事件有;随机事件有设计意图形成概念以后,让学生积极自动参与到课堂,认识新知,初步感触感染成功的喜悦.3.深入情境,体味随机事件的规律性我们看到,随机事件在生活中是广泛存在的,时刻影响着我们的生活.正因为体育比赛中充满了随机事件,而让比赛更加刺激、精彩,让观众更加紧张投入;因为每天的校园生活充满了随机事件,而让我们的校园生活兴奋而新奇;也正因为人生道路上充满了随机事件,而让我们每个人的人生各有各的不同,各有各的精彩.同时,我们身边也有一些富有悲凉色采的随机事件,那我们是不是因此而心中时辰都充满着恐慌呢?实现自己的目标这也是个随机事件,那么我们是不是就因此而放弃了今天的努力了呢?设计意图这一段教学首先呈现了随机事件带给人们丰富多彩的生活,体现了教师对数学、对概率的喜爱和热情,传递给学生研究数学的积极态度.其次,这段教学既是对前面内容的总结,也引出了下面研究思考的方向,起到承上启下的感化,同时也就揭示了人们认识随机事件的过程,以及随机事件随机性和规律性之间的联系.第三,通过反问,使学生意识到,生活的不断体验曾经使我们积累了一些对随机事件规律性的感性认识,那么接下来就是要挖掘出这些感性认识下面的理性依据,以这种方式激发学生对生活经验的反思和探讨,同时匡助学生形成正确的世界观.回到最开始的三个实例中,反思其中包含着哪些对随机事件规律性的感性认识,以此为基础进行理性思考.问题7:提出问题,引发思考:(1)既然三分球的命中有随机性,为什么要选择XXX 来投这个决定成败的三分球而不是其他队员呢?(2)既然每个人参加奥运会获得金牌都是随机事件,为什么派XXX来参加奥运会而不是其他人?(3)为什么抛硬币决定球权对双方是公正的?再次抽取共性,形成抽象概念:从同学们的回答中,可以体会到,事件发生的可能性有大小之分,是可以比较的,从而抽象出可以用数量表示事件产生的可能性的大小,这就是几率的意义.设计意图借助前面的事例,减少课堂的阅读量和重复思维量,提高了课堂效率,增强了规律性与随机性的对比.并且三个问题在学生看来是很简单回答的,这恰恰说明几率的雏形在生活理论中曾经产生,同时这样的问题也更有利于学生对概率概念本身的把握,抽象过程就变得顺其自然了.4.层层深入,形成概率的统计定义问题8:生活中“XXX投三分球命中的几率高于其他球员”的经验是如何得到的呢?(XXX三分球命中率高),那么三分球命中率是如何计算的呢?(三分球命中率=投中次数/投篮次数),理论上在数学里三分球命中率是三分球命中这个事件的频率,从而引出数学中频数与频率的概念.设计意图基于初中的研究,有些学生具备了用实验频率来估计几率的经验.但对于“为什么可以这样做”,缺乏经验,为接下来的探讨做准备.问题9:足球竞赛中我们常用抛硬币的方式决定哪队先开球,这样公正吗?(公正)说明我们以为这样的情况下每一对开球的概率都是0.5,现在就让我们通过一个数学实验验证一下.[数学试验]在平整的桌面上,随机抛一枚硬币20次,统计正面向上的次数与频率.设计意图:从学生身边的工作动身,更简单引发学生的兴趣,同时,学生的切身材验和直观观察,更有利于概念的形成,以及对规律的认同.激发学生分析随机事件规律性的主动性.问题10:每一组试验的结果一致吗?为什么?(随机试验的随机性)问题11:如果我们合并前两组的实验结果,相当于我们一共进行了40次试验,我们可以统计这40次试验,正面向上的频率,以此类推,我们就可以统计出我们进行60次,80次……实验,正面向上出现的频率,再形成散点图,人人观察频率值有什么规律性?(形成概率的统计定义:一般地,在相同条件下,大量重复进行同一试验时,随机事件A发生的频率会在[0,1]中的某个常数附近摆动,随着试验次数的增加,频率逐渐稳定于这个常数,这时就把这个常数叫做随机事件A的概率,记做P(A) )设计意图这一段是本节内容的难点,需要把对数据、图表的直观印象转化为抽象的几率界说.之所以可以用大量重复实验的频率来估计几率,是因为在数、图中积累数据的频率体现出了一定的“稳定性”,即规律性,使得我们能够从图表中大致判断出事件几率的规模、具体大小.这里第一还是坚持从多组数据中抽取共性来形成概念,其次注重数与形的相互转化,把图形上的规律用数去描述,把数据上的规律用图形去验证,更为清晰的表现出频率在常数附近摆动的规律.问题12:随机事件出现的频率会随试验的不同而不同吗?(频率的随机性)问题13:随机事件出现的概率会随试验的不同而不同吗?(概率是客观存在的确定的常数)问题14:随机事件出现的频率与概率有什么联系吗?(概率是频率的稳定值,频率是概率的估计值)5.学以致用,正确了解几率的意义例2、某射手在同一条件下进行射击,结果如下表所示:射击次数n击中靶心次数m击中靶心的频率mXXX(1)填写表中击中靶心的频率;(2)这个射手射击一次,击中靶心的概率约是什么?练1、下列事件:(1)口袋里有伍角、壹角、壹元的硬币若干枚,随机地摸出一枚是壹角。
高考数学总复习 10.4随机事件的概率课件 人教版
【题后总结】1.在一定条件下,所要求的结果是否可能 发生是判断一个事件是必然事件、不可能事件还是随机事 件的主要依据. 2.对于每一个球来说,其被取出的可能性是相等的, m 所以可应用公式P(A)= n 计算概率,其中n是全部事件总 数,m是事件A包含的基本事件的个数.
在箱子里装有十张卡片,分别写有1至10十个整数,从 箱子中任取一张卡片,记下它的读数x,然后再放回箱子中;
注意: m (1)P(A)= n 是等可能性事件概率的定义,同时也是计算 这种概率的基本方法.步骤是:①确定随机事件中等可能 性的基本事件是什么;②计算随机事件中所有基本事件的 可能性结果数n;③计算事件A中包含的基本事件的个数m; m ④利用定义计算事件A的概率,即P(A)= n .
(2)从集合的角度研究概率:在一次试验中,等可能出 现的n个结果组成一个集合I,这n个结果就是集合I的n个元 素.各基本事件均对应于集合I的含有1个元素的子集,包含 m个结果的事件A对应于I的含有m个元素的子集A.因此,从 集合的角度看,事件A的概率是子集A的元素个数(记作 card(A))与集合I的元素个数(card(I))的比值,也就是P(A)= cardA m = . cardI n
2.已知非空集合A、B满足A B,给出以下四个命题:
①若任取x ∈A,则x ∈B是必然事件;②若x∉A,则x ∈B 是不可能事件;③若任取 x∈B ,则 x∈A 是随机事件;④若 x∉B,则x∉A是必然事件. 其中正确的个数是( )
A.1
C.3
B.2
D.4
解析:易知①③④正确,②错误.
答案:C
3.甲、乙两人各写一张贺年卡随意送给丙、丁两人中 的一人,则甲、乙将贺年卡送给同一人的概率为( 1 A. 2 1 C.4 1 B. 3 1 D.5 )
高中数学教案 第4讲 随机事件与概率
第4讲随机事件与概率1.了解随机事件发生的不确定性和频率的稳定性,理解概率的意义以及频率与概率的区别.2.理解事件间的关系与运算.1.样本空间和随机事件(1)样本点和有限样本空间①样本点:随机试验E 的每个可能的□1基本结果称为样本点,常用ω表示.全体样本点的集合称为试验E 的样本空间,常用Ω表示.②有限样本空间:如果一个随机试验有n 个可能结果ω1,ω2,…,ωn ,则称样本空间Ω={ω1,ω2,…,ωn }为有限样本空间.(2)随机事件①定义:将样本空间Ω的□2子集称为随机事件,简称事件.②表示:大写字母A ,B ,C ,….③随机事件的极端情形:必然事件、不可能事件.2.事件的关系定义表示法图示包含关系若事件A 发生,事件B □3一定发生,称事件B 包含事件A (或事件A 包含于事件B )□4B ⊇A (或A □5⊆B )互斥事件如果事件A 与事件B □6不能同时发生,称事件A 与事件B 互斥(或互不相容)若A ∩B =∅,则A 与B 互斥对立事件如果事件A 和事件B 在任何一次试验中□7有且仅有一个发生,称事件A 与事件B 互为对立,事件A 的对立事件记为A -若A ∩B =∅,且A ∪B =Ω,则A 与B 对立3.事件的运算定义表示法图示并事件事件A 与事件B 至少有一个发生,称这个事件为事件A 与事件B 的并事件(或和事件)□8A ∪B (或A +B )交事件事件A 与事件B 同时发生,称这样一个事件为事件A 与事件B 的交事件(或积事件)□9A ∩B (或AB )4.概率与频率(1)频率的稳定性:一般地,随着试验次数n 的增大,频率偏离概率的幅度会缩小,即事件A 发生的频率f n (A )会逐渐稳定于事件A 发生的□10概率P (A ).我们称频率的这个性质为频率的稳定性.(2)频率稳定性的作用:可以用频率f n (A )估计□11概率P (A ).常用结论1.从集合的角度理解互斥事件和对立事件(1)几个事件彼此互斥,是指由各个事件所含的结果组成的集合的交集为空集.(2)事件A 的对立事件A -所含的结果组成的集合,是全集中由事件A 所含的结果组成的集合的补集.2.概率加法公式的推广当一个事件包含多个结果且各个结果彼此互斥时,要用到概率加法公式的推广,即P (A 1∪A 2∪…∪A n )=P (A 1)+P (A 2)+…+P (A n ).1.思考辨析(在括号内打“√”或“×”)(1)事件发生的频率与概率是相同的.()(2)在大量的重复试验中,概率是频率的稳定值.()(3)若随机事件A 发生的概率为P (A ),则0≤P (A )≤1.()(4)6张奖券中只有一张有奖,甲、乙先后各抽取一张,则甲中奖的概率小于乙中奖的概率.()答案:(1)×(2)√(3)√(4)×2.回源教材(1)某人打靶时连续射击两次,下列事件中与事件“至少一次中靶”互为对立的是()A.至多一次中靶B.两次都中靶C.只有一次中靶D.两次都没有中靶解析:D连续射击两次中靶的情况如下:①两次都中靶;②只有一次中靶;③两次都没有中靶,故选D.(2)一个人打靶时连续射击两次,事件“至多有一次中靶”的互斥事件是()A.至少有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶解析:B射击两次中“至多有一次中靶”即“有一次中靶或两次都不中靶”,与该事件不能同时发生的是“两次都中靶”.(3)把一枚质地均匀的硬币连续抛掷1000次,其中有496次正面朝上,504次反面朝上,则掷一次硬币正面朝上的概率为.解析:掷一次硬币正面朝上的概率是0.5.答案:0.5随机事件的关系运算例1(1)若干个人站成一排,其中为互斥事件的是()A.“甲站排头”与“乙站排头”B.“甲站排头”与“乙不站排尾”C.“甲站排头”与“乙站排尾”D.“甲不站排头”与“乙不站排尾”解析:A根据互斥事件不能同时发生,判断A是互斥事件;B、C、D中两事件能同时发生,故不是互斥事件.故选A.(2)(多选)一批产品共有100件,其中5件是次品,95件是合格品.从这批产品中任意抽取5件,现给出以下四个事件:事件A:“恰有一件次品”;事件B:“至少有两件次品”;事件C:“至少有一件次品”;事件D:“至多有一件次品”.则下列说法正确的是()A.A∪B=CB.B∪D是必然事件C.A∩B=CD.A∩D=C解析:AB根据已知条件以及利用和事件、积事件的定义进行判断.事件A∪B 指至少有一件次品,即事件C,故A正确;事件B∪D指至少有两件次品或至多有一件次品,次品件数包含0到5,即代表了所有情况,故B正确;事件A和B 不可能同时发生,即事件A∩B=∅,故C错误;事件A∩D指恰有一件次品,即事件A,而事件A和C不同,故D错误.反思感悟1.事件的关系运算策略(1)互斥事件是不可能同时发生的事件,但也可以同时不发生.(2)进行事件的运算时,一是要紧扣运算的定义,二是要全面考虑同一条件下的试验可能出现的全部结果,必要时可列出全部的试验结果进行分析,也可类比集合的关系和运用Venn图分析事件.2.辨析互斥事件与对立事件的思路(1)在一次试验中,两个互斥事件有可能都不发生,也可能有一个发生,但不可能同时发生.(2)两个对立事件必有一个发生,但不可能同时发生.即两事件对立,必定互斥,但两事件互斥,未必对立.对立事件是互斥事件的一个特例.(3)互斥的概念适用于两个或多个事件,但对立的概念只适用于两个事件.训练1(1)把红、黄、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四人,每个人分得一张,事件“甲分得红牌”与“乙分得红牌”()A.是对立事件B.是不可能事件C.是互斥但不对立事件D.不是互斥事件解析:C事件“甲分得红牌”与事件“乙分得红牌”不可能同时发生,故它们是互斥事件,但由于这两个事件的和事件不是必然事件,故这两个事件不对立.(2)(多选)口袋里装有1红,2白,3黄共6个除颜色外完全相同的小球,从中取出两个球,事件A=“取出的两个球同色”,B=“取出的两个球中至少有一个黄球”,C=“取出的两个球至少有一个白球”,D=“取出的两个球不同色”,E=“取出的两个球中至多有一个白球”.下列判断正确的是()A.A与D为对立事件B.B与C是互斥事件C.C与E是对立事件D.P(C∪E)=1解析:AD当取出的两个球为一黄一白时,B与C都发生,B不正确;当取出的两个球中恰有一个白球时,事件C与E都发生,C不正确;显然A与D是对立事件,A正确;C∪E为必然事件,P(C∪E)=1,D正确.互斥事件与对立事件的概率例2某商场进行有奖销售,购满100元商品得1张奖券,多购多得.1000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:(1)P(A),P(B),P(C);(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.解:(1)P(A)=11000,P(B)=101000=1100,P(C)=501000=1 20 .(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M,则M=A∪B∪C.∵事件A,B,C两两互斥,∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)=1+10+501000=611000,故1张奖券的中奖概率为61 1000.(3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,∴P(N)=1-P(A∪B)=1-(11000+1100)=9891000,故1张奖券不中特等奖且不中一等奖的概率为989 1000.反思感悟当所求概率的事件较为复杂时,可考虑把其分解为几个互斥的事件,利用互斥事件的概率公式求解,或求其对立事件的概率,利用对立事件的概率求解.训练2经统计,在某储蓄所一个营业窗口排队的人数相应的概率如下:排队人数012345人及5人以上概率0.10.160.30.30.10.04求:(1)至多2人排队等候的概率;(2)至少3人排队等候的概率.解:记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F彼此互斥.(1)记“至多2人排队等候”为事件G,则G=A∪B∪C,所以P(G)=P(A∪B∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)法一:记“至少3人排队等候”为事件H,则H=D∪E∪F,所以P(H)=P(D∪E∪F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.法二:记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.随机事件的频率与概率例3(经典高考题)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元、50元、20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表等级A B C D频数40202020乙分厂产品等级的频数分布表等级A B C D频数28173421(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?解:(1)由试加工产品等级的频数分布表知,甲分厂加工出来的一件产品为A级品的概率的估计值为40100=0.4;乙分厂加工出来的一件产品为A级品的概率的估计值为28100=0.28.(2)由数据知甲分厂加工出来的100件产品利润的频数分布表为利润6525-5-75频数40202020因此甲分厂加工出来的100件产品的平均利润为65×40+25×20-5×20-75×20100=15(元).由数据知乙分厂加工出来的100件产品利润的频数分布表为利润70300-70频数28173421因此乙分厂加工出来的100件产品的平均利润为70×28+30×17+0×34-70×21100=10(元).比较甲、乙两分厂加工的产品的平均利润,厂家应选甲分厂承接加工业务.反思感悟1.频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.2.利用概率的统计意义求事件的概率,即通过大量的重复试验,事件发生的频率会逐步趋近于某一个常数,这个常数就是概率.训练3某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40]天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.解:(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表中数据可知,最高气温低于25的频率为2+16+3690=0.6.所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6. (2)当这种酸奶一天的进货量为450瓶时,若最高气温低于20,则Y=200×6+(450-200)×2-450×4=-100;若最高气温位于区间[20,25),则Y=300×6+(450-300)×2-450×4=300;若最高气温不低于25,则Y=450×(6-4)=900,所以,利润Y的所有可能值为-100,300,900.Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为36+25+7+490=0.8.因此Y大于零的概率的估计值为0.8.限时规范训练(七十六)A级基础落实练1.在1,2,3,…,10这十个数字中,任取三个不同的数字,那么“这三个数字的和大于5”这一事件是()A.必然事件B.不可能事件C.随机事件D.以上选项均有可能解析:A从1,2,3,…,10这十个数字中任取三个不同的数字,那么这三个数字和的最小值为1+2+3=6,∴事件“这三个数字的和大于5”一定会发生,∴由必然事件的定义可以得知该事件是必然事件.2.同时抛掷两枚完全相同的骰子,用(x,y)表示结果,记A为“所得点数之和小于5”,则事件A包含的样本点的个数是()A.3B.4C.5D.6解析:D事件A包含(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6个样本点.3.下列说法正确的是()A.任何事件的概率总是在(0,1)之间B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,事件发生的频率一般会稳定于概率D.概率是随机的,在试验前不能确定解析:C不可能事件的概率为0,必然事件的概率为1,故A错误;频率是由试验的次数决定的,故B错误;概率是频率的稳定值,故C正确,D错误.4.(2024·太原模拟)已知随机事件A和B互斥,且P(A∪B)=0.7,P(B)=0.2,-)=()则P(AA.0.5B.0.1C.0.7D.0.8解析:A∵随机事件A和B互斥,且P(A∪B)=0.7,P(B)=0.2,∴P(A)=P(A∪B)-P(B)=0.7-0.2=0.5,∴P(A-)=1-P(A)=1-0.5=0.5.5.掷一枚质地均匀的骰子,“向上的点数是1或3”为事件A,“向上的点数是1或5”为事件B,则()A.A∪B表示向上的点数是1或3或5B.A=BC.A∪B表示向上的点数是1或3D.A∩B表示向上的点数是1或5解析:A设A={1,3},B={1,5},则A∩B={1},A∪B={1,3,5},∴A≠B,A∩B表示向上的点数是1,A∪B表示向上的点数为1或3或5.6.(多选)下列说法中正确的有()A.若事件A与事件B是互斥事件,则P(AB)=0B.若事件A与事件B是对立事件,则P(A+B)=1C.某人打靶时连续射击三次,则事件“至少有两次中靶”与事件“至多有一次中靶”是对立事件D.把红、橙、黄3张纸牌随机分给甲、乙、丙3人,每人分得1张,则事件“甲分得的不是红牌”与事件“乙分得的不是红牌”是互斥事件解析:ABC事件A与事件B互斥,则A,B不可能同时发生,所以P(AB)=0,故A正确;事件A与事件B是对立事件,则事件B即为事件A-,所以P(A+B)=1,故B 正确;事件“至少有两次中靶”与“至多有一次中靶”不可能同时发生,且二者必有一个发生,所以为对立事件,故C正确;事件“甲分得的不是红牌”与事件“乙分得的不是红牌”可能同时发生,即“丙分得的是红牌”,所以不是互斥事件,故D错误.7.商场在一周内共卖出某种品牌的皮鞋300双,商场经理为考察其中各种尺码皮鞋的销售情况,以这周内某天售出的40双皮鞋的尺码为一个样本,分为5组,已知第3组的频率为0.25,第1,2,4组的频数分别为6,7,9.若第5组表示的是尺码为40~42的皮鞋,则售出的这300双皮鞋中尺码为40~42的皮鞋约为双.解析:∵第1,2,4组的频数分别为6,7,9,∴第1,2,4组的频率分别为640=0.15,740=0.175,940=0.225.∵第3组的频率为0.25,∴第5组的频率是1-0.25-0.15-0.175-0.225=0.2,∴售出的这300双皮鞋中尺码为40~42的皮鞋约为0.2×300=60(双).答案:608.(2024·天津调研)某射击运动员平时100次训练成绩的统计结果如下:命中环数12345678910频数24569101826128如果这名运动员只射击一次,估计射击成绩是6环的概率为;不少于9环的概率为.解析:由题表得,如果这名运动员只射击一次,估计射击成绩是6环的概率为10100=110,不少于9环的概率为12+8100=15.答案:110159.我国西部一个地区的年降水量在下列区间内的概率如表所示:年降水量(mm)(100,150)(150,200)(200,250)(250,300)概率0.210.160.130.12则年降水量在(200,300)(mm)范围内的概率是.解析:设年降水量在(200,300),(200,250),(250,300)的事件分别为A,B,C,则A=B∪C,且B,C为互斥事件,所以P(A)=P(B)+P(C)=0.13+0.12=0.25.答案:0.2510.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.商品顾客人数甲乙丙丁100√×√√217×√×√200√√√×300√×√×85√×××98×√××(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?解:(1)从统计表可以看出,在这1000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为200 1000=0.2.(2)从统计表可以看出,在这1000位顾客中有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+200 1000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001000=0.6,顾客同时购买甲和丁的概率可以估计为1001000=0.1.所以如果顾客购买了甲,则该顾客同时购买丙的可能性最大.11.某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数01234≥5保费0.85a a 1.25a 1.5a 1.75a2a 随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数01234≥5频数605030302010(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;(3)求续保人本年度平均保费的估计值.解:(1)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P(A)的估计值为0.55.(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P(B)的估计值为0.3.(3)由所给数据得保费0.85a a 1.25a 1.5a 1.75a2a频率0.300.250.150.150.100.05调查的200名续保人的平均保费为0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.1925a.因此,续保人本年度平均保费的估计值为1.1925a.B级能力提升练12.(多选)(2023·枣庄调研)一个袋子中有大小和质地相同的4个球,其中有2个红色球(标号为1和2),2个绿色球(标号为3和4),从袋中不放回地随机摸出2个球,每次摸出一个球.设事件R1=“第一次摸到红球”,R=“两次都摸到红球”,G=“两次都摸到绿球”,M=“两球颜色相同”,N=“两球颜色不同”,则()A.R1⊆RB.R∩G=∅C.R∪G=MD.M=N-解析:BCD样本空间为{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),(2,1),(3,1),(4,1),(3,2),(4,2),(4,3)},R1={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4)},R={(1,2),(2,1)},G={(3,4),(4,3)},M={(1,2),(2,1),(3,4),(4,3)},N={(1,3),(1,4),(2,3),(2,4),(3,1),(3,2),(4,1),(4,2)},由集合的包含关系可知B,C,D正确.13.如果事件A,B互斥,记A-,B-分别为事件A,B的对立事件,那么()A.A∪B是必然事件B.A-∪B-是必然事件C.A-与B-一定互斥D.A-与B-一定不互斥-∪B-是必然事件,A-与B-不解析:B如图①所示,A∪B不是必然事件,A互斥;如图②所示,A∪B是必然事件,A-∪B-是必然事件,A-与B-互斥.图①图②14.某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦·时)与该河上游在六月份的降雨量X(单位:毫米)有关.据统计,当X=70时,Y=460;X每增加10,Y增加5.已知近20年X的值为140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.(1)完成如下的频率分布表:近20年六月份降雨量频率分布表降雨量70110140160200220频率120420220(2)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦·时)或超过530(万千瓦·时)的概率.解:(1)在所给数据中,降雨量为110毫米的有3个,降雨量为160毫米的有7个,降雨量为200毫米的有3个.故近20年六月份降雨量频率分布表为降雨量70110140160200220频率120320420720320220(2)根据题意,Y=460+X-7010×5=X2+425,故P(“发电量低于490万千瓦·时或超过530万千瓦·时”)=P(Y<490或Y>530)=P(X<130或X>210)=P(X=70)+P(X=110)+P(X=220)=120+320+220=310.故今年六月份该水力发电站的发电量低于490(万千瓦·时)或超过530(万千瓦·时)的概率为310 .。
高中数学优质教学设计6:3.1.1随机事件的概率 教案
§3.1.1 随机事件的概率教学目标:1、知识与技能(1)了解随机事件发生的不确定性和频率的稳定性,进一步了解频率的意义及频率与概率的区别;(2)在正确理解随机事件发生的不确定性和频率的稳定性的基础上,能辨析生活中的随机现象,澄清生活中对概率的一些错误认识,并通过做大量重复试验,用频率对某些随机事件的概率进行估计。
2、过程与方法通过对现实生活中“掷硬币”“游戏公平性”“彩票中奖”等问题的探究,体会随机事件发生的不确定性和频率的稳定性,理解概率的统计定义在实际生活中的作用,初步掌握利用数学知识思考和解决实际问题的方法。
3、情感、态度与价值观通过本节的教学,引导学生用随机的观点认识世界,使学生了解偶然性与必然性的辩证统一,培养辩证唯物主义思想。
教学重点:通过实验活动丰富对频率与概率关系的认识,知道当试验次数较大时,频率稳定于理论概率。
教学难点:收集数据、分析折线图、辩证的理解频率与概率的关系。
教学方法:本节课采用交流合作法,辅之以其它教学法,在探索新知的过程中,通过抛硬币活动来组织学生进行有效的学习,调动学生的积极性,在实验的过程中实现对数据的收集、整理、观察、分析、讨论,最后通过合作交流等方式,归纳出当试验次数大很大时,事件发生的频率稳定一个常数附近。
教学手段:采用多媒体辅助教学,促进学生自主学习,丰富完善学生的认知过程,使有限的时间成为无限的空间。
事先教师准备图表、电脑、硬币等。
教学流程:一、情境导入“兴趣是最好的老师”.教师首先让学生观看“马航祈福”的一段视频,问学生你能预先知道“飞机失事”一定会发生吗?黑匣子一定能找到吗?[设计意图]:这样从实际问题抽象出数学问题,充分体现了数学来源于生活,又服务于生活的数学应用意识,既能激发学生的好奇心和求知欲,也能增强爱国主义情感,为顺利实施本节课的教学目标打下了良好的基础. 接着教师提出生活实例1:抛一枚硬币,在落地前,你能确定那个面朝上吗?生活实例2:班级组织篮球赛,甲同学找到合适机会,很漂亮地投出一个三分球,那么你能预先确定这个三分球是否投进吗?问题一:从结果能够预知的角度看,能够发现以上事件的共同点吗?生:以上事件都是可能发生也可能不发生的事件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教师资格考试(面试)高数试讲备课随机事件
的概率
教师资格考试(面试)高数试讲备课随机事件的概率
在教师资格考试(面试)中,高数试讲备课是备受关注和重视的一
环节。
对于考生来说,做到充分准备非常重要。
其中一个关键点就是
要掌握随机事件的概率,以便在备课过程中合理安排时间和任务,提
高备课效率,从而在考试中取得好成绩。
一、随机事件的概率基础知识
在高等数学中,概率论是一门重要的学科。
随机事件指的是在一组
试验中,可能发生也可能不发生的事件。
例如,在掷一枚硬币的实验中,出现正面和反面的情况都是随机事件。
在计算随机事件的概率时,首先需要考虑的是样本空间。
样本空间
是指一个试验中所有可能出现结果的集合,通常用 S 表示。
例如,在
掷一枚硬币的实验中,样本空间为 S = {正面,反面}。
其次,需要考虑的是事件的概率。
事件的概率指的是该事件发生的
可能性大小,其值在 0 和 1 之间。
如果事件发生的可能性越大,其概
率值就越接近 1;如果事件发生的可能性越小,其概率值就越接近 0。
事实上,事件的概率也可以通过样本空间中元素的个数来计算。
例如,对于掷一枚硬币的实验,出现正面的概率为1/2,即P(正面) = 1/2。
这是因为在样本空间中正面和反面各有一个元素,因此两个元素的比
值为 1:1,即事件发生的可能性相等。
二、高数试讲备课中的随机事件
在高数试讲备课中,有很多随机事件需要考虑和处理。
以下是其中
一些典型的事件。
1. 题目的难度
高数试讲备课通常需要做选择题、填空题、解答题等不同难度和类
型的题目。
考虑到时间的限制,需要在备课中根据每道题目的难度安
排合理的时间。
这里的难度分级通常采用简单、中等、困难等等级。
2. 资料的获取
备课需要大量的资料,例如教材、试卷、课件等。
面对大量的资料,有时难免需要进行筛选、整理和归纳,以便更好地理解和掌握知识点。
但是,有些资料可能比较难找到,或者质量不高,这也会影响备课的
效率和质量。
3. 课件的设计
在备课中,课件是必不可少的一部分。
课件的设计需要考虑到多个
因素,例如幻灯片的布局、动画效果的使用、颜色的搭配等等。
一个
好的课件可以很好地帮助学生理解和掌握知识点,因此需要在备课时
充分考虑。
4. 教学方法的选择
备课之后,还需要考虑如何将知识点更好地传递给学生。
这需要根据学生的特点和学习习惯选择合适的教学方法,例如讲解、演示、互动等。
选择合适的教学方法可以很好地激发学生的兴趣和积极性。
三、高数试讲备课随机事件的概率计算
对于上面提到的每个随机事件,我们可以计算其发生的概率,并在备课中作出相应的安排和调整。
例如,对于第一个随机事件,我们可以将题目的难度分级为简单、中等、困难三个等级。
假设备课中要备两道简单题目、三道中等题目和一道困难题目,那么我们可以计算此事件发生的概率为:P(两道简单题目,三道中等题目,一道困难题目) = C(2,2) × C(3,3) ×C(1,1) / C(6,6) = 1 / 720
其中 C(n,m) 表示从 n 个元素中选取 m 个元素的组合数。
同样地,我们可以计算其他随机事件的概率,例如:
P(在备课中需要去查找资料) = 0.5
P(遇到无法解决的问题导致备课时间延长) = 0.2
P(选择的教学方法不够合适导致学生无法理解) = 0.3
最终,我们可以将这些概率值综合起来,计算备课整体的难度和可能出现的问题:
P(备课时间超出预计) = P(遇到无法解决的问题导致备课时间延长) ×P(在备课中需要去查找资料) = 0.2 × 0.5 = 0.1
P(备课效果不佳) = P(选择的教学方法不够合适导致学生无法理解) =
0.3
四、结论
通过上面的分析和计算,我们可以得出一个初步的结论:在高数试讲备课中,随机事件的概率较高,需要考虑多种因素和变量,才能做好全面的备课工作。
针对各种随机事件,我们需要制定相应的应对策略,以便在考试中取得好成绩。
因此,建议考生在备课前认真分析各个随机事件的概率,并针对其特点和影响作出相应的安排和调整,以充分利用备课时间和精力,提高备课效率和质量,在面试中展现自己的实力和水平。