DC-AC INVERTER典型电路和动作原理
直流变交流最简单方法

直流变交流最简单方法1. 引言直流(Direct Current,简称DC)和交流(Alternating Current,简称AC)是电力系统中常见的两种电流形式。
在电力传输和分配中,常常需要将直流电转换为交流电,这就需要进行直流变交流的转换。
本文将介绍直流变交流的最简单方法,并详细讨论其原理、实现方式和应用场景。
2. 原理直流变交流的基本原理是通过使用电子器件来改变电流的方向和频率。
直流电源通过逆变器(Inverter)转换为交流电源,逆变器主要由开关管和控制电路组成。
逆变器的工作原理是通过控制开关管的导通和断开来改变电路的通断状态,从而改变电流的方向和频率。
当开关管导通时,直流电源的正负极连接到交流电源的相位之间,电流方向与交流电相同;当开关管断开时,直流电源的正负极断开,电流方向与交流电相反。
通过不断地切换开关管的导通和断开,可以产生与交流电相同频率的电流。
3. 实现方式直流变交流的实现方式有多种,下面介绍两种常见的实现方式。
3.1 单相逆变器单相逆变器是一种将直流电转换为单相交流电的装置。
它由晶闸管、二极管、电感和电容等组成。
逆变器的控制电路通过控制晶闸管的导通和断开来改变电路的通断状态。
单相逆变器的工作原理是将直流电源经过逆变器的整流滤波电路,将直流电转换为平滑的直流电。
然后,通过逆变器的开关电路将直流电转换为交流电。
通过控制开关电路的导通和断开,可以改变交流电的频率和相位。
3.2 三相逆变器三相逆变器是一种将直流电转换为三相交流电的装置。
它由六个晶闸管和六个二极管组成,分别对应三相电源的三个相位。
三相逆变器的工作原理是将直流电源经过逆变器的整流滤波电路,将直流电转换为平滑的直流电。
然后,通过逆变器的开关电路将直流电转换为交流电。
通过控制六个晶闸管的导通和断开,可以改变交流电的频率和相位。
4. 应用场景直流变交流技术在电力系统中有广泛的应用。
下面介绍几个常见的应用场景。
4.1 可再生能源发电系统可再生能源发电系统如太阳能发电和风能发电等常常产生直流电。
INVERTER工作原理讲解

INVERTER工作原理讲解一、概述INVERTER(逆变器)是一种将直流电转换为交流电的电子设备。
它在各种领域中得到广泛应用,如太阳能发电系统、电动汽车、UPS(不间断电源)等。
本文将详细介绍INVERTER的工作原理及其相关组成部分。
二、INVERTER的工作原理1. 直流输入INVERTER的工作原理首先涉及直流输入。
当直流电源连接到INVERTER时,它将提供电流和电压的稳定输出。
直流输入通常通过电池、太阳能电池板或其他直流电源提供。
2. 逆变器电路INVERTER的核心是逆变器电路,它将输入的直流电转换为输出的交流电。
逆变器电路通常包括以下几个主要组成部分:a) 整流器:将直流电源转换为交流电源。
b) 逆变器:将交流电源转换为所需的输出电压和频率。
c) 控制器:监测和控制逆变器电路的运行,确保输出电压和频率的稳定性。
3. PWM控制INVERTER中常用的一种控制方法是脉宽调制(PWM)控制。
PWM控制通过调整逆变器电路中的开关管的导通时间来控制输出波形的幅值和频率。
具体而言,PWM控制根据输入信号的幅值和频率,以一定的周期性切换开关管的导通状态,从而实现输出波形的调整。
4. 输出滤波器为了确保输出电压的稳定性和纯净性,INVERTER通常配备输出滤波器。
输出滤波器能够滤除输出波形中的高频噪声和谐波,使输出电压更加平滑和稳定。
5. 保护功能为了保护INVERTER和连接的设备,通常会在逆变器电路中加入各种保护功能,如过电流保护、过温保护、短路保护等。
这些保护功能能够及时检测到异常情况,并采取相应的措施,以防止设备损坏或事故发生。
三、INVERTER的应用领域1. 太阳能发电系统太阳能发电系统中的太阳能电池板产生的直流电需要通过INVERTER转换为交流电,以供家庭或工业用电。
INVERTER在这个过程中起到了关键的作用,确保太阳能发电系统的高效运行。
2. 电动汽车电动汽车的电池提供的是直流电,而车辆需要的是交流电。
逆变器工作原理

逆变器工作原理逆变器是一种将直流电转换成交流电的电力转换装置。
它在可再生能源系统、电池储能系统、电动汽车和UPS等领域中得到广泛应用。
逆变器的工作原理是通过使用电子器件将直流电源转换为交流电源。
一、逆变器的基本原理逆变器的基本原理是利用电子器件(如晶体管、IGBT等)将直流电源转换为交流电源。
逆变器的输入端连接直流电源,输出端连接负载。
逆变器通过控制电子器件的开关状态,将直流电源转换为交流电源,输出给负载。
逆变器的工作过程可以分为两个阶段:开关器件的导通和开关器件的断开。
二、逆变器的工作过程1. 开关器件的导通阶段:在这个阶段,逆变器的输入端直流电源通过控制电路,使得开关器件导通。
导通的开关器件会将直流电源的电能传输到输出端,形成正半周的交流电信号。
在这个过程中,开关器件的导通时间和导通频率决定了输出交流电的频率和幅值。
2. 开关器件的断开阶段:在这个阶段,逆变器的输入端直流电源通过控制电路,使得开关器件断开。
断开的开关器件会阻断直流电源的电能传输,输出端的电压降为0。
在这个过程中,开关器件的断开时间和断开频率决定了输出交流电的频率和幅值。
三、逆变器的控制方式逆变器的控制方式有两种:脉宽调制(PWM)和谐波消除调制(HCC)。
1. 脉宽调制(PWM):脉宽调制是逆变器常用的控制方式。
它通过改变开关器件导通和断开的时间比例,来控制输出交流电的频率和幅值。
脉宽调制可以使得逆变器的输出电压具有较高的质量和稳定性。
2. 谐波消除调制(HCC):谐波消除调制是一种高级的控制方式,它可以有效地消除逆变器输出电压中的谐波成份。
谐波消除调制通过改变开关器件的导通和断开时间,使得输出电压的谐波成份尽可能接近于0。
这样可以提高逆变器的功率质量,减少对负载的干扰。
四、逆变器的应用逆变器在可再生能源系统中的应用越来越广泛。
例如,太阳能光伏发电系统中的逆变器可以将太阳能电池板产生的直流电转换为交流电,供给家庭和工业用电。
INVERTER工作原理讲解

INVERTER工作原理讲解一、引言INVERTER(逆变器)是一种将直流电能转换为交流电能的电子设备。
它在现代电力系统中扮演着重要的角色,广泛应用于太阳能发电、风力发电、电动汽车等领域。
本文将详细介绍INVERTER的工作原理,包括其基本原理、主要组成部份以及工作过程。
二、基本原理INVERTER的工作原理基于电子器件的开关特性。
它通过控制电力开关器件(如IGBT、MOSFET等)的开关状态,将直流电源的电压和电流转换为交流电源的电压和电流。
具体来说,INVERTER通过不断地开关和关闭电力开关器件,将直流电源的电压转换为高频脉冲信号,然后通过滤波器将其转换为交流电源的电压。
三、主要组成部份1. 控制电路:控制电路是INVERTER的核心部份,它负责控制电力开关器件的开关状态。
控制电路通常由微处理器或者专用控制芯片组成,可以根据输入信号(如电压、电流等)进行精确的控制。
2. 电力开关器件:电力开关器件是INVERTER的关键组成部份,它负责将直流电源的电压和电流转换为高频脉冲信号。
常用的电力开关器件有IGBT、MOSFET等,它们具有高开关速度和低开关损耗的特点。
3. 滤波器:滤波器用于将高频脉冲信号转换为平滑的交流电源的电压。
滤波器通常由电感和电容组成,可以滤除高频噪声和谐波成份,使输出电压更加稳定。
4. 输出变压器:输出变压器用于将INVERTER输出的电压变换为所需的电压等级。
它通常由铁芯和绕组组成,可以实现电压的升降转换。
四、工作过程INVERTER的工作过程可以分为以下几个步骤:1. 输入电流检测:控制电路首先检测直流电源的电流大小,以便进行后续的控制。
2. 控制信号生成:根据输入电流的大小和设定的输出电压,控制电路生成相应的控制信号,用于控制电力开关器件的开关状态。
3. 电力开关器件控制:控制信号经过放大和隔离后,控制电力开关器件的开关状态。
当控制信号为高电平时,电力开关器件处于导通状态;当控制信号为低电平时,电力开关器件处于断开状态。
逆变电路工作原理

逆变电路工作原理逆变电路是一种将直流电转换为交流电的电路,其工作原理是通过逆变器将直流电源的电压转换为交流电源的电压。
逆变电路广泛应用于各种领域,如电力电子、工业自动化、电动机驱动、太阳能发电等。
逆变电路的基本原理是利用开关管(如晶体管、MOSFET、IGBT等)控制直流电流的通断,通过不断地改变开关管的导通和截止状态,使得直流电源的电压在一定时间间隔内交替改变,从而产生交流电压。
逆变电路可以分为两种基本类型:单相逆变电路和三相逆变电路。
单相逆变电路适合于单相交流电源和负载,而三相逆变电路适合于三相交流电源和负载。
单相逆变电路通常由整流器、滤波器、逆变器和控制电路组成。
整流器将交流电源转换为直流电源,滤波器用于平滑直流电压波动,逆变器将直流电压转换为交流电压,控制电路用于控制逆变器的开关管的导通和截止。
三相逆变电路通常由整流器、滤波器、逆变器和控制电路组成。
整流器将三相交流电源转换为直流电源,滤波器用于平滑直流电压波动,逆变器将直流电压转换为三相交流电压,控制电路用于控制逆变器的开关管的导通和截止。
逆变电路的工作原理可以简单描述为以下几个步骤:1. 整流:将交流电源转换为直流电源。
在单相逆变电路中,采用单相整流桥电路,通过四个二极管将交流电源的正、负半周分别整流为正向和反向的直流电压。
在三相逆变电路中,采用三相整流桥电路,通过六个二极管将三相交流电源整流为直流电压。
2. 滤波:通过滤波电路平滑直流电压。
滤波电路通常由电容器组成,用于去除直流电压中的纹波成份,使得直流电压更加稳定。
3. 逆变:将直流电压转换为交流电压。
逆变器通过控制开关管的导通和截止,使得直流电压在一定时间间隔内交替改变,从而产生交流电压。
逆变器通常采用全桥逆变电路,由四个开关管和一个变压器组成。
4. 控制:通过控制电路控制逆变器的开关管的导通和截止。
控制电路通常采用微处理器或者专用控制芯片,根据负载的需求和工作状态,实时调整开关管的工作频率和占空比,以实现对输出电压和电流的精确控制。
INVERTER工作原理讲解

INVERTER工作原理讲解一、引言INVERTER是一种用于将直流电转换为交流电的电子设备。
它在现代电力系统中起着重要作用,被广泛应用于太阳能发电、风能发电和电动汽车等领域。
本文将详细讲解INVERTER的工作原理,包括其基本原理、主要组成部分以及工作过程。
二、INVERTER的基本原理INVERTER的基本原理是通过将直流电源转换为交流电源,实现电能的传输和利用。
其核心原理是利用电子器件对直流电进行调制,产生与输入直流电频率相同的交流电。
具体来说,INVERTER通过控制开关器件的导通和断开,将直流电源分段进行切换,从而形成脉冲宽度调制(PWM)信号。
通过PWM信号的调制,可以控制输出交流电的幅值、频率和相位。
三、INVERTER的主要组成部分1. 输入电源:INVERTER的输入电源通常为直流电源,可以是电池组、太阳能电池板或其他直流电源。
输入电源的电压和电流决定了INVERTER的输出功率和负载能力。
2. 控制电路:控制电路是INVERTER的核心部分,它负责控制开关器件的导通和断开。
控制电路通常由微处理器或其他控制器组成,通过对输入信号的处理和调节,实现对输出交流电的控制。
3. 开关器件:开关器件是INVERTER的关键组成部分,它负责对输入直流电进行切换,从而产生PWM信号。
常用的开关器件包括晶体管、场效应管和继电器等。
4. 输出变压器:输出变压器用于将INVERTER输出的交流电进行变压和隔离,以适应不同的负载要求。
输出变压器通常由铁芯和线圈组成,通过变压比的调整,实现对输出电压和电流的控制。
四、INVERTER的工作过程INVERTER的工作过程可以分为以下几个步骤:1. 输入电源供电:将直流电源连接到INVERTER的输入端,为INVERTER提供工作电源。
2. 控制信号处理:控制电路接收输入信号,并对其进行处理和调节。
控制信号包括输入电压、频率、相位等参数。
3. 开关器件控制:控制电路根据处理后的信号,控制开关器件的导通和断开。
光伏逆变器演示课件
6.1 光伏逆变器概述
6.1.1 光伏逆变器的分类
输出波形
方波逆变器 阶梯波逆变器 正弦波逆变器
逆变器的分类
运行方式
输出交流电相数
离网逆变器 并网逆变器
单相逆变器 三相逆变器
功率流动方向
单向逆变器 双向逆变器
功率较小(<4kW)的光伏发电系统一般采用正弦波逆变 器。
逆变器的显示功能主要包括:直流输入电压和电流的
6.2 光伏逆变器的原理电路
控制电路输出的开关控制信号:方波、阶梯波、脉宽调 制方波、脉宽调制三角波和锯齿波等;后三种脉宽调制的 波形都是以基础波作为载波,正弦波作为调制波,最后输 出正弦波波形。普通方波和被正弦波调制的方波的区别如 图6-9所示。普通方波信号是连续导通的,而被调制的方波 信号要在正弦波调制的周期内导通和关断N次。
6.2 光伏逆变器的原理电路
2.并网逆变器的电路原理 (1)三相并网逆变器电路原理 三相并网逆变器输出电压一般为交流380V或更高电压, 频率为50/60Hz。三相并网逆变器多用于容量较大的光伏发 电系统,输出波形为标准正弦波,功率因数接近1.0。 三相并网逆变器电路分为主电路和微处理器电路两部分: 主电路主要完成DC-DC-AC的转换和逆变过程;微处理器 电路主要完成系统并网的控制过程。 并网控制的目的:使逆变器输出的交流电压值、波形、 相位等维持在规定的范围内,因此,微处理器控制电路要 完成电网相位实时检测、电流相位反馈控制、光伏方阵最 大功率跟踪以及实时正弦波脉宽调制信号发生等内容。
6.2 光伏逆变器的原理电路
6.2.3并网型逆变器的电路原理
并网逆变器不仅要将太阳能光伏发电系统输出的直流电 转换为交流电,还要对交流电的电压、电流、频率、相位 与同步等进行控制,还要解决对电网的电磁干扰、自我保 护、单独运行和孤岛效应以及最大功率跟踪等技术问题。
逆变器工作原理
逆变器工作原理逆变器是一种电力转换设备,其主要功能是将直流电转换为交流电。
逆变器广泛应用于太阳能发电系统、风能发电系统以及各种电力电子设备中。
本文将详细介绍逆变器的工作原理以及其基本组成部分。
一、逆变器的工作原理逆变器的工作原理可以简单地描述为:将直流电源通过逆变器的转换,转换为交流电源。
逆变器通过控制开关管的导通和截止,将直流电源的电压和电流进行调制,使其输出成为与输入电源频率和电压相匹配的交流电源。
逆变器的工作原理主要包括以下几个步骤:1. 输入滤波:逆变器的输入端通常连接直流电源,为了减小输入电流的纹波,需要进行输入滤波。
输入滤波电路通常由电感和电容组成,能够滤除输入电流中的高频纹波。
2. 逆变器桥路:逆变器的核心部分是逆变器桥路,其作用是将直流电源转换为交流电源。
逆变器桥路通常由四个开关管(MOSFET或IGBT)组成,通过控制开关管的导通和截止,可以实现电流的正向和反向流动,从而实现电能的转换。
3. 控制电路:逆变器的控制电路负责控制开关管的导通和截止,使得逆变器输出电压和频率与输入电源相匹配。
控制电路通常由微处理器、PWM控制芯片、传感器等组成,能够实时监测输入电流和输出电压,并根据设定的参数进行调节。
4. 输出滤波:逆变器输出的交流电压通常需要进行输出滤波,以减小输出电流的纹波。
输出滤波电路通常由电感和电容组成,能够滤除输出电流中的高频纹波。
二、逆变器的基本组成部分逆变器通常由以下几个基本组成部分构成:1. 输入电路:输入电路主要包括输入滤波电路和直流电源连接端。
输入滤波电路能够减小输入电流的纹波,保证输入电流的稳定性。
2. 逆变器桥路:逆变器桥路是逆变器的核心部分,由四个开关管组成。
通过控制开关管的导通和截止,可以实现直流电源向交流电源的转换。
3. 控制电路:控制电路负责控制开关管的导通和截止,使得逆变器输出电压和频率与输入电源相匹配。
控制电路通常由微处理器、PWM控制芯片、传感器等组成,能够实时监测输入电流和输出电压,并根据设定的参数进行调节。
INVERTER工作原理讲解
INVERTER工作原理讲解概述:INVERTER(逆变器)是一种电子设备,它将直流电转换为交流电。
在现代电力系统中,INVERTER广泛应用于太阳能发电、风能发电、电动汽车等领域。
本文将详细讲解INVERTER的工作原理,包括其基本组成部份、工作原理及其应用。
一、基本组成部份:1. 直流输入:INVERTER的直流输入通常来自于电池、太阳能电池板或者其他直流电源。
直流输入是INVERTER工作的基础。
2. 控制电路:控制电路是INVERTER的核心部份,它负责控制整个系统的运行。
控制电路通常由微处理器、传感器和其他电子元件组成。
3. 逆变电路:逆变电路是INVERTER的主要组成部份,它将直流电转换为交流电。
逆变电路通常由开关器件(如IGBT)和滤波电路组成。
4. 输出接口:输出接口是将逆变器产生的交流电连接到外部负载的接口。
输出接口通常包括插座、电源线等。
二、工作原理:INVERTER的工作原理可以分为以下几个步骤:1. 直流输入:INVERTER从直流电源(如电池)获取直流输入。
2. 控制电路:控制电路对直流输入进行监测和控制,以确保系统的稳定运行。
控制电路通过微处理器处理输入信号,并根据需要调整逆变器的输出。
3. 逆变电路:逆变电路将直流电转换为交流电。
逆变电路中的开关器件(如IGBT)通过开关操作,将直流电源的电流转换为交流电流。
逆变电路中的滤波电路则用于滤除交流电中的噪声和谐波。
4. 输出接口:逆变器产生的交流电通过输出接口连接到外部负载,如家用电器、电动汽车等。
输出接口负责将逆变器产生的电能传递给负载,以满足其电力需求。
三、应用:INVERTER在各个领域都有广泛的应用,以下列举几个常见的应用场景:1. 太阳能发电:太阳能电池板将太阳能转换为直流电,INVERTER将直流电转换为交流电,以供给家庭和商业用电。
2. 风能发电:风力发机电产生的直流电经过INVERTER转换为交流电,以供给电网或者其他设备使用。
逆变器工作原理
逆变器工作原理逆变器是一种将直流电转换为交流电的电力转换设备。
它在可再生能源发电系统、电动车辆和UPS(不间断电源)等领域得到广泛应用。
本文将详细介绍逆变器的工作原理。
一、逆变器的基本原理逆变器的基本原理是利用电子器件对直流电进行逆变,产生交流电。
逆变器通常由直流输入端、输出端和控制电路组成。
其工作流程如下:1. 直流输入:逆变器的直流输入端接收来自电池、太阳能电池板或者其他直流电源的电能。
直流电源经过滤波电路进行滤波处理,去除掉直流电中的脉动和噪声。
2. 逆变过程:滤波后的直流电进入逆变器的控制电路。
控制电路根据设定的参数,如输出电压、频率等,控制功率开关器件的开关状态。
逆变器中常用的功率开关器件有晶体管和功率MOSFET。
3. 输出交流电:通过控制功率开关器件的开关状态,逆变器将直流电转换为交流电。
交流电经过输出滤波电路后,去除掉交流电中的谐波和噪声,得到纯净的交流电输出。
二、逆变器的工作模式逆变器根据输入直流电的类型和输出交流电的特性,可以分为两种工作模式:单相逆变器和三相逆变器。
1. 单相逆变器:单相逆变器适合于家庭和小型商业应用。
它的输入直流电为单相直流电,输出交流电为单相交流电。
单相逆变器通常采用全桥逆变器拓扑结构,具有较高的效率和可靠性。
2. 三相逆变器:三相逆变器适合于大型商业和工业应用。
它的输入直流电为三相直流电,输出交流电为三相交流电。
三相逆变器通常采用多电平逆变器拓扑结构,能够提供更高的功率质量和效率。
三、逆变器的控制策略逆变器的控制策略对其性能和稳定性至关重要。
常见的逆变器控制策略有以下几种:1. 脉宽调制(PWM):脉宽调制是一种常用的逆变器控制策略。
通过改变逆变器输出电压的脉冲宽度,控制输出交流电的幅值和频率。
脉宽调制可以提供较高的输出质量和效率。
2. 多电平控制:多电平控制是一种高性能的逆变器控制策略。
通过在逆变器输出端采用多级电压波形,减小输出电压的谐波含量,提高输出电压的质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DC-AC INVERTER典型電路和動作原理
一
二動作原理
當輸入端加上電源電壓時,電流通過電阻R1,R2使之極管Q1.,Q2進入放大狀態.
由于R1,R2,Q1,Q2和集電極繞組的參數不對稱,便會使Q1,Q2中的一個先導通.
而當該晶體管到達飽和時,便會進入截止狀態而使另一管開始導通.通過這樣
的周期性變化,高壓變壓器的輸出繞組間便迭加上正弦波電壓,升壓後輸出.正
波頻率由高壓變壓器的電感初級側的電容C3和高壓側的電容C4所決定.
設計實例
DC-AC Inverter
條件(一)輸入,輸出特性要求
Vin=5.0±0.5V
F=40~60kHz
Vopen voltage=1500Vrms
VLAMP=290Vrms
Iout(Laamp)=5.0mArms
(二)使用電路:扒挽電路(Push-Pull Grait)設計步驟
(一) 電路
根據式(一)求得Lp=5.402Uh
3)假設選用Nc2H FEET15B的Core(TAK制),則
ΔB=1850(Gauss) Ae=18.5m㎡
Np=BAefVIN44.410*8=42810*5*10*5.18*1850*44.410*5=6.58(Turns)
4)FEET15B Core Gap=0.1mm時Al=140Nh/N2
因Lp=5.402Uh, 則Np=ALL/=6.20(Turns)
5)所以取Np=6(Turns) 則NG=VinVbNp = 565.2 =3(Turns)
6)設效率n=85%
又P0=290*0.005=1.45W
則Iin=5*85.045.1=341.2Ma
所以初級線材選用SI-Uew-0-23-NTL
7)Ns=95.0*56*1500 =1894.7(Turns)
Ns取整數圈Ns=1900(Turns) (分五槽卷線)
8)因為Iout=5mArm 則選線材為
S1-SFW-0-05NTL則Transformer可設定為
卷數 7Turns 7Turns 3Turns 1900Turns
線材 0.23UEW 0.05SFW
設計實例:
Power inductor supplier- Core
條件:
(一) 輸入,輸出特性:
Vin=6.0VQC Vout=10.0V
F=200KHZ Iout=0.5A
(二) 根據條件選擇Step up, 其使用電路如下:
(三) 計算:
a) =40%
b) 連續電流時Lc5.0*10*26*6*310*2001*0.4=7.2UH
c) Ripple電流時Lr5.06*2*2000004.0=48Uh
d) 連續電流條件時I的Peak值
Ic=0.5+610*2.76*2000004.0=2.17A
e) Ripple電流時I的Peak值
Ir0.5+610*486*2000004.0=0.75A
f) 連續電流的有效值:
Irm =IcTTon3/=2.1754.0*)510*5.0/10*2/(1=0.792A
Qrum Core的材質選擇TAK的DL5.
其AL=74Nh/N2
因為Lr=48Uh
所以N=24/10*483=25.5T=26T
查TAK的 Power choke core ,選擇CDR10*4R
則用S2-UEW-0-26的WIRE卷2521T(2521T為參
考值)
備注:1) Rl=310*0.5290=58000()
2)f=21