信号分析与处理试题与答案
2014年北京邮电大学随机信号分析与处理期末考试试题

1北京邮电大学随机信号分析与处理综合练习题一、判断题:1. 设()X t 和()Y t 是相互独立的平稳随机过程,则它们的乘积也是平稳的。
2.()X t 为一个随机过程,对于任意一个固定的时刻i t ,()i X t 是一个确定值。
3。
设X 和Y 是两个随机变量,X 和Y 不相关且不独立,有()()()D X Y D X D Y +=+。
4。
一般来说,平稳正态随机过程与确定性信号之和仍然为平稳的正态过程。
5. 设()X t 是不含周期分量的零均值平稳随机过程,其自相关函数为()X R τ,从物理概念上理解,有lim ()0X R ττ→∞=。
6. 对于线性系统,假设输入为非平稳随机过程,则不能用频谱法来分析系统输出随机过程的统计特性。
7. 若随机过程X (t )满足,与t 无关,则X (t )是广义平稳(宽平稳)过程.8. 随机过程的方差表示消耗在单位电阻上瞬时功率的统计平均值。
9. 广义循环平稳的随机过程本身也是一种广义平稳的随机过程。
10. 高斯白噪声经过匹配滤波器后仍然为高斯白噪声。
二.选择填空1.对于联合平稳随机过程()X t 和()Y t 的互相关函数()XY R τ,以下关系正确的是(1) 。
(1) A .()()XY XY R R ττ-= B. ()-()XY YX R R ττ-=C. )()(ττYX XY R R =-D. )()(ττXY XY R R -=-2. 随机过程X(t)的自相关函数满足1212(,)()()0X X X R t t m t m t =≠,则可以断定1()X t 和2()X t 之间的关系是 (2) 。
(2) A 。
相互独立 B 。
相关 C. 不相关 D 。
正交3.两个不相关的高斯随机过程)(t X 和)(t Y ,均值分别为X m 和Y m ,方差分别为2X σ和2Y σ,则)(t X 和)(t Y 的联合概率密度为 (3) .(3) A.2222()()(,)22X Y X Y x m y m f x y σσ⎧⎫⎡⎤--⎪⎪=-+⎨⎬⎢⎥⎪⎪⎣⎦⎩⎭ B 。
信号处理-习题(答案)

数字信号处理习题解答 第二章 数据采集技术基础2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中⎪⎩⎪⎨⎧≥Ω<Ω=Ωππ30321)(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。
试问输出信号y 1(t ),y 2(t )有无失真?为什么?分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。
解:已知采样角频率Ωs =6π,则由香农采样定理,可得 因为x 1(t )=cos2πt ,而频谱中最高角频率πππ32621=<=Ωh ,所以y 1(t )无失真;因为x 2(t )=cos5πt ,而频谱中最高角频率πππ32652=>=Ωh ,所以y 2(t )失真。
2.2 设模拟信号x (t )=3cos2000πt +5sin6000πt +10cos12000πt ,求:(1) 该信号的最小采样频率;(2) 若采样频率f s =5000Hz,其采样后的输出信号; 分析:利用信号的采样定理及采样公式来求解。
错误!采样定理采样后信号不失真的条件为:信号的采样频率f s 不小于其最高频率f m 的两倍,即f s ≥2f m错误!采样公式)()()(s nT t nT x t x n x s===解:(1)在模拟信号中含有的频率成分是f 1=1000Hz,f 2=3000Hz ,f 3=6000Hz∴信号的最高频率f m =6000Hz由采样定理f s ≥2f m ,得信号的最小采样频率f s =2f m =12kHz (2)由于采样频率f s =5kHz ,则采样后的输出信号⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛====n n n n n n n n n n n f n x nT x t x n x s s nTt s522sin 5512cos 13512cos 10522sin 5512cos 35112cos 105212sin 5512cos 3562cos 10532sin 5512cos 3)()()(πππππππππππ 说明:由上式可见,采样后的信号中只出现1kHz 和2kHz 的频率成分,即kHzf f f kHzf f f ss 25000200052150001000512211======,,若由理想内插函数将此采样信号恢复成模拟信号,则恢复后的模拟信号()()t t t f t f t y ππππ4000sin 52000cos 132sin 52cos 13)(21-=-=可见,恢复后的模拟信号y (t ) 不同于原模拟信号x (t ),存在失真,这是由于采样频率不满足采样定理的要求,而产生混叠的结果。
南京理工大学研究生课程信号分析与处理作业答案

1. 证明周期信号)(t f 的傅里叶级数可表示为如下指数形式)()(11∑∞-∞==n t jn e n F t f ωω其中 ∞-∞==⎰-,...,,)(1)(011n dt e t f T n F Tt jn ωω证明:)( 22212221)22(21)sin cos (21)(11111111110110101110∑∑∑∑∑∑∑∞-∞=∞=∞--=∞=--∞--=∞=-∞==-+-+=-+++=-+++=++=n t jn n tjn n n tjn n n n n tjn n n tjn n n n n tjn n n t jn n n n n ne n F e jb a e jb a a e jb a e jb a a e jb a e jb a a t n b t n aa t f ωωωωωωωωωω 当0=n 时⎰⎰=⨯==TTdt t f T dt t f Ta F 00)(1)(22121)0(当0≠n 时()dte tf Tdt t n j t n t f Tdt t n t f jdt t n t f T jb a n F T tjn TTTn n ⎰⎰⎰⎰-=-=⎥⎦⎤⎢⎣⎡-⨯=-=0011010111)(1sin cos )(1sin )(cos )(2212)(ωωωωωω2. 证明在能量误差最小准则下,用)sin cos (211110t n q t n pp n Nn nωω∑=++近似表示周期函数)(t f ,则N p p p ,...,,10和N q q ,...,1如何取值? 能量误差最小,即min )sin cos (21)(021110=⎥⎦⎤⎢⎣⎡+--⎰∑=dt t n q t n p p t f Tn Nn n ωω 0)sin cos (21)(021110=⎥⎦⎤⎢⎣⎡+--∂∂⎰∑=dt t n q t n p p t f p Tn N n n nωω 0cos )sin cos (21)(2101110=⎥⎦⎤⎢⎣⎡+--⎰∑=tdt n t n q t n p p t f Tn Nn n ωωωn TTn p Tdt t n p t n t f 2cos cos )(0121==⎰⎰ωω dt t n t f T p Tn ⎰=01cos )(2ω,N n ...,2,1=同理dt t n t f Tq Tn ⎰=01sin )(2ω,N n ...,2,1= 3. 证明:①实信号频谱共轭对称性⎰∞∞--=dt e t f F t j ωω)()()()(**)(ωω-=⎪⎪⎭⎫⎝⎛=⎰∞∞---F dt e t f t j②具有共轭对称频谱特性的信号一定是实信号[]⎰⎰∞∞-∞∞--+==ωωωωωωωd eF F d eF t f tj tj )()(21)()(*⎰⎰∞∞-∞∞--+=ωωωωωωd e F d eF tj tj )(21)(21*⎰∞∞--+=ωωωd eF t f tj )(21)(21*[])()(21)(21)(21**t f t f d eF t f tj +=⎪⎪⎭⎫ ⎝⎛+=⎰∞∞-ωωω )()(*t f t f ≡4. 设)(t x 为因果信号,即0<t 时,0)(=t x 。
信号分析与处理

信号分析与处理1.什么是信息?什么是信号?二者之间的区别与联系是什么?信号是如何分类的? 信息:反映了一个物理系统的状态或特性,是自然界、人类社会和人类思维活动中普遍存在的物质和事物的属性。
信号:是传载信息的物理量,是信息的表现形式。
区别与联系 信号的分类1.按照信号随自变量时间的取值特点,信号可分为连续时间信号和离散时间信号;2.按照信号取值随时间变化的特点,信号可以分为确定性信号和随机信号; 2.非平稳信号处理方法(列出方法就行) 1.短时傅里叶变换(Short Time Fourier Transform) 2.小波变换(Wavelet Transform)3.小波包分析(Wavelet Package Analysis)4.第二代小波变换5.循环平稳信号分析(Cyclostationary Signal Analysis)6.经验模式分解(Empirical Mode Decomposition)和希尔伯特-黄变换(Hilbert-Huang Transform) 3.信号处理内积的意义,基函数的定义与物理意义。
内积的定义:(1)实数序列:),...,,(21n x x x X =,nn R y y y Y ∈=),...,,(21它们的内积定义是:j nj jy xY X ∑=>=<1,(2)复数jy x z +=它的共轭jy x z -=*,复序列),...,,(21n z z z Z =,nn C w w w W ∈=),...,,(21,它们的内积定义为*=∑>=<j nj j w z W Z 1,在平方可积空间2L 中的函数)(),(t y t x 它们的内积定义为:dt t y t x t y t x ⎰∞∞-*>=<)()()(),( 2)(),(L t y t x ∈以)(),(t y t x 的互相关函数)(τxy R ,)(t x 的自相关函数)(τxx R 如下:>-=<-=⎰∞∞-*)(),()()()(τττt x t x dt t x t x R xx>-=<-=⎰∞∞-*)(),()()()(τττt y t x dt t y t x R xy我们把)(τ-t x 以及)(τ-t y 视为基函数,则内积可以理解为信号)(t x 与“基函数”关系紧密度或相似性的一种度量。
数字信号处理期末试题和答案解析

数字信号处理期末试题和答案解析WORD 格式整理专业知识分享数字信号处理卷⼀⼀、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为。
2.线性时不变系统的性质有律、律、律。
3.对4()()x n R n =的Z 变换为,其收敛域为。
4.抽样序列的Z 变换与离散傅⾥叶变换DFT 的关系为。
5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为。
6.设LTI 系统输⼊为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。
7.因果序列x(n),在Z →∞时,X(Z)= 。
⼆、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是()A.1 B.δ(ω) C.2πδ(ω) D.2π2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是()A. 3 B. 4 C. 6 D. 73.LTI 系统,输⼊x (n )时,输出y (n );输⼊为3x (n-2),输出为() A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n )4.下⾯描述中最适合离散傅⽴叶变换DFT 的是()A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散⽆限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若⼀模拟信号为带限,且对其抽样满⾜奈奎斯特条件,理想条件下将抽样信号通过即可完全不失真恢复原信号()A.理想低通滤波器 B.理想⾼通滤波器 C.理想带通滤波器 D.理想带阻滤波器 6.下列哪⼀个系统是因果系统()A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n) 7.⼀个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括()A. 实轴B.原点C.单位圆D.虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为()A.有限长序列 B.⽆限长序列 C.反因果序列 D.因果序列9.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,⽽不发⽣时域混叠现象,则频域抽样点数N 需满⾜的条件是 ( )A.N≥MB.N≤MC.N≤2MD.N≥2M10.设因果稳定的LTI系统的单位抽样响应h(n),在n<0时,h(n)= ( ) A.0 B.∞ C. -∞ D.1三、判断题(每题1分, 共10分)1.序列的傅⽴叶变换是频率ω的周期函数,周期是2π。
信号分析与处理答案整理(1)解析

信号分析与处理1.什么是信息?什么是信号?二者之间的区别与联系是什么?信号是如何分类的? 信息反映了一个物理系统的状态或特性,是自然界、人类社会和人类思维活动中普遍存在的物质和事物的属性。
信号是传载信息的物理量,是信息的表现形式。
信号处理的本质是信息的变换和提取。
信息的提取就要借助各种信号获取方法以及信号处理技术。
按照信号随自变量时间的取值特点,信号可分为连续时间信号和离散时间信号: (1、连续时间信号——任意时间都有信号值。
2、离散时间信号——在离散的时间点上有信号值。
)按照信号取值随时间变化的特点,信号可以分为确定性信号和随机信号:(1、确定性信号——所有参数都已经确定。
2、随机性信号——在取值时刻以前不可准确预知。
)2.非平稳信号处理方法(列出方法就行)1.短时傅里叶变换2.小波变换3.小波包分析4.循环平稳信号分析 5经验模式分解和希尔伯特-黄变换。
(以及不同特色和功能的小波基函数的应用)3.信号处理内积的意义,基函数的定义与物理意义。
答:内积的定义:(1)实数序列:),...,,(21n x x x X =,nn R y y y Y ∈=),...,,(21它们的内积定义是:j nj jy xY X ∑=>=<1,(2)复数jy x z +=它的共轭jy x z -=*,复序列),...,,(21n z z z Z =,nn C w w w W ∈=),...,,(21,它们的内积定义为*=∑>=<j nj j w z W Z 1,在平方可积空间2L 中的函数)(),(t y t x 它们的内积定义为:dt t y t x t y t x ⎰∞∞-*>=<)()()(),( 2)(),(L t y t x ∈以)(),(t y t x 的互相关函数)(τxy R ,)(t x 的自相关函数)(τxx R 如下:>-=<-=⎰∞∞-*)(),()()()(τττt x t x dt t x t x R xx>-=<-=⎰∞∞-*)(),()()()(τττt y t x dt t y t x R xy我们把)(τ-t x 以及)(τ-t y 视为基函数,则内积可以理解为信号)(t x 与“基函数”关系紧密度或相似性的一种度量。
信号分析与处理第3版赵光宙课后
信号分析与处理第3版赵光宙课后引言《信号分析与处理》是作者赵光宙创作的一本经典教材,已经有3个版本了。
本文档将对《信号分析与处理》第三版的课后习题进行分析和讨论,并对其中一些重要的概念和方法进行介绍和解释。
读者可以通过这些习题的分析,深入理解信号分析与处理的关键概念,为进一步研究和实践打下坚实的基础。
第一章信号与系统本章主要介绍了信号与系统的基本概念和性质。
其中,信号是指随着时间或空间变化而变化的物理量。
系统是信号的输入与输出之间的关系。
课后习题主要涉及信号的分类、线性系统和非线性系统的特性等方面的内容。
习题1:请分类描述以下信号的类型:1.电压信号2.温度信号3.音频信号4.光信号解答:1.电压信号属于连续时间信号,因为时间是连续的。
2.温度信号既可以是连续时间信号,也可以是离散时间信号,取决于温度的采样方式。
3.音频信号属于连续时间信号,因为声音是连续变化的。
4.光信号既可以是连续时间信号,也可以是离散时间信号,取决于光的采样方式。
习题2:判断以下系统是线性系统还是非线性系统:1.y(t) = x(t) + sin(x(t))2.y(t) = 3x(t) - 23.y(t) = x(t)^2解答:1.这个系统是非线性系统,因为它包含了非线性运算sin(x(t))。
2.这个系统是线性系统,因为它只是对输入信号进行了比例增益和平移操作。
3.这个系统是非线性系统,因为它包含了非线性运算x(t)^2。
第二章离散时间信号与系统本章主要介绍了离散时间信号与系统的基本概念和性质。
离散时间信号是在离散时间点上取值的信号,而离散时间系统是对离散时间信号进行处理的系统。
课后习题主要涉及离散时间信号的表示和性质、离散时间系统的差分方程表示等方面的内容。
习题1:请给出以下离散时间信号的表示方式:1.x[n] = {1, 2, 3, 4, 5}2.x[n] = (-1)^n3.x[n] = sin(πn/4)解答:1.x[n] = {1, 2, 3, 4, 5},表示在离散时间点上的取值分别为1, 2, 3, 4, 5。
数字信号处理习题及答案解析
==============================绪论==============================1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(-n)的波形图。
②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。
卷积和:①h(n)*求x(n),其他02n 0n 3,h(n)其他03n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤= }23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4.如果输入信号为,求下述系统的输出信号。
(完整)数字信号处理试卷及答案,推荐文档
数字信号处理试卷及答案1一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。
2.线性时不变系统的性质有 律、 律、 律。
3.对4()()x n R n =的Z 变换为 ,其收敛域为 。
4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。
5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。
6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。
7.因果序列x(n),在Z →∞时,X(Z)= 。
二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π 2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是 ( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( )A. 实轴B.原点C.单位圆D.虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为A.有限长序列B.无限长序列C.反因果序列D.因果序列 9.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是 A.N≥M B.N≤M C.N≤2M D.N≥2M 10.设因果稳定的LTI 系统的单位抽样响应h(n),在n<0时,h(n)= ( )A.0 B .∞ C. -∞ D.1 三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。
测试技术复习资料 第七章 测试信号的处理与分析 考试重点
测试技术复习资料 第七章 测试信号的处理与分析 考试重点一、选择题1. 两个正弦信号间存在下列关系:( B )A. 同频相关,不同频也相关B. 同频相关,不同频不相关C. 同频不相关,不同频相关D. 同频不相关,不同频也不相关2. 自相关函数是一个( B )函数。
A. 奇B. 偶C. 非奇非偶D. 三角3. 如果一信号的自相关函数)(τx R 呈现一定周期的不衰减,则说明该信号( B )。
A. 均值不为0B. 含有周期分量C. 是各态历经的D. 不含有周期分量4. 正弦信号的自相关函数是( A ),余弦函数的自相关函数是(C )。
A. 同频余弦信号B. 脉冲信号C. 偶函数D. 正弦信号5.经测得某信号的相关函数为一余弦曲线,则其( C )是正弦信号的( D )。
A. 可能B. 不可能C. 必定D. 自相关函数6. 对连续信号进行采样时,采样频率越高,当保持信号的记录的时间不变时,则( C )。
A. 泄漏误差就越大B. 量化误差就越小C. 采样点数就越多D. 频域上的分辨率就越低7. 把连续时间信号进行离散化时产生混叠的主要原因是( B )。
A. 记录时间太长B. 采样间隔太宽C. 记录时间太短D. 采样间隔太窄8. 若有用信号的强度、信噪比越大,则噪声的强度(C )。
A. 不变B. 越大C. 越小D. 不确定9. A/D 转换器是将( B )信号转换成( D )信号的装置。
A. 随机信号B. 模拟信号C. 周期信号D. 数字信号10. 两个同频方波的互相关函数曲线是( C )。
A. 余弦波B. 方波C. 三角波D. 正弦波11. 已知x (t )和y (t )为两个周期信号,T 为共同的周期,其互相关函数的表达式为( C )。
A.dt t y t x T T )()(210⎰+τ B. dt t y t x TT )()(210⎰+τ C. dt t y t x T T )()(10⎰+τ D. dt t y t x T T )()(210⎰-τ 12. 两个不同频率的简谐信号,其互相关函数为( C )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号分析与处理试题与答案
1. 设随机信号x(n)中含有加性噪声u(n),s(n)为有用信号,则:
)()()n (n u n s x += ]()([)(s m n x n s E m R x +=
)]()([m n s n s E +=)]()()()([m n u n s m n s n s E +++= )m (s R =
2. 不改(FFT)的程序直接实现IFFT 的方法 : 由∑-=--==1
1,,1,0 ,)(1
)(N k nk
N N n
W
k X N
n x 得:
∑-==*-=*10
1101N k nk
N N ,,,n
,W )k (X N )n (x ∑-===-=***
*1011011N k nk N N ,,,n )]}k (X {FFT[N
]W )k (X [N )n (x
1)先取共轭 2)执行FFT 程序 3)对运算结果取共轭,并乘以常数
N
1 3. 解:1)dt t t t )2()]3cos(5[51
3-+⎰∞-δ=0 2)
10002.02=π
π
, 周期=100 3)解:2
2
)
1()(π
π++=
-s e s X s 当a
a 1<
时:
4)
1
111
1
10
1
11
11
1)()()()()()(2
2
----∞=-∞
=-∞
=---∞
=-∞-∞
=--∞
=∞=-----+
-=
+=+=
+=
=
∑∑∑∑∑∑∑z a z a z a az z a az az
z
a z
a
z
n x z X n n n n n n
n n
n n n n
n
n
n
n
当a a 1>
时:a
z a 1>> 4. 1).混叠现象:在采样前加抗混叠滤波器。
2).频谱泄漏:增加采样点数或其他类型的窗函数 3)栅栏效应:在数据的末端补零。
4)频率的分辨率:增加信号的长度。
5. 解:)(n x *)(n h =2 3 5 9 6 6 4{ )(n x 与)(n h 5点的循环卷积为:} 5 9 6 8 7{ )(n x 与)(n h 8点的循环卷积为:}0 2 3 5 9 6 6 4{ 6.解过程如下:
1
)0(=x 1
)2(-=x 2
)1(=x 3
)3(=x 5
)0(=X j
X +=2)1(5
)2(-=X j
X -=2)3(2
)1(0
)0(11==X X 1
)1(5
)0(22-==X X 0
4W j
W -=14--
4W -
4
W
-
7. 解:选汉明窗 πω25.0=∆=
N
π
8 N=32 )(n h d ⋅--=
)()](sin[απαωn n c 5.152
1
=⋅-=N α
)()]31
2cos(46.054.0[*)13()]13(25.0sin[)(n R n
n n n h N πππ---==
∴
8.解:数字低通滤波器的截止频率为ωc=0.25π,则巴特沃斯模拟滤波器Ωc 为:
T T
T c c 828
.0225.0tan 22tan 2=
⎪⎭
⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=
Ωπ
ω 模拟滤波器的系统函数为:)
828.0/(11
)/(11)(sT s s H c a +=Ω+=
将双线性变换应用于模拟滤波器,有:
1
1
111124159.0112920
.0)]
1/()1)[(828.0/2(11
)()(1
1----+-=-+=+-+=
=--z z z z s H z H z z T s a。