必修一: 指数函数、对数函数、幂函数综合

合集下载

高中数学第四章幂函数指数函数和对数函数对数的概念学生用书湘教版必修第一册

高中数学第四章幂函数指数函数和对数函数对数的概念学生用书湘教版必修第一册

4.3 对数函数最新课程标准学科核心素养1.理解对数的概念.2.理解对数的性质. 1.理解对数的概念.(数学抽象)2.掌握指数与对数的互化、简单求值.(数学运算)4.3.1 对数的概念教材要点要点一 对数的概念1.定义:如果a b =N (a >0,且a ≠1),那么________叫作以________为底,________的对数,记作b =log a N .2.相关概念底数与真数其中,________叫作对数的底数,________叫作真数.状元随笔 log a N 是一个数,是一种取对数的运算,结果仍是一个数,不可分开书写.要点二 对数与指数间的关系当a >0,且a ≠1时,a b =N ⇔b =log a N .前者叫指数式,后者叫对数式.状元随笔 要点三 对数的性质性质1________没有对数性质21的对数是________,即log a 1=__(a >0,且a ≠1)性质3底的对数是______,即log a a=______(a>0,且a≠1)要点四 对数的基本恒等式a log a N=N(a>0且a≠1,N>0);b=log a a b(b∈R,a>0且a≠1).基础自测1.思考辨析(正确的画“√”,错误的画“×”)(1)log a N是log a与N的乘积.( )(2)因为(-4)2=16,所以log(-4)16=2.( )(3)因为3x=81,所以log813=x.( )(4)log32=log23.( )2.若a2=M(a>0且a≠1),则有( )A.log2M=a B.log a M=2C.log a2=M D.log2a=M3.若log8x=-23,则x的值为( )A.14 B.4C.2D.1 24.3log32+log21=________. 对数的概念例1 (1)在M=log(x-3)(x+1)中,要使式子有意义,x的取值范围为( ) A.(-∞,3] B.(3,4)∪(4,+∞)C.(4,+∞) D.(3,4)(2)将下列指数式、对数式互化.①54=625;②log216=4;③10-2=0.01;④log√5125=6.方法归纳指数式与对数式互化的方法(1)指数式化为对数式:将指数式的幂作为真数,指数作为对数,底数不变,写出对数式.(2)对数式化为指数式:将对数式的真数作为幂,对数作为指数,底数不变,写出指数式.跟踪训练1 (1)(多选)下列指数式与对数式的互化正确的是( ) A.30=1与log31=0B.log39=2与912=3C.8−13=12与log812=-13D.log77=1与71=7(2)对数式log(x-1)(x+2)中x的取值范围是________. 对数的计算例2 求下列各式中x的值:(1)4x=5·3x;(2)log7(x+2)=2;(3)log x27=32.方法归纳(1)log a N=x与a x=N(a>0,且a≠1,N>0)是等价的,转化前后底数不变.(2)对于对数和对数的底数与真数三者之间,已知其中两个就可以利用对数式和指数式的互化求出第三个.跟踪训练2 求下列各式中x的值:(1)log2x=12;(2)log216=x;(3)log x27=3. 对数的性质及对数恒等式的应用例3 (1)已知log2[log4(log3x)]=0,则x=________;(2)计算:51+log53+102+lg2+e ln3.方法归纳1.利用对数性质求解的两类问题的解法(1)求多重对数式值的解题方法是由内到外,如求log a(log b c)的值,先求log b c的值,再求log a(log b c)的值.(2)已知多重对数式的值,求变量值,应从外到内求,逐步脱去“log\”后再求解.2.利用对数恒等式求解的方法首先利用指数运算性质变形,变形为a log a b 的形式,再利用对数恒等式计算求值.跟踪训练3 (1)2-1+log 2√2=( )A .√22B .√2C .12+√2D .2√2(2)计算:log 3[log 3(log 28)]=________.易错辨析 忽视对数的底数致误例4 使对数log a (-2a +1)有意义的a 的取值范围为( )A .(12,1)∪(1,+∞)B.(0,12)C .(0,1)∪(1,+∞)D.(−∞,−12)解析:使对数log a (-2a +1)有意义的a 需满足{a >0,a ≠1,−2a +1>0,解得0<a <12.答案:B 易错警示易错原因纠错心得忽视了底数a 的范围致误,易错选D.对数式中只要底数和真数都含有参数,都需要考虑,否则致错.课堂十分钟1.若a >0,且a ≠1,c >0,则将a b =c 化为对数式为( ) A .log a b =c B .log a c =b C .log b c =a D .log c a =b2.若log 2(log x 9)=1,则x =( )A .3B .±3C .9D .23.在log 3(m -1)中,实数m 的取值范围是( )A.R B.(0,+∞)C.(-∞,1) D.(1,+∞)4.式子2log25+log321的值为________.5.求下列各式中x的值:(1)若log31+2x3=1,求x的值;(2)若log2021(x2-1)=0,求x的值.4.3 对数函数4.3.1 对数的概念新知初探·课前预习要点一1.b a (正)数N2.a N要点三零和负数 0 0 1 1 [基础自测]1.答案:(1)× (2)× (3)× (4)×2.解析:由对数的定义可知log a M=2.答案:B3.解析:由对数与指数的互化可得:x=8−23=23×(−23)=1 4 .答案:A4.解析:原式=2+0=2.答案:2题型探究·课堂解透例1 解析:(1)由对数的定义可知解得x>3且x≠4.故选B.(2)①由54=625得log5625=4.②由log216=4得24=16.③由10-2=0.01得lg 0.01=-2.④由log√5125=6得()6=125.跟踪训练1 解析:(1)对于A,30=1可化为0=log31,所以A中互化正确;对于B,log39=2可化为32=9,所以B中互化不正确;对于C,8-=可化为log8=-,所以C中互化正确;对于D,log77=1可化为71=7,所以D中互化正确.故选ACD.(2)由题意得解得∴x>1且x≠2.答案:(1)ACD (2)(1,2)∪(2,+∞)例2 解析:(1)∵4x=5·3x,∴=5,∴=5,∴x=log435.(2)∵log7(x+2)=2,∴x+2=72=49,∴x=47.(3)∵log x27=,∴x 32=27,∴x=2723=32=9.跟踪训练2 解析:(1)∵log2x=,∴x=212,∴x=.(2)∵log216=x,∴2x=16,∴2x=24,∴x=4.(3)∵log x27=3,∴x3=27,即x3=33,∴x=3.例3 解析:(1)∵log2[log4(log3x)]=0=log21,∴log4(log3x)=1.又log4(log3x)=log44=1,∴log3x=4,∴x=34=81.(2)原式=5·5log53+102·10lg 2+e ln 3=5×3+102×2+3=218.答案:(1)81 (2)见解析跟踪训练3 解析:(1)2−1+log2√2=2-1·2log2√2=×=.(2)log3[log3(log28)]=log3[log3(log223)]=log3(log33)=log31=0.答案:(1)A (2)0[课堂十分钟]1.解析:由对数的定义直接可得log a c=b.答案:B2.解析:∵log2(log x9)=1,∴log x9=2,即x2=9,又∵x>0,∴x=3.答案:A3.解析:由m-1>0得m>1.答案:D1=0,故原式=5. 4.解析:由对数性质知,2log25=5,log32答案:55.解析:(1)∵log3=1,∴=3,∴1+2x=9,∴x=4.(2)∵log2 021(x2-1)=0,∴x2-1=1,即x2=2.∴x=±.。

指数函数、幂函数、对数函数增长的比较(45张PPT)——高中数学必修第一册

指数函数、幂函数、对数函数增长的比较(45张PPT)——高中数学必修第一册

一次函数y=kx(k>0),指数函数y=ax(a>1)和对数函数y=logbx(b>1)的增长有何差异?
一般地,无论k(k>0)、a(a>1)、b(b>1)如何取值,三种函数在区间(0,+∞)上都单调递增,但一次函数总是保持固定的增长速度;指数函数的增长速度都会越来越快,并且指数函数的函数值最终总会大于一次函数的函数值;对数函数的增长速度都会越来越慢,并且对数函数的函数值最终总会小于一次函数的函数值.
401
626
901
y2
2
32
1024
32768
1.05×106
3.36×107
1.07×109
y3
2
10
20
30
40
50
60
y4
2
4.322
5.322
5.907
6.322
6.644
6.907
【解析】(1)由于指数型函数的增长式为爆炸式增长,则当x越来越大时,函数y=的增长速度最快,故选A.
(2)从表格中可以看出,四个变量y1,y2,y3,y4均是从2开始变化,变量y1,y2,y3,y4都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,可知变量y2关于x呈指数函数变化.
x
y=2x
y=2x
0
1
0
2
4
4
4
16
8
6
64
12
8
256
16
10
1024
20
12
4096
24



可以看到,当自变量x越来越大时,y=2x的图象就像与x轴垂直一样,2x的值快速增长;而函数y=2x的增长速度依然保持不变,与函数y=2x的增长速度相比几乎微不足道.

高一数学教案幂函数指数函数和对数函数

高一数学教案幂函数指数函数和对数函数

高一数学教案:幂函数指数函数和对数函数教学目标1.使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性.2.通过函数单调性概念的教学,培养学生分析问题、认识问题的能力.通过例题培养学生利用定义进行推理的逻辑思维能力.3.通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育.教学重点与难点教学重点:函数单调性的概念.教学难点:函数单调性的判定.教学过程设计一、引入新课师:请同学们观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么?(用投影幻灯给出两组函数的图象.)第一组:第二组:生:第一组函数,函数值y随x的增大而增大;第二组函数,函数值y随x的增大而减小.师:(手执投影棒使之沿曲线移动)对.他(她)答得很好,这正是两组函数的主要区别.当x变大时,第一组函数的函数值都变大,而第二组函数的函数值都变小.虽然在每一组函数中,函数值变大或变小的方式并不相同,但每一组函数却具有一种共同的性质.我们在学习一次函数、二次函数、反比例函数以及幂函数时,就曾经根据函数的图象研究过函数的函数值随自变量的变大而变大或变小的性质.而这些研究结论是直观地由图象得到的.在函数的集合中,有很多函数具有这种性质,因此我们有必要对函数这种性质作更进一步的一般性的讨论和研究,这就是我们今天这一节课的内容.(点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意.)二、对概念的分析(板书课题:)师:请同学们打开课本第51页,请××同学把增函数、减函数、单调区间的定义朗读一遍.(学生朗读.)师:好,请坐.通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量x的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?生:我认为是一致的.定义中的“当x1<x2时,都有f(x1)<f(x2)”描述了y随x的增大而增大;“当x1<x2时,都有f(x1)>f(x2)”描述了y随x的增大而减少.师:说得非常正确.定义中用了两个简单的不等关系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!(通过教师的情绪感染学生,激发学生学习数学的兴趣.)师:现在请同学们和我一起来看刚才的两组图中的第一个函数y=f1(x)和y=f2(x)的图象,体会这种魅力.(指图说明.)师:图中y=f1(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f1(x1)<f1(x),因此y=f1(x)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1(x)的单调增区间;而图中y=f2(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f2(x1)>f2(x2),因此y=f2(x)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(x)的单调减区间.(教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解.渗透数形结合分析问题的数学思想方法.)师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应(不把话说完,指一名学生接着说完,让学生的思维始终跟着老师.)生:较大的函数值的函数.师:那么减函数呢?生:减函数就其本质而言是在相应区间上较大的自变量对应较小的函数值的函数.(学生可能回答得不完整,教师应指导他说完整.)师:好.我们刚刚以增函数和减函数的定义作了初步的分析,通过阅读和分析你认为在定义中我们应该抓住哪些关键词语,才能更透彻地认识定义?(学生思索.)学生在高中阶段以至在以后的学习中经常会遇到一些概念(或定义),能否抓住定义中的关键词语,是能否正确地、深入地理解和掌握概念的重要条件,更是学好数学及其他各学科的重要一环.因此教师应该教会学生如何深入理解一个概念,以培养学生分析问题,认识问题的能力.(教师在学生思索过程中,再一次有感情地朗读定义,并注意在关键词语处适当加重语气.在学生感到无从下手时,给以适当的提示.)生:我认为在定义中,有一个词“给定区间”是定义中的关键词语.师:很好,我们在学习任何一个概念的时候,都要善于抓住定义中的关键词语,在学习几个相近的概念时还要注意区别它们之间的不同.增函数和减函数都是对相应的区间而言的,离开了相应的区间就根本谈不上函数的增减性.请大家思考一个问题,我们能否说一个函数在x=5时是递增或递减的?为什么?生:不能.因为此时函数值是一个数.师:对.函数在某一点,由于它的函数值是唯一确定的常数(注意这四个字“唯一确定”),因而没有增减的变化.那么,我们能不能脱离区间泛泛谈论某一个函数是增函数或是减函数呢?你能否举一个我们学过的例子?生:不能.比如二次函数y=x2,在y轴左侧它是减函数,在y轴右侧它是增函数.因而我们不能说y=x2是增函数或是减函数.(在学生回答问题时,教师板演函数y=x2的图像,从“形”上感知.)师:好.他(她)举了一个例子来帮助我们理解定义中的词语“给定区间”.这说明是函数在某一个区间上的性质,但这不排斥有些函数在其定义域内都是增函数或减函数.因此,今后我们在谈论函数的增减性时必须指明相应的区间.师:还有没有其他的关键词语?生:还有定义中的“属于这个区间的任意两个”和“都有”也是关键词语.师:你答的很对.能解释一下为什么吗?(学生不一定能答全,教师应给予必要的提示.)师:“属于”是什么意思?生:就是说两个自变量x1,x2必须取自给定的区间,不能从其他区间上取.师:如果是闭区间的话,能否取自区间端点?生:可以.师:那么“任意”和“都有”又如何理解?生:“任意”就是指不能取特定的值来判断函数的增减性,而“都有”则是说只要x1<x2,f(x1)就必须都小于f(x2),或f(x1)都大于f(x2).师:能不能构造一个反例来说明“任意”呢?(让学生思考片刻.)生:可以构造一个反例.考察函数y=x2,在区间[-2,2]上,如果取两个特定的值x1=-2,x2=1,显然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的减函数,那就错了.师:那么如何来说明“都有”呢?生:y=x2在[-2,2]上,当x1=-2,x2=-1时,有f(x1)>f(x2);当x1=1,x2=2时,有f(x1)<f(x2),这时就不能说y=x2,在[-2,2]上是增函数或减函数.师:好极了!通过分析定义和举反例,我们知道要判断函数y=f(x)在某个区间内是增函数或减函数,不能由特定的两个点的情况来判断,而必须严格依照定义在给定区间内任取两个自变量x1,x2,根据它们的函数值f(x1)和f(x2)的大小来判定函数的增减性.(教师通过一系列的设问,使学生处于积极的思维状态,从抽象到具体,并通过反例的反衬,使学生加深对定义的理解.在概念教学中,反例常常帮助学生更深刻地理解概念,锻炼学生的发散思维能力.)师:反过来,如果我们已知f(x)在某个区间上是增函数或是减函数,那么,我们就可以通过自变量的大小去判定函数值的大小,也可以由函数值的大小去判定自变量的大小.即一般成立则特殊成立,反之,特殊成立,一般不一定成立.这恰是辩证法中一般和特殊的关系.(用辩证法的原理来解释数学知识,同时用数学知识去理解辩证法的原理,这样的分析,有助于深入地理解和掌握概念,分清概念的内涵和外延,培养学生学习的`能力.)三、概念的应用例1图4所示的是定义在闭区间[-5,5]上的函数f(x)的图象,根据图象说出f(x)的单调区间,并回答:在每一个单调区间上,f(x)是增函数还是减函数?(用投影幻灯给出图象.)生甲:函数y=f(x)在区间[-5,-2],[1,3]上是减函数,因此[-5,-2],[1,3]是函数y=f(x)的单调减区间;在区间[-2,1],[3,5]上是增函数,因此[-2,1],[3,5]是函数y=f(x)的单调增区间.生乙:我有一个问题,[-5,-2]是函数f(x)的单调减区间,那么,是否可认为(-5,-2)也是f(x)的单调减区间呢?师:问得好.这说明你想的很仔细,思考问题很严谨.容易证明:若f(x)在[a,b]上单调(增或减),则f(x)在(a,b)上单调(增或减).反之不然,你能举出反例吗?一般来说.若f(x)在[a,(增或减).反之不然.例2证明函数f(x)=3x+2在(-∞,+∞)上是增函数.师:从函数图象上观察固然形象,但在理论上不够严格,尤其是有些函数不易画出图象,因此必须学会根据解析式和定义从数量上分析辨认,这才是我们研究函数单调性的基本途径.(指出用定义证明的必要性.)师:怎样用定义证明呢?请同学们思考后在笔记本上写出证明过程.(教师巡视,并指定一名中等水平的学生在黑板上板演.学生可能会对如何比较f(x1)和f(x2)的大小关系感到无从入手,教师应给以启发.)师:对于f(x1)和f(x2)我们如何比较它们的大小呢?我们知道对两个实数a,b,如果a>b,那么它们的差a-b就大于零;如果a=b,那么它们的差a—b 就等于零;如果a<b,那么它们的差a-b就小于零,反之也成立.因此我们可由差的符号来决定两个数的大小关系.生:(板演)设x1,x2是(-∞,+∞)上任意两个自变量,当x1<x2时,f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0,所以f(x)是增函数.师:他的证明思路是清楚的.一开始设x1,x2是(-∞,+∞)内任意两个自变量,并设x1<x2(边说边用彩色粉笔在相应的语句下划线,并标注“①→设”),然后看f(x1)-f(x2),这一步是证明的关键,再对式子进行变形,一般方法是分解因式或配成完全平方的形式,这一步可概括为“作差,变形”(同上,划线并标注”②→作差,变形”).但美中不足的是他没能说明为什么f(x1)-f(x2)<0,没有用到开始的假设“x1<x2”,不要以为其显而易见,在这里一定要对变形后的式子说明其符号.应写明“因为x1<x2,所以x1-x2<0,从而f(x1)-f(x2)<0,即f(x1)<f(x2).”这一步可概括为“定符号”(在黑板上板演,并注明“③→定符号”).最后,作为证明题一定要有结论,我们把它称之为第四步“下结论”(在相应位置标注“④→下结论”).这就是我们用定义证明函数增减性的四个步骤,请同学们记住.需要指出的是第二步,如果函数y=f(x)在给定区间上恒大于零,也可以小.(对学生的做法进行分析,把证明过程步骤化,可以形成思维的定势.在学生刚刚接触一个新的知识时,思维定势对理解知识本身是有益的,同时对学生养成一定的思维习惯,形成一定的解题思路也是有帮助的.)调函数吗?并用定义证明你的结论.师:你的结论是什么呢?上都是减函数,因此我觉得它在定义域(-∞,0)∪(0,+∞)上是减函数.生乙:我有不同的意见,我认为这个函数不是整个定义域内的减函数,因为它不符合减函数的定义.比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2显然成立,而f(x1)<0,f(x2)>0,显然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定义域内的减函数.生:也不能这样认为,因为由图象可知,它分别在(-∞,0)和(0,+∞)上都是减函数.域内的增函数,也不是定义域内的减函数,它在(-∞,0)和(0,+∞)每一个单调区间内都是减函数.因此在函数的几个单调增(减)区间之间不要用符号“∪”连接.另外,x=0不是定义域中的元素,此时不要写成闭区间.上是减函数.(教师巡视.对学生证明中出现的问题给予点拔.可依据学生的问题,给出下面的提示:(1)分式问题化简方法一般是通分.(2)要说明三个代数式的符号:k,x1·x2,x2-x1.要注意在不等式两边同乘以一个负数的时候,不等号方向要改变.对学生的解答进行简单的分析小结,点出学生在证明过程中所出现的问题,引起全体学生的重视.)四、课堂小结师:请同学小结一下这节课的主要内容,有哪些是应该特别注意的?(请一个思路清晰,善于表达的学生口述,教师可从中给予提示.)生:这节课我们学习了函数单调性的定义,要特别注意定义中“给定区间”、“属于”、“任意”、“都有”这几个关键词语;在写单调区间时不要轻易用并集的符号连接;最后在用定义证明时,应该注意证明的四个步骤.五、作业1.课本P53练习第1,2,3,4题.数.=a(x1-x2)(x1+x2)+b(x1-x2)=(x1-x2)[a(x1+x2)+b].(*)+b>0.由此可知(*)式小于0,即f(x1)<f(x2).课堂教学设计说明是函数的一个重要性质,是研究函数时经常要注意的一个性质.并且在比较几个数的大小、对函数作定性分析、以及与其他知识的综合应用上都有广泛的应用.对学生来说,早已有所知,然而没有给出过定义,只是从直观上接触过这一性质.学生对此有一定的感性认识,对概念的理解有一定好处,但另一方面学生也会觉得是已经学过的知识,感觉乏味.因此,在设计教案时,加强了对概念的分析,希望能够使学生认识到看似简单的定义中有不少值得去推敲、去琢磨的东西,其中甚至包含着辩证法的原理.另外,对概念的分析是在引进一个新概念时必须要做的,对概念的深入的正确的理解往往是学生认知过程中的难点.因此在本教案的设计过程中突出对概念的分析不仅仅是为了分析函数单调性的定义,而且想让学生对如何学会、弄懂一个概念有初步的认识,并且在以后的学习中学有所用.还有,使用函数单调性定义证明是一个难点,学生刚刚接触这种证明方法,给出一定的步骤是必要的,有利于学生理解概念,也可以对学生掌握证明方法、形成证明思路有所帮助.另外,这也是以后要学习的不等式证明方法中的比较化的基本思路,现在提出要求,对今后的教学作一定的铺垫.。

必修1示范教案3.6指数函数、幂函数、对数函数增长的比较

必修1示范教案3.6指数函数、幂函数、对数函数增长的比较

§6指数函数、幂函数、对数函数增长的比较整体设计教学分析函数是描述客观世界变化规律的基本数学模型,不同的变化规律需要用不同的函数模型来描述.本节的教学目标是认识指数函数、对数函数、幂函数等函数模型的增长差异,体会直线上升、指数爆炸与对数增长的不同,应用函数模型解决简单问题.课本对几种不同增长的函数模型的认识及应用,都是通过实例来实现的,通过教学让学生认识到数学来自现实生活,数学在现实生活中是有用的.三维目标1.借助信息技术,利用函数图像及数据表格,比较指数函数、对数函数以及幂函数的增长差异.2.恰当运用函数的三种表示方法(解析式、表格、图像),并借助信息技术解决一些实际问题.3.让学生体会数学在实际问题中的应用价值,培养学生学习兴趣.重点难点教学重点:认识指数函数、对数函数、幂函数等函数模型的增长差异,体会直线上升、指数爆炸与对数增长的不同.教学难点:应用函数模型解决简单问题.课时安排1课时教学过程导入新课思路1.(情境导入)国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他要什么.发明者说:“请在棋盘的第一个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依次类推,每个格子里的麦粒数都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦子的质量为40 g,据查,目前世界年度小麦产量为6亿吨,但不能满足发明者要求,这就是指数增长.本节我们讨论指数函数、对数函数、幂函数的增长差异.思路2.(直接导入)我们知道,对数函数y=log a x(a>1),指数函数y=a x(a>1)与幂函数y=x n(n>0)在区间(0,+∞)上都是增函数.但这三类函数的增长是有差异的.本节我们讨论指数函数、对数函数、幂函数的增长差异.推进新课新知探究提出问题①在区间,+上判断y=log2x,y=2x,y=x2的单调性.②列表并在同一坐标系中画出三个函数的图像.③结合函数的图像找出其交点坐标.④请在图像上分别标出使不等式log2x<2x<x2和log2x<x2<2x成立的自变量x的取值范围.⑤由以上问题你能得出怎样结论?讨论结果:①在区间(0,+∞)上函数y=log2x,y=2x,y=x2均为单调增函数.063图1③从图像看出y=log2x的图像与另外两函数的图像没有交点,且总在另外两函数的图像的下方,y=2x的图像与y=x2的图像有两个交点(2,4)和(4,16).④不等式log2x<2x<x2和log2x<x2<2x成立的自变量x的取值范围分别是(2,4)和(0,2)∪(4,+∞).9162536图2容易看出:y=2x的图像与y=x2的图像有两个交点(2,4)和(4,16),这表明2x与x2在自变量不同的区间内有不同的大小关系,有时2x<x2,有时x2<2x.但是,当自变量x越来越大时,可以看到,y=2x的图像就像与x轴垂直一样,2x的值2x图3一般地,对于指数函数y=a x(a>1)和幂函数y=x n(n>0),通过探索可以发现,在区间(0,+∞)上,无论n比a大多少,尽管在x的一定变化范围内,a x会小于x n,但由于a x 的增长快于x n的增长,因此总存在一个x0,当x>x0时,就会有a x>x n.同样地,对于对数函数y=log a x(a>1)和幂函数y=x n(n>0),在区间(0,+∞)上,随着x的增大,log a x增长得越来越慢,图像就像是渐渐地与x轴平行一样.尽管在x的一定变化范围内,log a x可能会大于x n,但由于log a x的增长慢于x n的增长,因此总存在一个x0,当x>x0时,就会有log a x<x n.综上所述,尽管对数函数y=log a x(a>1),指数函数y=a x(a>1)与幂函数y=x n(n>0)在区间(0,+∞)上都是增函数,但它们的增长速度不同,而且不在同一个“档次”上.随着x的增大,y=a x(a>1)的增长速度越来越快,会超过并远远大于y=x n(n>0)的增长速度,而y=log a x(a>1)的增长速度则会越来越慢.因此,总会存在一个x0,当x>x0时,就会有log a x<x n<a x.虽然幂函数y=x n(n>0)增长快于对数函数y=log a x(a>1)增长,但它们与指数增长比起来相差甚远,因此指数增长又称“指数爆炸”.应用示例思路1例1 试利用计算器来计算2500的近似值.活动:学生思考,教师提示,计算这样一个大的数,用计算器无法直接计算.如何计算呢?我们可以充分利用幂的运算性质,再结合计算器的利用来求其近似值.解:第一步,利用科学计算器算出210=1 024=1.024×103;第二步,再计算2100,因为2100=(210)10=(1.024×103)10=1.02410×1030,所以,我们只需要用科学计算器算出1.02410≈1.267 7,则2100≈1.267 7×1030;第三步,再计算2500,因为(2100)5≈(1.267 7×1030)5,我们只需要用科学计算器算出1.267 75≈3.274 0,从而算出2500≈3.27×10150.点评:在设计计算方法时,要考虑到科学计算器能计算的位数.如果函数值非常大,我们常常用科学记数法表示,并且根据需要保留一定数目的有效数字.例 2 在自然界中,有些种群的世代是隔离,即每一代的生活周期是分离的,例如很多一年生草本植物,在当年结实后死亡,第二年种子萌发产生下一代.假设一个理想种群,其每个个体产生2个后代,又假定种群开始时有10个个体,到第二代时,种群个体将上升为20个,以后每代增加1倍,依次为40,80,160,…,试写出计算过程,归纳种群增长模型,说明何种情况种群上升,种群稳定,种群灭亡.活动:学生仔细审题,理解题目的含义,教师指导,注意归纳总结.解:设N t表示t世代种群的大小,N t+1表示t+1世代种群的大小,则N0=10;N1=10×2=20;N2=20×2=40;N3=40×2=80;N4=80×2=160;….由上述过程归纳成最简单的种群增长模型,由下式表示:N t+1=R0·N t,其中R0为世代净繁殖率.如果种群的R 0速率年复一年地增长,则 N 1=R 0N 0, N 2=R 0N 1=R 20N 0, N 3=R 0N 2=R 30N 0, … N t =R t 0N 0.R 0是种群离散增长模型的重要参数,如果R 0>1,种群上升;R 0=1,种群稳定;0<R 0<1,种群下降;R 0=0,雌体没有繁殖,种群在一代中死亡.思路2例3 一工厂生产某种零件,每个零件的成本为40元,出厂单价为60元,该厂为鼓励销售商订购,决定当一次订购量超过100时,每多订购1个,订购的全部零件的单价就降低0.02元,但最低出厂单价不低于51元.(1)一次订购量为多少个时,零件的实际出厂价恰为51元?(2)设一次订购量为x 个时,零件的实际出厂价为p 元,写出p =f (x ).(3)当销售商一次订购量分别为500,1 000个时,该工厂的利润分别为多少? (一个零件的利润=实际出厂价-成本)解:(1)设一次订购量为a 个时,零件的实际出厂价恰好为51元,则a =100+60-510.02=550个.(2)p =f (x )=⎩⎪⎨⎪⎧60,0<x ≤100,62-x50,100<x <550,其中x ∈N+.51,x ≥550,(3)当销售商一次订购量为x 个时,该工厂的利润为y ,则y =(p -40)x =⎩⎪⎨⎪⎧20x ,0<x ≤100,22x -x 250,100<x <550,11x ,x ≥550.其中x ∈N +,故当x =500时,y =6 000;当x =1 000时,y =11 000.点评:方程中的未知数设出来后可以参与运算,函数解析式为含x ,y 的等式.例4 甲、乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲、乙两图:图4甲调查表明:每个鱼池平均产量从第1年1万只鳗鱼上升到第6年2万只. 乙调查表明:全县鱼池总个数由第1年30个减少到第6年10个. 请你根据提供的信息说明:(1)第2年全县鱼池的个数及全县出产的鳗鱼总数.(2)到第6年这个县的鳗鱼养殖业的规模(即总产量)比第1年扩大了还是缩小了?请说明理由.(3)哪一年的规模(即总产量)最大?请说明理由.活动:观察函数图像,学生先思考或讨论后再回答,教师点拨、提示: 先观察图像得出相关数据,利用数据找出函数模型. 解:由题意可知,甲图像经过(1,1)和(6,2)两点, 从而求得其解析式为y 甲=0.2x +0.8, 乙图像经过(1,30)和(6,10)两点, 从而求得其解析式为y 乙=-4x +34.(1)当x =2时,y 甲=0.2×2+0.8=1.2,y 乙=-4×2+34=26,y 甲·y 乙=1.2×26=31.2.所以第2年鱼池有26个,全县出产的鳗鱼总数为31.2万只.(2)第1年出产鳗鱼1×30=30(万只),第6年出产鳗鱼2×10=20(万只),可见,第6年这个县的鳗鱼养殖业规划比第1年缩小了.(3)设当第m 年时的规模总产量为n ,那么n =y 甲·y 乙=(0.2m +0.8)(-4m +34)=-0.8m 2+3.6m +27.2=-0.8(m 2-4.5m -34)=-0.8(m -2.25)2+31.25.因此,当m =2时,n max =31.2, 即第2年时,鳗鱼养殖业的规模最大,最大产量为31.2万只. 知能训练某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图5(1)的一条折线表示;西红柿的种植成本与上市时间的关系用图5(2)的抛物线段表示.(1)写出图5(1)表示的市场售价与时间的函数关系式P =f (t ); 写出图5(2)表示的种植成本与时间的函数关系式Q =g (t );(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(1) (2)图5 (注:市场售价和种植成本的单位:元/102kg ,时间单位:天) 活动:学生在黑板上书写解答.教师在学生中巡视其他学生的解答,发现问题及时纠正. 解:(1)由图5(1)可得市场售价与时间的函数关系式为f (t )=⎩⎪⎨⎪⎧300-t ,0≤t ≤200,2t -300,200<t ≤300. 由图5(2)可得种植成本与时间的函数关系式为g (t )=1200(t -150)2+100,0≤t ≤300.(2)设t 时刻的纯收益为h (t ),则由题意得h (t )=f (t )-g (t ),即h (t )=⎩⎪⎨⎪⎧-1200t 2+12t +1752,0≤t ≤200,-1200t 2+27t -1 0252,200<t ≤300.当0≤t ≤200时,配方整理,得h (t )=-1200(t -50)2+100,所以当t =50时,h (t )取得区间[0,200]上的最大值100;当200<t ≤300时,配方整理,得h (t )=-1200(t -350)2+100,所以当t =300时,h (t )取得区间[200,300]上的最大值87.5.综上,由100>87.5可知,h (t )在区间[0,300]上可以取得最大值100,此时t =50,即从二月一日开始的第50天时,上市的西红柿纯收益最大.点评:本题主要考查由函数图像建立函数关系式和求函数最大值的问题,考查运用所学知识解决实际问题的能力.拓展提升 探究内容①在函数应用中如何利用图像求解析式. ②分段函数解析式的求法.③函数应用中的最大值、最小值问题.举例探究:(2007山东省青岛高三教学质量检测,理21)某跨国公司是专门生产健身产品的企业,第一批产品A 上市销售40天内全部售完,该公司对第一批产品A 上市后的国内外市场销售情况进行调研,结果如图6(1)、(2)、(3)所示.其中图6(1)的折线表示的是国外市场的日销售量与上市时间的关系;图6(2)的抛物线表示的是国内市场的日销售量与上市时间的关系;图6(3)的折线表示的是每件产品A 的销售利润与上市时间的关系.图6(1)分别写出国外市场的日销售量f (t )、国内市场的日销售量g (t )与第一批产品A 上市时间t 的关系式;(2)第一批产品A 上市后的哪几天,这家公司的国内和国外日销售利润之和超过6 300万元?分析:1.利用图像求解析式,先要分清函数类型再利用待定系数法求解析式. 2.在t ∈[0,40]上,有几个分界点,请同学们思考应分为几段. 3.回忆函数最值的求法.解:(1)f (t )=⎩⎪⎨⎪⎧2t ,0≤t ≤30,-6t +240,30<t ≤40,g (t )=-320t 2+6t (0≤t ≤40).(2)每件A 产品销售利润h (t )=⎩⎪⎨⎪⎧3t ,0≤t ≤20,60,20≤t ≤40.该公司的日销售利润F (t )=⎩⎪⎨⎪⎧3t ⎝ ⎛⎭⎪⎫-320t 2+8t ,0≤t ≤20,60⎝ ⎛⎭⎪⎫-320t 2+8t ,20≤t ≤30,60⎝ ⎛⎭⎪⎫-320t 2+240,30≤t ≤40,当0≤t ≤20时,F (t )=3t ⎝ ⎛⎭⎪⎫-320t 2+8t ,先判断其单调性. 设0≤t 1<t 2≤20,则F (t 1)-F (t 2)=3t 1⎝ ⎛⎭⎪⎫-320t 21+8t 1-3t 2⎝ ⎛⎭⎪⎫-320t 22+8t 2 =-920(t 1+t 2)(t 1-t 2)2.∴F (t )在[0,20]上为增函数. ∴F (t )max =F (20)=6 000<6 300.当20<t ≤30时,令60⎝ ⎛⎭⎪⎫-320t 2+8t >6 300, 则703<t <30; 当30<t ≤40时,F (t )=60⎝ ⎛⎭⎪⎫-320t 2+240<60⎝ ⎛⎭⎪⎫-320×302+240=6 300.故在第24,25,26,27,28,29天日销售利润超过6 300万元.点评:1.利用图像求解析式,先要分清函数类型再利用待定系数法求解析式,重点是找出关键点.2.在t ∈[0,40]上,有几个分界点,t =20,t =30两点把区间分为三段. 3.二次函数的最值可用配方法,另外利用单调性求最值也是常用方法之一. 课堂小结本节学习了:①指数函数、对数函数、二次函数的增长差异.②幂函数、指数函数、对数函数的应用.作业习题3—6 1,2.设计感想本节设计从精彩的故事开始,让学生从故事中体会数学带来的震撼,然后借助计算机感受不同函数模型的巨大差异.接着通过最新题型训练学生利用函数模型解决实际问题的能力;并且重点训练了由图像转化为函数解析式的能力,因为这是高考的一个重点.本节的每个例题都很精彩,可灵活选用.备课资料[备选例题]某西部山区的某种特产由于运输的原因,长期只能在当地销售,当地政府对该项特产的销售投资收益为:每年投入x 万元,可获得利润P =-1160(x -40)2+100万元.当地政府拟在新的十年发展规划中加快发展此特产的销售,其规划方案为:在规划后对该项目每年都投入60万元的销售投资,在未来10年的前5年中,每年都从60万元中拨出30万元用于修建一条公路,5年修成,通车前该特产只能在当地销售;公路通车后的5年中,该特产既在本地销售,也在外地销售,在外地销售的投资收益为:每年投入x 万元,可获利润Q =-159160(60-x )2+1192(60-x )万元.问从10年的累积利润....看,该规划方案是否可行? 解:在实施规划前,由题设P =-1160(x -40)2+100(万元),知每年只需投入40万,即可获得最大利润100万元.则10年的总利润为W 1=100×10=1 000(万元).实施规划后的前5年中,由题设P =-1160(x -40)2+100,知每年投入30万元时,有最大利润P max =7958(万元).前5年的利润和为7958×5=3 9758(万元).设在公路通车的后5年中,每年用x 万元投资于本地的销售,而用剩下的(60-x )万元用于外地区的销售投资,则其总利润为W 2=⎣⎢⎡⎦⎥⎤-1160x -2+100×5+⎝ ⎛⎭⎪⎫-159160x 2+1192x ×5=-5(x -30)2+4 950. 当x =30时,(W 2)max =4 950(万元).从而10年的总利润为3 9758+4 950(万元).∵3 9758+4 950>1 000,∴该规划方案有极大实施价值.(设计者:邓新国)。

高中数学九大函数

高中数学九大函数

高中数学九大函数是指高中数学教学中所涉及的九种函数,包括:常函数、幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数和分段函数。

一、常函数常函数是一种特殊的函数,其特点是对于任何自变量,函数值都是一个固定的常数。

常函数可以用函数公式 y = k (k 为常数) 表示。

常函数是解析几何中的基本概念之一,可以用于描述平面上的水平线段和垂直线段。

二、幂函数幂函数是一种函数,其自变量是一个实数,函数值是自变量的某个非负整数次幂。

幂函数可以用函数公式 y = x^n (n为整数,且n≠0) 表示,其中x ≥ 0。

幂函数是一种简单的函数,在数学建模中也广泛使用。

三、指数函数指数函数是一种函数,其自变量是实数,函数值是以某个正实数为底数的指数。

指数函数可以用函数公式 y = a^x (a>0 且a≠1) 表示,其中 x 为实数。

指数函数在各种学科中都有广泛的应用,特别是在经济学和物理学中。

四、对数函数对数函数是一种函数,其自变量是一个正实数,函数值是以某个正实数为底数的对数。

对数函数可以用函数公式 y = loga x (a>0 且a≠1) 表示,其中 a 为底数,x为正实数。

对数函数是指数函数的反函数,具有广泛的应用。

五、三角函数三角函数是一类函数,其自变量是角度(以度数或弧度计量),函数值是某个三角形内某个角的某种比例。

最常见的三角函数包括正弦函数、余弦函数、正切函数。

可以用三角函数的公式来计算各种角度的三角函数值,具有广泛的应用。

六、反三角函数反三角函数是一类函数,其自变量是某个三角函数值,函数值是对应的角的度数或弧度。

反三角函数可以用函数公式表示,如反正弦函数 y = arcsin x,反余弦函数 y = arccos x,反正切函数 y = arctan x 等。

反三角函数在各种科学和工程学科中都有广泛的应用。

七、双曲函数双曲函数是一类函数,其自变量是实数,函数值是某个与古典三角函数类似的函数。

高一上数学必修一第四章《4.4幂函数》知识点梳理

高一上数学必修一第四章《4.4幂函数》知识点梳理

高一上必修二第四章《指数函数、对数函数与幂函数》知识点梳理§4.4 幂函数学习目标 1.了解幂函数的概念.2.掌握y =x α(α=-1,12,1,2,3)的图像与性质.3.理解和掌握幂函数在第一象限的分类特征,能运用数形结合的方法处理幂函数的有关问题.知识点一 幂函数的概念一般地,函数y =x α称为幂函数,其中x 是自变量,α是常数.提醒 幂函数中底数是自变量,而指数函数中指数为自变量.知识点二 幂函数的图像和性质1.幂函数的图像在同一平面直角坐标系中,幂函数y =x ,y =x 2,y =x 3,y =,y =x -1的图像如图.2.五个幂函数的性质y =xy =x 2y =x 3y =y =x -1定义域R R R [0,+∞){x |x ≠0}值域R [0,+∞)R [0,+∞){y |y ≠0}奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性在R 上是增函数在[0,+∞)上是增函数,在(-∞,0]上是减函数在R 上是增函数在[0,+∞)上是增函数在(0,+∞)上是减函数,在(-∞,0)上是减函数12x 12x公共点(1,1)1.y =-1x 是幂函数.( × )2.当x ∈(0,1)时,x 2>x 3.( √ )3.y =与y =定义域相同.( × )4.若y =x α在(0,+∞)上为增函数,则α>0.( √ )一、幂函数的概念例1 (1)(多选)下列函数为幂函数的是( )A .y =x 3 B .y =(12)xC .y =4x 2D .y =x答案 AD解析 B 项为指数函数,C 中的函数的系数不为1,AD 为幂函数.(2)已知y =(m 2+2m -2)+2n -3是幂函数,求m ,n 的值.解 由题意得Error!解得Error!或Error!所以m =-3或1,n =32.反思感悟 判断一个函数是否为幂函数的方法判断一个函数是否为幂函数的依据是该函数是否为y =x α(α为常数)的形式,即函数的解析式为一个幂的形式,且需满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.跟踪训练1 已知f (x )=ax 2a +1-b +1是幂函数,则a +b 等于( )A .2 B .1 C.12 D .0答案 A解析 因为f (x )=ax 2a +1-b +1是幂函数,所以a =1,-b +1=0,即a =1,b =1,则a +b =2.32x 64x 22m x二、幂函数的图像例2 如图所示,图中的曲线是幂函数y =x n 在第一象限的图像,已知n 取±2,±12四个值,则对应于c 1,c 2,c 3,c 4的n 依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-12答案 B解析 根据幂函数y =x n 的性质,故c 1的n =2,c 2的n =12,当n <0时,|n |越大,曲线越陡峭,所以曲线c 3的n =-12,曲线c 4的n =-2.反思感悟 解决幂函数图像问题应把握的两个原则(1)依据图像高低判断幂指数大小,相关结论为:在(0,1)上,指数越大,幂函数图像越靠近x 轴(简记为指大图低);在(1,+∞)上,指数越大,幂函数图像越远离x 轴(简记为指大图高).(2)依据图像确定幂指数α与0,1的大小关系,即根据幂函数在第一象限内的图像(类似于y =x -1 或y =或y =x 3)来判断.跟踪训练2 函数f (x )=的大致图像是( )答案 A解析 因为-12<0,所以f (x )在(0,+∞)上单调递减,排除选项B ,C ;又f (x )的定义域为(0,+∞),故排除选项D.三、比较幂值的大小12x 12x例3 比较下列各组数中两个数的大小:(1)(25)0.5与(13)0.5;(2)(-23)-1与(-35)-1;(3)与.解 (1)∵幂函数y =x 0.5在(0,+∞)上是单调递增的,又25>13,∴(25)0.5>(13)0.5.(2)∵幂函数y =x -1在(-∞,0)上是单调递减的,又-23<-35,∴(-23)-1>(-35)-1.(3)∵函数y 1=(23)x为R 上的减函数,又34>23,∴>.又∵函数y 2=在(0,+∞)上是增函数,且34>23,∴>,∴>.反思感悟 比较幂值大小的方法跟踪训练3 比较下列各组值的大小:(1),;(2),,1.42.解 (1)∵y =为R 上的偶函数,∴=.又函数y =为[0,+∞)上的增函数,且0.31<0.35,3423⎛⎫⎪⎝⎭2334⎛⎫⎪⎝⎭2323⎛⎫ ⎪⎝⎭3423⎛⎫ ⎪⎝⎭23x 2334⎛⎫⎪⎝⎭2323⎛⎫ ⎪⎝⎭2334⎛⎫ ⎪⎝⎭3423⎛⎫⎪⎝⎭()650.31-650.35121.2121.465x ()650.31-650.3165x∴<,即<.(2)∵y =在[0,+∞)上是增函数,且1.2<1.4,∴<.又∵y =1.4x 为增函数,且12<2,∴<1.42,∴<<1.42.幂函数性质的应用典例 已知幂函数y =x 3m -9 (m ∈N +)的图像关于y 轴对称且在(0,+∞)上单调递减,求满足的a 的取值范围.解 因为函数y =x 3m -9在(0,+∞)上单调递减,所以3m -9<0,解得m <3.又因为m ∈N +,所以m =1,2.因为函数的图像关于y 轴对称,所以3m -9为偶数,故m =1.则原不等式可化为.因为y =在(-∞,0),(0,+∞)上单调递减,所以a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a ,解得23<a <32或a <-1.故a 的取值范围是Error!.[素养提升] (1)幂函数y =x α中只有一个参数α,幂函数的所有性质都与α的取值有关,故可由α确定幂函数的定义域、值域、单调性、奇偶性,也可由这些性质去限制α的取值.(2)通过具体实例抽象出幂函数的概念和性质,并应用单调性求解,体现了数学中数学运算与直观想象的核心素养.650.31650.35()650.31-650.3512x 121.2121.4121.4121.2121.433(1)(32)m m a a --+<-1133(1)(32)a a --+<-13x-1.下列函数是幂函数的是( )A .y =5x B .y =x 5C .y =5x D .y =(x +1)3答案 B解析 函数y =5x 是指数函数,不是幂函数;函数y =5x 是正比例函数,不是幂函数;函数y =(x +1)3的底数不是自变量x ,不是幂函数;函数y =x 5是幂函数.2.幂函数y =x α(α∈R )的图像一定不经过( )A .第四象限 B .第三象限C .第二象限 D .第一象限答案 A解析 由幂函数的图像可知,其图像一定不经过第四象限.3.设α∈{-1,1,12,3},则使函数y =x α的定义域为R 且为奇函数的所有α值为( )A .1,3B .-1,1C .-1,3D .-1,1,3答案 A解析 可知当α=-1,1,3时,y =x α为奇函数,又因为y =x α的定义域为R ,则α=1,3.4.已知幂函数f (x )=kx α(k ∈R ,α∈R )的图像过点(12,2),则k +α等于( )A.12 B .1 C.32 D .2答案 A解析 ∵幂函数f (x )=kx α(k ∈R ,α∈R )的图像过点(12,2),∴k =1,f(12)=(12)α=2,即α=-12,∴k +α=12.5.已知f (x )=,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f(1a )<f(1b)B .f (1a )<f(1b )<f (b )<f (a )C .f (a )<f (b )<f (1b )<f(1a )D .f (1a )<f (a )<f(1b )<f (b )12x答案 C解析 因为函数f (x )=在(0,+∞)上是增函数,又0<a <b <1<1b <1a ,故f (a )<f (b )<f(1b )<f(1a).1.知识清单:(1)幂函数的概念.(2)幂函数的图像.(3)幂函数的性质及其应用.2.方法归纳:数形结合.3.常见误区:幂函数与指数函数的区别;幂函数的奇偶性.1.幂函数f (x )=x α的图像经过点(2,4),则f (-12)等于( )A.12B.14 C .-14 D .2答案 B解析 幂函数f (x )=x α的图像经过点(2,4),则2α=4,解得α=2;∴f (x )=x 2,∴f (-12)=(-12)2=14.2.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( )A .y =x -2 B .y =x -1C .y =x 2 D .y =答案 A解析 所给选项都是幂函数,其中y =x -2和y =x 2是偶函数,y =x -1和y =不是偶函数,故排除选项B ,D ,又y =x 2在区间(0,+∞)上单调递增,不合题意,y =x -2在区间(0,+∞)上单调递减,符合题意.3.设a =,b =,c =,则a ,b ,c 的大小关系是( )12x 13x13x 2535⎛⎫ ⎪⎝⎭3525⎛⎫⎪⎝⎭2525⎛⎫⎪⎝⎭A .a >c >bB .a >b >cC .c >a >bD .b >c >a答案 A解析 ∵y =(x >0)为增函数,又35>25,∴a >c .∵y =(25)x (x ∈R )为减函数,又25<35,∴c >b .∴a >c >b .4.在同一坐标系内,函数y =x a (a ≠0)和y =ax -1a的图像可能是( )答案 C解析 选项A 中,幂函数的指数a <0,则y =ax -1a 应为减函数,A 错误;选项B 中,幂函数的指数a >1,则y =ax -1a 应为增函数,B 错误;选项D 中,幂函数的指数a <0,则-1a >0,直线y =ax -1a在y 轴上的截距为正,D 错误.5.若幂函数f (x )的图像过点(2,2),则函数g (x )=f (x )-3的零点是( )A.3 B .9 C .(3,0) D .(9,0)答案 B解析 ∵幂函数f (x )=x α的图像过点(2,2),∴f (2)=2α=2,解得α=12,∴f (x )=,∴函数g (x )=f (x )-3=-3,由-3=0,得x =9.∴函数g (x )=f (x )-3的零点是9.6.已知幂函数f (x )=x α的部分对应值如表:x11225x 12x 12x 12xf (x )122则f (x )的单调递增区间是________.答案 [0,+∞)解析 因为f(12)=22,所以(12)α=22,即α=12,所以f (x )=的单调递增区间是[0,+∞).7.已知幂函数f (x )=x α(α∈R )的图像经过点(8,4),则不等式f (6x +3)≤9的解集为________.答案 [-5,4]解析 由题意知8α=4,故α=log 84=23,由于f (x )==x 2为R 上的偶函数且在(0,+∞)上递增,故f (6x +3)≤9即为f (6x +3)≤f (27),所以|6x +3|≤27,解得-5≤x ≤4.8.设a =,b =,c =,则a ,b ,c 从小到大的顺序是________.答案 b <a <c解析 由a =,b =,可利用幂函数的性质,得a >b ,可由指数函数的单调性得c >a ,∴b <a <c .9.已知幂函数f (x )=x α的图像过点P (2,14),试画出f (x )的图像并指出该函数的定义域与单调区间.解 因为f (x )=x α的图像过点P (2,14),所以f (2)=14,即2α=14,得α=-2,即f (x )=x -2,f (x )的图像如图所示,定义域为(-∞,0)∪(0,+∞),单调递减区间为(0,+∞),单调递增区间为(-∞,0).10.已知幂函数f (x )=x 9-3m (m ∈N +)的图像关于原点对称,且在R 上单调递增.(1)求f (x )的解析式;(2)求满足f (a +1)+f (3a -4)<0的a 的取值范围.解 (1)由幂函数f (x )=x 9-3m (m ∈N +)的图像关于原点对称,且在R上单调递增,可得9-3m >0,解得m <3,m ∈N +,可得m =1,2,12x 23x 2312⎛⎫⎪⎝⎭2315⎛⎫ ⎪⎝⎭1312⎛⎫⎪⎝⎭2312⎛⎫ ⎪⎝⎭2315⎛⎫⎪⎝⎭若m =1,则f (x )=x 6的图像不关于原点对称,舍去;若m =2,则f (x )=x 3的图像关于原点对称,且在R 上单调递增,成立.则f (x )=x 3.(2)由(1)可得f (x )是奇函数,且在R 上单调递增,由f (a +1)+f (3a -4)<0,可得f (a +1)<-f (3a -4)=f (4-3a ),即为a +1<4-3a ,解得a <34.11.若函数f (x )=(m +2)x a 是幂函数,且其图像过点(2,4),则函数g (x )= log a (x +m )的单调递增区间为( )A .(-2,+∞) B .(1,+∞)C .(-1,+∞) D .(2,+∞)答案 B解析 由题意得m +2=1,解得m =-1,则f (x )=x a ,将(2,4)代入函数的解析式得,2a =4,解得a =2,故g (x )=log a (x +m )=log 2(x -1),令x -1>0,解得x >1,故g (x )在(1,+∞)上单调递增.12.函数y =-1的图像关于x 轴对称的图像大致是( )答案 B解析 y =的图像位于第一象限且为增函数,所以函数图像是上升的,函数y =-1的图像可看作由y =的图像向下平移一个单位长度得到的(如选项A 中的图所示),将y =-1的图像关于x 轴对称后即为选项B.13.为了保证信息的安全传输,有一种密钥密码系统,其加密、解密原理为:发送方由明文到密文(加密),接收方由密文到明文(解密).现在加密密钥为y =x α(α为常数),如“4”通过加密后得到密文“2”.若接收方接到密文“3”,则解密后得到的明文是________.答案 9解析 由题意可知加密密钥y =x α(α为常数)是一个幂函数,所以要想求得解密后得到的明文,就必须先求出α的值.由题意,得2=4α,解得α=12,则y =.由=3,得x =9,即明文是9.14.已知幂函数f (x )=,若f (a +1)<f (10-2a ),则a 的取值范围是________.12x 12x 12x 12x 12x 12x 12x 12x答案 (3,5)解析 ∵f (x )==1x(x >0),易知f (x )在(0,+∞)上为减函数,又f (a +1)<f (10-2a ),∴Error!解得Error!∴3<a <5.15.幂函数y =x α,当α取不同的正数时,在区间[0,1]上它们的图像是一族美丽的曲线(如图).设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x α,y =x β的图像三等分,即有BM =MN =NA ,那么,αβ等于________.答案 1解析 由条件,得M (13,23),N (23,13),可得13=(23)α,23=(13)β,即α=13,β=23.所以αβ=13·23=lg 13lg 23·lg 23lg 13=1.16.已知幂函数g (x )过点(2,12),且f (x )=x 2+ag (x ).(1)求g (x )的解析式;(2)讨论函数f (x )的奇偶性,并说明理由.解 (1)设幂函数的解析式g (x )=x α(α为常数).因为幂函数g (x )过点(2,12),所以2α=12,解得α=-1,所以g (x )=1x.(2)由(1)得f (x )=x 2+a x.①当a =0时,f (x )=x 2.12x 23log 13log 23log 13log由于f(-x)=(-x)2=x2=f(x),可知f(x)为偶函数.②当a≠0时,由于f(-x)=(-x)2+a-x=x2-ax≠x2+ax=f(x),且f(-x)=(-x)2+a-x=x2-ax≠-(x2+a x)=-f(x),所以f(x)是非奇非偶函数.综上,①当a=0时,f(x)为偶函数;②当a≠0时,f(x)为非奇非偶函数.。

人教版A版(2019)高中数学必修第一册: 第四章 指数函数与对数函数 综合测试(附答案与解析)

知识像烛光,能照亮一个人,也能照亮无数的人。--培根
第四章综合测试
一、选择题(本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目 要求的)
1.已知集合 M = x | x <3 , N = x | log3 x<1 ,则 M N 等于( )
A.
B.x | 0<x<3

R
上有最大值,则
a

取值范围为( )
A.

2 2
,

1 2
B.
−1,

1 2
C.

2 2
,

1 2
D.

2 2
,
0
0,
1 2
11.某公司为激励创新,计划逐年加大研发资金投入,若该公司 2015 年全年投入研发资金 130 万元,在此基 础上,每年投入的研发资金比上一年增加 12%,则该公司全年投入的研发资金开始超过 200 万元的年份是 (参考数据: lg1.12 0.05,lg1.3 0.11,lg 2 0.30 )( )
【解析】 Q f (x) = log2 (ax −1) 在 (−3, −2) 上为减函数,
a<0 且 ax −1>0 在 (−3, −2) 上恒成立,−2a −1≥0 ,
a≤ − 1 . 2

g(
x)

R
上有最大值,且
g
(x)

−,
1 2
上单调递增,
g
(
x)

1 2
,
+
上单调递减,且
log
,当
log z
x
=

(完整版)高一必修一-基本初等函数(指对幂函数)专题复习总结

高一上学期期末必修一复习专题二:指对幂函数一、 指对数运算【知识点】1、 指数计算公式:()Q s r a ∈>,,0_____=⋅s r a a _____)(=s r a ______)(=r ab)1,,0_______(>∈>=*n N n m a anm ,2、 对数计算公式:)0,0,10(>>≠>M N a a 且 (1) 指对数互化:N a x =_______⇔(2) _____1log =a _____log =a a ______log =n a a ______log =n a a (3) _____log log =+N M a a _____log =n a M_____log log =-N M a a _____log =M m a(4) 换底公式:_____log =b a (常用:a bb a lg lg log =a b ba log 1log =)【练习一】 指对数的运算 1、计算下列各式的值 (1)3log 9log 28 (2))]81(log [log log 345(3)2log 4log 3log 432⋅⋅ (4))31()3)((656131212132b a b a b a ÷-(5)74log 217+14log 501log 2log 235log 55215--+2、解下列方程(1)2327log x =(2)0)(log log 25=x3、若2log 2,log 3,m n a a m n a +===二、 指数函数和对数函数的图像和性质【知识点】定义域 值域 过定点 奇偶性单调性a 变化对图象的影响注意:指数函数x a =y 与对数函数x y a log =互为反函数,则它们的图象关于_____________对称 【练习二】指对数函数的图像与性质 题型一、求函数经过的定点1、2)(f 1-=+x a x )10(≠>a a 且过定点______________2、3)2(log )(f ++=x x a )10(≠>a a 且过定点_____________ 题型二、指对数函数的图像 1.函数)1(log 21-=x y 的图象是( )2.在同一坐标系中画出函数y =l og a x ,y =a x ,y =x +a 的图象,可能正确的是( ).[来源:]题型3 、函数的性质(定义域、值域、单调性、奇偶性) 1、x 6log 21y -=函数的定义域为_____________2、若指数函数x a y )12(+=在R 上是增函数,则实数a 的取值范围为xyO(1,0)1x =log a y x=xyO (1,0)1x =log a y x=3、函数23)(+=x x f 在区间[1-,2]上的值域为________________4、函数y =xx+-22log 2的图象( ) A .关于原点对称 B .关于直线y =-x 对称 C .关于y 轴对称 D .关于直线y =x 对称5、已知函数⎩⎨⎧≤>=)0(3)0(log )(f 3x x x x x ,则f(f(91))=_________6、已知函数)1(log )(f +=x x a ,)1(log )(x x g a -=)10(≠>a a 且(1)请判断函数)()(f x g x +的奇偶性并证明 (2)求使0)(f >x 成立的x 的取值范围7、已知函数2()131x f x =-+。

指数函数,幂函数,对数函数的增长的比较及函数模型 课件

2018年年份代码为 = 2,依此类推)有两个函数模型 = > 0, > 1 与
= + > 0 可供选择.
(1)试判断哪个函数模型更合适(不需计算,简述理由即可),并求出该模型
的函数解析式;
(2)问大约在哪一年,三峡大坝旅客年游览人数约是2018年的2倍.(参考数据:

2、建立函数模型解决实际问题的步骤
(1)确切理解题意:明确问题的实际背景,进行科学的抽象、概括,将实际问
题转化为数学问题。
(2)建立相应的数学模型(选择合适的数学模型)
(3)求解函数模型,得出数学结论
(4)将用数学知识和方法得出的结论,还原为实际问题的意义,并进行验证,
看是否符合实际。
典 例 剖 析
1
= 80 + 4 21 , = 2 + 120,设甲大棚的资金投入为(单位:万元),
4
每年两个大棚的总收入为 (单位:万元),求 的最大值。
题型六 分段函数模型
例6、通过研究学生的学习行为,专家发现,学生的注意力着老师讲课时间的变化
而变化,讲课开始时,学生的兴趣激增;中间有一段时间,学生的兴趣保持较理想的
指数函数、幂函数、对数函
数增长的比较与函数模型


1
输 入 标 题 名 称
2
输 入 标 题 名 称
3
输 入 标 题 名 称
4
输 入 标 题 名 称
情 景 导 入
每年的3月21日时植树节,全国各地在这一天都会开展各种形式的植树
活动,某市现有树木面积为10万平方米,计划今后5年内扩大树木面积,现
有两种方案如下:
状态,随后学生的注意力开始分散,设 表示学生注意力随时间(分钟)的变化

高中数学 第3章 指数函数、对数函数和幂函数 3.2 对数函数 3.2.1 对数 第2课时 对数的运

第2课时 对数的运算性质及换底公式1.了解对数的换底公式.2.理解对数的运算性质.3.掌握用对数的运算性质进行化简与证明.[学生用书P49]1.如果a >0,且a ≠1,M >0,N >0,那么 (1)log a (MN )=log a M +log a N ; (2)log a M N=log a M -log a N ; (3)log a M n=n log a M (n ∈R ). 2.换底公式一般地,称log a N =log c Nlog c a(a >0且a ≠1,c >0且c ≠1,N >0)为对数的换底公式.1.判断(正确的打“√”,错误的打“×”)(1)两个正数的积、商的对数可以化为这两个正数的对数的和、差.( ) (2)log a (xy )=log a x ·log a y .( ) (3)log 2(-5)2=2log 2(-5).( ) (4)由换底公式可得log a b =log (-2)blog (-2)a.( )答案:(1)√ (2)× (3)× (4)×2.已知a >0且a ≠1,则log a 2+log a 12=( )A .0B .12 C .1 D .2答案:A3.(1)lg 10=________;(2)已知ln a =0.2,则ln ea=________.答案:(1)12(2)0.84.log 29log 23=________. 答案:2对数的运算性质及应用[学生用书P49]计算下列各式:(1)12lg 3249-43lg 8+lg 245; (2)2lg 2+lg 31+12lg 0.36+13lg 8;(3)lg 25+23lg 8+lg 5lg 20+(lg 2)2.【解】 (1)原式=12(5lg 2-2lg 7)-43×32lg 2+12(2lg 7+lg 5)=52lg 2-lg 7-2lg 2+lg 7+12lg 5 =12lg 2+12lg 5=12(lg 2+lg 5)=12lg 10=12. (2)2lg 2+lg 31+12lg 0.36+13lg 8=lg 4+lg 31+lg 0.6+lg 2=lg 12lg (10×0.6×2)=lg 12lg 12=1.(3)原式=2lg 5+2lg 2+(1-lg 2)(1+lg 2)+(lg 2)2=2(lg 5+lg 2)+1-(lg 2)2+(lg 2)2=2+1=3.(1)对于同底的对数的化简,常用的方法是:①“收”,将同底的两对数的和(差)收成积(商)的对数(逆用运算性质); ②“拆”,将积(商)的对数拆成对数的和(差)(正用运算性质).(2)对数式的化简,求值一般是正用或逆用公式.要养成正用、逆用、变形应用公式的习惯,lg 2+lg 5=1在计算对数值时会经常用到,同时注意各部分变形要化到最简形式.1.计算下列各式:(1)12lg 25+lg 2+lg 10+lg(0.01)-1;(2)2log 32-log 3329+log 38-3log 55.解:(1)法一:原式=lg[2512×2×1012×(10-2)-1] =lg (5×2×1012×102) =lg 1072=72.法二:原式=12lg 52+lg 2+12lg 10-lg 10-2=(lg 5+lg 2)+12-(-2)=lg 10+12+2=1+12+2=72.(2)法一:原式=log 322+log 3(32×2-5)+log 323-3 =log 3(22×32×2-5×23)-3 =log 332-3 =2-3=-1.法二:原式=2log 32-()5log 32-2+3log 32-3 =2-3=-1.换底公式的应用[学生用书P50](1)计算:(log 2125+log 425+log 85)·(log 52+log 254+log 1258); (2)已知log 189=a ,18b=5,求log 3645(用a ,b 表示). 【解】 (1)法一:原式=⎝⎛⎭⎪⎫log 253+log 225log 24+log 25log 28⎝ ⎛⎭⎪⎫log 52+log 54log 525+log 58log 5125 =⎝⎛⎭⎪⎫3log 25+2log 252log 22+log 253log 22⎝ ⎛⎭⎪⎫log 52+2log 522log 55+3log 523log 55 =⎝ ⎛⎭⎪⎫3+1+13log 25·(3log 52)=13log 25·log 22log 25=13. 法二:原式 =⎝ ⎛⎭⎪⎫lg 125lg 2+lg 25lg 4+lg 5lg 8⎝ ⎛⎭⎪⎫lg 2lg 5+lg 4lg 25+lg 8lg 125=⎝⎛⎭⎪⎫3lg 5lg 2+2lg 52lg 2+lg 53lg 2⎝ ⎛⎭⎪⎫lg 2lg 5+2lg 22lg 5+3lg 23lg 5=⎝⎛⎭⎪⎫13lg 53lg 2⎝ ⎛⎭⎪⎫3lg 2lg 5=13.(2)法一:因为18b=5,所以log 185=b , 又log 189=a ,于是log 3645=log 1845log 1836=log 18(9×5)log 18(18×2)=log 189+log 1851+log 182=a +b 1+log 18189=a +b 2-a.法二:因为log 189=a ,18b=5,所以lg 9=a lg 18, lg 5=b lg 18,所以log 3645=lg 45lg 36=lg (9×5)lg 1829=lg 9+lg 52lg 18-lg 9=a lg 18+b lg 182lg 18-a lg 18=a +b2-a.法三:因为log 189=a ,所以18a=9. 又因为18b=5,所以45=5×9=18b·18a=18a +b.令log 3645=x ,则36x=45=18a +b,即36x=⎝ ⎛⎭⎪⎫183·183x=18a +b.所以⎝ ⎛⎭⎪⎫1829x=18a +b,所以x log 181829=a +b ,所以x =a +b log 18182-log 189=a +b 2-a ,即log 3645=a +b2-a.(1)具有换底功能的另两个结论:①log a c ·log c a =1,②log an b n=log a b .(a >0且a ≠1,b >0,c >0且c ≠1)(2)求条件对数式的值,可从条件入手,从条件中分化出要求的对数式,进行求值;也可以从结论入手,转化成能使用条件的形式;还可同时化简条件和结论,直至找到它们之间的联系.(3)本题主要考查已知一些指数值或对数值,利用这些条件来表示所要求的式子,解决该类问题必须熟练掌握所学性质和法则,并学会运用整体思想.2.(1)计算:(log 43+log 83)log 32=________.(2)计算:log22+log 279=________.解析:(1)原式=⎝ ⎛⎭⎪⎫1log 34+1log 38log 32=⎝⎛⎭⎪⎫12log 32+13log 32log 32=12+13=56.(2)原式=log 22log 2212+log 332log 333=112+23=2+23=83.答案:(1)56 (2)83对数的综合应用[学生用书P50]若a ,b 是方程2(lg x )2-lg x 4+1=0的两个实根,求lg(ab )·(log a b +log b a )的值. 【解】 原方程可化为2(lg x )2-4lg x +1=0, 设t =lg x ,则原方程可化为2t 2-4t +1=0.所以t 1+t 2=2,t 1t 2=12.由已知a ,b 是原方程的两个根,则t 1=lg a ,t 2=lg b ,即lg a +lg b =2,lg a ·lg b =12,所以lg(ab )·(log a b +log b a ) =(lg a +lg b )⎝⎛⎭⎪⎫lg b lg a +lg a lg b=(lg a +lg b )[(lg b )2+(lg a )2]lg a lg b=(lg a +lg b )·(lg b +lg a )2-2lg a lg blg a lg b=2×22-2×1212=12.即lg(ab )·(log a b +log b a )=12.应用对数的运算性质解对数方程的三种方法(1)定义法:解形如b =log a f (x )(a >0,a ≠1)的方程时,常借助对数函数的定义等价转化为f (x )=a b 求解.(2)转化法:形如log a f (x )=log a g (x )(a >0,a ≠1)的方程,等价转化为f (x )=g (x ),且⎩⎪⎨⎪⎧f (x )>0,g (x )>0求解. (3)换元法:适用于f (log a x )=0(a >0,a ≠1)形式的方程的求解问题,这类方程一般可通过设中间变量的方法(换元法)来解.3.(1)方程log 4(3x -1)=log 4(x -1)+log 4(x +3)的解为________.(2)已知lg(x +2y )+lg(x -y )=lg 2+lg x +lg y ,求x y的值. 解:(1)原方程可化为3x -1=(x -1)(x +3), 即x 2-x -2=0, 解得x =2或x =-1,而x =-1使真数3x -1和x -1小于0, 故方程的解是x =2.故填x =2. (2)由已知条件得⎩⎪⎨⎪⎧x +2y >0,x -y >0,x >0,y >0,(x +2y )(x -y )=2xy ,即⎩⎪⎨⎪⎧x >y ,y >0,(x +2y )(x -y )=2xy ,整理得⎩⎪⎨⎪⎧x >y ,y >0,(x -2y )(x +y )=0,所以x -2y =0,所以xy=2.1.对对数的运算性质的理解(1)利用对数的运算性质可以把求正数的乘、除、乘方的对数的运算转化为这些正数的对数的加、减、乘运算,反之亦然.但两个正数的和或差的对数没有运算性质.(2)对于每一条运算性质,都要注意只有当式子中所有的对数都有意义时,等式才成立. (3)能用语言准确叙述对数的运算性质log a (M ·N )=log a M +log a N →积的对数等于对数的和. log a M N=log a M -log a N →商的对数等于对数的差.log a M n=n log a M (n ∈R )→真数的n 次幂的对数等于对数的n 倍. 2.关于换底公式的两点说明(1)换底公式成立的条件是公式中的每一个对数式都有意义.(2)利用换底公式,可以“随意”地改变对数的底,应注意选择适当的底数,一般转化为常用对数或自然对数,化简和证明中常常用到换底公式.已知lg a +lg b =2lg(a -2b ),求log 2a b的值. [解] 因为lg a +lg b =2lg(a -2b ), 所以lg ab =lg(a -2b )2,ab =(a -2b )2,a 2-5ab +4b 2=0,即(a -b )(a -4b )=0, 所以a =b 或a =4b . 又因为a -2b >0,所以a =4b ,log 2a b=log 24=2.(1)错因:易忽视真数大于0的限制,导致出现增解. (2)防范:将对数化简、变形,不能忘记真数大于0的限制.1.化简12log 612-2log 62的结果为( )A .6 2B .12 2C .log 6 3D .12 解析:选C.原式=log 612-log 62=log 6122=log 6 3. 2.已知a =log 32,那么log 38-2log 36用a 表示是( ) A .a -2 B .5a -2 C .3a -(1+a )2D .3a -a 2解析:选A.log 38-2log 36=3log 32-2(log 32+1)=log 32-2=a -2. 3.(1)log 52·log 79log 513·log 734=________.(2)log 2()3+5- 3-5=________.解析:(1)原式=log 132·log 349=12lg 2-lg 3·2lg 323lg 2=-32.(2)原式=12log 2(3+5- 3-5)2=12log 2[](3+5)+(3-5)-2(3+5)(3-5) =12log 2(6-4) =12log 22=12. 答案:(1)-32 (2)124.用lg x ,lg y ,lg z 表示下列各式:(1)lg(xyz ); (2)lg xy 2z ;(3)lg xy 3z; (4)lg x y 2z .解:(1)lg(xyz )=lg x +lg y +lg z ;(2)lg xy 2z =lg(xy 2)-lg z =lg x +2lg y -lg z ;(3)lg xy 3z=lg(xy 3)-lg z=lg x +3lg y -12lg z ;(4)lgx y 2z=lg x -lg(y 2z ) =12lg x -2lg y -lg z . [学生用书P111(单独成册)])[A 基础达标]1.lg 8+3lg 5的值为( ) A .-3 B .-1 C .1D .3解析:选D.lg 8+3lg 5=lg 8+lg125=lg1 000=3. 2.设log 34·log 48·log 8m =log 416,则m 的值为( ) A.12B .9C .18D .27解析:选B.由题意得lg 4lg 3·lg 8lg 4·lg mlg 8=log 416=log 442=2, 所以lg m lg 3=2,即lg m =2lg 3=lg 9. 所以m =9,选B.3.若lg x =m ,lg y =n ,则lg x -lg ⎝ ⎛⎭⎪⎫y 102的值为( ) A.12m -2n -2 B .12m -2n -1 C.12m -2n +1 D .12m -2n +2 解析:选D.因为lg x =m ,lg y =n ,所以lg x -lg ⎝ ⎛⎭⎪⎫y 102=12lg x -2lg y +2=12m -2n +2.故选D.4.设lg 2=a ,lg 3=b ,则log 512等于( ) A.2a +b1+a B .a +2b1+a C.2a +b 1-aD .a +2b1-a解析:选C.log 512=lg 12lg 5=lg (22×3)lg (10÷2)=lg 22+lg 3lg 10-lg 2=2lg 2+lg 31-lg 2=2a +b1-a .故选C.5.已知2x=3,log 483=y ,则x +2y 等于( )A .3B .8C .4D .log 48解析:选A.因为2x=3,所以x =log 23. 又log 483=y ,所以x +2y =log 23+2log 483=log 23+2(log 48-log 43)=log 23+2⎝ ⎛⎭⎪⎫32log 22-12log 23 =log 23+3-log 23=3.故选A.6.已知m >0,且10x=lg(10m )+lg 1m,则x =________.解析:lg(10m )+lg 1m =lg 10+lg m +lg 1m=1,所以10x =1=100.所以x =0. 答案:07.方程log 3(x 2-10)=1+log 3x 的解是________.解析:原方程可化为log 3(x 2-10)=log 3(3x ),所以x 2-10=3x ,解得x =-2,或x =5.经检验知x =5.答案:x =58.已知2m =3n=36,则1m +1n=________.解析:m =log 236,n =log 336,所以1m =log 362,1n =log 363,所以1m +1n =log 366=12.答案:129.计算下列各式:(1)lg 8+log 39+lg 125+log 319;(2)[log 2(log 216)](2log 36-log 34);(3)⎝ ⎛⎭⎪⎫lg 4-lg 60lg 3+lg 53-45×2-11. 解:(1)原式=lg 8+lg 125+log 39+log 319=lg(8×125)+log 3⎝ ⎛⎭⎪⎫9×19=lg 1 000+log 31=3+0=3. (2)原式=(log 24)(log 336-log 34)=2log 3364=2log 39=4.(3)原式=⎝ ⎛⎭⎪⎪⎫lg 460lg 153-210×2-11=⎝ ⎛⎭⎪⎫-lg 15lg 153-2-1 =-1-12=-32.10.解下列关于x 的方程: (1)lg x -1=lg(x -1);(2)log 4(3-x )+log 0.25(3+x )=log 4(1-x )+log 0.25(2x +1).解:(1)原方程等价于⎩⎨⎧x -1=x -1,x -1>0.解之得x =2. 经检验x =2是原方程的解,所以原方程的解为x =2.(2)原方程可化为log 4(3-x )-log 4(3+x )=log 4(1-x )-log 4(2x +1).即log 43-x 3+x=log 41-x 2x +1. 整理得3-x x +3=1-x 2x +1,解之得x =7或x =0. 当x =7时,3-x <0,不满足真数大于0的条件,故舍去.x =0满足,所以原方程的解为x =0.[B 能力提升]1.若log 513·log 36·log 6x =2,则x 等于________. 解析:由换底公式,得-lg 3lg 5·lg 6lg 3·lg x lg 6=2, lg x =-2lg 5,x =5-2=125. 答案:1252.计算log 8(log 242)的值为________.解析:log 8(log 242)=log 814=-2log 82=-23. 答案:-233.若log a b +3log b a =132,则用a 表示b 的式子是________. 解析:原式可化为1log b a +3log b a =132, 整理得3(log b a )2+1-132log b a =0, 即6(log b a )2-13log b a +2=0;解得log b a =2或log b a =16, 所以b 2=a 或b 16=a , 即b =a 或b =a 6.答案: b =a 或b =a 64.(选做题)已知地震的震级R 与地震释放的能量E 的关系为R =23(lg E -11.4).若A 地地震级别为9.0级,B 地地震级别为8.0级,求A 地地震释放的能量是B 地地震释放的能量的多少倍.解:由R =23(lg E -11.4), 得32R +11.4=lg E , 故E =10(32R +11.4).设A 地和B 地地震释放的能量分别为E 1,E 2,则E 1E 2=10(32×9.0+11.4)10(32×8.0+11.4)=1010, 即A 地地震释放的能量是B 地地震释放的能量的1010倍.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修一:指数函数、对数函数、幂函数综合【学习目标】1.理解有理指数幂的含义,掌握幂的运算.2.理解指数函数的概念和意义,理解指数函数的单调性与特殊点. 3.理解对数的概念及其运算性质.4.重点理解指数函数、对数函数、幂函数的性质,熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理.5.会求以指数函数、对数函数、幂函数为载体的复合函数的定义域、单调性及值域等性质.6.知道指数函数x a y =与对数函数x y a log =互为反函数(a >0,a ≠1). 【知识框图】【要点梳理】要点一:指数及指数幂的运算 1.根式的概念a 的n 次方根的定义:一般地,如果n x a =,那么x 叫做a 的n 次方根,其中*1,n n N >∈当n 为奇数时,正数的n 次方根为正数,负数的nn 为偶数时,正数的n次方根有两个,这两个数互为相反数可以表示为负数没有偶次方根,0的任何次方根都是0.n 叫做根指数,a 叫做被开方数. 2.n 次方根的性质:(1)当na =;当n,0,,0;a a a a a ≥⎧==⎨-<⎩(2)na =3.分数指数幂的意义:)0,,,1m na a m n N n =>∈>;()10,,,1mnm naa m n N n a-=>∈>要点诠释:0的正分数指数幂等于0,负分数指数幂没有意义. 4.有理数指数幂的运算性质:()0,0,,a b r s Q >>∈(1)r s r sa a a+= (2)()r srsa a = (3)()rr r ab a b =要点二:指数函数及其性质 1.指数函数概念一般地,函数()0,1x y a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域为R . 2要点三:对数与对数运算 1.对数的定义(1)若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.(2)负数和零没有对数.(3)对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.2.几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.3.常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). 4.对数的运算性质如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a aMM N N-= ③数乘:log log ()na a n M M n R =∈④log a NaN =⑤log log (0,)b na a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且要点四:对数函数及其性质 1.对数函数定义一般地,函数()log 0,1a y x a a =>≠且叫做对数函数,其中x 是自变量,函数的定义域()0,+∞. 2要点五:反函数 1.反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x yϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.2.反函数的性质(1)原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.(2)函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.(3)若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.(4)一般地,函数()y f x =要有反函数则它必须为单调函数. 要点六:幂函数 1.幂函数概念形如()y x R αα=∈的函数,叫做幂函数,其中α为常数. 2.幂函数的性质(1)图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.(2)过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).(3)单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.【典型例题】类型一:指数、对数运算 例1.化简与计算下列各式 (1)10220.531222(0.01)54--⎛⎫⎛⎫+⨯- ⎪ ⎪⎝⎭⎝⎭;(2)()20.53207103720.12392748π--⎛⎫⎛⎫++-+⎪ ⎪⎝⎭⎝⎭; (3)5332332323323134)2(248aa a a ab aaab b b a a ⋅⋅⨯-÷++--. 【思路点拨】运算时尽量把根式转化为分数指数幂,而小数也要化为分数为好. 【答案】(1)1615;(2)100;(3)2a . 【解析】(1)原式=1122141149100⎛⎫⎛⎫+⨯- ⎪ ⎪⎝⎭⎝⎭=1+11610-=1615;(2)原式=122322516437390.12748-⎛⎫⎛⎫++-+⎪ ⎪⎝⎭⎝⎭ =5937100331648++-+=100 (3) 原式=51312121323131231313123133133131)()(2)2()2()(])2()[(a a a a ab a b b a a b a a ⋅⋅⨯-÷+⋅+- 23231616531313131312)2(a a a a aa ba ab a a =⨯⨯=⨯-⨯-=.【总结升华】化简要求同初中要求,注意结果形式的统一,结果不能同时含有根式和分数指数,也不能既有分母又含有负指数;一般地,进行指数幂运算时,化负指数为正指数,化根式为分数指数幂,化小数位分数等,便于进行乘、除、乘方、开方运算,以达到化繁为简的目的;举一反三:【变式一】化简下列各式:(1)133241116()()8()100481----+⋅; (2. 【答案】(1)-27;(2【解析】(1)1313332424111681()()8()10048()10048116----+⋅=-+⨯ 344310648()106427272⎛⎫=-+⨯=-+=- ⎪⎝⎭;(2133⎫=1)1)==⨯=例2.已知:4x =,求:111244311422111x x xx x xx -+⋅⋅+++的值.【思路点拨】先化简再求值是解决此类问题的一般方法. 【答案】2 【解析】111244311422111x x x x x x x -+⋅⋅+++11441411122411111x x x x x x x ⎛⎫+ ⎪-⎝⎭=⋅⋅+⎛⎫++ ⎪⎝⎭1111442211122211111111x xx x x x xx x --=⋅⋅+=+=-+=++∴ 当4x =时,111112442231142211421x x xx x x xx -+⋅⋅+===++.【总结升华】解题时观察已知与所求之间的关系,同时乘法公式要熟练,直接代入条件求解繁琐,故应先化简变形,创造条件简化运算. 解题时,要注意运用下列各式.11112222a b a b a b ⎛⎫⎛⎫+-=- ⎪⎪⎝⎭⎝⎭,2111122222a b a a b b ⎛⎫±=±+ ⎪⎝⎭;112112333333a b a a b b a b ⎛⎫⎛⎫±+=± ⎪⎪⎝⎭⎝⎭例3.计算 (1)2221log log 12log 422-; (2)33lg 2lg 53lg 2lg 5++;(3)222lg5lg8lg5lg 20lg 23+++. 【答案】(1)12-;(2)1;(3)3;(4)14.【解析】(1)原式=122221log 12log log 22-⎫===-; (2)原式=()()22lg 2lg5lg 2lg 2lg5lg 53lg 2lg5+-++ =()2lg10lg 5lg 23lg 2lg 53lg 2lg 5⎡⎤⋅+-+⎣⎦=1-3lg 2lg5+3lg 2lg5=1(3)原式=()22lg52lg2lg51lg2lg 2++++=()2lg5lg2lg5lg2(lg2lg5)++++ =2+lg5lg 2+=3;【总结升华】这是一组很基本的对数运算的练习题,虽然在考试中这些运算要求并不高,但是数式运算是学习数学的基本功,通过这样的运算练习熟练掌握运算公式、法则,以及学习数式变换的各种技巧.【变式1】552log 10log 0.25+=( )A .0B .1C .2D .4 【答案】C【解析】552log 10log 0.25+=25555log 10log 0.25log (1000.25)log 252+=⨯==.【变式2】(1)2(lg 2)lg 2lg 50lg 25+⋅+;(2)3948(log 2log 2)(log 3log 3)+⋅+. 【答案】(1)2;(2)54. 【解析】(1) 原式22(lg 2)(1lg5)lg 2lg5(lg 2lg51)lg 22lg5=+++=+++ (11)lg 22lg52(lg 2lg5)2=++=+=; (2) 原式lg 2lg 2lg3lg3lg 2lg 2lg3lg3()()()()lg3lg9lg 4lg8lg32lg32lg 23lg 2=+⋅+=+⋅+ 3lg 25lg 352lg 36lg 24=⋅=.类型二:指数函数、对数函数、幂函数的图象与性质 4.(2015年山东高考)设函数3,1()2,1xx b x f x x -<⎧=⎨≥⎩,若5(())46f f =,则b=( )A .1B .78C .34D .12【答案】D【解析】由题意,555()3662f b b =⨯-=-由5(())46f f =得, 51253()42b b b ⎧-<⎪⎪⎨⎪--=⎪⎩或5251224b b -⎧-≥⎪⎨⎪=⎩,解得12b =,故选D . 【总结升华】利用指数函数、对数函数的概念,求解函数的值. 举一反三:【变式1】已知函数221,1,(),1,x x f x x ax x ⎧+<⎪=⎨+≥⎪⎩若((0))4f f a =,则实数a 等于( ).A .12B . 45 C . 2 D . 9 【答案】C .【解析】1,()21x x fxf <=+∴=,由((0)f f a=,则有(2)4f a =.21,(),442x f x x ax a a ≥=+∴=+,2a ∴=,选C .例5.(2016 湖南岳阳模拟)若函数y =f (x )的定义域是[2,4],则12(log )y f x =的定义域是( ) A .1[,1]2 B .[4,16] C .11[,]164D .[2,4] 【思路点拨】令12log x t =,使t 满足y =f (x )的定义域中x 的取值范围相同,求出12(log )y f x =的定义域即可.【答案】C【解析】∵12(log )y f x =,令12log x t =,∴12(log )()y f x f t ==,∵函数y =f (x )的定义域是[2,4], ∴y =f (t )的定义域也为[2,4],即2≤t ≤4, ∴有122log 4x ≤≤,解得:11164x ≤≤, ∵函数的定义域即解析式中自变量的取值范围, ∴12(log )y f x =的定义域为11164x ≤≤,即:11[,]164. 故选C .【总结升华】本题只要明确函数的定义域即解析式中自变量的取值范围,运用整体代换(换元法)即可迎刃而解.【高清课堂:幂指对综合377495 例4】1-xA .B .C .D .【答案】B【解析】先作出2(0)xy x =≥的图象,然后作出这个图象关于y 轴对称的图象,得到||2x y =的图象,再把||2x y =的图象右移一个单位,得到12-=x y 的图象,故选B【高清课堂:幂指对函数综合 377495 例1】例7. 函数)86(log 231+-=x x y 的单调递增区间是( )A .(3,+∞)B .(-∞,3)C .(4,+∞)D .(-∞,2)【思路点拨】这是一个内层函数是二次函数,外层函数是对数函数的复合函数,其单调性由这两个函数的单调性共同决定,即“同增异减”。

相关文档
最新文档