第四章刚体力学测验题
大学物理习题及解答(刚体力学)

1 如图所示,质量为m 的小球系在绳子的一端,绳穿过一铅直套管,使小球限制在一光滑水平面上运动。
先使小球以速度0v 。
绕管心作半径为r D 的圆周运动,然后向下慢慢拉绳,使小球运动轨迹最后成为半径为r 1的圆,求(1)小球距管心r 1时速度大小。
(2)由r D 缩到r 1过程中,力F 所作的功。
解 (1)绳子作用在小球上的力始终通过中心O ,是有心力,以小球为研究对象,此力对O 的力矩在小球运动过程中始终为零,因此,在绳子缩短的过程中,小球对O 点的角动量守恒,即10L L =小球在r D 和r 1位置时的角动量大小 1100r mv r mv = 100r r v v =(2)可见,小球的速率增大了,动能也增大了,由功能定理得力所作的功 ⎥⎦⎤⎢⎣⎡-=-=-=1)(21 21)(21 21212102020210202021r r mv mv r r mv mv mv W2 如图所示,定滑轮半径为r ,可绕垂直通过轮心的无摩擦水平轴转动,转动惯量为J ,轮上绕有一轻绳,一端与劲度系数为k 的轻弹簧相连,另一端与质量为m 的物体相连。
物体置于倾角为θ的光滑斜面上。
开始时,弹簧处于自然长度,物体速度为零,然后释放物体沿斜面下滑,求物体下滑距离l 时,物体速度的大小。
解 把物体、滑轮、弹簧、轻绳和地球为研究系统。
在物体由静止下滑的过程中,只有重力、弹性力作功,其它外力和非保守内力作功的和为零,故系统的机械能守恒。
设物体下滑l 时,速度为v ,此时滑轮的角速度为ω则 θωsin 2121210222mgl mv J kl -++= (1)又有 ωr v = (2) 由式(1)和式(2)可得 m r J kl mgl v +-=22sin 2θ本题也可以由刚体定轴转动定律和牛顿第二定律求得,读者不妨一试。
3 如右图所示,一长为l 、质量为m '的杆可绕支点O 自由转动,一质量为m 、速率为v 的子弹射入杆内距支点为a 处,使杆的偏转为︒30。
大学物理选择题大全

第一章 质点运动学 习题(1)1、下列各种说法中,正确的说法是: ( ) (A )速度等于位移对时间的一阶导数;(B )在任意运动过程中,平均速度2/)(0t V V V+=;(C )任何情况下,;v v ∆=∆r r ∆=∆ ;(D )瞬时速度等于位置矢量对时间的一阶导数。
2、一质点作直线运动,某时刻的瞬时速度m/s 2=v ,瞬时加速度2m/s 2-=a ,则一秒钟后质点的速度为:( )(A)等于0m/s ; (B)等于 -2m/s ; (C)等于2m/s ; (D)不能确定。
3、一物体从某一确定高度以 0V的速度水平抛出(不考虑空气阻力),落地时的速度为t V,那么它运动的时间是:( )(A) gV V t 0 -或g V V t 202- ; (B)gV V t 0-或g V V t 2202- ;(C ) g V V t 0- 或gV V t 202- ;(D) g V V t 0- 或gV V t 2202- 。
4、一质点在平面上作一般曲线运动,其瞬时速度为 V,瞬时速率为v ,某一段时间内的平均速度为V,平均速率为V ,它们之间的关系必定是 ( )(A) V V V V ==,;(B)V V V V =≠,;(C)V V V V ≠= ,;(D) V V V V ≠≠,。
5、下列说法正确的是:( )(A )轨迹为抛物线的运动加速度必为恒量; (B )加速度为恒量的运动轨迹可能是抛物线;(C )直线运动的加速度与速度的方向一致; (D )曲线运动的加速度必为变量。
第一章 质点运动学 习题(2)1、下列说法中,正确的叙述是: ( )a) 物体做曲线运动时,只要速度大小不变,物体就没有加速度;b) 做斜上抛运动的物体,到达最高点处时的速度最小,加速度最大;(C )物体做曲线运动时,有可能在某时刻法向加速度为0;(D )做圆周运动的物体,其加速度方向一定指向圆心。
2、质点沿半径为R 的圆周的运动,在自然坐标系中运动方程为 22t cbt s -=,其中b 、c 是常数且大于0,Rc b >。
第四章 刚体力学

第四章 刚体的转动§4-1 刚体的定轴转动1. 研究对象:刚体,即物体内任意两质点间的距离在运动中保持不变。
(不变质点组)。
2. 对刚体运动的分类:(1)平动:刚体内任何一条给定直线在刚体运动过程中方向不变。
所有点的运动相同。
(2)定轴转动:刚体中所有点都绕一固定直线作圆周运动。
(3)刚体的平面运动:这种运动可分解为质心的平动和以质心为轴的转动。
(4)刚体的空间运动:这种运动可分解为平动、轴的运动、绕轴的转动。
3. 角量和线量的关系:r S θ=,r v ω=,r a βτ=,rv r a n 22==ω 规定:ω 方向与刚体转动方向成右手螺旋关系,于是ω由于:dt d ωβ =,所以角加速度的方向也在转轴上。
若以ω为正方向,β为正表示加速,β为负表示减速。
以后将学到的力矩的方向、动量矩的方向等都在转轴上。
4. 力矩:力矩就是综合描述这三要素的一个物理量。
定义:f r M⨯=大小:θsin ⋅⋅=⋅=r f d f M 分量值:ατcos fr r f M z =⋅=f 在转动平面内。
若f 不在转动平面内,将f分解为平行于转轴和垂直于转轴两部分。
平行于转轴部分对刚体的转动无贡献。
几个力同时作用于刚体,它们的合力矩是这几个力的力矩的矢量合: ∑=i M M(注意:不是合力的力矩,而是力矩的矢量合。
力矩的矢量合≠合力的力矩。
) 例:求匀质园盘在水平面上转动时所受的摩擦力矩。
解:取rdr dm πσ2⋅=gdm df ⋅=μ rdf dM f =mgR gR dr gr dM M Rf f μπμσπμσ32322320====⎰⎰§4-2 转动动能 转动惯量 转动定律1. 转动动能: ∑∑∑===i i i i ii i i i k r m r m v m E 22222)(212121ωω 2. 转动惯量J :(单位:Kg.m 2)对于质量为离散型分布的刚体:∑=iii rm J 2;对于质量为连续型分布的刚体:dm r J M⎰=2(1)J 由三个因素决定:质量的大小、质量分布、转轴的位置。
力学答案第四章

(1),, ,处势能为零处势能为零N=F =mg×表示弹簧的伸长量,拉伸至弹簧的劲度不变。
拉伸至拉伸,外界做功,弹性力做负功。
缩短,弹性力做正功。
垂直方向的两个分位移(∴∵,∴向右,。
为常量,活塞末速坐标系与作匀速直线运动。
,, 沿∵∴∵∴∴)的作用而发生偏转∴、、做功之和为零。
质点组所力情况如图:为框架的绝对速度。
它。
坐标原点置于弹簧和有势能。
外界压缩弹簧做功使:外力做功:外力做功和地面支持力作用。
(忽略摩擦)。
重力为保不做功,所以机械能守恒。
沿水平方向,说明正好到达抛物线不做功。
( 1 )∵作用,4 ;。
(( 2 )(高度),开始向上运动。
如此往复。
((,碰撞后质点移动的最。
=0.790kg=100m/s 内,问弹簧((为共同速度)((为子弹、小鸟共同速度)和;(是再度下滑到平面轨道的速度)代入此式。
铁箱与地面间无摩擦。
铁箱被加速至时开始做匀速直线运动。
后来,钢球与箱壁发生完全弹性碰撞。
问碰后再经过多长时间钢球与为小球碰撞前后速度。
运动。
另一车厢以从相反方向向左运动并与左车厢碰撞挂钩,货箱在地板上滑行的最大距离为(角散射。
((完全弹性碰撞)(((。
理论力学题库第4章

理论力学题库——第四章一、填空题1. 科里奥利加速度 (“是”或“不是”)由科里奥利力产生的,二者方向 (“相同”或“不相同”)。
2. 平面转动参考系中某一点对静止参考系的加速度的表达式是 ,其中 是相对加速度, 是牵连加速度, 是科里奥利加速度。
4-1.非惯性系中,运动物体要受到 4种惯性力的作用它们是: 惯性力、惯性切向力、惯性离轴力、科里奥利力 。
4-2.在北半球,科里奥利力使运动的物体向 右 偏移,而南半球,科里奥利力使运动的物体向 左 偏移。
(填“左”或“右”)4-3.产生科里奥利加速度的条件是: 物体有相对速度υ'v及参照系转动,有角速度ωv ,且υ'v 与ωv不平行 。
4-4.科里奥利加速度是由参考系的 转动 和 物体的相对运动 相互影响产生的。
4-5.物体在 主动力、约束力和惯性力 的作用下在动系中保持平衡,称为相对平衡。
4-6.重力加速度随纬度增加的主要原因是:地球自转产生的惯性离轴力与地心引力有抵消作用 。
4-7.由于科里奥利力的原因北半球气旋(旋风)一般是 逆时针 旋转的.(顺时针或逆时针)4-8.地球的自转效应,在北半球会使球摆在水平面内 顺时针 转动.(顺时针或逆时针)二、选择题1. 关于平面转动参考系和平动参考系,正确的是( ) A. 平面转动参考系是非惯性系; B. 牛顿定律都不成立; C. 牛顿定律都成立;D.平动参考系中质点也受科里奥利力。
2. 下列关于非惯性系的说法中正确的是:【C 】A 惯性离心力与物体的质量无关;B 科里奥利力与物体的相对运动无关;C 科里奥利力是参考系的转动与物体相对与参考系的运动引起的;D 科里奥利力使地球上南半球河流右岸冲刷比左岸严重。
3. 科里奥利力的产生与下列哪个因素无关?【B 】A 参照系的转动;B 参照系的平动;C 物体的平动;D 物体的转动。
4. 在非惯性系中如果要克服科里奥利力的产生,需要:【D 】A 物体作匀速直线运动;B 物体作匀速定点转动;C 物体作匀速定轴转动;D 物体静止不动。
第四章 刚体力学

r F 1
转动 平面
r F
r F 2
r r
(2 )
MZ = rF sin = F d 2 2
d = r sin是转轴到力作
用线的距离,称为力臂 用线的距离,称为力臂。
r F 1
r F
r F 2
r (3) F 对转轴的力矩为零, 1 对转轴的力矩为零,
在定轴转动中不予考虑。 在定轴转动中不予考虑。
转动 平面
用 r 乘以上式左右两端: i 乘以上式左右两端:
Fri sini + fi ri sinθi = mri α i i
2
设刚体由N 个点构成, 设刚体由 个点构成,对每个质点可写出上述 类似方程, 类似方程,将N 个方程左右相加,得: 个方程左右相加,
∑Fr sin + ∑ f r sinθ = ∑(mr )α
2. 刚体定轴转动定律
对刚体中任一质量元 m i
O’
ω
r ri
mi
O
r 外力 Fi -外力
r fi
r fi -内力
θi i
r F i
应用牛顿第二定律,可得: 应用牛顿第二定律,可得:
r r r Fi + fi = mai i
采用自然坐标系,上式切向分量式为: 采用自然坐标系,上式切向分量式为:
F sini + fi sinθi = maiτ = mriα i i i
dω M = Jα = J dt
α 转动惯量是转动 (1) M 一定,J ) 一定, 惯性大小的量度; 惯性大小的量度; (2) 刚体产生角加速度 α 原因是受外力矩 M 作用。 M 与 α
是投影量(代数量), 同正负。
(3) M 与J是对同一转轴而言的,J是大于零的。 和转轴有关, 和质量分布有关; (4)J 和转轴有关,J 和质量分布有关;同一个物体 对不同转轴的转动惯量不同。 对不同转轴的转动惯量不同。
(完整版)大学物理选择题大全
第一章 质点运动学 习题(1)1、下列各种说法中,正确的说法是: ( ) (A )速度等于位移对时间的一阶导数;(B )在任意运动过程中,平均速度2/)(0t V V V+=;(C )任何情况下,;v v ∆=∆ r r ∆=∆; (D )瞬时速度等于位置矢量对时间的一阶导数。
2、一质点作直线运动,某时刻的瞬时速度m/s 2=v ,瞬时加速度2m/s 2-=a ,则一秒钟后质点的速度为:( )(A)等于0m/s ; (B)等于 -2m/s ; (C)等于2m/s ; (D)不能确定。
3、 一物体从某一确定高度以 0V 的速度水平抛出(不考虑空气阻力),落地时的速度为t V,那么它运动的时间是: ( )(A)gV V t 0-或gV V t 202- ; (B)gV V t 0-或gV V t 2202- ;(C )g V V t 0- 或g V V t 22- ; (D) g V V t 0- 或gV V t 2202- 。
4、一质点在平面上作一般曲线运动,其瞬时速度为 V ,瞬时速率为v ,某一段时间内的平均速度为V,平均速率为V ,它们之间的关系必定是 ( )(A) V V V V == ,;(B) V V V V =≠,;(C)V V V V ≠= ,;(D) V V V V ≠≠ ,。
5、下列说法正确的是: ( ) (A )轨迹为抛物线的运动加速度必为恒量; (B )加速度为恒量的运动轨迹可能是抛物线; (C )直线运动的加速度与速度的方向一致; (D )曲线运动的加速度必为变量。
第一章 质点运动学 习题(2)1、 下列说法中,正确的叙述是: ( )a) 物体做曲线运动时,只要速度大小不变,物体就没有加速度; b) 做斜上抛运动的物体,到达最高点处时的速度最小,加速度最大; (C )物体做曲线运动时,有可能在某时刻法向加速度为0; (D )做圆周运动的物体,其加速度方向一定指向圆心。
刚体和相对论力学课堂测验题参考解答(2010-01)
mg T ma 0, TR M r J 0.
得
M r TR mgR
(2)同理,由牛顿第二定律及转动定律,有
Mg T Ma, T R M r J .
a 其中, T R mgR J . R
得
3( M m) Mg a . 2
2.一长为l,质量为M的杆可绕支点o自由转动。一质 量为m,速度为v的子弹射入距支点为a的棒内。若棒 偏转角为θ=30°。问子弹的初速度为多少?
3、一根米尺静止在K'系中,与O'x’轴成30°夹角。如 果在K系中测得该米尺与Ox轴夹角为45°,试求:(1) K'系相对于K系的速率u为多少?;(2)在K系中该米 尺的长度为多少? 解:(1)由于米尺只在x方向上有长度收缩,所以有
l x l x 1 u 2 / c 2 l cos 30 1 u 2 / c 2 l y l l sin 30 y
t t ux / c 2 1 u2 / c 2 ux / c 2 1 u2 / c 2 5.77 10 8 s
7.已知惯性系K'系相对K系以速率u=0.6c沿x、 x'轴 正方向运动,若从K'系中原点O '沿x、 x'轴正方向发 出一光脉冲,在K'系中测得光速 vx c ,则则在K系 c 中测得光速 v x .
解: 角动量守恒:
o
30°
1 2 2 mva Ml ma 3
机械能守恒:
l a v
11 2 l 2 2 Ml ma mga1 cos 30 Mg 1 cos 30 23 2
刚体力学基础自测题
N
O
合力矩为
M T2 T1 R J
m1
m2
T2
滑轮的加速度方向和T2R一致,所以 T2比较大
T1
(C)右边大于左边
一木棒斜靠在墙上处于静止状态,试分析木棒受力 情况。
f2
• 分析解答:“隔离”木棒,以 木棒为研究对象,如图所示。 木棒受重力mg;地面对木棒竖 直向上的支持力N1;墙对木棒 水平向右的支持力N2;木棒B 端有向右运动趋势,B端受到地 面对它水平向左的静摩擦力f1; 木棒A端有向下运动趋势,A端 受到墙给它的竖直向上的静摩 擦力f2。
解:绕固定光滑轴自由转动说明合外力矩为0,角动量 守恒:JW 常数1 2 J Nhomakorabea ML 3
所以受热膨胀时L增长,J增加,W变小
二.填空题
(3)半径为r=1.5m的飞轮,初角速度ω0=10rad/s, 角加速度= -5rad/s2,若初始时刻角位移为零,则在 t= 时角位移再次为零,而此时边缘上点的线速 度 v= 。
A 端对墙的压力为N2=mgLtanθ/2
(2) 对本题来说,因为f2并不清楚,所以 无法由合力矩为0求出N2. 同样f2也不清楚,无法利用质心定理求出 N2.
G
8、 刚体角动量守恒的充分而必要的条件是 。 (A) 刚体不受外力矩的作用. (B) 刚体所受合外力矩为零. (C) 刚体所受的合外力和合外力矩均为零. (D) 刚体的转动惯量和角速度均保持不变.
A
N2 N1 B
G
f1
图7
例如:一梯子斜靠在光滑的竖直墙上,下端放在粗糙的水 平地面上,如图2所示,试分析梯子的受力情况:
分析(1)地球上的物体总要受到地 球对它的竖直向下的重力G; (2)在重力作用下,梯子必和水平 面发生相互挤压,使地面发生形变, 从而对梯子产生一个垂直水平地面竖 f 直向上的弹力(即支持力)N1; (3)梯子与墙不仅接触而且有相互挤 压,所以有弹力N2产生,方向垂直于墙 而指向梯子。 (4)梯子与墙之间的接触面是光滑的,所 以无摩擦力;假设地面也是光滑的,则梯子 将沿墙向下滑动,所以梯子下端有相对向右 滑动的趋势,应受到向左的静摩擦力f。梯子 的受力示意图如图所示。
《物理学基本教程》课后答案_第四章__刚体的转动
第五章 刚体的转动5-13 如图5-13(a)所示,滑轮转动惯量为0.012m kg ⋅,半径为7 cm ,物体质量为5 kg ,由一绳与倔强系数k=200 N/m 的弹簧相连,若绳与滑轮间无相对滑动,滑轮轴上的摩擦忽略不计,求:(1)当绳拉直弹簧无伸长时,使物体由静止而下落的最大距离;(2)物体速度达最大值的位置及最大速率.分析 下面的5-17题中将证明,如果绕定轴转动的刚体除受到轴的支承力外仅受重力作用,则由刚体和地球组成的系统机械能守恒.如果将滑轮、地球和物体与弹簧组成一个弹性系统和重力系统合成的系统,当无重力和弹性力以外的力作功的情况下,整个系统的机械能守恒,可以应用机械能守恒定律.下面的解则仅应用功能原理和力矩所作的功与刚体转动动能的关系进行计算.解 (1) 物体由静止而下落到最低点时,速度为零,位移为1x ,在此期间重力所作的功完全转换为弹簧弹性势能的增量,即21121kx mgx = m 0.49m 2008.95221=⨯⨯==k mg x (2)物体与滑轮受力如图5-13(b)所示,设物体的最大速率为0v ,此时的位移为0x ,加速度00=a ,滑轮的角加速度000==R a α,分别应用牛顿第二定律和转动定律T1aF ’T1m m g(a) (b)图5-13ma F mg =-T1αJ R F F =-)(T2T1可得此时T1F mg =,F T1= F T2,又因对于轻弹簧有0T2kx F =,则得m 0.245m 2008.950=⨯==k mg x 在此过程中,重力所作之功等于弹性势能的增量、物体动能和滑轮转动动能的增量的和,即2020200212121ωJ m kx mgx ++=v 因R00v =ω,得 m/s 31.1m/s 9.85)07.001.05(2001)(122=⨯⨯+⨯=+=mg R J m k v5-7 如图5-7(a )所示的系统中,m 1 = 50 kg ,m 2 = 40 kg ,圆盘形滑轮质量m = 16 kg ,半径R = 0.1 m ,若斜面是光滑的,倾角为30°,绳与滑轮间无相对滑动,不计滑轮轴上的摩擦,(1)求绳中张力;(2)运动开始时,m 1距地面高度为1 m ,需多少时间m 1到达地面?分析 由于存在物体运动和滑轮定轴转动,而且必须考虑圆盘形滑轮的质量,这是一个质点动力学和刚体动力学的综合问题,应该采用隔离物体法,分别m αF ’T1 F T1 m 2 m 1 F F T2a︒30m 2g m 1g(a ) (b )图5-7对运动物体作受力分析,对转动的滑轮作所受力矩的分析,然后分别应用牛顿第二定律和转动定律.解 (1)各物体与滑轮受力情况如图5-7(b )所示,其中F T1= F ’T1,F T2= F ’T2,轴对滑轮的支承力F N 不产生力矩,选取物体运动方向为坐标轴正向,分别应用牛顿第二定律和转动定律,可得22121rad/s 3021)(30sin =++︒-=g mR R m m m m α N 340)(1T1=-=αR g m FN 316)30sin (2T2=+︒=αR g m F2m/s 3==αR a(2) m 1到达地面的时间为s 0.816s 3122=⨯==a h t 、5-1 一个匀质圆盘由静止开始以恒定角加速度绕过中心而垂直于盘面的定轴转动.在某一时刻,转速为10 r/s ,再转60转后,转速变为15 r/s ,试计算:(1)角加速度;(2)由静止达到10 r/s 所需时间;(3)由静止到10 r/s 时圆盘所转的圈数.分析 绕定轴转动的刚体中所有质点都绕轴线作圆周运动,并具有相同的角位移、角速度和角加速度,因此描述运动状态的物理量与作圆周运动的质点的相似.当角加速度恒定时,绕定轴转动的刚体用角量表示的运动学公式与匀加速直线运动的公式类似.解 (1) 根据题意,转速由rad/s 1021⨯=πω变为rad/s 1522⨯=πω期间的角位移rad 260πθ⨯=,则角加速度为22222122rad/s 54.6rad/s 2602)102()152(2=⨯⨯⨯-⨯=-=πππθωωα (2) 从静止到转速为rad/s 1021⨯=πω所需时间为s 9.61s 54.61021=⨯==παωt (3) t 时间内转的圈数为48261.91022122121=⨯⨯⨯===ππωππθt N 5-2 唱片在转盘上匀速转动,转速为78 r/min ,由开始到结束唱针距转轴分别为15 cm 和7.5 cm ,(1)求这两处的线速度和法向加速度;(2)在电动机断电以后,转盘在15 s 内停止转动,求它的角加速度及转过的圈数.分析 绕定轴转动的刚体中所有质点具有相同的角位移、角速度和角加速度,但是线速度、切向加速度和法向加速度等线量则与各质点到转轴的距离有关.角量与线量的关系与质点圆周运动的相似.解 (1) 转盘角速度为rad/s 8.17rad/s 60278=⨯=πω,唱片上m 15.01=r 和m 075.02=r 处的线速度和法向加速度分别为m/s 1.23m/s 15.017.811=⨯==r ωv222121n m/s 10.0m/s 15.017.8=⨯==r ωam/s .6130m/s 075.017.822=⨯==r ωv222222n m/s .015m/s 075.017.8=⨯==r ωa(2) 电动机断电后,角加速度为22rad/s 545.0rad/s 1517.800-=-=-=t ωα 转的圈数为 75.921517.8212212=⨯⨯===πωππθt N 5-3 如图5-3所示,半径r 1 = 30 cm 的A 轮通过皮带被半径为r 2 = 75 cm 的B 轮带动,B 轮以π rad/s 的匀角加速度由静止起动,轮与皮带间无滑动发生,试求A 轮达到3000 r/min 所需要的时间. 分析 轮与皮带间无滑动,则同一时刻,两轮边缘的线速度相同,均等于皮带的传送速度;两轮边缘的切向加速度也相同,均等于皮带的加速度.解 设A 、B 轮的角加速度分别为A α、B α,由于两轮边缘与皮带连动,切向加速度相同,即2B 1A r r αα=则 B 12A ααr r = A 轮角速度达到rad/s 6030002⨯=πω所需要的时间为 s 40s 75.06030.0300022B 1A =⨯⨯⨯⨯===ππαωαωr r tB A r 1 r 2图5-35-4 在边长为b 的正方形的顶点上,分别有质量为m 的四个质点,求此系统绕下列转轴的转动惯量:(1)通过其中一质点A ,平行于对角线BD 的转轴,如图5-4所示.(2)通过A 垂直于质点所在平面的转轴.分析 由若干质点组成的质点系对某转轴的转动惯量等于各质点对该转轴转动惯量的叠加.每一质点对转轴的转动惯量等于它的质量与其到转轴的垂直距离平方的乘积. 解 (1)因质点B 和D 到转轴的垂直距离A 2B 和A 1D 为a 22,质点C 到转轴的垂直距离AC 为a 2,而质点A 位于转轴上,则系统对通过A 点平行于BD 的转轴的转动惯量为()222132222ma am a m J =+⎪⎪⎭⎫ ⎝⎛=(2) 因质点B 和D 到转轴的垂直距离AB 和AD 为a ,质点C 到转轴的垂直距离AC 为a 2,而质点A 位于转轴上,则系统对通过A 垂于质点所在平面转轴的转动惯量为()2222422ma a m ma J =+=5-5 求半径为R ,质量为m 的均匀半圆环相对于图5-5中所示轴线的转动惯量.分析 如果刚体的质量连续分布在一细线上,可用质量线密度描述其分布情况,如果分布是均匀的,则质量线密度λ为常量.在刚体上取一小段线元l d ,质量为l d λ,对转轴的转动惯量为l r d 2λ,其中该线元AA 2B图5-4R图5-5到转轴的距离r 与线元在刚体上的位置有关.整个刚体的转动惯量就是刚体上所有线元转动惯量的总和,即所取线元的转动惯量对刚体分布的整个区域积分的结果.解 均匀半圆环的质量线密度为Rm πλ=,在半圆环上取一小段圆弧作为线元θd d R l =,质量为 θπθπλd d d d m R R m l m === 此线元到转轴的距离为θsin R r =,对轴线的转动惯量为m r d 2,则整个半圆环的转动惯量为2022221d sin d mR m R m r J =⋅==⎰⎰θπθπ 5-6 一轻绳跨过滑轮悬有质量不等的二物体A 、B ,如图5-6(a)所示,滑轮半径为20 cm ,转动惯量等于2m kg 50⋅,滑轮与轴间的摩擦力矩为m N 198⋅.,绳与滑轮间无相对滑动,若滑轮的角加速度为2rad/s 362.,求滑轮两边绳中张力之差. 分析 由于定轴转动的刚体的运动规律遵从转动定律,因此对于一个定轴转动的滑轮来说,仅当其质量可以忽略,转动惯量为零,滑轮加速转动时跨越滑轮的轻绳两边的张力才相等.这就是在质点动力学问题中通常采用的简化假设.在掌握了转动定律后,不应该再忽略滑轮质量,通常将滑轮考虑为质量均匀分布的圆盘,则跨越滑轮的轻绳两边的张力对转轴的合力矩是滑轮产生角加速度的原因.解 滑轮所受力和力矩如图5-6(b)所示,其中跨越滑轮的轻绳两边的张力分别为F T1和F T2,轴的支承力F N 不产生力矩,由转动定律可得fF T1 F T2(a) (b)图5-6αJ M R F F =--f T2T1)()(1f T2T1M J RF F +=-α N 101.08N )1.9836.250(2.01 3⨯=+⨯⨯= 5-7 如图5-7(a )所示的系统中,m 1 = 50 kg ,m 2 = 40 kg ,圆盘形滑轮质量m = 16 kg ,半径R = 0.1 m ,若斜面是光滑的,倾角为30°,绳与滑轮间无相对滑动,不计滑轮轴上的摩擦,(1)求绳中张力;(2)运动开始时,m 1距地面高度为1 m ,需多少时间m 1到达地面?分析 由于存在物体运动和滑轮定轴转动,而且必须考虑圆盘形滑轮的质量,这是一个质点动力学和刚体动力学的综合问题,应该采用隔离物体法,分别对运动物体作受力分析,对转动的滑轮作所受力矩的分析,然后分别应用牛顿第二定律和转动定律.解 (1)各物体与滑轮受力情况如图5-7(b )所示,其中F T1= F ’T1,F T2= F ’T2,轴对滑轮的支承力F N 不产生力矩,选取物体运动方向为坐标轴正向,分别应用牛顿第二定律和转动定律,可得m αF ’T1 F T1 m 2 m 1 F F T2a︒30m 2g m 1g(a ) (b )图5-7由于物体的加速度等于滑轮边缘的线速度,则αR a =,与以上各式联立解得22121rad/s 3021)(30sin =++︒-=g mR R m m m m α N 340)(1T1=-=αR g m FN 316)30sin (2T2=+︒=αR g m F2m/s 3==αR a(2) m 1到达地面的时间为s 0.816s 3122=⨯==a h t 5-8 飞轮质量为60 kg ,半径为0.25 m ,当转速为1000 r/min 时,要在5 s 内令其制动,求制动力F ,设闸瓦与飞轮间摩擦系数μ=0.4,飞轮的转动惯量可按匀质圆盘计算,闸杆尺寸如图5-8所示.分析 制动力F 作用在闸杆上,闸杆在制动力和飞轮的正压力的力矩作用下达到平衡,转动轴在墙上,这是刚体在力矩作用下的平衡问题.由于二力的力臂已知,应该求出闸杆与飞轮之间的正压力.飞轮受到闸杆的正压力、闸瓦与飞轮间摩擦力和轴的支承力作用,其中闸杆的正压力和轴的支承力的力矩为零,在闸瓦与飞轮间摩擦力的力矩作用下制动,应用转动定律可以求出摩擦力矩,然后由摩擦力与正压力关系可以求出闸杆与飞轮之间的正压力.F图5-8解 以飞轮为研究对象,飞轮的转动惯量为221mR J =,制动前角速度为rad/s 6010002⨯=πω,制动时角加速度为tωα-=.制动时闸瓦对飞轮的压力为F N ,闸瓦与飞轮间的摩擦力N f F F μ=,应用转动定律,得αα2f 21mR J R F ==- 则 t mR F μω2N =以闸杆为研究对象.在制动力F 和飞轮对闸瓦的压力-F N 的力矩作用下闸杆保持平衡,两力矩的作用力臂分别为m )75.050.0(+=l 和m 50.01=l ,则有01N =-l F FlN 157N 6054.021000225.06075.050.050.021N 1=⨯⨯⨯⨯⨯⨯⨯+===πμωt mR l l F l l F 5-9 一风扇转速为900 r/min ,当马达关闭后,风扇均匀减速,止动前它转过了75转,在此过程中制动力作的功为44.4 J ,求风扇的转动惯量和摩擦力矩.分析 合外力矩对刚体所作的功等于刚体的转动动能的增量.制动过程中风扇只受摩擦力矩作用,而且由于风扇均匀减速,表明摩擦力矩为恒定值,与风扇角位移的乘积就是所作的功.解 设制动摩擦力矩为M ,风扇转动惯量为J ,止动前风扇的角位移N πθ2=,摩擦力矩所作的功为N M M W πθ2⋅-=-=摩擦力矩所作的功应等于风扇转动动能的增量,即2210ωJ W -= 则 2222m kg 01.0m kg )60/2900()4.44(22⋅=⋅⨯-⨯-=-=πωWJ m N 0.0942m N 7524.442⋅=⋅⨯--=-=ππN W M5-10 如图5-10(a )所示,质量为24 kg 的鼓形轮,可绕水平轴转动,一绳缠绕于轮上,另一端通过质量为5 kg 的圆盘形滑轮悬有10 kg 的物体,当重物由静止开始下降了0.5 m 时,求:(1)物体的速度;(2)绳中张力.设绳与滑轮间无相对滑动.分析 这也是一个质点动力学和刚体动力学的综合问题,鼓形轮和滑轮都视为圆盘形定轴转动的刚体,应该采用隔离物体法,分别对运动物体作受力分析,对刚体作所受力矩的分析,然后分别应用牛顿第二定律和转动定律.解 各物体受力情况如图5-10(b )所示,其中F T1= F ’T1,F T2= F ’T2,鼓形轮的转动惯量为2121R m ,圆盘形滑轮的转动惯量为2221r m ,分别应用牛顿第二定律和转动定律,可得ma F mg =-T2222T1T221)(αr m r F F =- 121T121αR m R F = (1) 绳与滑轮间无相对滑动,物体的加速度等于鼓形轮和滑轮边缘的切向加速度,即12ααR r a ==.重物由静止开始下降了h = 0.5 m 时,速度ah 2=v ,由以上各式得αT1 F 2α ’T2 a F T2m g(a ) (b )图5-10m/s 2m/s )524(21105.08.9102)(212221=+⨯+⨯⨯⨯=++==m m m mgh ah v (2)绳中张力为N 48N 5241028.924102211T1=++⨯⨯⨯=++=m m m g mm F N 85N 5241028.9)524(102)(2121T2=++⨯⨯+⨯=+++=m m m g m m m F 5-11 一蒸汽机的圆盘形飞轮质量为200 kg ,半径为1 m ,当飞轮转速为120 r/min 时关闭蒸汽阀门,若飞轮在5 min 内停下来,求在此期间飞轮轴上的平均摩擦力矩及此力矩所作的功.分析 制动过程中飞轮只受摩擦力矩作用,该摩擦力矩不一定为恒定值,但是由于只需求平均摩擦力矩,因此可以假设飞轮均匀减速,由已知条件求出平均角加速度,再应用转动定律求出平均摩擦力矩.解 飞轮转动惯量为221mR J =,关闭蒸汽阀门后t = 5 min 内的平均角加速度为t00ωα-=,应用转动定律,平均摩擦力矩 m N 194m N 60560/212012002121202⋅-=⋅⨯⨯⨯⨯⨯-=-==.t mR J M πωα 在此期间平均摩擦力矩所作的功等于飞轮转动动能的增量J 7896J )60/2120(12002121 21212102220220-=⨯⨯⨯⨯⨯-=⋅-=-=πωωm R J W 负号表示平均摩擦力矩作负功,方向与飞轮旋转方向相反.5-12 长为85 cm 的均匀细杆,放在倾角为45°的光滑斜面上,可以绕过上端点的轴在斜面上转动,如图5-12(a)所示,要使此杆实现绕轴转动一周,至少应给予它的下端多大的初速度?分析 细杆在斜面上转动,斜面的支承力与转轴平行,转轴的支承力通过转轴,它们的力矩都为零,只有重力在转动平面内分量的力矩作功.解 如图5-12(b)所示,杆所受重力在转动平面内的分量为︒45sin mg ,当杆与初始位置的夹角为θ时,重力分量对转轴的力矩为θsin 2145sin l mg ⋅︒,此时若杆有角位移θd ,则重力矩所作的元功为θθd sin 2145sin d ⋅⋅︒=l mg W 杆从最低位置到最高位置重力矩所作的功为︒-=⋅⋅︒-==⎰⎰45sin d sin 2145sin d 0mgl l mg W W πθθ 重力矩所作的功等于此期间杆的转动动能的增量2021045sin ωJ mgl -=︒- 其中231ml J =,t00v =ω,则 m/s 5.94m/s 45sin 85.08.9645sin 60=︒⨯⨯⨯=︒=gl v5-13 如图5-13(a)所示,滑轮转动惯量为0.012m kg ⋅,半径为7 cm ,物体质量为5 kg ,由一绳与倔强系数k=200 N/m 的弹簧相连,若绳与滑轮间无相对滑动,滑轮轴上的摩擦忽略不计,求:(1)当绳拉直弹簧无伸长时,使物体由静止而下落的最大距离;(2)物体速度达最大值的位置及最大速率.v 0 ︒45 (a) (b) 图5-12分析 下面的5-17题中将证明,如果绕定轴转动的刚体除受到轴的支承力外仅受重力作用,则由刚体和地球组成的系统机械能守恒.如果将滑轮、地球和物体与弹簧组成一个弹性系统和重力系统合成的系统,当无重力和弹性力以外的力作功的情况下,整个系统的机械能守恒,可以应用机械能守恒定律.下面的解则仅应用功能原理和力矩所作的功与刚体转动动能的关系进行计算.解 (1) 物体由静止而下落到最低点时,速度为零,位移为1x ,在此期间重力所作的功完全转换为弹簧弹性势能的增量,即21121kx mgx = m 0.49m 2008.95221=⨯⨯==k mg x (2)物体与滑轮受力如图5-13(b)所示,设物体的最大速率为0v ,此时的位移为0x ,加速度00=a ,滑轮的角加速度000==R a α,分别应用牛顿第二定律和转动定律ma F mg =-T1αJ R F F =-)(T2T1可得此时T1F mg =,F T1= F T2,又因对于轻弹簧有0T2kx F =,则得m 0.245m 2008.950=⨯==k mg x 在此过程中,重力所作之功等于弹性势能的增量、物体动能和滑轮转动动能T1aF ’T1m m g(a) (b)图5-13的增量的和,即2020200212121ωJ m kx mgx ++=v 因R00v =ω,得 m/s 31.1m/s 9.85)07.001.05(2001)(122=⨯⨯+⨯=+=mg R J m k v5-14 圆盘形飞轮A 质量为m ,半径为r ,最初以角速度ω0转动,与A 共轴的圆盘形飞轮B 质量为4m ,半径为2r ,最初静止,如图5-14所示,两飞轮啮合后,以同一角速度ω转动,求ω及啮合过程中机械能的损失.分析 当物体系统所受的合外力矩为零时,系统的角动量守恒,在此过程中,由于相互作用的内力作功,机械能一般不守恒.解 以两飞轮组成的系统为研究对象,由于运动过程中系统无外力矩作用,角动量守恒,有ωωω2202)2(4212121r m mr mr += 得 0171ωω= 初始机械能为2022021412121ωωmr mr W =⋅= 啮合后机械能为2022222241171)2(421212121ωωωmr r m mr W =⋅+⋅= 则机械能损失为1202211716411716W mr W W W ==-=∆ω 5-15 一人站在一匀质圆板状水平转台的边缘,转台的轴承处的摩擦可忽略A图5-14不计,人的质量为m ’,转台的质量为10 m ’,半径为R .最初整个系统是静止的,这人把一质量为m 的石子水平地沿转台的边缘的切线方向投出,石子的速率为v (相对于地面).求石子投出后转台的角速度与人的线速度.分析 应用角动量守恒定律,必须考虑定律的适用条件,即合外力矩为零.此外还应该注意到,定律表达式中的角动量和角速度都必须是对同一惯性参考系选取的,而转动参考系不是惯性参考系.解 以人、转台和石子组成的系统为研究对象,由于系统无外力矩作用,角动量守恒,设转台角速度ω的转向与投出的石子速度v 方向一致,初始时系统角动量为零,得0=+v mR J ω 人和转台的转动惯量为221021R m R m J '+'=,代入上式后得 Rm m '-=6v ω 人的线速度 mm R '-=='6v v ω 其中负号表示转台角速度转向和人的线速度方向与假设方向相反.5-16 一人站立在转台上,两臂平举,两手各握一个m = 4 kg 的哑铃,哑铃距转台轴r 0 = 0.8 m ,起初,转台以ω0 = 2π rad/s 的角速度转动,然后此人放下两臂,使哑铃与轴相距r = 0.2 m ,设人与转台的转动惯量不变,且J = 52m kg ⋅,转台与轴间摩擦忽略不计,求转台角速度变为多大?整个系统的动能改变了多少?分析 角动量守恒定律是从定轴转动的刚体导出的,却不但适用与刚体,而且适用于绕定轴转动的任意物体和物体系统.解 以人、转台和哑铃组成的系统为研究对象,由于系统无外力矩作用,角动量守恒,有ωω)2()2(2020mr J mr J +=+rad/s 12.0rad/s 22.04258.042522220220=⨯⨯⨯+⨯⨯+=++=πωωmr J mr J 动能的增量为J183 J )2()8.0425(21J 12)2.0425(21 )2(21)2(2122222020220=⨯⨯⨯+⨯-⨯⨯⨯+⨯=+-+=-=∆πωωmr J mr J W W W 5-17 证明刚体中任意两质点相互作用力所作之功的和为零.如果绕定轴转动的刚体除受到轴的支承力外仅受重力作用,试证明它的机械能守恒.分析 在刚体动力学中有很多涉及重力矩作功的问题,如果能证明当只有重力矩作功时刚体和地球组成的系统机械能守恒,就能应用机械能守恒定律,而且还可以用刚体的质心的势能代替整个刚体中所有质点势能的总和,使求解过程大大简化. 证 刚体中任意两质点相互作用力沿转轴方向的分量对定轴转动不起作用,而在垂直于转轴的平面内的分量F 和-F 大小相等,方向相反,作用在一条直线上,如图5-17所示.设F 与转轴的垂直距离为ϕsin r ,则当刚体有微小角位移θd 时,力F 所作的功为θϕd sin Fr ,而其反作用力-F 所作的功为θϕd sin Fr -,二者之和为零,即刚体中任意两质点相互作用力所作之功的和为零.绕定轴转动的刚体除受到轴的支承力外仅受重力作用,刚体中任意质点则受到内力和重力作用,当刚体转动时,因为已经证明了任意两质点相互作用内力所作之功的和为零,则刚体中各质点相互作用力所作的总功为零,而且轴的支承力-F图5-17也不作功,就只有重力作功,因此机械能守恒.5-18 一块长m 50.0=L ,质量为m '=3.0 kg 的均匀薄木板竖直悬挂,可绕通过其上端的水平轴无摩擦地自由转动,质量m =0.1kg 的球以水平速度m/s 500=v 击中木板中心后又以速度m/s 10=v 反弹回去,求木板摆动可达到的最大角度.木板对于通过其上端轴的转动惯量为231L m J '= . 分析 质点的碰撞问题通常应用动量守恒定律求解,有刚体参与的碰撞问题则通常应用角动量守恒定律求解.质点对一点的角动量在第四章中已经讨论过,当质点作直线运动时,其角动量的大小是质点动量和该点到质点运动直线的垂直距离的乘积.解 对球和木板组成的系统,在碰撞瞬间,重力对转轴的力矩为零,且无其他外力矩作用,系统角动量守恒,碰撞前后球对转轴的角动量分别为021v mL 和v mL 21-,设碰后木板角速度为ω,则有 ωJ mL mL +-=v v 21210 设木板摆动可达到的最大角度为θ,如图5-18所示,木板摆动过程中只有重力矩作功,重力矩所作的功应等于木板转动动能的增量,即)1(cos 21d sin 2121002-'=⋅'-=-⎰θθθωθgL m L g m J (1) 由以上两式得388.050.08.90.34)1050(1.0314)(31cos 2222202=⨯⨯⨯+⨯⨯-='+-=gL m m v v θ ︒==19.67)388.0arccos(θ根据5-17的结果,由于木板在碰撞后除受到轴的支承力外仅受重力作用,v mm ’g图5-18它的机械能守恒,取木板最低位置为重力势能零点,达到最高位置时它的重力势能应等于碰撞后瞬间的转动动能,也可以得到(1)式.5-19 半径为R 质量为m '的匀质圆盘水平放置,可绕通过圆盘中心的竖直轴转动.圆盘边缘及R /2处设置了两条圆形轨道,质量都为m 的两个玩具小车分别沿二轨道反向运行,相对于圆盘的线速度值同为v .若圆盘最初静止,求二小车开始转动后圆盘的角速度.分析 当合外力矩为零时,应用角动量守恒定律应该注意到表达式中的角动量和角速度都是对同一惯性参考系选取的.转动参考系不是惯性参考系,所以小车对圆盘的速度和角动量必须应用相对运动速度合成定理转换为对地面的速度和角动量.解 设两小车和圆盘的运动方向如图5-19所示,以圆盘的转动方向为正向,外轨道上小车相对于地面的角动量为)(v -ωR mR ,内轨道上小车相对于地面的角动量为)21(21v +ωR R m ,圆盘的角动量为ωω221R m J '=.对于两小车和圆盘组成的系统,外力对转轴的力矩为零,角动量守恒,得ωωω221)21(21)(R m R R m R mR '+++-v v R m m m )25(2'+=v ω vωv图5-19。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章刚体力学测验题
和,它们到转轴的距离分别为和,
1.一飞轮绕轴作变速转动,飞轮上有两点
则在任意时刻,
和两点的加速度大小之比为
A.;
B.;
C.要由该时刻的角速度决定;
D.要由该时刻的角加速度决定。
2.如下图、、、是附于刚性轻细杆上的4个质点,
质量分别为,,和,系统对轴的转动惯量为
A.
;
B.;
C.;
D.。
3.一质点从静止出发绕半径为的圆周作匀变速圆周运动,角加速度为,当质点走完一圈回到出发点时,所经历的时间是
A.;B.;C.;D.不能确定。
4.一人张开双臂,手握哑铃,坐在转椅上,让转椅转动起来,若此后无外力矩作用,则当此人收回双臂时,人和转椅这一系统的
A.转速加大,转动动能不变;
B.角动量和转动动能都不变;
C.转速和角动量都加大;
D.角动量保持不变,转动动能加大。
5.有一半径为的匀质水平圆转台,绕通过其中心且垂
直圆台的轴转动,转动惯量为,开始时有一质量为的
人站在转台中心,转台以匀角速度转动,随后人沿
着半径向外跑去,当人到达转台边缘时,转台的角速度为
A.;B.;C.;D.。
6.质量长的细棒对通过距一端、与棒垂直的轴的转动惯量为
A.;
B.;
C.;
D.。
7.原来张开双臂以角速度旋转的冰上芭蕾舞演员其转动动能为,将手臂收回使转动惯量减少到原来的1/3 ,则其转速和动能分别变为
A.;;
B.;;
C.;;
8.三个完全相同的转轮绕一公共轴旋转。
它们的角速度大小相同,但其中一轮的转动方向与另外两个相反。
今沿轴的方向把三者紧靠在一起,它们获得相同的角速度。
此时系统的动能与原来三轮的总动能相比,正确答案是
A.减少到 1/3 ;
B.减少到1/9 ;
C.增大到3 倍;
D.增大到 9 倍。
9.质量为、长为的细棒,可绕通过其上端的水平轴在竖直平面内无摩擦地转动,静
止在竖直位置。
被一粒石子击中后细棒获得角速度。
则棒转到水平位置时的角速度和角
加速度大小分别为
A.,;
B.,;
C.,;
D.,。
10.如图,质量为、半径为的圆盘,可无摩擦地绕水平轴转动,轻绳的一端系在圆
盘的边缘,另一端悬挂一质量为的物体。
则当物体由静止下落高度时,其速度为
A.;
B.;
C.;
D.。