泛函分析第3章 连续线性算子与连续线性泛函

合集下载

泛函分析课件

泛函分析课件

泛函分析课件泛函分析是数学中的一门重要学科,它研究的是无限维空间中的函数和算子。

在实际应用中,泛函分析广泛应用于物理学、工程学、经济学等领域。

本文将介绍泛函分析的基本概念和主要内容,以及其在实际应用中的一些例子。

一、泛函分析的基本概念泛函分析的基本概念包括向量空间、线性映射、内积、范数等。

向量空间是泛函分析的基础,它是一组满足一定条件的向量的集合。

线性映射是指将一个向量空间映射到另一个向量空间的函数,它保持向量空间的加法和数乘运算。

内积是向量空间中的一种运算,它是一个函数,将两个向量映射到一个实数。

范数是向量空间中的一种度量,它衡量向量的大小。

二、泛函分析的主要内容泛函分析的主要内容包括线性算子、连续性、紧性、谱理论等。

线性算子是指将一个向量空间映射到另一个向量空间的线性映射,它在泛函分析中起到了重要的作用。

连续性是指在一个向量空间中,如果两个向量足够接近,它们的映射也应该足够接近。

紧性是指一个映射将有界集映射到有界集,且将紧集映射到紧集。

谱理论是研究线性算子谱性质的一门学科,它对于解析和估计线性算子的特征值和特征向量具有重要意义。

三、泛函分析在实际应用中的例子泛函分析在实际应用中有许多例子,下面将介绍其中的几个。

首先是量子力学中的波函数,它是一个复数函数,描述了量子系统的状态。

泛函分析提供了一种理论框架,可以对波函数进行分析和计算。

其次是信号处理中的傅里叶变换,它将一个信号分解成一系列正弦和余弦函数的叠加。

泛函分析提供了一种数学工具,可以对信号进行分析和处理。

再次是优化问题中的拉格朗日乘子法,它是一种求解约束优化问题的方法。

泛函分析提供了一种理论基础,可以对优化问题进行建模和求解。

最后是经济学中的效用函数,它描述了个体对不同商品或服务的偏好程度。

泛函分析提供了一种数学工具,可以对效用函数进行分析和计算。

综上所述,泛函分析是一门重要的数学学科,它研究的是无限维空间中的函数和算子。

泛函分析的基本概念包括向量空间、线性映射、内积、范数等。

泛函分析简介

泛函分析简介

泛函分析简介什么是泛函分析泛函分析是数学的一个分支,主要研究无限维空间的线性算子及其性质。

它源于传统的分析学,特别是微分方程、积分方程和最优化理论等领域的发展。

通过研究空间中的点和函数,以及这些点和函数之间的映射关系,泛函分析提供了一种强大的工具用于解决各种实际问题。

在物理学、工程学、经济学和其他科学领域中,泛函分析有着广泛的应用。

泛函分析的基本概念线性空间线性空间(或称向量空间)是泛函分析的基础。

它由一组元素组成,这些元素可以通过向量加法和标量乘法进行组合。

形式上,若 (V) 是一个集合,满足以下条件,则 (V) 是一个线性空间:对于任意 (u, v V),则 (u + v V)(封闭性)。

对于任意 (u V) 和标量 (c),则 (c u V)(封闭性)。

存在零向量 (0 V),使得对于任意 (u V),有 (u + 0 = u)。

对于每个向量 (u V),存在一个对应的负向量 (-u V),使得 (u + (-u) = 0)。

向量加法满足交换律和结合律。

标量乘法满足分配律以及结合律。

拓扑空间拓扑空间是讨论连续性和极限的重要工具。

在泛函分析中,通常会结合线性空间与拓扑结构。

例如,一个拓扑向量空间需要具备以下性质:每个点都有邻域;任意多个开集的并集仍为开集;有限多个开集的交集仍为开集。

此时,可以引入收敛、限制、开集、闭集等概念,从而更深入地研究函数的性质。

巴拿赫空间与希尔伯特空间巴拿赫空间(Banach Space)是一类重要的完备线性空间,其定义为一个带有范数的线性空间,使得它是完备的。

也就是说,在这个空间中,每个柯西序列都收敛于某个元素。

范数是一个度量,用来描述向量之间的“距离”。

希尔伯特空间(Hilbert Space)则是一个完备的内积空间,是巴拿赫空间的一种特殊情况。

内积允许我们定义角度、正交性等概念,对于研究四维空间中的物理现象尤为重要。

主要定理与结果超平面定理与 Hahn-Banach 定理超平面定理指出,在有限维欧几里德空间中,任何非空闭子集至少可以由一个超平面相切。

泛函3-6,3-7,3-8,3-9,4-4

泛函3-6,3-7,3-8,3-9,4-4

GrT =
{( x, Tx ) : x ∈ X }
T 称为映射(算子) 的图象。 称为映射(算子) 的图象。
是赋范空间, 4.9 定义 设 X , Y 是赋范空间,D ⊂ X ,
T : D → Y 称为闭算子,如果 T 的图象 称为闭算子,
GrT = {( x, Tx ) : x ∈ D}
是 X ×Y 中的闭集。 中的闭集。
3.3 定理 如果 A : X → Y 是紧线性算子, 是紧线性算子,
B ∈ B (Y , Z ), C ∈ B ( Z , X ), 则 BA, AC
均是紧线性算子。 均是紧线性算子。 系 如果X为无穷维赋范空间,紧线性算子 如果 为无穷维赋范空间, 为无穷维赋范空间 不可能有定义在Y上的有界 T : X → Y 不可能有定义在 上的有界 逆算子。 逆算子。
T : X → Y 是线性算子,如果 将X中每一 是线性算子,如果T将 中每一
有界集映成Y中的列紧集,则称 为紧线性 有界集映成 中的列紧集,则称T为紧线性 中的列紧集 算子或全连续算子。 算子或全连续算子。
在有限维赋范空间上, 在有限维赋范空间上,任何线性算子 都是有界的,把有界集映成有界集, 都是有界的,把有界集映成有界集,而在 有限维赋范空间中, 有限维赋范空间中,任何有界集都是列紧 集,因此定义在其上的线性算子都是紧线 性算子。 性算子。 在无穷维赋范空间X中,由于列紧集 在无穷维赋范空间 中 必是有界集,所以紧线性算子是有界的, 必是有界集,所以紧线性算子是有界的, 但有界线性算子不一定是紧算子。 但有界线性算子不一定是紧算子。
f ∈ X * ,使得 f ( x j ) = α j , 的数, 的数,则存在
1 ≤ j ≤ n.
8.5 系 设X是赋范空间且 x0 ∈ X ,则 是赋范空间且

泛函分析总结范文高中

泛函分析总结范文高中

泛函分析是现代数学分析的一个重要分支,它主要研究的是函数构成的函数空间以及这些空间上的线性算子。

相较于高中数学中的实变函数和复变函数,泛函分析更多地关注函数之间的相互关系和映射性质,为解决实际问题提供了新的视角和方法。

一、泛函分析的基本概念1. 函数空间:泛函分析研究的对象是函数,这些函数构成一个集合,称为函数空间。

常见的函数空间有实值函数空间、复值函数空间、有界函数空间、连续函数空间等。

2. 线性算子:函数空间上的线性算子是一种映射,它将一个函数映射到另一个函数,同时满足线性性质。

线性算子是泛函分析的核心概念,如积分算子、微分算子、傅里叶变换等。

3. 范数:范数是度量函数空间中函数“大小”的一种方式。

一个函数空间的范数满足以下性质:非负性、齐次性、三角不等式和归一性。

4. 内积:内积是度量函数空间中函数“夹角”的一种方式。

一个函数空间的内积满足以下性质:非负性、齐次性、共轭对称性和三角不等式。

二、泛函分析的主要理论1. 线性算子的谱理论:研究线性算子的特征值和特征向量,以及这些特征值和特征向量的性质。

2. 线性算子的有界性:研究线性算子是否具有有界性,以及有界性的条件。

3. 线性算子的连续性:研究线性算子是否具有连续性,以及连续性的条件。

4. 线性算子的可逆性:研究线性算子是否具有可逆性,以及可逆性的条件。

5. 线性算子的对偶性:研究线性算子的对偶算子,以及对偶算子的性质。

三、泛函分析的应用1. 微分方程:泛函分析为微分方程的求解提供了新的方法,如泛函微分方程、积分方程等。

2. 积分方程:泛函分析为积分方程的求解提供了新的方法,如变分法、迭代法等。

3. 函数论:泛函分析为函数论的研究提供了新的工具,如傅里叶分析、Sobolev空间等。

4. 线性代数:泛函分析为线性代数的研究提供了新的视角,如无穷维线性空间、线性算子等。

总之,泛函分析是一门具有广泛应用前景的数学分支。

通过对函数空间、线性算子、范数、内积等基本概念的研究,泛函分析为解决实际问题提供了新的思路和方法。

信号与系统——泛函分析初步

信号与系统——泛函分析初步
例如,在电信领域,通常考虑能量有限信号,能量有限信号的全体 构成一个内积空间,其内积为,而且这个内积空间是一个Hilbert空间。
再如,若一个能量有限信号可以分解成无穷多个分量,即其各分量 平方可和
可证明,按内积构成的内积空间,也是一个Hilbert空间。 Cauchy-Schwarz不等式:为内积空间,,有
定义(和、直和,Sum、Direct sum):
设是的线性子空间,称为子空间的和。如果,即p个子空间彼此无 交集,则这些子空间的和称为直和,记为:。
定理:设是的线性子空间,则 (1)子空间的交也是的子空间; (2)子空间的和也是的子空间; (3)是直和 对于,可唯一表示成
,其中。
§2.3 距离空间(度量空间)
其中,为定义域,为值域。
图2-1 算子的映射作用 定义(数域,Number field):包括0、1且对四则运算封闭 的数集。 定义(泛函,Functional):值域是实/复数域的算子称为 泛函。 注:定积分,距离,范数,内积,函数(第三种定义),(普 通)函数均为泛函。 定义(线性算子):为线性空间,,若对,
Hilbert第六问题:任何物理学理论、物理定 律、实验结论,都可以从一组数学公理出发通
过演绎得到。
希尔伯特第六问题,体现了一种对于统一的追求。
泛函分析:属于基于公理的分析体系,不在于计算,
而着眼于概念演绎,更普适、更一般、更深刻地理
解、解释数学物理问题。
1. 内积空间:
定义(内积,Inner product):设为实或复线性空间,若对 (复数域),均有一实数或复数与之对应,记为,满足:
注意2:满足三条公里的距离定义可以有多种。因此,同一个集合
与不同定义的距离结合,构成不同的度量空间。

高等数学中的泛函分析与算子理论

高等数学中的泛函分析与算子理论

泛函分析与算子理论是高等数学中的重要分支,被广泛应用于数学、物理、工程等领域。

它研究的主要对象是函数空间以及它们上的线性算子。

通过泛函分析与算子理论,我们可以更深入地理解函数的性质,并在实际问题中应用它们。

首先,什么是泛函分析?泛函分析是研究函数空间以及它们上的运算的数学分支。

在泛函分析中,函数不再是传统的数学对象,而是作为数学空间中的元素来讨论。

通过引入函数的概念,我们可以更灵活地处理各种函数的性质以及它们之间的关系。

在泛函分析中,函数空间是一个非常重要的概念。

所谓函数空间就是由一组函数组成的集合,它们具有某种共同的性质。

常见的函数空间有连续函数空间、可微函数空间、可积函数空间等。

通过对函数空间的研究,我们可以得到一些关于函数性质的重要结论,例如收敛性、连续性等。

另外,泛函分析还研究了函数空间上的线性算子。

线性算子是指将一个函数映射到另一个函数,并且满足线性性质。

通过研究线性算子,我们可以更深入地了解函数之间的关系。

例如,线性算子的特征值与特征向量是研究线性算子性质的重要工具,它们可以帮助我们分解复杂的函数运算。

算子理论是泛函分析的重要组成部分。

算子理论主要研究线性算子的性质以及它们在函数空间中的作用。

通过算子理论,我们可以通过一些基本算子的组合来构造更复杂的算子,从而解决一些实际问题。

例如,微分方程中的算子可以通过算子理论的方法进行求解,从而得到方程的解析解。

在实际问题中,泛函分析与算子理论有着广泛的应用。

例如,在物理学中,泛函分析与算子理论可以用来研究量子力学中的波函数以及量子算符的性质。

在工程学中,它们可以用于信号处理、图像处理等领域。

另外,在金融学中,通过泛函分析与算子理论,我们可以对金融市场的模型进行建模与分析。

综上所述,泛函分析与算子理论是高等数学中的重要分支。

它通过研究函数空间以及其上的线性算子,帮助我们更深入地理解函数的性质,并在实际问题中应用它们。

通过泛函分析与算子理论,我们可以更好地处理各种数学问题,并且深入到其他学科中解决实际问题。

数学中的泛函分析原理

数学中的泛函分析原理泛函分析是数学中一个重要的分支,它研究的是函数空间中的向量和算子,并研究它们之间的关系和性质。

在应用数学和理论数学中都有广泛的应用。

本文将介绍泛函分析的基本原理和一些常见的应用。

一、泛函分析概述泛函分析是在无穷维向量空间中研究函数和算子的一门数学学科。

它主要关注函数的空间与函数之间的线性关系和连续性。

泛函分析广泛应用于物理学、工程学和计算机科学等领域,并为这些领域提供了强大的工具和理论支持。

二、函数空间的定义和性质函数空间是泛函分析中非常重要的概念。

它可以用来描述函数的性质和空间结构。

在泛函分析中,常见的函数空间包括连续函数空间、可积函数空间和L^p空间等。

1. 连续函数空间连续函数空间是指定义在某个区间上的连续函数的集合。

常见的连续函数空间有C[0,1]和C^k[0,1]等。

在连续函数空间中,可以定义范数和内积等结构,从而形成一个向量空间。

2. 可积函数空间可积函数空间是指具有有限或无限积分性质的函数集合。

常见的可积函数空间有L^1[0,1]和L^2[0,1]等。

可积函数空间是泛函分析中非常重要的对象,它与概率论、信号处理和图像处理等领域密切相关。

3. L^p空间L^p空间是泛函分析中非常重要的一类函数空间。

它包括了所有p 次幂可积的函数的集合。

L^p空间具有范数结构,可以用来描述函数的大小和趋势,并且在测度论、偏微分方程和调和分析等领域有重要应用。

三、泛函的定义和性质泛函是定义在函数空间上的映射,它将函数映射到实数或复数。

泛函可以看作是函数的函数,它对函数进行操作并输出一个数值。

泛函的定义和性质在泛函分析中起着关键作用。

1. 线性泛函和非线性泛函线性泛函是指满足线性性质的泛函,即对于任意的函数f和g,以及任意的实数a和b,有F(af+bg) = aF(f) + bF(g)。

非线性泛函是不满足线性性质的泛函。

2. 连续性和有界性在泛函分析中,连续性和有界性是泛函的重要性质。

泛函分析ppt课件


傅里叶变换与小波变换的应用
傅里叶变换的应用
傅里叶变换在信号处理、图像处理、语音处理等领域 有着广泛的应用。例如,在信号处理中,可以通过傅 里叶变换将信号从时域转换到频域,从而方便地进行 信号的分析和合成。在图像处理中,可以通过傅里叶 变换对图像进行频域滤波,从而实现图像的降噪和增 强。在语音处理中,可以通过傅里叶变换对语音信号 进行分析和处理,从而实现语音的识别、压缩和加密 等任务。
REPORTING
在物理学中的应用:量子力学与相对论
量子力学
泛函分析在量子力学中有着广泛的应用,如波函数的形式化 描述、薛定谔方程的推导等。
相对论
泛函分析也被用于相对论中的时空变换和场方程的构造,以 及在广义相对论中研究黑洞的性质等。
在工程学中的应用:控制理论、电气工程等
控制理论
泛函分析在控制理论中有着重要的应用 ,如研究系统的稳定性、时域响应等。
PART 05
泛函分析在信号处理中的 应用
REPORTING
信号处理的基本概念
信号的定义与分类
信号是传递或表达某些信息的数据或数据流。它可以分为 离散信号和连续信号,离散信号是离散时间点的数据,而 连续信号是连续时间点的数据。
信号处理的定义与目的
信号处理是对信号进行变换、分析和解释的过程,目的是 从原始信号中提取有用的信息,或者将原始信号变换为另 一种形式,使其更易于分析和理解。
其他应用
泛函分析还可以应用于滤波器设计、压缩感知等领域。例如,基于小波变换的压缩感知方 法可以在保持信号质量的同时,实现信号的压缩和存储。
实例分析:信号的傅里叶变换与小波变换
傅里叶变换的基本原理
傅里叶变换是一种将时域信号转换到频域的方法。它将一个时域信号表示为一系列不同频率的正弦和 余弦函数的线性组合。通过傅里叶变换,我们可以将信号从时域转换到频域,从而可以更好地分析信 号的频率特性。

泛函分析中的拓扑与线性算子

泛函分析中的拓扑与线性算子泛函分析是数学中的重要分支,研究的是无穷维空间上的函数与算子的性质和行为。

在泛函分析中,拓扑和线性算子是两个核心概念,它们在描述函数空间的结构和操作中起着关键的作用。

一、拓扑空间与拓扑结构拓扑空间是泛函分析中最基本的概念之一。

它是一个集合,再加上一个满足一定条件的拓扑结构。

拓扑结构是通过开集来描述的,它包括了空集和全集,而且对任意个开集的并集和有限个开集的交集仍然是开集。

拓扑结构可以用来定义距离、连通性、紧致性等概念。

常见的拓扑结构包括欧几里得拓扑、离散拓扑、有限补拓扑等。

在泛函分析中,我们通常研究的是拓扑向量空间,即一个向量空间上加上了一个拓扑结构。

拓扑向量空间有很多重要的性质,比如赋范向量空间和希尔伯特空间。

赋范向量空间是一种拓扑向量空间,它在向量空间的基础上还定义了一个范数函数,满足一定的条件。

希尔伯特空间是一种完备的赋范向量空间,它是无穷维内积空间的推广。

二、线性算子与连续性线性算子是泛函分析中另一个重要的概念。

它是一个从一个向量空间到另一个向量空间的映射,并且保持线性性质。

线性算子在泛函分析中扮演着非常重要的角色,它可以描述向量空间之间的映射关系,比如微分算子、积分算子等。

线性算子的性质和行为很大程度上依赖于定义域和值域的拓扑结构。

在泛函分析中,我们关注的是连续线性算子。

连续线性算子是指在拓扑空间上连续的线性映射,即在定义域和值域的拓扑中保持线性算子的连续性。

连续线性算子在泛函分析中有很多重要的性质,比如有界性、紧致性、逆算子等。

连续线性算子的理论是泛函分析的核心内容之一,它在函数空间、概率论、偏微分方程等领域中有广泛的应用。

三、拓扑与线性算子的关系拓扑和线性算子是密切相关的,在泛函分析中它们相互影响,共同构成了一个完整的理论体系。

首先,线性算子的定义域和值域的拓扑结构对其性质和行为起着重要的影响。

不同的拓扑结构可能导致线性算子的不同的性质,比如有界性、紧致性等。

泛函分析讲义张恭庆答案

泛函分析讲义张恭庆答案【篇一:《泛函分析》课程标准】>英文名称:functional analysis课程编号:407012010 适用专业:数学与应用数学学分数:4一、课程性质泛函分析属于数学一级科下的基础数学二级学科,在数学与应用数学专业培养方案中学科专业教育平台中专业方向课程系列的一门限选课程。

二、课程理念1、培育理性精神,提高数学文化素养基础数学研究数学本身的内在规律,是整个数学学科的基础,它在数学学科其他领域、物理学、工程及社会科学中都有着广泛的应用。

《泛函分析》课程是数学与应用数学本科学生的专业课程之一,是数学分析、高等代数、实变函数等基础课程的后继课程,是研究生学习的基础,。

它不仅在数学学科占有十分重要的地位,而且在其他学科领域也有广泛的应用,掌握泛函分析的方法对学生更好地理解基础课程的理论将有很大的益处。

该课程培养学生的抽象思维能力、逻辑推理能力,体现知识、能力和素质的统一,符合应用型人才培养的目标要求。

2、良好的学习状态,提高综合解题能力本课程面对的是数学与应用数学专业四年级的学生。

学生刚刚结束教育实习,准备考研的学生进入紧张复习阶段,另一部分学生开始准备找工作。

《泛函分析》这门课内容比较抽象,课时又少,所以,如何让学生安保持良好的学习状态,是本门课要面对的一个重要问题,也是学生要面对的一个具体问题。

需要师生共同努力去正确面对才能顺利完成本门课的教学任务。

为学习研究生课程和现代数学打下必要的基础;进一步提高学生的数学素养。

3、内容由浅入深本课程的框架结构是根据教学对象和教学任务来安排的:“度量空间”泛函分析的基本概念之一,十分重要。

首先,引入度量空间的概念,并在引入度量的基础上定义了度量空间中的极限、稠密集、可分空间、连续映照、柯西点列、完备度量空间,对于一般的度量空间,给出了度量空间的完备化定理,并证明了压缩映照原理。

然后,在度量空间上定义线性运算并引入范数,就得到线性赋范空间以及巴拿赫空间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3章 连续线性算子与连续线性泛函本章将介绍赋范线性空间上,特别是Banach 空间上的有界线性算子与有界线性泛函的基本理论,涉及到泛函分析的三大基本定理,即共鸣定理,逆算子定理及Hahn-Banach 定理。

他们是泛函分析早期最光辉的成果,有广泛的实际背景,尤其在各种物理系统研究中应用十分广泛。

3.1 连续线性算子与有界线性算子在线性代数中,我们曾遇到过把一个n 维向量空间n E 映射到另一个m 维向量空间m E 的运算,就是借助于m 行n 列的矩阵111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪ ⎪= ⎪⎪⎝⎭对n E 中的向量起作用来达到的。

同样,在数学分析中,我们也遇到过一个函数变成另一个函数或者一个数的运算,即微分和积分的运算等。

把上述的所有运算抽象化后,我们就得到一般赋范线性空间中的算子概念。

撇开各类算子的具体属性,我们可以将它们分成两类:一类是线性算子;一类是非线性算子。

本章介绍有界线性算子的基本知识,非线性算子的有关知识留在第5章介绍。

[定义3.1] 由赋范线性空间X 中的某子集D 到赋范线性空间Y 中的映射T 称为算子,D 称为算子T 的定义域,记为()D T ,为称像集(){},y y Tx x D T =∈为算子的值域,记作()T D 或TD 。

若算子T 满足: (1)()()(),T x y Tx Ty x y D T +=+∀∈ (2)()()(),T x TxF x D T ααα=∀∈∈称T 为线性算子。

对线性算子,我们自然要求()T D 是X 的子空间。

特别地,如果T 是由X 到实数(复数)域F 的映射时,那么称算子T 为泛函。

例 3.1 设X 是赋范线性空间,α是一给定的数,映射:T x x α→是X 上的线性算子,称为相似算子;当1α=时,称T 为单位算子或者恒等算子,记作I 。

例3.2 [],x C a b ∀∈,定义()()ta Tx t x d ττ=⎰由积分的线性知,T 是[],C a b 到[],C a b 空间中的线性算子。

若令()()[](),ba f x x d x C ab ττ=∀∈⎰则f 是[],C a b 上的线性泛函。

[定义3.2] 设,X Y 是两个赋范线性空间,:T X X →是线性算子,称T 在x 点连续的,是指若{},n n x X x x ∈→,则()n Tx Tx n →→∞;若T 在X 上每一点都连续,则称T 在X 上连续;称T 是有界的,是指T 将X 中的有界集映成Y 中有界集。

[定理3.1] 设,X Y 是赋范线性空间,T 是X 的子空间D 到Y 中的线性算子,若T 在某一点()0x D T ∈ 连续,则T 在()D T 上连续。

证明:对()x D T ∀∈,设{}()n x D T ⊂,且()n x x n →→∞,于是()00n x x x x n -+→→∞,由假设T 在0x 点连续,所以当n →∞时,有()000n n T x x x Tx Tx Tx Tx -+=-+→因此,n Tx Tx →,即T 在x 点连续。

由x 的任意性可知,T 在()D T 上连续。

定理3.1说明线性算子若在一点连续,可推出其在定义的空间上连续。

特别地,线性算子的连续性可由零元的连续性来刻画,即线性算子T 连续等价于若n x θ→(X 中零元),则n Tx θ→(Y 中零元)。

例3.3 若T 是n 维赋范线性空间X 到赋范线性空间Y 中的线性算子,则T 在X 上连续。

证明:在X 中取一组基{}12,,,n e e e ,设()()11,2,3,nm m j j j x x e Xm ==∈=∑且()m x m θ→→∞,即()0m x m →→∞,则()()()12210nm j j x m =⎡⎤→→∞⎢⎥⎣⎦∑从而()()()01,2,3,m j x j n m →=→∞。

于是()()()111max 0nnm m m jj jjj nj j Tx xTe x Tem ≤≤===≤→→∞∑∑因此,()m Tx m θ→→∞,即T 在x θ=处连续,进而T 在X 上每点连续。

[定理3.2] 设,X Y 是赋范线性空间,T 是X 的子空间D 到Y 中的线性映射,则T 有界的充分必要条件是:存在常数0M >,使不等式成立,即()()T x M xxD T≤∈ 证明:必要性。

因T 有界,所以T 将D 中的闭单位球(){}11B x x θ=≤映成Y 中的有界集,即像集()1TB θ是Y 中的有界集。

记(){}1sup :M Tx x B θ=∈,此时,对每个()()1,,xx D T x B xθθ∈≠∈,由M 的定义有x T M x ⎛⎫≤ ⎪ ⎪⎝⎭……………………(3.1) 即Tx M x ≤,而当x θ=时,不等式(3.1)变成等式。

故()x D T ∀∈有 T x M x≤ 充分性。

设A 是()D T 的任一有界集,则存在常数1M 使()1x M x A ≤∀∈。

由()()Tx M x x D T ≤∈知()1Ty M y MM y A ≤≤∈ 故TA 有界。

证毕。

[定理3.3] 设,X Y 是两个赋范线性空间,T 是从X 的子空间D 到Y 中的线性映射,则T 是连续的充要条件是T 是有界的。

证明:充分性。

设T 有界,则存在常数0M >,使对一切(),x D T T xM x ∈≤,从而对(){}(),n n x x n x D T ∂→→∞⊂有 ()()0n n n Tx Tx T x x M x x n -=-≤-→→∞即()n Tx Tx n →→∞。

所以,T 是连续的。

必要性。

若T 连续但T 是无界的,那么对每个n N ∈,必存在()n x D T ∈,使n n Tx n x >,令n n n x y n x =,那么()10n y n n=→→∞,即n y θ→,由T 的连续性,()n Ty n θ→→∞,但是另一方面,1n nn nnn x Tx Ty n x n x =>=,引出矛盾,故T 有界。

定理 3.3说明,对于线性算子,连续性与有界性是两个等价概念,今后用(),L X Y 表示X 到Y 的有界线性算子组成的集合。

例3.1 ,例3.2的线性算子均易证明是有界线性算子,但无界线性算子是存在的。

例3.4 考察定义在区间[]0,1上的连续可微函数全体,记作[]10,1C ,其中范数定义为()01max t x x t ≤≤=,不难证明,微分算子ddt是把[]10,1C 映入[]0,1C 中的线性算子。

取函数列{}sin n t π,显然,sin 1n t π=,但()sin cos dn t n n t n n dtππππ==→∞→∞ 因此,微分算子是无界的。

[定义3.3] 设,X Y 是赋范线性空间,T 是从X 到Y 的有界线性算子,对一切x X ∈,满足Tx M x ≤的正数M 的下确界,称为算子T 的范数,记作T 。

由定义可知,对一切x X ∈,都有Tx T x ≤。

[定理3.4] 设,X Y 是赋范线性空间,T 是从X 到Y 的有界线性算子,则有11sup sup supx Xx Xx Xx x x Tx T Tx Tx xθ∈∈∈=≤≠===证明:由Tx T x ≤,易得1sup x Xx T Tx ∈==……………………………………(3.2)根据T 的定义,对于任给的0ε>,存在非零0x X ∈,使()00Tx T x ε≥-令0x x x '=,则有()0Tx T ε'≥-,因此 ()11sup sup x Xx Xx x T Tx Tx ε∈∈=≤-≤≤令0ε→得 11sup sup x Xx Xx x T Tx Tx ∈∈=≤≤≤……………………(3.3)由式(3.2)和式(3.3),便得11sup sup x Xx Xx x T Tx Tx ∈∈=≤==而supx Xx Tx T xθ∈≠=,由定义易知。

例3.5 在[]1,L a b 上定义算子T 如下()()()[]()1,,xaTf x f t dt f L a b =∀∈⎰(1)把T 视为[]1,L a b 到[],C a b 的算子,求T ; (2)把T 视为[]1,L a b 到[]1,L a b 的算子,求T 。

解:算子T 的线性是显然的,下面分别求T 。

(1)设T :[][]1,,L a b C a b →,任取[]1,f L a b ∈,由于[],Tf C a b ∈,从而()()()m a x m a xxa a x ba xb T f T f x f t d t≤≤≤≤==⎰ ()()max x b aaa x bf t dt f t dt f ≤≤≤≤=⎰⎰故T 是有界的,并且1T ≤。

另一方面,取()[]01,,f t t a b b a=∈-,并且 ()0011b baaf f t dt dt b a===-⎰⎰于是0111sup max 1x b aa a x bf T Tf Tf dt dt b ab a ≤≤==≥===--⎰⎰故1T =。

(2)设T :[][]11,,L a b L a b →,任取[]1,f L a b ∈,由于[]1,Tf L a b ∈,从而()()()bx b x aaa a T f f t d t d xft d t d x =≤⎰⎰⎰⎰()()()b baaf t dt dx b a f≤=-⎰⎰因此,T 是有界的,并且T b a ≤-;另一方面,对任何使得1a b n+<的自然数n ,作函数()1,,10,,n n x a a n f x x a b n ⎧⎡⎤∈+⎪⎢⎥⎪⎣⎦=⎨⎛⎤⎪∈+ ⎥⎪⎝⎦⎩ 显然[],n f L a b ∈,且()1b n n af f t dt ==⎰,而()bxn n aaTf f t dt dx =⎰⎰()11110a b a x nnaa aa nnn x a dx ndt dt dx ++++=-++⎰⎰⎰⎰11122b a b a n n n=+--=--所以,又有sup n T Tf b a ≥=-因此,T b a =-。

此例告诉我们,虽然形式上是一样的算子,但由于视作不同空间的映射,他们的算子范数未必相同。

一般说来,求一个具体算子的范数并不容易,因此,在很多场合,只能对算子的范数作出估计。

例3.6 设(),K s t 在[][],,a b a b ⨯上连续,定义算子T :[][],,C a b C a b →为()()(),ba Tx s K s t x t dt =⎰则[][](),,,T L C a b C a b ∈,且(){}max,:baT K s t dt a s b ≤≤≤⎰证明:由于()()()max,ba a sb Tx s K s t x t dt ≤≤=⎰()()max ,max b aa s ba s bK s t dt x t ≤≤≤≤≤⎰(){}max,:baK s t dt a s bx =≤≤⎰故结论成立。

相关文档
最新文档