测量结果不确定度用于产品的合格判定

测量结果不确定度用于产品的合格判定
测量结果不确定度用于产品的合格判定

测量结果不确定度用于产品的合格判定1.双侧检验

测量结果的要求给出了上限和下限,即上、下两侧的极限值。这就是双侧检验结果的特点。

?≤ MPEV -U 被测产品为合格

?≥ MPEV +U 被测产品为不合格

MPEV -U < ? < MPEV +U被测产品为待定

MPEV—设备允许误差,U—测试设备不确定度

合格判定示意图

例如:对某一名义值为10Ω的电阻进行检验,要求电阻值的MPE≤±5%,即MPEV=0.5Ω。允许的电阻值范围是:

9.5Ω~10.5Ω

如电阻值的测量结果为:

R=10.2Ωu=0.2Ωk=2

也即电阻的可能值(真值):

10.0Ω≤R≤10.4Ω

被测电阻的误差:

10.0Ω-10.2Ω=-0.2Ω

误差的绝对值: ?=0.2Ω

根据判定准则:

?≤ MPEV -U=0.5Ω-0.2Ω=0.3Ω

则判定该电阻为合格。

如电阻值的测量结果为:

R=10.7Ωu=0.2Ωk=2 被测电阻误差的绝对值: ?=0.7Ω

根据判定准则:

?≥ MPEV +U=0.5Ω+0.2Ω=0.7Ω

则判定该电阻为不合格。

如电阻值的测量结果为:

R=10.5Ωu=0.2Ωk=2 被测电阻误差的绝对值: ?=0.5Ω

根据判定准则:

MPEV -U < ? < MPEV +U

0.5Ω-0.2Ω< ? < 0.5Ω+0.2Ω

则该电阻为待定,即无法判定。

2.单侧检验

所谓单侧检验是指产品的某些定量技术指标只规定了一个上限值USL(即合格产品不得超过的值),或下限值LSL(即合格产品不得低于的值)。这种上限或下限值是指有关技术规范或标准所规定的或供需双方供货合同上所约定的值。供方应以相当大的概率(例95%或99%)保证产品的参数不超出USL或LSL。

因此,对于供方认为合格的标准,分别对应于USL和LSL 是:y+U≤USL或y≤USL-U

y-U≥LSL 或y≥LSL+U

对于验收方认为不合格的标准则分别为:

y-U≥USL 或y≥USL+U

y+ U≤LSL 或y≤LSL- U

产品不能判定,待定的标准分别为:

USL-U<y< USL+U

LSL+U>y>LSL-U

式中y是实际测量值。

例如,要求某建筑物接地电阻值不得超过10Ω(也即USL=10Ω),测量结果为:R=9.2ΩU=0.5Ωk=2 依据判定标准:

y≤USL-U=10Ω-0.5Ω=9.5Ω

即判定该建筑物接地电阻值为合格。

例如,验收中要求某设备的绝缘电阻不得低于20MΩ(也即LSL=20MΩ),测量结果为:R=19MΩU=1MΩk=2 依据判定标准:

y≤LSL- U=20MΩ-1MΩ=19MΩ

即判定该设备的绝缘电阻值为不合格。

上例中,假如测量R=20MΩ其他条件不变,则依据

判定标准:LSL+U>y>LSL-U

20MΩ+1MΩ>y>20MΩ-1MΩ

则该设备的绝缘电阻值是否合格为待定。

因此,在条件允许的前提下,应尽可能减小测量不确定度,以减小待定区。

问题的引出——测量过程计量要求的导出

企业的测量大多为单侧测量, 计量要求如何导出?

1.应明确顾客的要求,包括顾客对产品合格概念的要求。

2.应单侧测量往往只给出产品的上限或下限,不给出对

测量误差的要求,所以导出可考虑测量仪器的测量范围及环境等要求,仪器的准确度可根据企业现有的或适度的原则配置。

3.测量仪器选定后,对测量过程的测量进行不确定度的

评定,评定中如顾客有要求的(如置信概率95%或99%)则分别取k=2或k=3,如无要求的一般取k=2。评定的测量点宜取产品的上限或下限点。

4.测量不确定度评定后,根据U制定企业内控标准,并

按内控标准对被测产品实施检测。

5.整个过程应形成记录表式。不要偏面的理解为计量要

求的导出就是测量仪器是测量允差的1/3~1/10,因计量要求的导出最终是为了满足顾客的要求。

测量不确定度评定报告

测量不确定度评定报告1、评定目的识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 、评定依据2CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 、测量不确定度评定流程3 测量不确定度评定总流程见图一。

概述 建立数学模型,确定被测量Y与输入量 测量不确定度来源 标准不确定度分量评 B类评定评类A 计算合成标准不确定 评定扩展不确定 编制不确定度报告 图一测量不确定度评定总流程 测量不确定度评定方法、4建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影响量(输入量)X,X,…,X间的函数关系f来确定,即:N21 Y=f(X,X,…,X)N12建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x=c称为灵敏系数。有时灵敏系数c可由实验测定,iii即通过变化第i个输入量x,而保持其余输入量不变,从而测定Y的变化i量。

不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性f 等)的局限性; 、赋予计量标准的值或标准物质的值不准确;g 、引入的数据和其它参量的不确定度;h 、与测量方法和测量程序有关的近似性和假定性;i 、在表面上完全相同的条件下被测量在重复观测中的变化。j 标准不确定度分量评定 对观测列进行统计分析所作的评估--4.3.1 A 类评定 , x进行n次独立的等精度测量,得到的测量结果为:a对输入量XI 1为xx,…x。算术平均值n2 n1 ∑xx = in n i=1 由贝塞尔公式计算:s(x单次测量的实验标准差)i 1 n ∑ i—i 2 ( xx )S(x)= n-1 i=1

1.2测量的不确定度(2.2测量结果评定)

测量不确定度 2.2测量结果的评定和不确定度 一、测量结果的评定和不确定度 (1)测量真实值不可知,所以无法实际计算出误差。 (2)多次测量后的平均值并不等于真实值。 测量结果的最终数学表述:u x x ±=(x 测量的平均值,u 不确定度) 物理意义:表示一个范围,测量的真值有一定的概率落在这个范围内! cm x 1.01.10±= cm x 2.100.10或= × 二、不确定度的分类与合成 2 2B A c u u u += A 类:由统计学方法得到的不确定度(随机误差) B 类:用非统计方法得到的不确定度(系统误差) 通常需要同时考虑A 类和B 类不确定度! 1. A 类不确定度(本质上考量测量数据的离散程度) 在相同条件下、用同样的方法和仪器,对同一物理量进行测量(等精度测量 ),获得一系列测量值。 ),......2,1(n i x i = 算数平均值:∑==n i i x n x 1 1 ①测量残差 x x i i -=)(υ 每个数据与平均值之间差距 ②标准偏差 1 ) ()(1 --= ∑=n x x i s n i i 测量值及其随机误差的离散程度,标准偏差越大,说明数据越分散

举例:有两个5人小组考试,成绩分别为:A 组:82,81,80,79,78 B 组:84,82,80,78,76A 、B 两组考试平均值都是80,但是A 组的标准偏差值为1.58, B 组的标准偏差值为3.16。说明B 组数据的离散程度比较大。 因为测量平均值误差应该比任何一次测量的误差更小些,所以可以用算数平均值的标准 偏差来表示算数平均值的误差大小:) 1()(1 1 2 --==∑=n n x x S n S n i i x 意义:在)](~)[(x x S x S x +-内包含真值得概率为68.3%! A 类不确定度) 1() (t 1 --? =∑=n n x x u n i i A (t:置信因子为了方便,一般取t=1) ) 1()(1 2 --= ∑=n n x x u n i i A 两种特殊情况: (1)当所有数值都相同时,A 类不确定度为0; (2)n=1时A 类不确定度没有意义。 2. B 类不确定度 用非统计方法求出或评定的不确定度,一般情况下应根据经验 或其他非统计信息估计。 只考虑仪器不确定度:3 a u B = :a 仪器说明书上所标明的“最大误差”或不确定度限值。如未标明,则取最小分度值。 3. 不确定度的合成 ) 1() (1 2 --= ∑=n n x x u n i i A 3 a u B = 2 2 B A c u u u += u x x ±=

测量不确定度评定报告

测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。 图一测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影

响量(输入量)X 1,X 2 ,…,X N 间的函数关系f来确定,即: Y=f(X 1,X 2 ,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由实验测定,即通 过变化第i个输入量x i ,而保持其余输入量不变,从而测定Y的变化量。 4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); f、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性等)的 局限性; g、赋予计量标准的值或标准物质的值不准确; h、引入的数据和其它参量的不确定度; i、与测量方法和测量程序有关的近似性和假定性; j、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a对输入量X I 进行n次独立的等精度测量,得到的测量结果为: x 1,x 2 , (x) n 。 算术平均值x为 1 n x n= ∑x i n i=1 单次测量的实验标准差s(x i )由贝塞尔公式计算: 1 n S(x i )= ∑ ( x i — x )2 n-1 i=1

测量结果及其不确定度的有效位数.

测量结果及其不确定度的有效位数 张春滨 (航天科技集团公司第一计量测试研究所,北京,100076) 摘要校准证书及检测报告上的校准结果或检测结果均给出了测量结果的不确定度,并通过大量的实例,介绍了测量结果及其不确定度的有效位数,对不同情况下,与此相关的一些问题进行了讨论。 关键词测量误差,有效数字,修约。 The Significant Figure of the Measurement Result and Its Uncertainty Zhang Chunbin (The First Research Institute for Measurement and Test of CASA,Beijing,100076) Abstract The uncertainty of the result of a calibration or a testing is given in the certificate of calibration and calibration result or test result in the testing report. With many examples, this paper introduces the significant figures in the result of a measurement and its uncertainty. Some problems correlated with the significant figure are also discussed in different conditions. Key Words Measurement error, Significant figure, Round off. 1 引言 校准证书及检测报告上的校准结果或检测结果均给出了测量结果的不确定度,测量结果的报告应尽量详细,以便使用者可以正确地利用测量结果。完整的测量结果至少含有两个基本量:一是被测量的最佳估计值,在很多情况下,测量结果是在重复观测的条件下确定的。二是描述该测量结果分散性的量,即测量结果不确定度。报告测量结果的不确定度有合成标准不确定度和扩展不确定度两种方式。在报告与表示测量结果及其不确定度时,对两者数值的位数,技术规范JJF1059-1999《测量不确定度评定与表示》做出了相应的规定。 2 测量结果不确定度的有效位数 2.1 技术规范的规定 根据技术规范JJF1059-1999《测量不确定度评定与表示》的规定,估计值y的数值和它的标准不确定度u c(y)或扩展不确定度U的数值都不应该给出过多的位数。通常u c(y)和U 以及输入估计值x i的标准不确定度u(x i)最多为两位有效数字。虽然在计算测量结果不确定度的过程中,中间结果的有效位数可保留多位,即在报告最终测量结果时,u c(y)和U取一位或两位均可,两位以上是不允许的。 2.2 测量结果不确定度的修约 测量结果不确定度应按国家标准GB3101-1993《有关量、单位和符号的一般原则》的规定进行修约,使测量结果不确定度有效数字的位数为一位或两位。 例如:一频率测量结果的标准不确定度为u (x i)= 28.05 kHz,要求保留两位有效数字,经修约后为28 kHz。 测量结果的不确定度不允许进行连续修约。即测量结果的不确定度应经一次修约后得到,而不应该经多次修约后得到。 例如:U = 0.145 5℃,要求保留一位有效数字时,应为:U = 0.145 5℃= 0.1℃,而不应为:U = 0.145 5℃= 0.146 ℃= 0.15℃= 0.2℃。可见,在本例中,由于连续修约造成最终结果的误

测量不确定度的评定方法.

测量不确定度的评定方法 鉴于测量不确定度在检测,校准和合格评定中的重要性和影响,考虑到试验机行业应用测量不确定度时间不长,现就有关测量不确定度概念、测量不确定度的评定和表示方法,谈谈学习体会。奉献给同行业人员。由于本人学识浅薄,力不从心,有不妥或错误处,期望批评指正。 (一)测量不确定度的概念 《测量不确定度表示指南》(GUM),即国际指南,给出的测量不确定度的定义是:与测量结果相关联的一个参数,用以表征合理地赋予被测量之值的分散性。 其中,测量结果实际上指的是被测量的最佳估计值。被测量之值,则是指被测量的真值,是为回避真值而采取的。我国计量技术规范JJF1059—1999《测量不确定度评定与表示》中,亦推荐这一用法(见该规范2.3注4)。 须知,真值对测量是一个理想的概念,如何去估计它的分散性?实际上,国际指南(GUM)所评定的并非被测量真值的分散性,也不是其约定真值的分散性,而是被测量最佳估计值的分散性。 关于测量不确定度的定义,过去曾用过: ① 由测量结果给出的被测量估计的可能误差的度量; ② 表征被测量的真值所处范围的评定。 第①种提法,概念清楚,只是其中有“误差”一词,后来才改为第②种提法。现行定义与第②种提法一致,只是用被测量之值取代了真值,评定方法相同、表达式也一样,并不矛盾。 至于参数,可以是标准差或其倍数,也可以是给定置信概率的置信区间的半宽度。用标准差表示测量不确定度称为测量标准不确定度。在实际应用中如不加以说明,一般皆称测量标准不确定度为测量不确定度,甚至简称不确定度。 用标准差值表示的测量不确定度,一般包括若干分量。其中,一些分量系用测量列结果的统计分布评定,并用标准差表示:而另外一些分量则是基于经验或其他信息而判定的(主观的或先验的)概率分布评定,也以标准差值表示。可见,后者有主观鉴别的成分,这也是在定义中使用“合理地赋予”的主要原因。 为了和传统的测量误差相区别,测量不确定度用u(不确定度英文uncertainty的字头)来表示,而不用s。 应当指出,用来表示测量不确定度的标准差,除随机效应的影响外,还包括已识别的系统效应不完善的影响,如标准值不准、修正量不完善等。 显然,测量结果中的不确定度,并未包括未识别的系统效应的影响。尽管未识别的系统效应会使测得值产生某种系统偏差。 所以,可以概括地说,测量不确定度是由于随机效应和已识别得系统效应不完善的影响,而对被测量的测得值不能确定(或可疑)的程度。(注:这里的测得值,系指对已识别的系统效应修正后的最佳估计值)。 (二)不确定度的来源 在国际指南(GUM)中,将测量不确定度的来源归纳为10个方面: ① 对被测量的定义不完善; ② 实现被测量的定义的方法不理想; ③ 抽样的代表性不够,即被测量的样本不能代表所定义的被测量; ④ 对测量过程受环境影响的认识不周全,或对环境条件的测量与控制不完善; ⑤ 对模拟仪器的读数存在人为偏移; ⑥ 测量仪器的分辨力或鉴别力不够; ⑦ 赋予计量标准的值或标准物质的值不准; ⑧ 引用于数据计算的常量和其他参量不准; ⑨ 测量方法和测量程序的近似性和假定性; ⑩ 在表面上看来完全相同的条件下,被测量重复观测值的变化。 上述的来源,基本上概括了实践中所能遇到的情况。其中,第①项如再加上理论认识不足,即对被测量的理论认识不足或定义不完善似更充分些;第⑩项实际上是未预料因素的影响,或简称之为“其他”。 可见,测量不确定度一般来源于随机性和模糊性。前者归因于条件不充分,而后者则归因于事物本

CNAS-CL07 测量不确定度评估和报告通用要求

CNAS—CL07 测量不确定度评估和报告通用要求General Requirements for Evaluating and Reporting Measurement Uncertainty 中国合格评定国家认可委员会

测量不确定度评估和报告通用要求 1.前言 1.1中国合格评定国家认可委员会(英文缩写:CNAS)充分考虑目前国际上与合格评定相关的各方对测量不确定度的关注,以及测量不确定度对测量、试验结果的可信性、可比性和可接受性的影响,特别是这种影响和关注可能会造成消费者、工业界、政府和市场对合格评定活动提出更高的要求。因此,CNAS在认可体系的运行中给予测量不确定度评估以足够的重视,以满足客户、消费者和其他各有关方的期望和需求。 1.2CNAS在测量不确定度评估和应用要求方面将始终遵循国际规范的相关要求,与国际相关组织的要求保持一致,并在国际规范和有关行业制定的相关导则框架内制订具体的测量不确定度要求。 2.适用范围 本文件适用于CNAS对校准和检测实验室的认可活动。同时也适用于其它涉及校准和检测活动的申请人和获准认可机构。 3.引用文件 下列文件中的条款通过引用而成为本文件的条款。以下引用的文件,注明日期的,仅引用的版本适用;未注明日期的,引用文件的最新版本(包括任何修订)适用。 3.1Guide to the expression of uncertainty in measurement(GUM).BIPM,IEC, IFCC,ISO,IUPAC,IUPAP,OIML,lst edition,1995.《测量不确定度表示指南》3.2International Vocabulary of Basic and General Terms in Metrology(VIM). BIPM,IEC,IFCC,ISO,IUPAC,IUPAP,OIML,2nd edition,1993.《国际通用计量学基本术语》 3.3JJF1001-1998《通用计量术语和定义》 3.4JJF1059-1999《测量不确定度评定和表示》

(完整版)不确定度与测量结果不确定的表达

1.2 不确定度与测量结果不确定的表达 由于误差的存在,使得测量结果具有一定程度的不确定性。为了加强国际间的交流与合作,1996年,中国计量科学研究院在国际权威文件《测量不确定度表达指南》的基础上,制定了我国的《测量不确定度规范》。从此,物理实验的不确定度评定有了国际公认的准则。下面将结合对测量结果的评定对不确定度的概念、分类、合成等问题进行讨论。 1.2.1 不确定度的概念 不确定度是评价测量质量的一个新概念,是表达测量结果具有分散性的一个参数,它是被测量的真值在某个量值范围内的一个评定。不确定度反映了可能存在的误差分布范围,是误差的数字指标。不确定度愈小,测量结果可信赖程度愈高;不确定度愈大,测量结果可信赖程度愈低。在实验和测量工作中,不确定度是作为估计而言的,因为误差是未知的,不可能用指出误差的方法去说明可信赖程度,而只能用误差的某种可能的数值去说明可信赖程度,所以不确定度更能表示测量结果的性质和测量的质量。用不确定度评定实验结果的误差,其中包含了各种来源不同的误差对结果的影响,而它们的计算又反映了这些误差所服从的分布规律,这是更准确地表述了测量结果的可靠程度,因而有必要采用不确定度的概念。 1.2.2 测量结果的表示和合成不确定度 在做物理实验时,要求表示出测量的最终结果。在这个结果中既要包含待测量的近似真实值x,又要包含测量结果的不确定度σ,还要反映出物理量的单位。因此,要写成物理含意深刻的标准表达形式,即 σ± =x x(单位)(1—4)式中x为待测量;x是测量的近似真实值,σ是合成不确定度,一般保留一位有效数字,若首数是1或2时可取2位。这种表达形式反应了三个基本要素:测量值、合成不确定度和单位。 在物理实验中,直接测量时若不需要对被测量进行系统误差的修正,一般就取多次测量的算术平均值x作为近似真实值;若在实验中有时只需测一次或只能测一次,该次测量值就为被测量的近似真实值。如果要求对被测量进行一定系统误差的修正,通常是将一定系统误差(即绝对值和符号都确定的可估计出的误差分量)从算术平均值x或一次测量值中减去,从而求得被修正后的直接测量结果的近似真实值。 在上述的标准式中,近似真实值、合成不确定度、单位三个要素缺一不可,否则就不能全面表达测量结果。同时,近似真实值x的末尾数应该与不确定度的所在位数对齐,近似真实值x与不确定度σ的数量级、单位要相同。在开始实验中,测量结果的正确表示是一个难点,要引起重视,从开始就注意纠正,培养良好的实验习惯,才能逐步克服难点,正确书写测量结果的标准形式。 由于误差的来源很多,测量结果的不确定度一般包含几个分量。在修正了可定系统误差之后,把余下的全部误差归为A、B两类不确定度分量。 ①A类分量(A类不确定度): S—在同一条件下,多次重复测量时,用统计分析 A

盲样测量不确定度评定报告

盲样测量不确定度评定报告 1、概述 1.1 测量依据 JJG119-2005《实验室(酸度)计检定规程》 1.2 环境条件: 温度(23±3)℃;相对湿度≤85%RH 1.3 测量标准: pH 标准缓冲溶液,中国计量测试技术研究院提供;酸度计:型号:pHS-3E ; 编号:600709040019;制造厂:上海精密科学仪器有限公司;量程:(0.00~14.00)pH;分辨率:0.01pH;电极编号:05598709J 1.4 被测对象:盲样(新疆维吾尔自治区计量测试研究院提供) 1.5 测量过程: 选用JJG119-2005《实验室(酸度)计检定规程》附录A 表1中规定的一种(或多种)标准溶液,在规定温度的重复性条件下,对pHS-3E 型酸度计进行校准后,测量盲样溶液,重复校准和测量操作6次,6次测量结果的平均值即为盲样的pH 值。 2、数学模型 y=x 3、输入量引入的标准不确定度 3.1测量重复性引入的标准不确定度分量u 1 按照贝塞尔公式计算单次测量的实验标准差: () 1 1 2 --= ∑=n pH pH s n i i (n=6) 平均值的实验标准差: u 1= 6

盲样检测 3.2酸度计引入的不确定度分量u2 用性能已知的pH(酸度)计,对未知pH值的盲样(酸度计溶液标准物质)进行测量。 选用JJG119-2005《实验室(酸度)计检定规程》参照酸度计使用说明书中校准点对传递的酸度计进行校准,用校准过的酸度计对盲样(酸度计溶液标准物质)进行测定6次,得出测量重复性引入的标准不确定度分量u 1 。结合酸度 计引入的不确定度分量u 2和盲样引入的标准不确定度分量u 3 得到合成标准不确 定度,扩展不确定度。

测量结果不确定度及精确度分析

测量结果不确定度及精确度分析 刘智敏 国际不确定度工作组成员 中国计量科学研究院研究员 一、术语概念 1.真值true value 与所给特定量定义一致的值。 2.约定真值conventional true value 取作有时是约定作的特定量的值,对所给目的,它有一个合适的不确定度。3.接受参考值accepted reference value 用做比较的同意的参考值。 4.不确定度uncertainty 用以表征合理赋予被测量的值的分散性,它是测量结果含有的一个参数。结果带着的估计值,它表征真值的范围,而真值被认定在其中。 5.精密度precision 在规定条件下,独立测得结果间的一致程度。 6.重复性repeatability 在重复性条件下,对相同被测量进行接连测量所得结果间的一致程度。 注:重复性条件含:同测量程序、同观测者、同仪器、同地点、短期内重复。 7.再现性reproducibility 在改变了的测量条件下,对相同被测量测量结果之间的一致程度。 注:改变条件可含:原理、方法、观测者、仪器、标准、地点、条件、时间,改变条件应列出。 8.正确度,真实度trueness 由很大一系列测得结果平均值与接受参考值之间的一致程度。 9.偏倚bias 测得结果的期望与接受参考值之差。正确度测度常用偏倚。 10.精确度,准确度accuracy 测量结果与被测量真值间的一致程度。 注:精确度定量表示用不确定度,精确度简称精度。 11.误差error 测量结果减被测量真值。

12. 随机误差 random error 以不可预知方式变化的误差。 13. 系统误差 systematic error 保持不变或按预期规律变化的误差。 14. 概率 probability 随机事件带有的一个实数,范围从0到1。 15. 随机变量(ξ)random variable ()()x F x P =≤ξ 可定 注:离散型:()i i p x P ==ξ 连续型:()()dx x f x F x ?∞?=, ()x f 为分布密度 16. 期望 expectation 离散型:∑=i i x p E ξ 连续型:()dx x xf E ?=ξ 17. 方差 variance ()2 ξξξE E V ?= 18. 标准差,标准偏差 standard deviation ξξσV = 19. 变异系数,变化系数(CV , COV )coefficient of variation 对非负号 ξ ξ σE =CV

测量不确定度的评定.

第一章入门 1、测量 1.1 什么是测量? 测量告知我们关于某物的属性。物体有多重,或有多热,或有多长。测量赋予这种属性一个数。 测量总是用某种仪器来实现。 测量结果由部分组成:数,测量单位。 1.2什么不是测量 有些过程看起来像是测量,然而并不是。两根绳子作比较,不是测量。计数通常也不认为是测量。对于只回答“是或非”的答案,或者“合格或不合格”的结果的检测(test)往往不是测量。 2、测量不确定度 1.1 什么是测量不确定度? 测量不确定度是对任何测量的结果存有怀疑。对每一次测量,即使是最仔细的,总是会有怀疑的余量。可以表述为“出入”,例如一根绳子可能2米长,有1厘米“出入”。 2.2测量不确定度表述 回答“余量有多大?”和“怀疑有多差?”定量给出不确定度,需要两个数。余量(或称区间的宽度;置信概率,说明“真值”在该余量范围内有多大把握。 比如:棍子的长度测定为20厘米加或减1厘米,有95%置信概率。写成:20cm±1cm,置信概率为95%。表明棍子长度在19厘米到21厘米之间有95%的把握。

2.3 测量不确定度度重要性 考虑测量不确定度更特殊的理由; 校准——在证书上报告测量不确定度。 检测——不确定度来确定合格与否。 允差——不确定是否符合允差以前,你需要知道不确定度。 3、关于数字集合的基本统计学 3.1操作误差 “测量再而三,只为一剪子”,两、三次核对测量,减少出错的风险。任何测量至少进行三次,防止出操作误差。 3.2基本统计计算 两项最主要的统计计算,一组数值的平均值或算术平均值,以及它们的标准偏差。 3.3获得最佳估计值——取多次读数的平均值 重复测量出不同结果的原因: 进行的测量有自然变化; 测量的器具没有工作在完全稳定状态; 重复读数时读数有变化,最好多次读数并取平均值.平均值是“真值”的估计值。 3.4多少次读数求平均 10次是普遍选择的.根据经验通常取4至10次读数就够了。 3.5分散范围—标准偏差 重复测量给出不同结果时,要了解读数分散范围有多宽.量值的分散范围告诉测量不确定度的情况.对分散范围定量的常见形式是标准偏差。

钢卷尺测量不确定度评定报告

钢卷尺测量不确定度评定报告 1测量方法及数学模型 1.1测量依据:依据JJG4-1999《钢卷尺检定规程》 钢卷尺的示值误差:△L=L a-L s+L a*αa*Δt-L s*αs*Δt 式中:L a——被检钢卷尺的长度; L s——标准钢卷尺的长度; αa——被检钢卷尺的膨胀系数; αs——标准钢卷尺的膨胀系数; Δt——被检钢卷尺和标准钢卷尺对参考温度20℃的偏离值。 由于L a-L s很小,则数学模型: △L= L a-L s +L s*△α*Δt 式中:△α——被检钢卷尺和标准钢卷尺的膨胀系数差 1.2方差及传播系数的确定 对以上数学模型各分量求偏导: 得出:c(L a)=1;c(L s)= -1+△α*Δt≈-1;c(△α)= L s*Δt;c(Δt)= L s*△α≈0 则:u c2 =u2(△L)=u2(L s)+ u2(L a) + (L s*Δt )2u2(△α) 2计算分量标准不确定度 2.1标准钢卷尺给出的不确定度u (L s) (1)由标准钢卷尺的测量不确定度给出的分量u (L s1) 根据规程JJG741—2005《标准钢卷尺》,标准钢卷尺的测量不确定度为: U=0.02mm其为正态分布,覆盖因子k=3,自由度v=∞,故其标准不确定度: u (L s1)= 0.02∕3 =0.007 (2)由年稳定度给出的不确定度分量u (L s2) 根据几年的观测,本钢卷尺年变动量不超过0.05mm,认为是均匀分布,则:L a≤5m:u (L s2)=0.05∕31/2 =0.029mm 估计u (L s2)的不可靠性为10%,则自由度v=1/2×(0.1)-2=50 (3)由拉力偏差给出的不确定度分量u (L s3) 由拉力引起的偏差为:△=L×103×△p/(9.8×E×F)

不确定度测定汇总

测量不确定度评定与表示 测量的目的是确定被测量值或获取测量结果。有测量必然存在测量误差,在经典的误差理论中,由于被测量自身定义和测量手段的不完善,使得真值不可知,造成严格意义上的测量误差不可求。而测量不确定度的大小反映着测量水平的高低,评定测量不确定度就是评价测量结果的质量。 图1 1 识别测量不确定度的来源 测量不确定度来源的识别应从分析测量过程入手,即对测量方法、测量系统和测量程序作详细研究,为此必要时应尽可能画出测量系统原理或测量方法的方框图和测量流程图。 检测和校准结果不确定度可能来自: (1)对被测量的定义不完善; (2)实现被测量的定义的方法不理想; (3)取样的代表性不够,即被测量的样本不能代表所定义的被测量; (4)对测量过程受环境影响的认识不全,或对环境条件的测量与控制不完善; (5)对模拟仪器的读数存在人为偏移; (6)测量仪器的计量性能 (如最大允许误差、灵敏度、鉴别力、分辨力、死区及稳定性等)的局限性,即导致仪器的不确定度; (7)赋予计量标准的值或标准物质的值不准确; (8)引用于数据计算的常量和其它参量不准确; (9)测量方法和测量程序的近似性和假定性; (10)在表面上看来完全相同的条件下,被测量重复观测值的变化。 分析时,除了定义的不确定度外,可从测量仪器、测量环境、测量人员、测量方

法等方面全面考虑,特别要注意对测量结果影响较大的不确定度来源,应尽量做到不遗漏、不重复。 2 定义 2.1 测量误差简称误差,是指“测得的量值减去参考量值。” 2.2 系统测量误差简称系统误差,是指“在重复测量中保持恒定不变或按可预见的方式变化的测量误差的分量。” 系统测量误差的参考量值是真值,或是测量不确定度可忽略不计的测量标准的测量值, 或是约定量值。系统测量误差及其来源可以是已知的或未知的。对于已知的系统测量误差可 以采用修正来补偿。系统测量误差等于测量误差减随机测量误差。 2.3 随机测量误差简称随机误差,是指“在重复测量中按不可预见的方式变化的测量误差的分量。” 随机测量误差的参考量值是对同一个被测量由无穷多次重复测量得到的平均值。随机测量误差等于测量误差减系统测量误差。 图2 测量误差示意图 2.4 测量不确定度简称不确定度,是指“根据用到的信息,表征赋予被测量值分散性的非负参数。” 测量不确定度一般由若干分量组成。其中一些分量可根据一系列测量值的统计分布,按测量不确定度的A类评定(随机效应引起的)进行评定,并用标准偏差表征;而另一些分量则可根据基于经验或其它信息所获得的概率密度函数,按测量不确定度的B类评定(系统效应引起的)进行评定,也用标准偏差表征。 2.5 标准不确定度是“以标准偏差表示的测量不确定度。”

6测量不确定度评定方法.doc

测量不确定度的评定方法 1适用范围 本方法适用于对产品或参数进行检测时,所得检测结果的测量不 确定度的评 定与表示。 2编制依据 JJF 1059 —1999测量不确定度评定与表示 3评定步骤 3.1概述:对受检测的产品或参数、检测原理及方法、检测用仪器 设备、检测时的环境条件、本测量不确定度评定报告的使用作一简要的描述; 3.2建立用于评定的数学模型; 3.3根据所建立的数学模型,确定各不确定度分量(即数学模型中 的各输入量)的来源; 3.4分析、计算各输入量的标准不确定度及其自由度; 3.5计算合成不确定度及其有效自由度; 3.6计算扩展不确定度; 3.7给出测量不确定度评定报告。 4评定方法 4.1数学模型的建立 数学模型是指被测量(被检测参数)Y 与各输入量 X i之间的函数

关系,若被测量 Y 的测量结果为 y,输入量的估计值为x i,则数学模型为 y f x1 , x2 ,......, x n。 数学模型中应包括对测量结果及其不确定度由影响的所有输入 量,输入量一般有以下二种: ⑴ 当前直接测定的值。它们的值可得自单一观测、重复观测、 依据经验信息的估计,并包含测量仪器读数修正值,以及对周围温度、大气压、湿度等影响的修正值。 ⑵ 外部来源引入的量。如已校准的测量标准、有证标准物质、 由手册所得的参考数据。 4.2测量不确定度来源的确定 根据数学模型,列出对被测量有明显影响的测量不确定度来源,并要做到不遗漏、不重复。如果所给出的测量结果是经过修正后的结果,注意应考虑由修正值所引入的标准不确定度分量。如果某一标准不确定度分量对合成不确定度的贡献较小,则其分量可以忽略不计。 测量中可能导致不确定度的来源一般有: ⑴被测量的定义不完整; ⑵复现被测量的测量方法不理想; ⑶取样的代表性不够,即被测样本不能代表所定义的被测量; ⑷对测量过程受环境影响的认识不恰如其分或对环境的测量 与控制不完善; ⑸对模拟式仪器的读数存在人为偏移;

测量不确定度评定报告(完整资料).doc

此文档下载后即可编辑 测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。

图一 测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y (输出量)与影响量(输入量)X 1,X 2,…,X N 间的函数关系f 来确定,即: Y=f (X 1,X 2,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由 实验测定,即通过变化第i 个输入量x i ,而保持其余输入量不变,从而测定Y 的变化量。

4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a 、对被测量的定义不完整; b 、复现被测量定义的方法不理想; c 、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d 、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e 、对模拟式仪器的读数存在人为偏差(偏移); f 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区 及稳定性等)的局限性; g 、赋予计量标准的值或标准物质的值不准确; h 、引入的数据和其它参量的不确定度; i 、与测量方法和测量程序有关的近似性和假定性; j 、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a 对输入量XI 进行n 次独立的等精度测量,得到的测量结果为: x 1,x 2,…x n 。算术平均值x 为 1 n x n = ∑x i

测量结果的不确定度

测量结果与不确定度表示 JJF1059第8.13节指出输入量和输出量的估计值,应修约到与它们的不确定度的位数一致。这里所谓的位数实指其末位所到达的位数。例如,当测量结果及其不确定度以相同的计量单位给出时,其末位应对齐。也就是说不能达不到,也不能多出。其中更需注意的是所报告的测量结果(输出量的最佳估计值),应与所报告的扩展不确定度U或U p的末位对齐。多数情况下是:确定了扩展不确定度取几位(一或两位)之后,按这一修约间隔来修约所报告的测量结果。但有时也会碰到,特别是通过数字显示式仪器的一次测量结果作为被测量的最终结果时,评定出的扩展不确定度的末位已小于所显示的末位。这时,对测量结果是否能采用补零的方式使其末位对齐?专家们对不同意见进行了讨论,例如:通过数字式电压表一次测量的结果为220. 043V,其扩展不确定度U=2.5mV(k=2),U修约成两位,末位达到0.1mV,但测量结果只到1mV,专家们认为这时的测量结果应报告成:220.0430V。写成V=(220.0430±0.0025)V,其末位是对齐的。应该认为,表明测量结果可靠程度的不是所给出的结果本身而是其不确定度。那种认为物理实验结果只能保留一位不可靠的值(只有末位不可靠而不能有两位是不可靠的)的观点和做法,与当今不确定度的表述并不一致。现在认为不确定度可以有两位有效数,从而测量结果的末两位均为可疑值了。 关于所报告的扩展不确定度(U,U p和U rel,U p rel)应采取何种规则进行修约,在JJF1059第8.13节给出两种方法均可以用,其一为“只进不舍”,其二为通用的修约规则,即大于半个修约间隔则进,小于半个修约间隔则舍,正好等于半个修约间隔则看前面一位是奇数还是偶数而定。根据第一种方法,如果对U=0.1112修约成为一位有效数,按只进不舍,就成为U=0.2,比修约前增大了几乎一倍,虽不违反规则,但显然并不可取。如果U=0.3112,也只取一位有效数而给成为U=0.4,比修约前也大了1/4左右,似亦不可取。专家们推荐采用:当第一个有效数为1和2时,取两位有效数为好,至于3以上,既可取一位也可取两位,对于一般测量,可均只取一位。至于是按上述两种修约方法中的哪一种,评定人员可自行选用。上述的这种建议,在JJF1059以及GUM中都未提及,只是在某些国家的标准中提到,例如DIN,不无道理,未必不可以参照使用。 现在在一些检定证书或是校准证书上,给出了测量结果(校准结果、某些检定点或校准点的示值误差或修正值)。对于校准(自愿行为),给出校准值及其不确定度,是符合JJF1059中8.2节要求“证书上的校准结果或修正值应给出测量不确定度。”但是在检定中,例如:对压力表、千分尺、台案秤等类衡器,按检定规程,其证书上是不给出测量结果的,现在也要求给出检定结果,有时甚至也给出其不确定度。从测量仪器的使用上来说,这些内容不起任何作用,因不能按测量结果修正使用。惟一的作用是让使用者知道这些仪器距离不合格还有多远。专家们认为,究竟在证书上如何给出和给出什么,应按有关规程处理,至于自愿的校准要求,则可按用户需要。 关于测量仪器特性评定问题,目前仍按JJG1027-1991技术规范中的有关规定处理。计量司官员在会上表示,用于代替该技术规范这部分的内容的新的技术规范现已审定通过,处于报批之中,预计今年内可发布。其中规定了测量仪器特性评定的基本原则、通用方法、准确度等、级、响应特性、灵敏度、鉴别力、稳定性、漂移、响应时间等性能的评定以及有关不确定度问题。关于测量仪器重复性的评定,该规范给出了基本方法,即按重复性条件下通过重复观测,采用贝塞尔公式计算出单次结果的实验标准差s。s的相对标准不确定度: 式中:n——重复观测次数。 对于只有一个被测量来说,上式也就是:

不确定度评定报告

不确定度评定报告 1、测量方法 由标准晶振输出频标信号,输入到通用计数器中,在通用计数器上显示读数。 2、数学模型 数学模型 A=A S +δ 式中:A —频率计上显示的频率值 A S —参考频率标准值; δ—被测与参考频标频率的误差。 3、输入量的标准不确定度 3.1 标准晶振引入的标准不确定度()s A u ,用B 类标准不确定度评定。 标准晶振的频率准确度为±2×10-10,即当被测频率为10MHz 时,区间半宽为a =10×106×2×10-9=2×10-2Hz ,在区间内认为是均匀分布,则标准不确定度为 ()s A u =a/k =1.2×10-2Hz ()=rel s A u 1.2×10-2/107=1.2×10-9 3.2被测通用计数器的测量重复性引入的标准不确定度分量u(δ2) u(δ2)来源于被测通用计数器的测量重复性,可通过连续测量得到测量列,采用A 类方式进行评定。对一台通用计数器10MHz 连续测量10次,得到测量列9999999.6433、9999999.6446、9999999.6448、9999999.6437、9999999.6435、9999999.6428、9999999.6446、9999999.6437、9999999.6457、9999999.6451Hz 。 由测量列计算得 算术平均值 ∑==n i i f n f 1 1=9999999.6442Hz, 标准偏差 () Hz n f f s n i i 00091.01 2 1 =--= ∑=

标准不确定度分量u(δ 3 )=0.00091/=0.00029Hz u(δ 3 )rel=2.9×10-11 4 合成标准不确定度评定 主要标准不确定度汇总表 输入量A S 、δ 1 、δ 2 相互独立,所以合成标准不确定度为 u c (A)= 9 2 2 2 1 210 5.1 ) ( ) ( ) (- ? = + +δ δu u A u S 5 扩展不确定度评定 取k=2,则 扩展不确定度为 U rel =k×u c=2×1.5×10-9=3×10-9 6测量不确定度报告 f=f0(1±3×10-9)Hz,k=2 不确定度评定报告 1、测量方法 由标准晶振输出频标信号,输入到通用计数器中,在通用计数器上显示读数。 2、数学模型

测量不确定度评定例题

测量不确定度评定与表示 一.思考题 1.什么是概率分布? 答:概率分布是一个随机变量取任何给定值或属于某一给定值集的概率随取值而变化的函数,该函数称为概率密度函数。 2.试写出测量值X 落在区间[]b a ,内的概率p 与概率密度函数的函数关系式,并说明其物理意义。 答:()()dx x p b X a p b a ?= ≤≤ 式中,()x p 为概率密度函数,数学上积分代表面积。 物理意义 : 概率分布曲线 概率分布通常用概率密度函数随随机变量变化的曲线来表示,如图所示。 测量值X 落在区间[]b a ,内的概率p 可用上式计算 由此可见,概率p 是概率分布曲线下在区间[]b a ,内包含的面积,又称包含概率或置信水平。当9.0=p ,表明测量值有90%的可能性落在该区间内,该区间包含了概率分布下总面积的90%。在(一∞~+∞)区间内的概率为1,即随机变量在整个值集的概率为l 。当=p 1(即概率为1)表明测量值以100%的可能性落在该区间内,也就是可以相信测量值必定在此区间内。 3.表征概率分布的特征参数是哪些? 答:期望和方差是表征概率分布的两个特征参数。 4.期望和标准偏差分别表征概率分布的哪些特性? 答:期望μ影响概率分布曲线的位置;标准偏差σ影响概率分布曲线的形状,表明测量值的分散性。 5.有限次测量时,期望和标准偏差的估计值分别是什么? 答:有限次测量时,算术平均值X 是概率分布的期望μ的估计值。即:∑=n i i x n X 1 1= 有限次测量时,实验标准偏差s 是标准偏差σ的估计值。即:()() 1 1 2 --=∑=n X x x s n i i

拉伸试验测量结果不确定度评定

拉伸试验测量结果不确定度评定 1.过程概述: 1.1方法及评定依据 JJF1059-1999测量不确定度评定与表示 JJG139-1999拉力、压力和万能试验机机定规程 GB/T228-2002金属材料室温拉伸试验方法 JJF1103-2003万能试验机计算机数据采集系统评定 1.2 环境条件 试验温度为18℃,湿度40%。 1.3 检测程序 金属材料的室温拉伸试验抗拉强度检测时,首先根据试样横截面的种类不同测量厚度、宽度,计算截面积S 0;然后用WAW-1000C 微机控制电液伺服液压万能试验机以规定速率施加拉力,直至试样断裂。在同一试验条件下,试验共进行10次。 2 拉伸试验测量结果不确定度的评定 评定Q235钢材以三个试样平均结果的抗拉强度和塑性指标的不确定度 使用10个试样,得到测量结果见下表1。 实验室标准偏差按贝塞尔公式计算 1 1 2 ) (-= ∑-=n i n i j X X s 式中: ∑==n i Xi n X 1 1

表1 重复性试验测量结果 2.1抗拉强度不确定度评定 数学模型 R m =F m /S o u rel (R m )= )()()()(20222mv rel rel m rel rel R u S u F u rep u +++ 式中: R m —抗拉强度 F m —最大力 S 0—原始横截面积 rep —重复性 R mv —拉伸速率对抗拉强度的影响

2.1.1 A 类不确定度分项u rel (rep )的评定 本例评定三个试样测量平均值的不确定度,故应除以3。 u rel (rep )= 3 S = 3 % 627.0=0.362% 2.1.2最大力F m 的B 类相对不确定度分项u rel (F m )的评定 (1)试验机测力系统示值误差带来的不确定度u rel (F 1) 万能试验机为1.0级,其示值误差为±1.0%,按均匀分布考虑K=3则: u rel (F 1)= %577.03 %0.1= (2)标准测力仪的相对标准不确定度u rep (F 2) 使用0.3级的标准测力仪对试验机进行鉴定,JJG144-1992中给出了R=0.3%。则其相对标准不确定度为: u rel (F 2)= %106.083 .2=R (3)计算机数据采集系统带来的相对标准不确定度u rep (F 3) 根据JJF-2003计量技术规范中给出,计算机数据采集系统所引入的B 类相对标准不确定度为0.2%。 u rel (F 3)=0.2% (4)最大力的相对标准不确定度分项u rel (F m ) u rel (F m )=)()()(32 22 12 F u F F u rel rel rel u ++ =0.620% 2.1.3原始横截面积S 0 的相对标准不确定度分项u rel (S 0)的评定: 根据GB/T228-2002 标准中,测量原始横截面积时,测量每个尺寸应准确到±0.5%。 S 0 =ab )(0S u rel =)(a u rel +)(b u rel (1)测量宽度a 引入的不确定度 )(a u rel = %289.03 % 5.0=

相关文档
最新文档