导数的运算练习题答案

导数的运算练习题答案
导数的运算练习题答案

1.设a 为实数,函数R x a x e x f x

∈+-=,22)(。

(Ⅰ)求)(x f 的单调区间与极值;

(Ⅱ)求证:当12ln ->a 且0>x 时,122

+->ax x e x

2. 已知 函数f(x)=))(6(3)4(2

3

R x n mx x m x ∈-+--+的图像关于原点对称,其中m,n 为实常数。

(1) 求n m ,的值;

(2) 试用单调性的定义证明:f (x) 在区间[-2, 2] 上是单调函数;

(3) 当-2≤x ≤2 时,不等式)log ()(a n x f m -≥恒成立,求实数a 的取值范围。 解(1)由于f(x)图象关于原点对称,则f(x)是奇函数, f(-x)=-f(x)

恒成立,)6(3)4()6(3)4(2323--+---=-++-+-n mx x m x n mx x m x

[]()()()()()(),

,0,

012022)

12)(()

12()12(,2,2,,12)()1()2(.6,40)6()4(2121222121212122

212

121232131212

12132x f x f x f x f x x x x x x x x x x x x x x x x x x x f x f x x x x x x x f n m n x m >>-<-++<-≤<≤--++-=---=-<-∈-====-+-即从而,知,由且任取可知由恒成立,必有即

∴f(x)在[-2,2]上是减函数。

(3)由(2)知f(x)在[-2,2]上是减函数,则-22≤≤x 时,()().162-=≥f x f 故-2时,2≤≤x 不等式f(x)a a n m m log )log (-≥恒成立

.4161

08log 2log 0)2)(log 8(log log )log 6(168444444≥≤

3.设定函数)0(3

)(23

>+++=a d cx bx x a x f ,

且方程09)('=-x x f 的两个根分别为1,4。

(Ⅰ)当a=3且曲线)(x f y =过原点时,求)(x f 的解析式; (Ⅱ)若)(x f 在),(+∞-∞无极值点,求a 的取值范围

4.设函数()ln ln(2)f x x x ax =+-+(0)a >. (1)当1a =时,求()f x 的单调区间;

(2)若()f x 在(0,1]上的最大值为1

2,求a 的值.

【解析】对函数求导得:

11()2f x a x x '=

-+-,定义域为(0,2)

单调性的处理,通过导数的零点进行穿线判别符号完成。

当a=1时,令2112

()0+1=00

22x f x x x x x -+'=-?=--得()

当()0,x f x '∈>

为增区间;当()0,x f x '∈<为减函数。 区间

(]01,上的最值问题,通过导数得到单调性,结合极值点和端点的比较得到,确定待定

量a 的值。

(]

01x ∈,有最大值,则必不为减函数,且

11

()2f x a x x '=

-+->0,为单调递增区间。

最大值在右端点取到。

max 1

(1)2f f a ===

5.已知函数)(11ln )(R a x

a

ax x x f ∈--+-= (Ⅰ)当2

1

a 时,讨论)(x f 的单调性: (Ⅱ)设42)(2

+-=bx x x g .当4

1=a 时,若对任意)2,0(1∈x ,存在]2,1[2∈x ,使

)()(21x g x f ≥,求实数b 的取值范围。

【解析】(Ⅰ)原函数的定义域为(0,+∞),因为 '

2

11()-x a f x a x -=-=22-ax +x+a-1

x ,所

以当0a =时,

'2x-1()f x x =

,令'

2x-1()>0

f x x =得x>1,所以

此时函数f(x)在(1,+∞)上是增函数;在(0,1)上是减函数;

当12a =时,'()f x =2211

-x +x+-122x ?=22-x +2x-12x =2

2-x-102x ≤(),所以

此时函数f(x)在(0,+∞)是减函数;

当<0a 时,令'()f x =22-ax +x+a-1>0x 得2-ax +x-1+a>0,解得1

x>1x<-1a 或(舍去),此

时函数f(x)在(1,+∞)上是增函数;在(0,1)上是减函数;

当10<<2a 时,令'()f x =22-ax +x+a-1>0x 得2-ax +x-1+a>0,解得11

-1a (,

+∞)上是减函数;

当1<<12a 时,令'()f x =22-ax +x+a-1>0x 得2-ax +x-1+a>0,解得1

-1

-1a (,

1)上是增函数;在(0,1-1a )和1(,+∞)上是减函数;

当1a ≥时,由于1

-10a ≤,令'()f x =22-ax +x+a-1>0x 得2-ax +x-1+a>0,可解得01x <<,

此时函数f(x)在(0,1)上是增函数;在(1,+∞)上是减函数。

(Ⅱ)当

1

4a =

时,f(x)在(0,1)上是减函数,在(1,2)上是增函数,所以对任意1(0,2)x ∈,

11f(x )f(1)=-

2≥,又已知存在[]21,2x ∈,使12()()f x g x ≥,所以21()

2g x -≥,

[]21,2x ∈,即存在

[]1,2x ∈,使21()242g x x b x =-+≤-,即2

922b x x ≥+,即9

22b x x ≥+∈1117[,]

24,所以1122b ≥,解得114b ≥,即实数b 取值范围是11

[,)4+∞。

6.已知函数)(12

3)(2

3

R x x ax x f ∈+-

=,其中0>a . (Ⅰ)若1=a ,求曲线)(x f y =在点))2(,2(f 处的切线方程; (Ⅱ)若在区间]2

1

,21[-

上,0)(>x f 恒成立,求a 的取值范围.

【解析】(Ⅰ)解:当a=1时,f (x )=323

x x 12-+,f (2)=3;f ’(x)=2

33x x -, f ’(2)=6.

所以曲线y=f (x )在点(2,f (2))处的切线方程为y-3=6(x-2),即y=6x-9.

(Ⅱ)解:f ’(x)=2

333(1)ax x x ax -=-.令f ’(x)=0,解得x=0或x=1

a .

以下分两种情况讨论:

11

0a 2a 2<≤≥

,则,当x 变化时,f ’(x),f (x )的变化情况如下表:

当11x f x 22??∈-????,时,()>0

等价于5a 10,()0,8215a ()0,0.28f f -??

>->?????

?+??>>????即,

解不等式组得-5

若a>2,则

11

0a 2<

<

.当x 变化时,f ’(x),f (x )的变化情况如下表:

当11x 22??∈-????,时,f (x )>0等价于1

f(-)21f()>0,a ???????>0,即258

11->0.2a a -???????>0,,解不等式组得52a <<或

2a <-

.因此2

7.已知函数bx x ax x f ++=2

3)( (其中常数R b a ∈,),)()(')(x f x f x g +=是奇函数.

(Ⅰ)求)(x f 的表达式;

(Ⅱ)讨论)(x g 的单调性,并求)(x g 在区间]2,1[上的最大值与最小值.

高中导数的概念与计算练习题带答案

导数概念与计算 1.若函数42()f x ax bx c =++,满足'(1)2f =,则'(1)f -=( ) A .1- B .2- C .2 D .0 2.已知点P 在曲线4()f x x x =-上,曲线在点P 处的切线平行于直线30x y -=,则点P 的坐标为( ) A .(0,0) B .(1,1) C .(0,1) D .(1,0) 3.已知()ln f x x x =,若0'()2f x =,则0x =( ) A .2e B .e C . ln 2 2 D .ln 2 4.曲线x y e =在点(0,1)A 处的切线斜率为( ) A .1 B .2 C .e D .1e 5.设0()s i n f x x =,10()'()f x f x =,21()'()f x f x =,…,1()'()n n f x f x +=,n N ∈,则2013()f x = 等于( ) A .sin x B .sin x - C .cos x D .cos x - 6.已知函数()f x 的导函数为'()f x ,且满足()2'(1)ln f x xf x =+,则'(1)f =( ) A .e - B .1- C .1 D .e 7.曲线ln y x =在与x 轴交点的切线方程为________________. 8.过原点作曲线x y e =的切线,则切点的坐标为________,切线的斜率为____________. 9.求下列函数的导数,并尽量把导数变形为因式的积或商的形式: (1)1 ()2ln f x ax x x =-- (2)2 ()1x e f x ax =+ (3)21 ()ln(1)2 f x x ax x =--+ (4)cos sin y x x x =- (5)1cos x y xe -= (6)1 1 x x e y e +=-

基本初等函数的导数公式及运算法则

课时授课计划

教师活动 教学过程: 一?创设情景 2 1 四种常见函数y=c、y = x、y =x、y —的导数公式及应用 :■?新课讲授 学生活动学生自行预习

(二)导数的运算法则导数运算法则 1. 〔f(X)土g(x)i = f'(x) ±g'(x) 2. [f(x) g(x)]' = f'(x)g(x)±f(x)g'(x) I f (x) I f (x) g (x) - f (x) g (x) / . . 3. = ——(g(x)HO) ]g(x) 一[g(x)f (2)推论:lcf(x) I - Cf'(x) (常数与函数的积的导数,等于常数乘函数的导数) 三.典例分析 例1 .假设某国家在20年期间的年均通货膨胀率为5% ,物价p (单位:元)与时间t (单位:年)有如下函数关系p(t) = p0(1 - 5%亍,其中p0 为t = 0时的物价.假定某种商品的p0 = 1,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)? 解:根据基本初等函数导数公式表,有p'(t) =1.0“ In 1.05 所以p (10) =1.0510|n1.05 : 0.08 (元/年) 因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨. 例2?根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1) y = x3 -2x 3 (2) y 1 1 (3) y = x sin x ln x; (4)y (5)y (6)y 4x 1 -ln x 1 l n x (2 x2—5 x + 1) e x / 、sin x—xcosx (7) y =-------------------------- cosx +xsin x 通过预习自行完成 在老师的指导下独立完成后面几道题

导数的运算练习题.doc

导数的运算练习 一、常用的导数公式 (1)'C = (C 为常数); (2)()'n x = ; (3)(sin )'x = ; (4)(cos )'x = ; (5)()'x a = ; (6)()'x e = ; (7)_____________; (8)_____________; 二、导数的运算法则 1、(1) ; (2) ; (3)______________________________________; (4) =___________________________________;(C 为常数) 2、复合函数的导数 设 . 三、练习 1、已知()2f x x =,则()3f '等于( ) A .0 B .2x C .6 D .9 2、()0f x =的导数是( ) A .0 B .1 C .不存在 D .不确定 3、32y x 的导数是( ) A .23x B .213x C .12- D 33x

4、曲线n y x =在2x =处的导数是12,则n 等于( ) A .1 B .2 C .3 D .4 5、若()f x =()1f '等于( ) A .0 B .13- C .3 D .13 6、2y x =的斜率等于2的切线方程是( ) A .210x y -+= B .210x y -+=或210x y --= C .210x y --= D .20x y -= 7、在曲线2y x =上的切线的倾斜角为4 π的点是( ) A .()0,0 B .()2,4 C .11,416?? ??? D .11,24?? ??? 8、设()sin y f x =是可导函数,则x y '等于( ) A .()sin f x ' B .()sin cos f x x '? C .()sin sin f x x '? D .()cos cos f x x '? 9、函数()2 2423y x x =-+的导数是( ) A .()2823x x -+ B .()2 216x -+ C .()()282361x x x -+- D .()()242361x x x -+- 10、曲线34y x x =-在点()1,3--处的切线方程是( ) A .74y x =+ B .72y x =+ C .4y x =- D .2y x =- 11、点P 在曲线323y x x =-+ 上移动,设点P 处切线的倾斜角为α,则角α的取值范围是( ) A .0,2π?????? B .30,,24πππ????????????U C .3,4ππ?????? D .3,24ππ?? ???

基本初等函数的导数公式及导数运算法则综合测试题(附答案)

基本初等函数的导数公式及导数运算法则综合测试题(附答案) 选修2-21.2.2第2课时基本初等函数的导数公式及导数运算法则 一、选择题 1 .函数y = (x+ 1)2(x—1)在x= 1处的导数等于() A.1B.2 C. 3 D. 4 答案]D 解析]y = (x+1)2]'—x1 )+(x+ 1)2(x—1)' =2(x + 1)?(x—1) + (x+ 1)2= 3x2 + 2x—1, y‘ =1= 4. 2.若对任意x€ R, f‘ =)4x3, f(1) = —1,则f(x)=() A. x4 B. x4— 2 C. 4x3—5 D. x4+ 2 答案]B 解析]丁f‘(=4x3.f(x) = x4+c,又f(1) = — 1 ? ? ? 1 + c= — 1 ,? ? ? c= —2,—f(x) = x4 — 2. 3 .设函数f(x) = xm + ax 的导数为f‘ =)2x+1,则数列{1f(n)}(n € N*) 的前n 项和是() A.nn+1 B.n+2n+1 C.nn—1 D.n+1n 答案]A 解析]T f(x) = xm+ ax 的导数为f‘(x)2x + 1,

/. m = 2, a= 1,二f(x) = x2+ x, 即f(n) = n2+n=n(n+ 1), 二数列{1f(n)}(n € N*)的前n项和为: Sn= 11 X2 12X3 13 x+…+ 1n(n+ 1) =1 —12+ 12—13+…+ 1n —1n + 1 =1 —1n+ 1= nn+ 1, 故选 A. 4.二次函数y = f(x)的图象过原点,且它的导函数y= f‘的)图象是过第 一、二、三象限的一条直线,贝卩函数y= f(x)的图象的顶点在() A.第一象限 B.第二象限 C.第三象限 D.第四象限 答案]C 解析]由题意可设f(x)= ax2 + bx, f' (=2ax + b,由于f‘(的图象是过第一、二、三象限的一条直线,故2a>0, b>0,则f(x) = ax+ b2a2—b24a, 顶点—b2a,—b24a 在第三象限,故选 C. 5 .函数y = (2 + x3)2的导数为() A. 6x5+ 12x2 B. 4+ 2x3 C. 2(2+ x3)2 D. 2(2+ x3)?3x 答案]A 解析]t y= (2+ x3)2= 4+ 4x3+ x6, /. y = 6x5 + 12x2.

导数计算练习习题

欢迎阅读 导数计算练习题 1、已知()2f x x =,则()3f '等于() A .0 B .2x C .6 D .9 2、()0f x =的导数是() A .0 B .1 C .不存在 D .不确定 3、 y A .3x 4A .15、若 A .06、y A .2C .27A .(8A .()sin f x 'B .()sin cos f x x '? C .()sin sin f x x '? D .()cos cos f x x '? 9、(理科)函数()2 2423y x x =-+的导数是() A .()2823x x -+B .()2 216x -+ C .()()282361x x x -+- D .()()242361x x x -+-

10、曲线34y x x =-在点()1,3--处的切线方程是() A .74y x =+ B .72y x =+ C .4y x =- D .2y x =- 11、点P 在曲线323y x x =-+ 上移动,设点P 处切线的倾斜角为α,则角α的取值范围是() A .0,2π??????B .30,,24πππ????????????C .3,4ππ??????D .3,24ππ?? ??? 122 131415(5)y =(6)y =(7)y =16(1)(2)(3)(4)(5)2 1x +(6)232x y x x =- - 17、求下列各函数的导数 (1)sin cos y x x x =+ (2)1cos x y x =-

(3)tan tan y x x x =- (4)5sin 1cos x y x =+ 18、(理科)求下列各函数的导数 (1)25(1)y x =+ (2)2(23y x =+ (3)(4)y (5)y =(6)y =(7)y =(8)y =(9)y =(10)y (11)y

导数及其应用高考题精选含答案

导数及其应用高考题精选 1.(2010·海南高考·理科T3)曲线2 x y x = +在点()1,1--处的切线方程为() (A )21y x =+(B )21y x =-(C )23y x =--(D )22y x =-- 【命题立意】本题主要考查导数的几何意义,以及熟练运用导数的运算法则进行求解. 【思路点拨】先求出导函数,解出斜率,然后根据点斜式求出切线方程. 【规范解答】选 A.因为22 (2) y x '= +,所以,在点()1,1--处的切线斜率12 2 2(12)x k y =-' == =-+,所以,切线方程为12(1)y x +=+,即21y x =+,故选A. 2.(2010·山东高考文科·T8)已知某生产厂家的年利润y (单位:万元) 与年产量x (单位:万件)的函数关系式为3 1812343 y x x =-+-,则使该生产厂 家获得最大年利润的年产量为() (A)13万件(B)11万件 (C)9万件(D)7万件 【命题立意】本题考查利用导数解决生活中的优化问题,考查了考生的分析问题解决问题能力和运算求解能力. 【思路点拨】利用导数求函数的最值. 【规范解答】选C ,2'81y x =-+,令0y '=得9x =或9x =-(舍去),当9x <时'0y >;当9x >时'0y <,故当9x =时函数有极大值,也是最大值,故选C. 3.(2010·山东高考理科·T7)由曲线y=2 x ,y=3 x 围成的封闭图形面积为() (A ) 1 12 (B)14 (C)13 (D) 712 【命题立意】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的

导数的四则运算法则

§4 导数的四则运算法则 一、教学目标: 1.知识与技能 掌握有限个函数的和、差、积、商的求导公式;熟练运用公式求基本初等函数的四则运算的导数,能运用导数的几何意义,求过曲线上一点的切线。 2.过程与方法 通过用定义法求函数f (x )=x+x 2 的导数,观察结果,发掘两个函数的和、差求导方法,给结合定义给出证明;由定义法求f(x)=x 2g(x)的导数,发现函数乘积的导数,归纳出两个函数积、商的求导发则。 3.情感、态度与价值观 培养学生由特别到一般的思维方法去探索结论,培养学生实验——观察——归纳——抽象的数学思维方法。 二、教学重点:函数和、差、积、商导数公式的发掘与应用 教学难点:导数四则运算法则的证明 三、教学方法:探析归纳,讲练结合 四、教学过程 (一)、复习:导函数的概念和导数公式表。 1.导数的定义:设函数)(x f y =在0x x =处附近有定义,如果0→?x 时,y ?与x ?的比x y ??(也叫函数的平均变化率)有极限即 x y ??无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0 / x x y =,即x x f x x f x f x ?-?+=→?) ()(lim )(000 0/ 2. 导数的几何意义:是曲线)(x f y =上点()(,00x f x )因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为 )(()(00/0x x x f x f y -=-

3. 导函数(导数):如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个 ),(b a x ∈,都对应着一个确定的导数)(/x f ,从而构成了一个新的函数)(/x f , 称这个函数)(/x f 为函数)(x f y =在开区间内的导函数,简称导数, 4. 求函数)(x f y =的导数的一般方法: (1)求函数的改变量()(x f x x f y -?+=?(2)求平均变化率 x x y ?= ?? (3)取极限,得导数/ y =()f x '=x y x ??→?0lim 5. 常见函数的导数公式:0'=C ;1)'(-=n n nx x (二)、探析新课 两个函数和(差)的导数等于这两个函数导数的和(差),即 证明:令)()()(x v x u x f y ±==, )] ()([)]()([x v x u x x v x x u y ±-?+±?+=?v u x v x x v x u x x u ?±?=-?+±-?+=)]()([)]()([, ∴ x v x u x y ??±??=??,x v x u x v x u x y x x x x ??±??=? ?? ????±??=??→?→?→?→?0000lim lim lim lim 即 )()()]()([' ' ' x v x u x v x u ±=±. 例1:求下列函数的导数: (1)x x y 22 +=; (2)x x y ln -= ; (3))1)(1(2-+=x x y ; (4) 2 2 1x x x y +-= 。 解:(1)2ln 22)2()()2(2 2 x x x x x x y +='+'='+='。 (2)x x x x x x y 121)(ln )()ln (- = '-'='-='。 (3) [] 123)1()()()()1()1)(1(223232+-='-'+'-'='-+-=' -+='x x x x x x x x x x y 。 例2:求曲线x x y 1 3- =上点(1,0)处的切线方程。

导数练习题(含答案)

导数概念及其几何意义、导数的运算 一、选择题: 1 已知32()32f x ax x =++,若(1)4f '-=,则a 的值等于 A 193 B 103 C 16 3 D 133 2 已知直线1y kx =+与曲线3y x ax b =++切于点(1,3),则b 的值为 A 3 B -3 C 5 D -5 3 函数2y x a a =+2()(x-)的导数为 A 222()x a - B 223()x a + C 223()x a - D 222()x a + 4 曲线313y x x =+在点4 (1,)3 处的切线与坐标轴围成的三角形的面积为 A 1 9 B 29 C 13 D 2 3 5 已知二次函数2y ax bx c =++的导数为(),(0)0f x f ''>,对于任意实数x ,有()0f x ≥,则(1) (0) f f '的最小值为 A 3 B 52 C 2 D 32 6 已知函数()f x 在1x =处的导数为3,则()f x 的解析式可能为 A 2()(1)3(1)f x x x =-+- B ()2(1)f x x =- C 2()2(1)f x x =- D ()1f x x =- 7 下列求导数运算正确的是 A 211()1x x x '+=+ B 21 (log )ln 2 x x '= C 3(3)3log x x e '=? D 2 (cos )2sin x x x x '=- 8 曲线3 2153 y x x =-+在1x =处的切线的倾斜角为 A 6 π B 34π C 4π D 3 π 9 曲线3 2 31y x x =-+在点(1,1)-处的切线方程为 A 34y x =- B 32y x =-+ C 43y x =-+ D 45y x =- 10 设函数sin cos y x x x =+的图像上的点(,)x y 处的切线斜率为k ,若()k g x =,则函数()k g x =的图像大致为

导数学案(有答案)

3.1.1平均变化率 课时目标 1.理解并掌握平均变化率的概念.2.会求函数在指定区间上的平均变化率.3.能利用平均变化率解决或说明生活中的实际问题. 1.函数f(x)在区间[x1,x2]上的平均变化率为____________.习惯上用Δx表示________,即__________,可把Δx看作是相对于x1的一个“__________”,可用__________代替x2;类似地,Δy=__________,因此,函数f(x)的平均变化率可以表示为________. 2.函数y=f(x)的平均变化率Δy Δx= f(x2)-f(x1) x2-x1 的几何意义是:表示连接函数y=f(x)图象 上两点(x1,f(x1))、(x2,f(x2))的割线的________. 一、填空题 1.当自变量从x0变到x1时,函数值的增量与相应自变量的增量之比是函数________.(填序号) ①在[x0,x1]上的平均变化率; ②在x0处的变化率; ③在x1处的变化率; ④以上都不对. 2.设函数y=f(x),当自变量x由x0改变到x0+Δx时,函数的增量Δy=______________. 3.已知函数f(x)=2x2-1的图象上一点(1,1)及邻近一点(1+Δx,f(1+Δx)),则Δy Δx= ________. 4.某物体做运动规律是s=s(t),则该物体在t到t+Δt这段时间内的平均速度是______________. 5.如图,函数y=f(x)在A,B两点间的平均变化率是________. 6.已知函数y=f(x)=x2+1,在x=2,Δx=0.1时,Δy的值为________. 7.过曲线y=2x上两点(0,1),(1,2)的割线的斜率为______. 8.若一质点M按规律s(t)=8+t2运动,则该质点在一小段时间[2,2.1]内相应的平均速度是________. 二、解答题 9.已知函数f(x)=x2-2x,分别计算函数在区间[-3,-1],[2,4]上的平均变化率.10.过曲线y=f(x)=x3上两点P(1,1)和Q(1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率.

导数的四则运算规则

§4 导数的四则运算法则 主讲:陈晓林 时间:2012-2-23 一、教学目标: 1.知识与技能 掌握有限个函数的和、差、积、商的求导公式;熟练运用公式求基本初等函数的四则运算 的导数,能运用导数的几何意义,求过曲线上一点的切线。 2.过程与方法 通过用定义法求函数f (x )=x+x 2的导数,观察结果,发掘两个函数的和、差求导方法, 给结合定义给出证明;由定义法求f(x)=x 2g(x)的导数,发现函数乘积的导数,归纳出两 个函数积、商的求导发则。 3.情感、态度与价值观 培养学生由特别到一般的思维方法去探索结论,培养学生实验——观察——归纳——抽象 的数学思维方法。 二、教学重点:函数和、差、积、商导数公式的发掘与应用 教学难点:导数四则运算法则的证明 三、教学方法:探析归纳,讲练结合 四、教学过程 (一)、复习:导函数的概念和导数公式表。 1.导数的定义:设函数在处附近有定义,如果时,与的比 )(x f y =0x x =0→?x y ?x ?(也叫函数的平均变化率)有极限即无限趋近于某个常数,我们把这个极限值叫x y ??x y ??做函数在处的导数,记作,即 )(x f y =0x x →0 / x x y =x x f x x f x f x ?-?+=→?) ()(lim )(000 0/2. 导数的几何意义:是曲线上点()处的切线的斜率因此,如果 )(x f y =)(,00x f x 在点可导,则曲线在点()处的切线方程为 )(x f y =0x )(x f y =)(,00x f x )(()(00/0x x x f x f y -=-3. 导函数(导数):如果函数在开区间内的每点处都有导数,此时对于每一个 )(x f y =),(b a 后进行 高中资料试卷调整试验;通电检查所有

导数的计算练习题及答案.doc

【巩固练习】 一、选择题 1.设函数 f (x) (1 2x 3 )10 ,则 f '(1) ( ) A .0 B .―1 C .― 60 D . 60 2.( 2014 江西校级一模)若 f (x) 2ln x x 2 ,则 f ' ( x) 0 的解集为( ) A.(0,1) B. , 1 U 0,1 C. 1,0 U 1, D. 1, 3.( 2014 春 永寿县校级期中)下列式子不正确的是( ) A. 3x 2 ' 6x sin x B. ln x 2 x ' 1 x ln 2 cos x 2 x ' sin x ' x cos x sin x C. 2sin 2x 2cos2x D. x x 2 4.函数 y x 4 5 的导数是( ) 3x 8 A . 5 B .0 C . 5(4 x 3 3) D . 5(4 x 3 3) 4x 3 3 ( x 4 3x 8) 2 (x 4 3x 8) 2 5 .( 2015 安 徽 四 模 ) 已 知 函 数 f ( x) 的 导 函 数 为 f ' ( x) , 且 满 足 关 系 式 f ( x) x 2 3xf ' (2) ln x ,则 f '(2) 的值等于( ) A. 2 C. 9 D. 9 4 4 x 1 ( x 6.设曲线 y 1) 在点( 3,2)处的切线与直线 ax+y+1=0 垂直,则 a=( ) x 1 A .2 B . 1 C .―1 D .―2 2 2 7. y log 3 cos 2 x (cos x 0) 的导数是( ) A . 2log 3 e tan x B . 2log 3 e cot x C . 2log 3 e cos x D . log 2 e cos 2 x 二、填空题 8.曲线 y=sin x 在点 ,1 处的切线方程为 ________。 2 9.设 y=(2x+a) 2,且 y ' |x 2 20 ,则 a=________。 . x 3 1 ____________, 2x sin 2x 5 ____________。 10 sin x 11.在平面直角坐标系 xOy 中,点 P 在曲线 C :y=x 3― 10x+3 上,且在第二象限内,已知曲

导数公式及其运算法则

§1.2.2基本初等函数的导数公式及导数的运算法则(两课时) 学习目标 1.理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数; 2.理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数. 3.复合函数的分解,求复合函数的导数. 一、预习与反馈(预习教材P 14~ P 19,找出疑惑之处) 复习1:常见函数的导数公式: (1) '____C =(C 为常数);(2)()'________n x =, n ∈N +;(3)(sin )'_______x =; (4)(cos )'_______x =; (5)()'________x e =; (6)()'_________x a =; (7)(ln )'______x =; (8) e x x a a log 1)'(log = 复习2:根据常见函数的导数公式计算下列导数 (1)6y x = (2 )y = (3)21y x = (4 )y = 新知 1.可导函数的四则运算法则 法则1 '[()()]____________.u x v x ±=(口诀:和与差的导数等于导数的和与差). 法则2 [()()]____________u x v x '=. (口诀:前导后不导,后导前不导,中间是正号) 法则3 ()[]_______________(()0)() u x v x v x '=≠(口诀:分母平方要记牢,上导下不导,下导上不导,中间是负号)

例1. 根据基本初等函数的导数公式和导数运算法则,求函数3123y x x x =-++导数. 变式:( 1)2log y x =; (2)2x y e =; (3)522354y x x x =-+-; (4)3cos 4sin y x x =- 例2求下列函数的导数: (1)32log y x x =+; (2)n x y x e = (3)y=2e -x 2. 复合函数: 1.定义:一般地,对于两个函数y =f (u )和()u g x =,如果通过变量u,y 可以表示成x 的函数,那么这个函数为函数 和 的复合函数,记住 2.复合函数的求导法则 复合函数(())y f g x =的导数和函数y =f (u ),()u g x =的导数间的关系式为 ,即y 对x 的导数等于 的乘积。 例。3 求下列函数的导数: (1)2(23)y x =+; (2)1x y e -+=; (3)sin()y x π?=+

基本初等函数导数公式附导数运算法则

1.2.2基本初等函数的导数公式及导数的运算法则(一)教学目的:1熟练掌握基本初等函数的导数公式。 2掌握导数的四则运算法则; 3能利用给出的公式和法则求解函数的导数。 教学重点难点 重点:基本初等函数的导数公式、导数的四则运算法则 难点:基本初等函数的导数公式和导数的四则运算法则的应用 教学安排:两课时 教学过程: 引入:复习巩固导数的基本公式,及其基本运算规律。 且 知识讲解: 一:基本初等函数的导数公式 为了方便我们将可以直接使用的基本初等函数的导数公式表如下:

关于表特别说明:1 常数函数 的导 数是 0; 2幂函数 导数是以对应幂函数的指数为系数 3 余弦函 数的导数是正弦函数的相反 数。 从图像上来看,正弦函数在区间上单调递增,瞬时变化率为正, 和余弦函数在该区间的正负是一致的, 余弦函数在区间上是单调递减,瞬时变化率为负, 和正弦函数在该区间的正负是相反的,故 有一个负号。 4

的导数是它自身。 5 例1计算下列函数的导数 强调:1幂函数和指数函数是两种不同的函数,关键是看变量所处的 位置是在底数上还是在指数上。 2 导函数的定义域决定于原函数的定义域。 练习:求下列函数的导数。 例 2.(课本P14例1)假设某国家在20 那么在第10个年头,这种商品的价格上涨的速度大约 是多少(精确到0.01 )? /年) 在第10个年头,这种商品的价格约为0.08元/年的速度上涨.

提出问题: 10个年头,这种 0.01)? 二导数的计算法则 推论1 导数不变) 2 (常数与函数的积的导数,等于常数乘函数 的导数) 3 解决问题: 公式和求导法则,有 /年) 0.4元/年的速度上涨.例3 根据基本初等函数的导数公式和导数运算法则,求下列函数的导数,并注明定义域。

导数历届高考试题精选含答案

导数高考试题精选 一.选择题(共16小题) 1.(2013?河东区二模)已知曲线的一条切线的斜率为,则切点的横坐标为() A. 3 B.2 C. 1D. 2.(2012?汕头一模)设曲线y=ax2在点(1,a)处的切线与直线2x﹣y﹣6=0平行,则a=() A.1B.C. D.﹣1 3.(2011?烟台一模)设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=() A. 2B.C.D.﹣2 4.(2010?泸州二模)曲线在点处的切线与坐标轴围成的三角形面积为() A. B. C.D. 5.(2010?辽宁)已知点P在曲线y=上,α为曲线在点P处的切线的倾斜角,则α的取值范围是() A. [0,) B.C. D. 6.(2010?江西模拟)曲线y=x3﹣2x+4在点(1,3)处的切线的倾斜角为() A. 30° B. 45°C.60°D.120°7.(2009?辽宁)曲线y=在点(1,﹣1)处的切线方程为() A. y=x﹣2 B. y=﹣3x+2C. y=2x﹣3 D. y=﹣2x+1 8.(2009?江西)若存在过点(1,0)的直线与曲线y=x3和都相切,则a等于() A. ﹣1或B. ﹣1或 C. 或 D. 或7 9.(2006?四川)曲线y=4x﹣x3在点(﹣1,﹣3)处的切线方程是() A.y=7x+4 B. y=7x+2 C.y=x﹣4 D.y=x﹣2 10.(2012?海口模拟)已知f(x)=alnx+x2(a>0),若对任意两个不等的正实数x1,x2,都有 >2恒成立,则a的取值范围是() A. (0,1]B.(1,+∞) C. (0,1) D.[1,+∞)

(完整word版)基本初等函数的导数公式及导数的四则运算法则

全国中小学“教学中的互联网搜索”优秀教学案例评选 教案设计 高中数学人教A版选修1-1 3、2、2基本初等函数的导数公式及导数的四则运算 一、教案背景:面向学生:周村区实验中学学科:数学 课时:1课时 二、教学目标:熟练掌握基本初等函数的导数公式;掌握导数的四则 运算法则;能利用给出的基本初等函数的导数公式和导数的 四则运算法则求简单函数的导数. 三、教学重点:基本初等函数的导数公式、导数的四则运算法则 四、教学难点:基本初等函数导数公式和导数的四则运算法则的应用 五、教材分析:教科书直接给出基本初等函数的导数公式及导数的运 算法则,不要求根据导数定义推导这些公式和法则,只要求 能够利用他们能求简单函数的导数即可。在教学中,适量的 联系对于熟悉公式和法则的运用是必要的,但应避免过量的 形式化的运算联系。 六、教学方法及教学思路: 运用“721”信息化课堂教学模式----“自主、展示、合作、交流、引领”,本课的设计内容分为以下几个部分: 1、回顾公式、寻找技巧 2、自主探究、合作学习 3、成果展示,汇报交流

4、归纳总结,提升拓展 5、反馈训练,巩固落实 6、总结本节复习要点及课后作业的布置 七、教学过程 1、回顾公式、寻找技巧 基本初等函数的导数公式: 导数的四则运算法则: 函数的和、差、积、商的求导法则:

简单复合函数的求导: 函数 其中 和 都可导,则: 2、自主探究、合作学习 针对性训练:求下列函数的导数 3、成果展示,汇报交流 学生分学习小组到黑板上板书本组解决的任务,并且进行讲解,同时指出本题目所运用的数学思想和数学方法。 4、归纳总结,提升拓展 总结反思: 1、先观察函数是由哪些子函数组成。 2、再观察有哪些运算法则。 3、拿到题目不要急于动手计算,先要分析清楚函数的组合成员x x y sin 34+=)(3229+=x e y )(5)35(7+=x y )((4)y=xsinx )5)(23(62-+=x x y )()12(log 103+=x y )() 32sin(8π+=x y )( )(x g u =x u x u f y '''?=)(u f y =))((x g f y =26331x x x y -+=)(x e y x cos 2-=)((5)y=tanx

导数练习题含答案

导数练习题 班级 姓名 一、选择题 1.当自变量从x 0变到x 1时函数值的增量与相应自变量的增量之比是函数( ) A .在区间[x 0,x 1]上的平均变化率 B .在x 0处的变化率 C .在x 1处的变化量 D .在区间[x 0,x 1]上的导数 2.已知函数y =f (x )=x 2+1,则在x =2,Δx =0.1时,Δy 的值为( ) A .0.40 B .0.41 C .0.43 D .0.44 3.函数f (x )=2x 2 -1在区间(1,1+Δx )上的平均变化率Δy Δx 等于( ) A .4 B .4+2Δx C .4 +2(Δx )2 D .4x 4.如果质点M 按照规律s =3t 2运动,则在t =3 时的瞬时速度为( ) A .6 B .18 C .54 D .81 5.已知f (x )=-x 2 +10,则f (x )在x =32处的瞬时变化率是( ) A .3 B .-3 C .2 D .-2 6.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( ) A .不存在 B .与x 轴平行或重合 C .与x 轴垂直 D .与x 轴相交但不垂直 7.曲线y =-1 x 在点(1,-1)处的切线方程为( ) A .y =x -2 B .y =x C .y =x +2 D .y = -x -2 8.已知曲线y =2x 2上一点A (2,8),则A 处的切 线斜率为( ) A .4 B .16 C .8 D .2 9.下列点中,在曲线y =x 2上,且在该点处的 切线倾斜角为 π 4 的是( ) A .(0,0) B .(2,4) C .(1 4 ,116) D .(1 2 ,1 4 ) 10.若曲线y =x 2+ax +b 在点(0,b )处的切线 方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1 D .a =-1,b =-1 11.已知f (x )=x 2,则f ′(3)=( ) A .0 B .2x C .6 D .9 12.已知函数f (x )=1x ,则f ′(-3)=( ) A .4 B.19 C .-1 4 D .-1 9 13.函数y =x 2 x +3 的导数是( ) A.x 2+6x x +32 B.x 2+6x x +3 C.-2x x +32 D.3x 2 +6x x +32 14.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为( ) A .0 B .-1 C .1 D .2 15.命题甲:对任意x ∈(a ,b ),有f ′(x )>0;命题乙:f (x )在(a ,b )内是单调递增的.则甲是乙的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 16.函数f (x )=(x -3)e x 的单调递增区间是( ) A .(-∞,2) B .(0,3)

导数的运算专项练习(含答案)

导数的运算 一、单选题(共33题;共66分) 1.f′(x)是函数f(x)=x3+2x+1的导函数,则f′(-1)的值为() A. 0 B. 3 C. 4 D. - 2.函数的导数为() A. B. C. D. 3.设函数,若,则等于() A. B. C. D. 4.设则等于( ) A. B. C. D. 5.已知函数的导函数,且满足,则=( ) A. B. C. 1 D. 6.已知函数的导函数为,且,则() A. 2 B. 3 C. 4 D. 5 7.下列求导运算的正确是() A. 为常数 B. C. D. 8.已知函数的值为() A. B. C. D. 9.下列求导运算正确的是() A. B. C. D. 10.已知函数f(x)=sinx-cosx,则f'()=() A. B. C. D. 11.若函数f(x)=2+xcos2x,则f'(x)=() A. cos 2x-xsin 2x B. x-sin 2x C. 1-2sin 2x D. cos2x-2sin2x 12.函数的导数为() A. =2 B. = C. =2 D. = 13.设函数的导函数为,且,则=( ) A. 0 B. -4 C. -2 D. 2

14.设,若,则() A. B. C. D. 15.已知函数,则其导数() A. B. C. D. 16.若函数,则的值为() A. 0 B. 2 C. 1 D. -1 17.已知函数,且,则的值为() A. B. C. D. 18.已知函数,为的导函数,则的值为() A. B. C. D. 19.下列求导运算正确的是() A. B. C. D. 20.已知函数的导函数为,且满足,则() A. B. C. D. 21.若,则函数的导函数() A. B. C. D. 22.函数的导数为() A. B. C. D. 23.下列导数式子正确的是() A. B. C. D. 24.已知,则等于() A. -2 B. 0 C. 2 D. 4 25.已知函数,则() A. B. C. D. 26.已知,则() A. B. C. D. 27.设,,则x0=( ) A. e2 B. e C. D. ln 2 28.下列求导数运算正确的是()

16导数公式及四则运算

16导数公式及四则运 算 -CAL-FENGHAI.-(YICAI)-Company One1

2 导数公式及四则运算 【使用说明及学法指导】 1.自学课本P14-P21,仔细阅读课本,课前完成预习学案,牢记基础知识,掌握基本题型,在做题过程中,如遇不会问题再回去阅读课本; AA 完成所有题目,BB 完成除(**)外所有题目,CC 完成不带(*)题目。 2.认真限时完成,书写规范;课上小组合作探究,答疑解惑。 3.找出自己的疑惑和需要讨论的问题准备课上讨论质疑; 3.预习指导:理解幂函数导数的推导过程,熟记常用初等函数的导函数,并能应用导数的四则运算法则求导。 【学习目标】 1.理解并记忆基本初等函数的导函数,掌握导数的运算法则; 2.自主学习、合作交流,归纳出求导公式应用的规律与方法; 3.激情投入,高效学习,形成缜密的数学思维品质。 一、课前预习 问题1.结合函数3)(x x f =的求导过程总结求导导函数的步骤.. 设 3)(x x f y ==, △y= )()(x f x x f -?+=3)(x x ?+-3x =322 )()(33x x x x x ?+??+?? ∴x y ??=22)(33x x x x ?+??+ ∴x y x ??→?0lim =2 3x 即2'3)(x x f =. 问题2:什么样的函数是幂函数 由2' 33)(x x =,x x 2)('2=, 2'1)(---=x x 归纳幂函数的导数表达式是怎 样的 问题3.结合课本p17“基本初等函数导数公式表”书写出这组导数公式并分析特点,这组公式可分为几类如何记忆秀秀你的高招. 问题4. 两个函数和、差、积、商的导数是否等于这两个函数导数的和、差、积、商写出函数求导的四则运算法则并分析这组公式的特点,看看谁记忆地既准又快! 问题5.当 ()1≡x f 时,你能否运用商的求导法则确定函数 ()x g x f )(即() x g 1 的导数 二、学始于疑---我思考、我收获 1.判断正误:(1))()(])()([x g x f x g x f ''='. (2)c 是常数,则)()]([''x f c x f c ?=? . 2.(1) 若x e x f =)(,则)('x f = . (2) 若 x x f ln )(=,则)('x f = . 3.求下列函数的导数: (1)=++-+='2223y e x x x y x (2)x y x lg 2-= ='y

导数的运算练习题答案Word版

1.设a 为实数,函数R x a x e x f x ∈+-=,22)(。 (Ⅰ)求)(x f 的单调区间与极值; (Ⅱ)求证:当12ln ->a 且0>x 时,122 +->ax x e x 。 2. 已知 函数f(x)=))(6(3)4(2 3 R x n mx x m x ∈-+--+的图像关于原点对称,其中m,n 为实常数。 (1) 求n m ,的值; (2) 试用单调性的定义证明:f (x) 在区间[-2, 2] 上是单调函数; (3) 当-2≤x ≤2 时,不等式)log ()(a n x f m -≥恒成立,求实数a 的取值范围。 解(1)由于f(x)图象关于原点对称,则f(x)是奇函数, f(-x)=-f(x) 恒成立,)6(3)4()6(3)4(2323--+---=-++-+-n mx x m x n mx x m x []()()()()()(), ,0, 012022) 12)(()12()12(,2,2,,12)()1()2(.6,40)6()4(2121222121212122212121232131212 12132x f x f x f x f x x x x x x x x x x x x x x x x x x x f x f x x x x x x x f n m n x m >>-<-++<-≤<≤--++-=---=-<-∈-====-+-即从而,知,由且任取可知由恒成立,必有即

∴f(x)在[-2,2]上是减函数。 (3)由(2)知f(x)在[-2,2]上是减函数,则-22≤≤x 时,()().162-=≥f x f 故-2时,2≤≤x 不等式f(x)a a n m m log )log (-≥恒成立 .4161 08 log 2log 0)2)(log 8(log log )log 6(168444444≥≤ +++=a d cx bx x a x f , 且方程09)('=-x x f 的两个根分别为1,4。 (Ⅰ)当a=3且曲线)(x f y =过原点时,求)(x f 的解析式; (Ⅱ)若)(x f 在),(+∞-∞无极值点,求a 的取值范围

相关文档
最新文档