高中数学必修二直线、平面平行垂直的判定与性质检测试题

合集下载

第二、三篇 直线,平面平行、垂直的判定及其性质

第二、三篇   直线,平面平行、垂直的判定及其性质

第二、三篇直线,平面平行、垂直的判定及其性质一、解答题1.如图,在四棱锥ABCDE-中,底面ABCD为正方形,⊥AE平面CDE,已知2AE DE==,F为线段DE的中点.(1)求证://BE平面ACF;(2)求二面角C BF E--的平面角的余弦值.2.如图,直三棱柱111ABC A B C-中,AC AB⊥,12AB AA=,M是AB的中点,△11A MC是等腰三角形,D为1CC的中点,E为BC上一点.(1)若DE∥平面11A MC,求CEEB;(2)平面11A MC将三棱柱111ABC A B C-分成两个部分,求较小部分与较大部分的体积之比.3.如图,在底面为平行四边形的四棱锥P ABCD-中,AB AC⊥,PA⊥平面ABCD,且PA AB=,点E是PD的中点.ACBDEF(1)求证:AC PB ⊥;(2)求证://PB 平面AEC ;(3)求二面角E AC B --的大小.4.已知多面体ABCDFE 中, 四边形ABCD 为矩形,AB ∥EF ,AF ⊥BF ,平面ABEF ⊥平面ABCD , O 、M 分别为AB 、FC 的中点,且AB = 2,AD = EF = 1.(1)求证:AF ⊥平面FBC ;(2)求证:OM ∥平面DAF ;(3)设平面CBF 将几何体EFABCD 分成的两个锥体的体积分别为V F-ABCD ,V F-CBE ,求V F-ABCD ∶V F-CBE 的值.5.如图,已知三棱锥P -ABC 中,∠ACB =90°,CB =4,AB =20,D 为AB 中点,M 为PB 中点,且△PDB 是正三角形,PA ⊥PC 。

.(1)求证:DM ∥平面PAC ;(2)求证:平面PAC ⊥平面ABC ;(3)求三棱锥M -BCD 的体积6.如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB ∥DC ,△PAD 是等边三角形,已知AD =4,BD =43,AB =2CD =8.(1)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ;(2)当M 点位于线段PC 什么位置时,PA ∥平面MBD?(3)求四棱锥P -ABCD 的体积.D B MPC7.如图,在三棱锥ABC S -中,⊥SA 底面ABC ,ο90=∠ABC ,且AB SA =, 且交SC 于点N .时,求三棱锥SAN M -的体积.8.如图所示,PA ⊥平面ABCD ,ABCD 是矩形,AB=1F 是PB 的中点,点E 在边BC 上移动.(1)若1PA =,求证:AF PC ⊥;(2)若二面角P BC A --的大小为060,则CE 为何值时, 9.如图1,在直角梯形ABCD 中,CD AB //,AD AB ⊥,然后沿边AD 将正方形2.PAB C D EF(1)求证:AM ∥平面BEC ;(2)求证:BDE BC 平面⊥;(3)求点D 到平面BEC 的距离.10.如图,在四棱锥P-ABCD 中,底面ABCD 是平行四边形,且PA ⊥底面ABCD ,BD PC ⊥,E 是PA 的中点.(1)求证:平面PAC ⊥平面EBD ;(2)若PA=AB=2,求三棱锥P-EBD 的高.图1参考答案1.证明:(1)见解析;(2)二面角C BF E --的平面角的余弦值为 【解析】试题分析:证明:(1)注意做辅助线,连结BD 和AC 交于O ,连结OF , 根据O 为BD 中点,F 为DE 中点,得到BE OF //, 即证得//BE 平面ACF ;(2)应用已知条件,研究得到CD AD ⊥,⊥CD 平面DAE ,CD DE ⊥,创造建立空间直角坐标系的条件,通过 ∴以D 为原点,以DE 为x 轴建立如图所示的坐标系,应用“向量法”解题;解答本题的关键是确定“垂直关系”,这也是难点所在,平时学习中,应特别注意转化意识的培养,能从“非规范几何体”,探索得到建立空间直角坐标系的条件.试题解析:证明:(1)连结BD 和AC 交于O ,连结OF , 1分ABCD Q 为正方形,∴O 为BD 中点,F Θ为DE 中点,BE OF //∴, 3分BE ⊄Q 平面ACF ,OF ⊂平面ACF//BE ∴平面ACF . 4分(2)⊥AE Θ平面CDE ,⊂CD 平面CDE ,CD AE ⊥∴,ABCD Q 为正方形,CD AD ∴⊥,,,AE AD A AD AE =⊂Q I 平面DAE , ⊥∴CD 平面DAE ,DE ⊂Q 平面DAE ,CD DE ∴⊥ 6分∴以D 为原点,以DE 为x 轴建立如图所示的坐标系,则(2,0,0)E ,(1,0,0)F ,(2,0,2)A ,)0,0,0(DQ ⊥AE 平面CDE ,DE ⊂平面CDE ,AE DE ∴⊥ Q 2AE DE ==,ABCD Q 为正方形,由ABCD 为正方形可得:设平面BEF 的法向量为1111(,,)n x y z =u r,(1,0,0)FE =u u u r,令11y =,则分设平面BCF 的法向量为2222(,,)n x y z =u u r ,(2,0,2)BC =--u u u r ,,令21y =,则分 设二面角C BF E --的平面角的大小为θ,则∴二面角C BF E --的平面角的余弦值为分 考点:直线与平面、平面与平面垂直,二面角的定义及计算,空间向量的应用. 2.(1(2 【解析】试题分析:本题主要考查线线平行、线面平行、线线垂直、线面垂直、补体法、几何体的体积公式等基础知识,考查学生的空间想象能力、逻辑推理能力、计算能力.第一问,取BC 中点,由中位线及平行线间的传递性,得到MN ∥AC ∥11A C ,即11,,,A M N C 四点共面,利用线面平行的性质,得DE ∥1C N ,从而得到E 是CN 中点,第二问,利用直三棱柱,得1AA ^平面ABC ,由AC AB ⊥,利用线面垂直的判定,得AC ⊥平面11ABB A ,利用补体法求几何体11AA M CC N -的体积,分别求出较小部分和较大部分的体积,再求比值. 试题解析:取BC 中点为N ,连结1,MN C N , 1分∵,M N 分别为,AB CB 中点 ∴MN ∥AC ∥11A C ,∴11,,,A M N C 四点共面, 3分且平面11BCC B I 平面11A MNC 1C N = 又DE Ì平面11BCC B ,且DE ∥平面11A MC∴DE ∥1C N∵D 为1CC 的中点,∴E 是CN 的中点, 5分∴13CE EB =. 6分(2)因为三棱柱111ABC A B C -为直三棱柱,∴1AA ^平面ABC ,又AC AB ⊥,则AC ⊥平面11ABB A设122AB AA ==,又三角形11A MC 是等腰三角形,所以1112A M AC ==.如图,将几何体11AA M CC N -补成三棱柱11AA M CC F -∴几何体11AA M CC N -的体积为: 11111111125211211232232212V AM AA AC CF CC NF =⋅⋅⋅-⋅⋅⋅⋅=⨯⨯⨯-⨯⨯⨯⨯=9分 又直三棱柱111ABC A B C -体积为:分 故剩余的几何体棱台111BMN B AC -的体积为:12分 考点:线性平行、线面平行、线性垂直、线面垂直、补体法、几何体的体积公式.3.(1)见解析(2)见解析(3)135︒【解析】试题分析:(1)利用三垂线定理可证;(2)直线与平面平行的判定定理(Ⅲ)证EF ⊥平面ABCD ,进而找出二面角的平面角试题解析:(1)Q PA ABCD ⊥平面,∴AB 是PB 在平面ABCD 上的射影, 又Q AB ⊥AC ,AC ⊂平面ABCD ,∴ AC ⊥PB.(2)连接BD ,与AC 相交与O ,连接EO ,Q ABCD 是平行四边形∴O 是BD 的中点又E 是PD 的中点,∴ EO P PB.又PB ⊄平面AEC ,EO ⊂平面AEC , ∴PB //平面AEC ,(3)如图,取AD 的中点F ,连EF ,FO ,则EF 是△PAD 的中位线,∴EF //PA 又PA ⊥平面ABCD ,∴EF ⊥平面ABCD同理FO 是△∴FO ⊥AC ,由三垂线定理可知∴∠EOF 是二面角E -AC-D 的平面角EF 。

高中 直线、平面垂直的判定与性质 知识点+例题+练习

高中 直线、平面垂直的判定与性质 知识点+例题+练习

教学过程在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.规律方法证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面).解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.【训练1】(2013·江西卷改编)教学效果分析教学过程如图,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=2,AA1=3,E为CD上一点,DE=1,EC=3.证明:BE⊥平面BB1C1C.考点二平面与平面垂直的判定与性质【例2】(2014·深圳一模)如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC=AA1,且AC=2BC,点D是AB的中点.证明:平面ABC1⊥平面B1CD.规律方法证明两个平面垂直,首先要考虑直线与平面的垂直,也教学效果分析教学过程可简单地记为“证面面垂直,找线面垂直”,是化归思想的体现,这种思想方法与空间中的平行关系的证明非常类似,这种转化方法是本讲内容的显著特征,掌握化归与转化思想方法是解决这类问题的关键.【训练2】如图,在长方体ABCDA1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.证明:平面ABM⊥平面A1B1M.考点三平行、垂直关系的综合问题教学效果分析教学过程【例3】(2013·山东卷)如图,在四棱锥P-ABCD中,AB⊥AC,AB⊥P A,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.(1)求证:CE∥平面P AD;(2)求证:平面EFG⊥平面EMN.规律方法线面关系与面面关系的证明离不开判定定理和性质定理,而形成结论的“证据链”依然是通过挖掘题目已知条件来实现的,如图形固有的位置关系、中点形成的三角形的中位线等,都为论证提供了丰富的素材.【训练3】(2013·辽宁卷)如图,AB是圆O的直径,P A垂直圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面P AC;(2)设Q为P A的中点,G为△AOC的重心,求证:QG∥平面PBC.教学效果分析1.转化思想:垂直关系的转化2.在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.如有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直.故熟练掌握“线线垂直”、“面面垂直”间的转化条件是解决这类问题的关键.创新突破6——求解立体几何中的探索性问题【典例】(2012·北京卷)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.[反思感悟] (1)解决探索性问题一般先假设其存在,把这个假设作已知条件,和题目的其他已知条件一起进行推理论证和计算,在推理论证和计算无误的前提下,如果得到了一个合理的结论,则说明存在,如果得到了一个不合理的结论,则说明不存在.(2)在处理空间折叠问题中,要注意平面图形与空间图形在折叠前后的相互位置关系与长度关系等,关键是点、线、面位置关系的转化与平面几何知识的应用,注意平面几何与立体几何中相关知识点的异同,盲目套用容易导致错误.【自主体验】(2014·韶关模拟)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=12AB=2,点E为AC中点,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2.(1)求证:DA⊥BC;(2)在CD上找一点F,使AD∥平面EFB.基础巩固题组(建议用时:40分钟)一、填空题1.设平面α与平面β相交于直线m,直线a在平面α内,直线b 在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的________条件.2.(2014·绍兴调研)设α,β为不重合的平面,m,n为不重合的直线,则下列正确命题的序号是________.①若α⊥β,α∩β=n,m⊥n,则m⊥α;②若m⊂α,n⊂β,m⊥n,则n⊥α;③若n⊥α,n⊥β,m⊥β,则m⊥α;④若m∥α,n∥β,m⊥n,则α⊥β.3.如图,AB是圆O的直径,P A垂直于圆O所在的平面,C是圆周上不同于A,B的任一点,则图形中有________对线面垂直.4.若M是线段AB的中点,A,B到平面α的距离分别是4 cm,6 cm,则M到平面α的距离为________.5.(2014·郑州模拟)已知平面α,β,γ和直线l,m,且l⊥m,α⊥γ,α∩γ=m,β∩γ=l,给出下列四个结论:①β⊥γ;②l⊥α;③m⊥β;④α⊥β.其中正确的是________.6.如图,在四棱锥P ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为正确的条件即可)7.设α,β是空间两个不同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:________(用代号表示).8.如图,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的正投影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.二、解答题9.(2013·北京卷)如图,在四棱锥P ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面P AD⊥底面ABCD,P A⊥AD.E和F分别是CD和PC的中点.求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.10.(2013·泉州模拟)如图所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.(1)求证:B1D1∥平面A1BD;(2)求证:MD⊥AC;(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.能力提升题组(建议用时:25分钟)一、填空题1.如图,在斜三棱柱ABCA1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在直线______上.2.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为________.①AC⊥BD;②AC∥截面PQMN;③AC=BD;④异面直线PM与BD所成的角为45°.3.(2013·南通二模)如图,已知六棱锥P ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面P AE;④∠PDA=45°.其中正确的有________(把所有正确的序号都填上).二、解答题4.(2014·北京西城一模)。

高中数学必修二 专题08 空间直线与平面与平面与平面的垂直(重难点突破)(含答案)

高中数学必修二  专题08 空间直线与平面与平面与平面的垂直(重难点突破)(含答案)

专题08 空间直线与平面、平面与平面的垂直一、考情分析二、考点梳理考点一直线与平面垂直(1)直线和平面垂直的定义如果一条直线l与平面α内的任意直线都垂直,就说直线l与平面α互相垂直.(2)判定定理与性质定理考点二平面与平面垂直(1)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)判定定理与性质定理考点三知识拓展1.两个重要结论(1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法).2.使用线面垂直的定义和线面垂直的判定定理,不要误解为“如果一条直线垂直于平面内的无数条直线,就垂直于这个平面”.四、题型分析重难点题型突破1 线面垂直例1. (河北省石家庄二中2019届期中)已知m,n是空间中两条不同的直线,α,β为空间中两个互相垂直的平面,则下列命题正确的是( )A.若m⊂α,则m⊥βB.若m⊂α,n⊂β,则m⊥nC.若m⊄α,m⊥β,则m∥αD.若α∩β=m ,n ⊥m ,则n ⊥α 【答案】C【解析】对于A :若m ⊂α,则m 与平面β可能平行或相交,所以A 错误;对于B :若m ⊂α,n ⊂β,则m 与n 可能平行、相交或异面,所以B 错误;对于C :若m ⊄α,m ⊥β,则m ∥α,C 正确;对于D :α∩β=m ,n ⊥m ,则n 不一定与平面α垂直,所以D 错误.【变式训练1-1】、设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )A.若α⊥β,m ∥α,n ∥β,则m ⊥nB.若m ⊥α,m ∥n ,n ∥β,则α⊥βC.若m ⊥n ,m ⊂α,n ⊂β,则α⊥βD.若α∥β,m ⊂α,n ⊂β,则m ∥n 【答案】B【解析】若α⊥β,m ∥α,n ∥β,则m 与n 相交、平行或异面,故A 错误; ∵m ⊥α,m ∥n ,∴n ⊥α,又∵n ∥β,∴α⊥β,故B 正确; 若m ⊥n ,m ⊂α,n ⊂β,则α与β的位置关系不确定,故C 错误; 若α∥β,m ⊂α,n ⊂β,则m ∥n 或m ,n 异面,故D 错误.例2.如图所示,在四棱锥PABCD 中,AB ⊥平面PAD ,AB ∥CD ,PD =AD ,E 是PB 的中点,F 是DC 上的点,且DF =12AB ,PH 为△PAD 中AD 边上的高.求证:(1) PH ⊥平面ABCD ; (2) EF ⊥平面PAB.【证明】 (1) 因为AB ⊥平面PAD ,PH ⊂平面PAD ,所以PH ⊥AB. 因为PH 为△PAD 中边AD 上的高,所以PH ⊥AD.因为AB∩AD =A ,AB ⊂平面ABCD ,AD ⊂平面ABCD ,所以PH ⊥平面ABCD. (2) 如图,取PA 的中点M ,连结MD ,ME.因为E 是PB 的中点,所以ME =12AB ,ME ∥AB.又因为DF =12AB ,DF ∥AB ,所以ME =DF ,ME ∥DF ,所以四边形MEFD 是平行四边形,所以EF ∥MD.因为PD=AD,所以MD⊥PA.因为AB⊥平面PAD,所以MD⊥AB.因为PA∩AB=A,PA⊂平面PAB,AB⊂平面PAB,所以MD⊥平面PAB,所以EF⊥平面PAB.重难点题型突破2 面面垂直例3. (安徽省合肥三中2019届高三质检)如图,在正四面体P­ABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论不成立的是( )A.BC∥平面PDFB.DF⊥平面PAEC.平面PDF⊥平面PAED.平面PDE⊥平面ABC【答案】D【解析】因为BC∥DF,DF⊂平面PDF,BC⊄平面PDF,所以BC∥平面PDF,故选项A正确;在正四面体中,AE⊥BC,PE⊥BC,AE∩PE=E,且AE,PE⊂平面PAE,所以BC⊥平面PAE,因为DF∥BC,所以DF⊥平面PAE,又DF⊂平面PDF,从而平面PDF⊥平面PAE.因此选项B,C均正确.【变式训练3-1】、(江西鹰潭一中2019届高三调研)如图,边长为a的等边三角形ABC的中线AF与中位线DE交于点G,已知△A′DE是△ADE绕DE旋转过程中的一个图形,则下列命题中正确的是( )①动点A′在平面ABC上的射影在线段AF上;②BC∥平面A′DE;③三棱锥A′­FED的体积有最大值.A.①B.①②C.①②③D.②③【答案】C【解析】①中由已知可得平面A′FG⊥平面ABC,所以点A′在平面ABC上的射影在线段AF上.②BC∥DE,根据线面平行的判定定理可得BC∥平面A′DE.③当平面A′DE⊥平面ABC时,三棱锥A′­FED的体积达到最大,故选C.例4.(上海格致中学2019届高三模拟)如图1,矩形ABCD中,AB=12,AD=6,E,F分别为CD,AB 边上的点,且DE=3,BF=4,将△BCE沿BE折起至△PBE的位置(如图2所示),连接AP,PF,其中PF=2 5.(1)求证:PF⊥平面ABED;(2)求点A到平面PBE的距离.【解析】(1)证明:在题图2中,连接EF,由题意可知,PB=BC=AD=6,PE=CE=CD-DE=9,在△PBF中,PF2+BF2=20+16=36=PB2,所以PF⊥BF.在题图1中,连接EF,作EH⊥AB于点H,利用勾股定理,得EF=62+(12-3-4)2=61,在△PEF中,EF2+PF2=61+20=81=PE2,所以PF⊥EF,因为BF∩EF=F,BF⊂平面ABED,EF⊂平面ABED,所以PF⊥平面ABED.(2)如图,连接AE,由(1)知PF⊥平面ABED,所以PF 为三棱锥P ­ABE 的高. 设点A 到平面PBE 的距离为h ,因为V A ­PBE =V P ­ABE ,即13×12×6×9×h =13×12×12×6×25,所以h =853,即点A 到平面PBE 的距离为853. 【变式训练4-1】、 (2018·北京高考)如图,在四棱锥P ­ABCD 中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,E ,F 分别为AD ,PB 的中点.(1)求证:PE ⊥BC ;(2)求证:平面PAB ⊥平面PCD ; (3)求证:EF ∥平面PCD .证明:(1)因为PA =PD ,E 为AD 的中点, 所以PE ⊥AD .因为底面ABCD 为矩形, 所以BC ∥AD ,所以PE ⊥BC .(2)因为底面ABCD 为矩形,所以AB ⊥AD .又因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊂平面ABCD , 所以AB ⊥平面PAD ,因为PD ⊂平面PAD ,所以AB ⊥PD . 又因为PA ⊥PD ,AB ∩PA =A , 所以PD ⊥平面PAB . 因为PD ⊂平面PCD , 所以平面PAB ⊥平面PCD .(3)如图,取PC 的中点G ,连接FG ,DG . 因为F ,G 分别为PB ,PC 的中点, 所以FG ∥BC ,FG =12BC .因为四边形ABCD 为矩形,且E 为AD 的中点, 所以DE ∥BC ,DE =12BC .所以DE ∥FG ,DE =FG .所以四边形DEFG 为平行四边形. 所以EF ∥DG .又因为EF ⊄平面PCD ,DG ⊂平面PCD , 所以EF ∥平面PCD .。

必修二(5)面面平行、线面垂直和面面垂直的判定与性质(新)

必修二(5)面面平行、线面垂直和面面垂直的判定与性质(新)

必修二(5)面面平行、线面垂直和面面垂直的判定与性质一、线面平行的判定的复习:已知正方体1111ABC D A B C D -,O 是底A B C D 对角线的交点. 求证: //1O C 面11A B D ;二、面面平行、线面垂直和面面垂直的判定与性质:数学符号 图象 1、βα//的判定: ①、中位线平行法: 例1、②、平行四边形平行法: 例2、D 1ODBAC 1B 1A 1C2、线面平行、面面平行的性质:数学符号图象①、αl的性质://例3、数学符号图象②、βα//的性质:例4、3、线面垂直与面面垂直判定:数学符号图象(1)、αl定理:⊥(2)、βα⊥定理:(1)、线面垂直的“线捆绑”法:例5、已知在三棱锥S--ABC 中,∠ACB=900,又SA ⊥平面ABC ,AD ⊥SC 于D ,求证:AD ⊥平面SBC ,(2)、面面垂直的判定法:例6、如图6,在正方体ABCD -A 1B 1C 1D 1中,E 、F 为棱AD 、AB 的中点. 求证:平面CAA 1C 1⊥平面CB 1D 1.③、勾股定理法: 例7、图6A 1三、线面角:数学符号图象(1)、线面角:例8、[变式]:[细心度检测]:1.直线a,b,c及平面α,β,γ,下列命题正确的是()A、若a⊂α,b⊂α,c⊥a, c⊥b 则c⊥αB、若b⊂α, a//b 则 a//αC、若a//α,α∩β=b 则a//bD、若a⊥α, b⊥α则a//b2、a,b,c表示直线,M表示平面,给出下列四个命题:①若a∥M,b∥M,则a∥b;②若b⊂M,a∥b,则a∥M;③若a⊥c,b⊥c,则a∥b;④若a⊥M,b⊥M,则a∥b.其中正确命题的个数有A、0个B、1个C、2个D、3个3、(2010广州市一模文科)如图6,正方形A B C D 所在平面与三角形C D E 所在平面相交于C D ,A E ⊥平面C D E , 求证:(1)CDE AB 面//;(2)AB ⊥平面A D E4、 如图,AC 为圆O 的直径,点B 在圆上,SA ⊥平面ABC ,求证:平面SAB ⊥平面SBCABCD E图5BS。

高一数学必修2《直线、平面平行的判定及其性质》练习题-(1)

高一数学必修2《直线、平面平行的判定及其性质》练习题-(1)

高一数学必修2《直线、平面平行的判定与其性质》练习题 第1题. 已知:b αβ=,a α//,a β//,则a 与b 的位置关系是〔 〕A.a b //B.a b ⊥C.a ,b 相交但不垂直D.a ,b 异面答案:A.第2题. 如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是PA ,BD 上的点且PE EA BF FD =∶∶,求证:EF //平面PBC .答案:证明:连结AF 并延长交BC 于M .连结PM ,AD BC ∵//,BF MF FD FA =∴,又由已知PE BF EA FD =,PE MF EA FA=∴. 由平面几何知识可得EF //PM ,又EF PBC ⊄,PM ⊂平面PBC ,∴EF //平面PBC .第6题. 如图,正方形ABCD 的边长为13,平面ABCD 外一点P 到正方形各顶点的距离都是13,M ,N 分别是PA ,DB 上的点,且58PM MA BN ND ==∶∶∶.(1) 求证:直线MN //平面PBC ;(2) 求线段MN 的长.(1) 答案:证明:连接AN 并延长交BC 于E ,连接PE ,则由AD BC //,得BN NE ND AN=. BN PM ND MA =∵,NE PM AN MA=∴. MN PE ∴//,又PE ⊂平面PBC ,MN ⊄平面PBC ,∴MN //平面PBC .(2) 解:由13PB BC PC ===,得60PBC ∠=; 由58BE BN AD ND ==,知5651388BE =⨯=, 由余弦定理可得918PE =,8713MN PE ==∴. 第7题. 如图,已知P 为平行四边形ABCD 所在平面外一点,M 为PB 的中点,求证:PD //平面MAC .答案:证明:连接AC 、BD 交点为O ,连接MO ,则MO 为BDP △的中位线,∴PD MO //. PD ⊄∵平面MAC ,MO ⊂平面MAC ,∴PD //平面MAC . 第8题. 如图,在正方体1111ABCD A B C D -中,E ,F 分别是棱BC ,11C D 的中点,求证:EF //平面11BB D D .答案:证明:如图,取11D B 的中点O ,连接OF ,OB ,OF ∵平行且等于1112B C ,BE 平行且等于1112B C , OF ∴平行且等于BE ,则OFEB 为平行四边形,EF ∴//BO .EF ⊄∵平面11BB D D ,BO ⊂平面11BB D D ,∴EF //平面11BB D D .第9题. 如图,在正方体1111ABCD A B C D -中,试作出过AC 且与直线1D B 平行的截面,并说明理由.答案:解:如图,连接DB 交AC 于点O ,取1D D 的中点M ,连接MA ,MC ,则截面MAC 即为所求作的截面.MO ∵为1D DB △的中位线,1D B MO ∴//.1D B ⊄∵平面MAC ,MO ⊂平面MAC ,1D B ∴//平面MAC ,则截面MAC 为过AC 且与直线1D B 平行的截面.第10题. 设a ,b 是异面直线,a ⊂平面α,则过b 与α平行的平面〔 〕A.不存在B.有1个C.可能不存在也可能有1个D.有2个以上答案:C.第11题. 如图,在正方体1111ABCD A B C D -中,求证:平面1A BD //平面11CD B . 答案:证明:111111B B A A B B D D A A D D ⎧⎪⇒⎨⎪⎩∥ ∥ ∥ ⇒四边形11BB D D 是平行四边形⇒111B CD A BD 平面平面//.第12题. 如图,M 、N 、P 分别为空间四边形ABCD 的边AB ,BC ,CD 上的点,且AM MB CN NB CP PD ==∶∶∶.求证:〔1〕AC //平面MNP ,BD //平面MNP ;〔2〕平面MNP 与平面ACD 的交线AC //.答案:证明:〔1〕AM CN MN AC MB NB AC MNP AC MNP MN MNP ⎫=⇒⎪⎪⊄⇒⎬⎪⊂⎪⎭//平面//平面平面.CN CP PN BD NB PD BD MNP BD MNP PN MNP ⎫=⇒⎪⎪⊄⎬⎪⊂⎪⎭//平面//平面平面.〔2〕第16题. 若空间四边形ABCD 的两条对角线AC ,BD 的长分别是8,12,过AB 的中点E 且平行于BD 、AC 的截面四边形的周长为.答案:20.第17题. 在空间四边形ABCD 中,E ,F ,G ,H 分别为AB ,BC ,CD ,DA 上的一点,且EFGH 为菱形,若AC //平面EFGH ,BD //平面EFGH ,AC m =,BD n =,则AE BE =:.答案:m n ∶.第19题.P 为ABC △所在平面外一点,平面α//平面ABC ,α交线段PA ,PB ,PC 于ABC ''',23PA AA =∶∶'',则AB C ABC S S =△△∶'''.答案:425∶第20题. 如图,在四棱锥P ABCD -中,ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点.求证:MN //平面PAD .答案:证明:如图,取CD 的中点E ,连接NE ,ME∵M ,N 分别是AB ,PC 的中点,NE PD ∴//,ME AD //,可证明NE //平面PAD ,ME //平面PAD .又NE ME E =,∴平面MNE //平面PAD ,又MN ⊂平面MNE ,∴MN //平面PAD .第21题. 已知平面α//平面β,AB ,CD 是夹在两平行平面间的两条线段,A ,C 在α内,B ,C 在β内,点E ,F 分别在AB ,CD 上,且AE EB CF FD m n ==∶∶∶.求证:EF //平面α.答案:证明:分AB ,CD 是异面、共面两种情况讨论.(1) 当AB ,CD 共面时,如图〔a 〕αβ∵//,AC BD ∴//,连接E ,F .AE EB CF FD =∶∶∵,EF AC BD ∴////且EF α⊄,AC α⊂,∴EF //平面α.(2) 当AB ,交β于点H .在H 上取点AG GH AE EB =∶∶得EG BH //.∴平面EFG //平面β//平面α. 又EF ⊂面EFG ,∴EF //平面α 第27题. 已知正方体1111ABCD A B C D -, 求证:平面11AB D //平面1C BD .答案:证明:因为1111ABCD A B C D -所以1111D C A B //,1111D C A B =. 又11AB A B //,11AB A B =, 所以11D C AB //,11D C AB =, 所以11D C BA 为平行四边形. 所以11D A C B //.由直线与平面平行的判定定理得 1D A //平面1C BD .同理11D B //平面1C BD ,又1111D A D B D =,所以,平面11AB D //平面1C BD .。

直线与平面平行.垂直的判定与性质(文科)

直线与平面平行.垂直的判定与性质(文科)

直线与平面平行.垂直的判定与性质二.解答题:5.在分别是AB,AF的中点(如图1),将此三角形沿CE对折,使平面平面BCEF(如图2),已知D是AB的中点.(I)求证:CD//平面AEF;(II)求证:平面平面ABF.(III)求三棱锥的体积.6.如图,四边形ABCD是菱形,,平面平面ABCD.(I)求证:平面BDE;(II)若AF//DE,,点M在线段BD上,且,求证:AM//平面BEF.7.已知四边形满足,,是的中点,将沿着翻折成,使面面,分别为的中点.(Ⅰ)求三棱锥的体积;(Ⅱ)证明:∥平面;(Ⅲ)证明:平面平面8.如图,在三棱锥中,△是边长为的正三角形,,,分别为,的中点,,.(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.9.如图1,在直角梯形中,,,, 点为中点.将沿折起, 使平面平面,得到几何体,如图2所示.(1)在上找一点,使平面; (2)求点到平面的距离.10.如图,在三棱柱中,⊥底面,且△为正三角形,,为的中点.(1)求证:直线∥平面;(2)求证:平面⊥平面;(3)求三棱锥的体积.11.如图,在四棱锥中,底面为边长为4的正方形,平面,为中点,.(1)求证:.(2)求三棱锥的体积.12.如图,在四棱锥中,平面,底面是菱形,,,为与的交点,为棱上一点.(1)证明:平面⊥平面;(2)若平面,求三棱锥的体积.13.在如图所示的几何体中,四边形CDEF为正方形,四边形ABCD为等腰梯形,AB//CD,AC=,AB=2BC=2,AC FB.(1)求三棱锥A-BCF的体积。

(2)线段AC上是否存在点M,使得EA//平面FDM?证明你的结论。

14.如图1所示,直角梯形ABCD,∠ADC=90°,AB∥CD,AD=CD=AB=2,点E为AC的中点,将△ACD沿AC折起,使折起后的平面ACD与平面ABC垂直(如图2),在图2所示的几何体D﹣ABC中.(1)求证:BC⊥平面ACD;(2)点F在棱CD上,且满足AD∥平面BEF,求几何体F﹣BCE的体积.15.如图,已知三棱柱ABC-A'B'C'侧棱垂直于底面,AB=AC, ∠BAC=900,点M,N分别为A'B和B'C'的中点.(I)证明:MN//平面AA'C'C;(2)设AB=AA',当A为何值时,CN⊥平面A'MN,试证明你的结论.16.如图,在多面体ABCDEF中,ABCD是边长为2的正方形,DEFB是一平行四边形,且DE⊥平面ABCD,BF=3,G和H分别是CE和CF的中点.(Ⅰ)求证:平面AEF∥平面BDGH;(Ⅱ)求V E﹣EFH.17.在四棱锥P﹣ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形.AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.(Ⅰ)求证:BE∥平面APD;(Ⅱ)求证:BC⊥平面PBD.18.如图,ABCD是边长为2的正方形,ED⊥平面ABCD,ED=1,EF∥BD且EF=BD.(1)求证:BF∥平面ACE;(2)求证:平面EAC⊥平面BDEF(3)求几何体ABCDEF的体积.19.如图,四边形ABCD为矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于点F,且点F在CE上.(1)求证:DE⊥BE;(2)求四棱锥E﹣ABCD的体积;(3)设点M在线段AB上,且AM=MB,试在线段CE上确定一点N,使得MN∥平面DAE.20.如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=.(1)证明:BC1∥平面A1CD;(2)求异面直线BC1和A1D所成角的大小;(3)当AB=时,求三棱锥C﹣A1DE的体积.21. 如图,四棱锥的底面是正方形,侧棱⊥底面,,是的中点.(Ⅰ)证明://平面;(Ⅱ)求二面角的平面角的余弦值;(Ⅲ)在棱上是否存在点,使⊥平面?证明你的结论.22.如图,在四棱锥中,为正三角形,⊥平面,⊥平面,为棱的中点,.(I)求证:∥平面;(II)求证:平面⊥平面.23.在四棱锥中,底面为直角梯形,,侧面底面,,。

直线、平面平行垂直的判定及其性质一轮复习讲练测

【考纲解读】内容要求备注A点、线、面之间的位置关系直线与平面垂直的判定及性质1.以立体几何的定义、公理、定理为出发点,认识和理解空间中线面垂直的有关性质和判定定理.2.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.【直击考点】题组一常识题1.已知直线a,b和平面α,且a⊥α,b∥α,则a与b的位置关系为________.[解析] 因为a⊥α,所以a垂直于α内的任意直线.因为b∥α,所以b可以平移至α内,所以a⊥b.2.给出下列条件:①l与平面α内的两条直线垂直;②l与平面α内的无数条直线垂直;③l与平面α内的某一条直线垂直;④l与平面α内的任意一条直线垂直.其中能判定直线l⊥平面α的有________(填序号).[解析] 只有④能满足直线l与平面α内的两条相交直线垂直,故④满足题意.3.若PD垂直于正方形ABCD所在的平面,连接PB,PC,PA,AC,BD,则所形成的平面中一定互相垂直的平面有________对.[解析] 如图所示,由于PD⊥平面ABCD,所以平面PAD⊥平面ABCD,平面PDB⊥平面ABCD,平面PDC⊥平面ABCD,平面PDA⊥平面PDC,平面PAC⊥平面PDB,平面PAB⊥平面PAD,平面PBC⊥平面PDC.故一定互相垂直的平面有7对.题组二常错题4.“直线a与平面α内的无数条直线都垂直”是“直线a与平面α垂直”的____________条件.5.如图所示,O为正方体ABCD­ A1B1C1D1的底面ABCD的中心,则下列直线中与B1O垂直的是________(填序号).①A1D;②AA1;③A1D1;④A1C1.[解析] 连接B1D1,由题易知,A1C1⊥平面BB1D1D,又OB1⊂平面DD1B1B,∴A1C1⊥B1O.6.已知直线a,b,c,若a⊥b,b⊥c,则a与c的位置关系为________________________.[解析] 在同一个平面内,由题设条件可得a∥c;在空间中,直线a与c的位置关系不确定,平行、相交、异面都有可能.题组三常考题7.已知平面α,β交于直线l,若直线n⊥β,则n与l的位置关系为________.[解析] 由平面α,β交于直线l,得到l⊂β,又n⊥β,所以n⊥l.8.在如图所示的四棱锥P­ ABCD中,底面ABCD为矩形,侧棱PD⊥底面ABCD,且PD=CD,点E是PC的中点,则DE与平面PBC的位置关系为________.[解析] 因为PD⊥底面ABCD,所以PD⊥BC.由底面ABCD为矩形,得BC⊥CD,又PD∩CD=D,所以BC⊥平面PCD.又DE⊂平面PCD,所以BC⊥DE.因为PD=CD,点E是PC的中点,所以DE⊥PC.又PC∩BC=C,所以DE⊥平面PBC.9.如图,在四棱锥P­ ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC,则平面PAB与平面PAC的位置关系为________.【知识清单】考点1 直线与平面垂直的判定与性质直线与平面垂直定义:如果一条直线和一个平面内的任何一条直线都垂直,那么称这条直线和这个平面垂直.定理:⎭⎪⎬⎪⎫a αb αl ⊥a l ⊥b a ∩b =A ⇒l ⊥α考点2 平面与平面垂直的判定与性质1平面与平面垂直定义:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.定理:⎭⎪⎬⎪⎫AB βAB ⊥α⇒β⊥α⎭⎪⎬⎪⎫α⊥βα∩β=MN AB βAB ⊥MN⇒AB ⊥α考点3 线面、面面垂直的综合应用1.直线与平面垂直(1)判定直线和平面垂直的方法 ①定义法.②利用判定定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直.③推论:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.(2)直线和平面垂直的性质。

高中数学练习题 线面、面面平行的判定与性质

线面、面面平行的判定与性质基础巩固强化1.已知l是直线,α、β是两个不同平面,下列命题中的真命题是()A.若l∥α,l∥β,则α∥βB.若α⊥β,l∥α,则l⊥βC.若l⊥α,l∥β,则α⊥βD.若l∥α,α∥β,则l∥β2.已知m、n是两条直线,α、β是两个平面,给出下列命题:①若n⊥α,n⊥β,则α∥β;②若平面α上有不共线的三点到平面β的距离相等,则α∥β;③若n、m为异面直线,n⊂α,n∥β,m⊂β,m∥α,则α∥β.其中正确命题的个数是()A.3个B.2个C.1个D.0个一个正方体纸盒展开后如图,在原正方体纸盒中有下列结论:①AB⊥EF②AB与CM成60°③EF与MN是异面直线④MN∥CD其中正确的是()A.①②B.③④C.②③D.①③3.已知平面α∩β=l,m是α内不同于l的直线,那么下列命题中错误..的是()A.若m∥β,则m∥l B.若m∥l,则m∥βC.若m⊥β,则m⊥l D.若m⊥l,则m⊥β4.设a、b是两条不同的直线,α、β是两个不同的平面,则下列命题错误的是()A.若a⊥α,b∥α,则a⊥bB.若a⊥α,b∥a,b⊂β,则α⊥βC.若a⊥α,b⊥β,α∥β,则a∥bD.若a∥α,a∥β,则α∥β对于平面α和共面的直线m、n,下列命题是真命题的是()A.若m,n与α所成的角相等,则m∥n B.若m∥α,n∥α,则m∥nC.若m⊥α,m⊥n,则n∥αD.若m⊂α,n∥α,则m∥n5.设α、β是两个不同的平面,a、b是两条不同的直线,给出下列四个命题,其中真命题是() A.若a∥α,b∥α,则a∥b B.若a∥α,b∥β,a∥b,则α∥βC.若a⊥α,b⊥β,a∥b,则α∥βD.若a、b在平面α内的射影互相垂直,则a⊥b 6.设两个平面α、β,直线l,下列三个条件:①l⊥α;②l∥β;③α⊥β.若以其中两个作为前提,另一个作为结论,则可构成三个命题,这三个命题中正确命题的个数为()A .3B .2C .1D .07.正方体ABCD -A 1B 1C 1D 1的棱长为1cm ,过AC 作平行于对角线BD 1的截面,则截面面积为________.8.在空间中,有如下命题:①互相平行的两条直线在同一个平面内的射影必然是互相平行的两条直线; ②若平面α∥平面β,则平面α内任意一条直线m ∥平面β;③若平面α与平面β的交线为m ,平面α内的直线n ⊥直线m ,则直线n ⊥平面β; ④若平面α内的三点A 、B 、C 到平面β的距离相等,则α∥β. 其中正确命题的序号为________.9.已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列命题: ①若m ∥α,n ∥α,m ∥β,n ∥β,则α∥β; ②若α⊥γ,β⊥γ,α∩β=m ,n ⊂γ,则m ⊥n ; ③若m ⊥α,α⊥β,m ∥n ,则n ∥β; ④若n ∥α,n ∥β,α∩β=m ,那么m ∥n . 其中正确命题的序号是________.10.如图,直三棱柱ABC -A ′B ′C ′,∠BAC =90°,AB =AC =2,AA ′=1,点M 、N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′;(2)求三棱锥A ′-MNC 的体积(锥体体积公式V =13Sh ,其中S 为底面面积,h 为高).如图,在侧棱垂直底面的四棱柱ABCD -A 1B 1C 1D 1中,AD ∥BC ,AD ⊥AB ,AB =2,AD =2,BC =4,AA 1=2,E 是DD 1的中点,F是平面B1C1E与直线AA1的交点.(1)证明:①EF∥A1D1;②BA1⊥平面B1C1EF;(2)求BC1与平面B1C1EF所成角的正弦值.能力拓展提升11.如图,正方体ABCD-A1B1C1D1中,E、F分别为棱AB、CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线()A.不存在B.有1条C.有2条D.有无数条12.如图,若Ω是长方体ABCD—A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确...的是()A.EH∥FG B.四边形EFGH是矩形C.Ω是棱柱D.Ω是棱台下列命题中,是假命题的是()A.三角形的两条边平行于一个平面,则第三边也平行于这个平面B.平面α∥平面β,a⊂α,过β内的一点B有唯一的一条直线b,使b∥aC.α∥β,γ∥δ,α、β与γ、δ的交线分别为a、b和c、d,则a∥b∥c∥dD.一条直线与两个平面成等角是这两个平面平行的充要条件13.(2012·南昌二模)若P是两条异面直线l、m外的任意一点,则下列命题中假命题的序号是________.①过点P有且仅有一条直线与l、m都平行;②过点P有且仅有一条直线与l、m都垂直;③过点P有且仅有一条直线与l、m都相交;④过点P有且仅有一条直线与l、m都异面.14.下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是______(写出所有符合要求的图形序号).15.(2011·广东揭阳一模)如图,已知平行四边形ABCD中,BC=6,正方形ADEF所在平面与平面ABCD垂直,G、H分别是DF、BE的中点.(1)求证:GH∥平面CDE;(2)若CD=2,DB=42,求四棱锥F-ABCD的体积.[解析](1)证法1:∵EF∥AD,AD∥BC,∴EF∥BC.又EF=AD=BC,∴四边形EFBC是平行四边形,∴H为FC的中点.又∵G是FD的中点,∴GH∥CD.∵GH⊄平面CDE,CD⊂平面CDE,∴GH∥平面CDE.证法2:连接EA,∵ADEF是正方形,∴G是AE的中点.∴在△EAB中,GH∥AB.又∵AB∥CD,∴GH∥CD.∵HG⊄平面CDE,CD⊂平面CDE,∴GH∥平面CDE.(2)∵平面ADEF⊥平面ABCD,交线为AD,且F A⊥AD,∴F A⊥平面ABCD.∵AD=BC=6,∴F A=AD=6.又∵CD=2,DB=42,CD2+DB2=BC2,∴BD⊥CD. ∵S▱ABCD=CD·BD=82,∴V F-ABCD=13S▱ABCD·F A=13×82×6=16 2.(理)如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点.(1)求证:FH∥平面EDB;(2)求证:AC⊥平面EDB;(3)求四面体B-DEF的体积.[解析](1)证明:设AC与BD交于点G,联结EG、GH.则G为AC中点,∵H是BC中点,∴GH綊12AB,又∵EF綊12AB,∴四边形EFHG为平行四边形.∴FH∥EG.又EG⊂平面EDB,而FH⊄平面EDB,∴FH∥平面EDB.(2)证明:∵EF∥AB,EF⊥FB.∴AB⊥FB.又四边形ABCD为正方形,∴AB⊥BC,又FB∩BC=B,∴AB⊥平面BFC.∵FH⊂平面BFC,∴AB⊥FH.又∵FB=FC,H是BC中点,∴FH⊥BC.又AB∩BC=B,∴FH⊥平面ABCD,∴FH⊥AC. 又EG∥FH,∴EG⊥AC,又AC⊥BD,BD∩EG=G,∴AC⊥平面EDB.(3)∵EF⊥BF,BF⊥FC且EF∩FC=F,∴BF⊥平面CDEF,∴BF 为四面体B —DEF 的高. 又∵BC =AB =2,∴BF =FC = 2.四边形CDEF 为直角梯形,且EF =1,CD =2. ∴S △DEF =12(1+2)×2-12×2×2=22∴V B —DEF =13×22×2=13. 16.(2012·辽宁大连市、沈阳市联考)如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,四边形ABCD 为长方形,AD =2AB ,点E 、F 分别是线段PD 、PC 的中点.(1)证明:EF ∥平面P AB ;(2)在线段AD 上是否存在一点O ,使得BO ⊥平面P AC ,若存在,请指出点O 的位置,并证明BO ⊥平面P AC ;若不存在,请说明理由.[解析] (1)证明:∵EF ∥CD ,CD ∥AB ,∴EF ∥AB , 又∵EF ⊄平面P AB ,AB ⊂平面P AB ,(2)在线段AD上存在一点O,使得BO⊥平面P AC,此时点O为线段AD的四等分点,且AO=14AD,∵P A⊥底面ABCD,∴P A⊥BO,又∵长方形ABCD中,AD=2AB,∴△ABO△DAC,∴∠ABO+∠BAC=∠DAC+∠BAC=90°,∴AC⊥BO,又∵P A∩AC=A,∴BO⊥平面P AC.1.(2012·四川文,6)下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行[答案] C[解析]本题考查了线面角,面面垂直,线面平行,面面平行等位置关系的判定与性质,对于A选项,两条直线也可相交,B选项若三点在同一条直线上,平面可相交.D选项这两个平面可相交(可联系墙角),而C项可利用线面平行的性质定理,再运用线面平行的判定与性质可得.本题需要我们熟练掌握各种位置关系的判定与性质.2.(2012·石家庄二模)三棱锥的三组相对的棱(相对的棱是指三棱锥中成异面直线的一组棱)分别相等,且长分别为2、m 、n ,其中m 2+n 2=6,则该三棱锥体积的最大值为( )A.12B.8327 C.33 D.23[答案] D[解析] 令m =n ,由m 2+n 2=6得m =n =3,取AB 的中点E ,则BE =22,PB =3,∴PE =102,CE =102,∴EF =2,∴V P -ABC =13S △PEC ·AB =13×(12×2×2)×2=23,∵23>12,∴23>33,23>8327,故选D.3.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,AB =1,M ,N 分别在AD 1、BC 上移动,且始终保持MN ∥平面DCC 1D 1,设BN =x ,MN =y ,则函数y =f (x )的图象大致是( )[答案] C[解析] 过M 作ME ⊥AD 于E ,连接EN ,则平面MEN ∥平面DCC 1D 1,所以BN =AE =x (0≤x <1),ME =2x ,MN 2=ME 2+EN 2,则y 2=4x 2+1,y 2-4x 2=1(0≤x <1,y >0),图象应是焦点在y 轴上的双曲线的一部分.故选C.4.(2012·东营市期末)设m 、n 是两条不同的直线,α、β是两个不同的平面,给出下列四个命题:①若m ⊥n ,m ⊥α,n ⊄α,则n ∥α;②若α⊥β,α∩β=m ,n ⊥m ,则n ⊥α或n ⊥β; ③若m ⊥β,α⊥β,则m ∥α; ④若m ⊥n ,m ⊥α,n ⊥β,则α⊥β. 其中真命题的序号是________. [答案] ①④⎭⎪⎬⎪⎫ ⎭⎪⎬⎪⎫[解析] m ⊥n m ⊥α⇒n ∥α或n ⊂α n ⊄α⇒n ∥α,故①真; 正方体ABCD -A 1B 1C 1D 1中,平面ABCD 与ADD 1A 1分别取作平面α,β,其交线AD 为m ,取直线AB 1为n ,则满足n ⊥m ,知②错;m ⊥β,α⊥β时,可能m ∥α,也可能m ⊂α,知③错;⎭⎬⎫ ⎭⎪⎬⎪⎫m ⊥n m ⊥α⇒n ∥α或n ⊂αn ⊥β⇒α⊥β,故④真.。

高三数学 直线、平面垂直的判定及其性质练习题(含答案)

直线、平面垂直的判定及其性质建议用时:45分钟一、选择题1.设m,n是两条不同的直线,α,β是两个不同的平面,则下列说法正确的是()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥αC[A中,由m⊥n,n∥α可得m∥α或m与α相交或m⊥α,错误;B中,由m∥β,β⊥α可得m∥α或m与α相交或m⊂α,错误;C中,由m⊥β,n⊥β可得m∥n,又n⊥α,所以m⊥α,正确;D中,由m⊥n,n⊥β,β⊥α可得m∥α或m与α相交或m⊂α,错误.] 2.在下列四个正方体中,能得出AB⊥CD的是()A[A选项中,因为CD⊥平面AMB,所以CD⊥AB;B选项中,AB与CD 成60°角;C选项中,AB与CD成45°角;D选项中,AB与CD夹角的正切值为 2.]3.(2019·东北三省三校联考)在四棱锥P-ABCD中,P A⊥平面ABCD,底面ABCD是正方形,且P A=AB=2,则直线PB与平面P AC所成角为()A.π6 B.π4 C.π3 D.π2A[连接BD,交AC于点O.因为P A⊥平面ABCD,底面ABCD是正方形,所以BD⊥AC,BD⊥P A.又因为P A∩AC=A,所以BD⊥平面P AC,故BO⊥平面P AC.连接OP,则∠BPO即为直线PB与平面P AC所成角.又因为P A=AB=2,所以PB=22,BO= 2.所以sin∠BPO=BOPB=12,所以∠BPO=π6.故选A.]4.(2017·全国卷Ⅲ)在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则() A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥ACC[如图.∵A1E在平面ABCD上的投影为AE,而AE不与AC,BD垂直,∴B,D错;∵A1E在平面BCC1B1上的投影为B1C,且B1C⊥BC1,∴A1E⊥BC1,故C正确;(证明:由条件易知,BC1⊥B1C,BC1⊥CE,又CE∩B1C=C,∴BC1⊥平面CEA1B1.又A1E⊂平面CEA1B1,∴A1E⊥BC1)∵A1E在平面DCC1D1上的投影为D1E,而D1E不与DC1垂直,故A错.] 5.如图所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列结论正确的是()A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABCD[∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,∴BD⊥CD.又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,故CD⊥平面ABD,则CD⊥AB.又AD⊥AB,AD∩CD=D,AD⊂平面ADC,CD⊂平面ADC,故AB⊥平面ADC.又AB⊂平面ABC,∴平面ADC⊥平面ABC.]二、填空题6.如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,若该长方体的体积为82,则直线AC1与平面BB1C1C所成的角为.30°[连接BC1(图略),由AB⊥平面BB1C1C知∠AC1B就是直线AC1与平面BB1C1C所成的角.由2×2×AA1=82得AA1=22,∴BC1=BC2+CC21=23,在Rt△AC1B中,tan∠AC1B=ABBC1=223=33,∴∠AC1B=30°.]7.在正四棱柱ABCD-A1B1C1D1中,AA1=2AB=2,则点A1到平面AB1D1的距离是.23[如图,△AB1D1中,AB1=AD1=5,B1D1=2,∴△AB 1D 1的边B 1D 1上的高为(5)2-⎝ ⎛⎭⎪⎫222=322,∴S △AB 1D 1=12×2×322=32,设A 1到平面AB 1D 1的距离为h ;则有S △AB 1D 1×h =S △A 1B 1D 1×AA 1, 即32h =12×2,解得h =23.]8.(2016·全国卷Ⅱ)α,β是两个平面,m ,n 是两条直线,有下列四个命题: ①如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. ②如果m ⊥α,n ∥α,那么m ⊥n . ③如果α∥β,m ⊂α,那么m ∥β.④如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号)②③④ [对于①,α,β可以平行,可以相交也可以不垂直,故错误. 对于②,由线面平行的性质定理知存在直线l ⊂α,n ∥l ,又m ⊥α,所以m ⊥l ,所以m ⊥n ,故正确.对于③,因为α∥β,所以α,β没有公共点.又m ⊂α,所以m ,β没有公共点,由线面平行的定义可知m ∥β,故正确.对于④,因为m ∥n ,所以m 与α所成的角和n 与α所成的角相等.因为α∥β,所以n 与α所成的角和n 与β所成的角相等,所以m 与α所成的角和n 与β所成的角相等,故正确.]三、解答题9.(2018·北京高考)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,E ,F 分别为AD ,PB 的中点.(1)求证:PE⊥BC;(2)求证:平面P AB⊥平面PCD;(3)求证:EF∥平面PCD.[证明](1)因为P A=PD,E为AD的中点,所以PE⊥AD.因为底面ABCD为矩形,所以BC∥AD.所以PE⊥BC.(2)因为底面ABCD为矩形,所以AB⊥AD.又因为平面P AD⊥平面ABCD,所以AB⊥平面P AD.所以AB⊥PD.又因为P A⊥PD,所以PD⊥平面P AB.因为PD⊂平面PCD,所以平面P AB⊥平面PCD.(3)取PC中点G,连接FG,DG.因为F,G分别为PB,PC的中点,所以FG∥BC,FG=12BC.因为四边形ABCD为矩形,且E为AD的中点,所以DE∥BC,DE=12BC.所以DE∥FG,DE=FG.所以四边形DEFG为平行四边形,所以EF∥DG.又因为EF⊄平面PCD,DG⊂平面PCD,所以EF∥平面PCD.10.(2019·太原模拟)如图,在直三棱柱ABC-A1B1C1中,D是BC上的一点,AB=AC,且AD⊥BC.(1)求证:A1C∥平面AB1D;(2)若AB=BC=AA1=2,求点A1到平面AB1D的距离.[解](1)证明:如图,连接BA1,交AB1于点E,再连接DE,据直棱柱性质知,四边形ABB1A1为平行四边形,E为AB1的中点,∵AB=AC,AD⊥BC,∴D是BC的中点,∴DE∥A1C,又DE⊂平面AB1D,A1C⊄平面AB1D,∴A1C∥平面AB1D.(2)如图,在平面BCC1B1中,过点B作BF⊥B1D,垂足为F,∵D是BC中点,∴点C到平面AB1D与点B到平面AB1D距离相等,∵A1C∥平面AB1D,∴点A1到平面AB1D的距离等于点C到平面AB1D的距离,∴BF长为所求,在Rt△B1BD中,BD=1,BB1=2,B1D=5,∴BF=25=255,∴点A1到平面AB1D的距离为255.1.如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部A[连接AC1(图略),由AC⊥AB,AC⊥BC1,AB∩BC1=B,得AC⊥平面ABC1.∵AC⊂平面ABC,∴平面ABC1⊥平面ABC.∴C1在平面ABC上的射影H必在两平面的交线AB上.]2.(2019·唐山模拟)如图,在以下四个正方体中,直线AB与平面CDE垂直的是()①②③④A.①②B.②④C.①③D.②③B[对于①,易证AB与CE所成角为45°,则直线AB与平面CDE不垂直;对于②,易证AB⊥CE,AB⊥ED,且CE∩ED=E,则AB⊥平面CDE;对于③,易证AB与CE所成角为60°,则直线AB与平面CDE不垂直;对于④,易证ED⊥平面ABC,则ED⊥AB,同理EC⊥AB,可得AB⊥平面CDE.故选B.] 3.如图,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的射影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是.①②③[由BC⊥AC,BC⊥P A可得BC⊥平面P AC,又AF⊂平面P AC,所以AF⊥BC,又AF⊥PC,则AF⊥平面PBC,从而AF⊥PB,AF⊥BC,故①③正确;由PB⊥AF,PB⊥AE可得PB⊥平面AEF,从而PB⊥EF,故②正确;若AE⊥平面PBC,则由AF⊥平面PBC知AE∥AF与已知矛盾,故④错误.] 4.(2019·西宁模拟)已知三棱柱ABC-A1B1C1,A1在底面ABC上的射影恰为AC的中点D,∠BCA=90°,AC=BC=2,又知BA1⊥AC1.(1)求证:AC1⊥平面A1BC;(2)求点C到平面A1AB的距离.[解](1)证明:∠BCA=90°得BC⊥AC,因为A1D⊥平面ABC,所以A1D⊥BC,A1D∩AC=D,所以BC⊥平面A1ACC1,所以BC⊥AC1.因为BA1⊥AC1,BA1∩BC=B,所以AC1⊥平面A1BC.(2)作DE⊥AB于点E,连接A1E,作DF⊥A1E于点F.因为A1D⊥平面ABC,所以A1D⊥AB,DE⊥AB,DE∩A1D=D,所以AB⊥平面A1DE,又DF⊂平面A1DE,所以AB⊥DF,由DF⊥A1E,A1E∩AB=E,所以DF⊥平面A1AB,由(1)及已知得DE=22,A1D=3,Rt△A1DE中,DF =A 1D ·DE A 1E =217, 因为D 是AC 中点,所以C 到面A 1AB 距离2217.1.(2019·衡阳模拟)如图,在四面体ABCD 中,AD ⊥BD ,截面PQMN 是矩形,则下列结论不一定正确的是( )A .平面BDC ⊥平面ADCB .AC ∥平面PQMNC .平面ABD ⊥平面ADCD .AD ⊥平面BDCD [由PQ ∥MN ,MN ⊂平面ADC ,PQ ⊄平面ADC ,得PQ ∥平面ADC ,又PQ⊂平面ABC,平面ABC∩平面ADC=AC,∴PQ∥AC,同理QM∥BD,因为PQ⊥QM,∴AC⊥BD,又BD⊥AD,AC∩AD=A,∴BD⊥平面ADC,∴平面BDC⊥平面ADC,平面ABD⊥平面ADC,∴A和C选项均正确;由PQ∥AC,得AC∥平面PQMN,∴B选项正确.∵不能得到AD⊥DC或AD⊥BC,∴不能得到AD⊥平面BDC,故选项D 不一定正确.故选D.]2.(2019·泉州模拟)如图,在直三棱柱ABC-A1B1C1中,底面ABC是边长为2的正三角形,M,N分别是AB,AA1的中点,且A1M⊥B1N.(1)求证:B1N⊥A1C;(2)求M到平面A1B1C的距离.[解](1)证明:如图,连接CM.在直三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,CM ⊂平面ABC , 所以AA 1⊥CM .在△ABC 中,AC =BC ,AM =BM ,所以CM ⊥AB .又AA 1∩AB =A ,所以CM ⊥平面ABB 1A 1.因为B 1N ⊂平面ABB 1A 1,所以CM ⊥B 1N .又A 1M ⊥B 1N ,A 1M ∩CM =M ,所以B 1N ⊥平面A 1CM .因为A 1C ⊂平面A 1CM ,所以B 1N ⊥A 1C .(2)法一:连接B 1M .在矩形ABB 1A 1中,因为A 1M ⊥B 1N ,所以∠AA 1M =∠A 1B 1N .所以tan ∠AA 1M =tan ∠A 1B 1N ,即AM AA 1=A 1N A 1B 1. 因为△ABC 是边长为2的正三角形,M ,N 分别是AB ,AA 1的中点,所以AM =1,CM =3,A 1B 1=2.设AA 1=x ,则A 1N =x 2.所以1x =x 22,解得x =2.从而S △A 1B 1M =12S 正方形ABB 1A 1=2,A 1C =B 1C =2 2.在△A 1CB 1中,cos ∠A 1CB 1=A 1C 2+B 1C 2-A 1B 212A 1C ·B 1C =34,所以sin ∠A 1CB 1=74,所以S △A 1B 1C =12A 1C ·B 1C ·sin ∠A 1CB 1=7.设点M 到平面A 1B 1C 的距离为d ,由V 三棱锥M -A 1B 1C =V 三棱锥C -A 1B 1M ,得13S △A 1B 1C ·d =13S △A 1B 1M ·CM ,所以d =S △A 1B 1M ·CM S △A 1B 1C =2217,即点M 到平面A 1B 1C 的距离为2217. 法二:在矩形ABB 1A 1中,因为A 1M ⊥B 1N ,所以∠AA 1M =∠A 1B 1N ,所以tan ∠AA 1M =tan ∠A 1B 1N ,即AM AA 1=A 1N A 1B 1. 因为△ABC 是边长为2的正三角形,M ,N 分别是AB ,AA 1的中点, 所以AM =1,CM =3,A 1B 1=2.设AA 1=x ,则A 1N =x 2,所以1x =x22,解得x =2.如图,取A 1B 1的中点D ,连接MD ,CD ,过M 作MO ⊥CD 于O .在正方形ABB 1A 1中,易知A 1B 1⊥MD ,由(1)可得CM ⊥A 1B 1,又CM ∩MD =M ,所以A 1B 1⊥平面CDM .因为MO ⊂平面CDM ,所以A 1B 1⊥MO .又MO ⊥CD ,A 1B 1∩CD =D ,所以MO ⊥平面A 1B 1C ,即线段MO 的长就是点M 到平面A 1B 1C 的距离.由(1)可得CM⊥MD,又MD=2,所以由勾股定理,得CD=CM2+MD2=7.S△CMD=12·CD·MO=12·CM·MD,即12×7×MO=12×3×2,解得MO=2217,故点M到平面A1B1C的距离为221 7.。

高中数学二两条直线平行与垂直的判定检测(学生)

3.1。

2两条直线平行与垂直的判定时间:30分钟,总分:70分班级:姓名:一、选择题(共6小题,每题5分,共30分)1.已知下列说法:①若直线l1与l2的斜率相等,则l1∥l2;②若直线l1∥l2,则两直线的斜率相等;③若直线l1,l2的斜率均不存在,则l1∥l2;④若两直线的斜率不相等,则两直线不平行;⑤如果直线l1,l2平行,且l1的斜率不存在,那么l2的斜率也不存在.其中说法正确的个数是( )A.1 B.2C.3 D.42.已知直线l1⊥l2,若直线l1的倾斜角为45°,则直线l2的倾斜角为( )A.45°B.135°C.-45°D.120°3.若直线l经过点(a-2,-1)和(-a-2,1),且与经过点(-2,1),斜率为-错误!的直线垂直,则实数a的值是( )A.-错误!B.-错误! C.错误! D.错误!4.已知A(m,3),B(2m,m+4),C(m+1,2),D(1,0),且直线AB 与直线CD平行,则m的值为()A.1 B.0 C.0或2 D.0或15.若直线l1、l2的倾斜角分别为α1、α2,且l1⊥l2,则有()A.α1-α2=90°B.α2-α1=90°C.|α2-α1|=90°D.α1+α2=180°6.顺次连接A(-4,3),B(2,5),C(6,3),D(-3,0)所构成的图形是( )A.平行四边形B.直角梯形C.等腰梯形D.以上都不对二、填空题(共4小题,每题5分,共20分)7、以点A(1,3),B(-5,1)为端点的线段的垂直平分线的斜率为________.8.已知直线l1经过点A(0,-1)和点B错误!,直线l2经过点M(1,1)和点N(0,-2),若l1与l2没有公共点,则实数a的值为________.9、已知直线l1的倾斜角为60°,直线l2经过点A(1,错误!),B(-2,-2错误!),则直线l1,l2的位置关系是____________.10.已知△ABC的顶点B(2,1),C(-6,3),其垂心为H(-3,2),则其顶点A的坐标为________.三、解答题(共2小题,每题10分,共20分)11、判断下列各小题中的直线l1与l2的位置关系:(1)l1经过点A(3,4),B(3,100),l2经过点M(-10,40),N(10,40);(2)l1经过点A(0,1),B(1,0),l2经过点M(-1,3),N(2,0).12、已知△ABC三个顶点坐标分别为A(-2,-4),B(6,6),C(0,6),求此三角形三边的高所在直线的斜率.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修二直线、平面平行垂直的判定与性质检测试题
1.对于直线l,m,平面α,m⊂α,则“l⊥m”是“l⊥α”成立的________条件(从“充分不必要”“必要不充分”“充要”“既不充分也不必要”中选填一个).
2.若平面α,β满足α⊥β,α∩β=l,P∈α,P∉l,给出下列命题:
①过点P垂直于平面α的直线平行于平面β;
②过点P垂直于直线l的直线在平面α内;
③过点P垂直于平面β的直线在平面α内;
④过点P且在平面α内垂直于l的直线必垂直于平面β.
其中假命题为________ (填序号).
3.如图,已知PA⊥平面ABC,BC⊥AC,则图中直角三角形的个数为________.
4.在正三棱锥(底面为正三角形且侧棱相等)P-ABC中,D,E分别是AB,BC的中点,有下列三个论断:①AC⊥PB;②AC∥平面PDE;③AB⊥平面PDE.其中正确论断的序号为________.
5.已知α,β是两个不同的平面,l,m是两条不同的直线,l⊥α,m⊂β.给出下列命题:
①α∥β⇒l⊥m;②α⊥β⇒l∥m;③m∥α⇒l⊥β;④l⊥β⇒m∥α.
其中正确的命题是________(填序号).
6.如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD(只要填写一个你认为正确的条件即可).
7.如图,以等腰直角三角形ABC的斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:
①BD⊥AC;
②△BAC是等边三角形;
③三棱锥D-ABC是正三棱锥;
④平面ADC⊥平面ABC.
其中正确的是________(填序号).
8.α,β是两个平面,m,n是两条直线,有下列四个命题:
①如果m⊥n,m⊥α,n∥β,那么α⊥β;
②如果m⊥α,n∥α,那么m⊥n;
③如果α∥β,m⊂α,那么m∥β;
④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.
其中正确的命题有________(填序号).
9.如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.
(1)求证:EF⊥平面BCG;
(2)求三棱锥D-BCG的体积.
10.如图,四棱锥P-ABCD中,底面ABCD是矩形,AB=2AD,PD⊥底面ABCD,E,F分别为棱AB,PC的中点.
(1)求证:EF∥平面PAD;
(2)求证:平面PDE⊥平面PEC.
11.设m,n是两条不同的直线,α,β是两个不同的平面:
①若m⊥n,n∥α,则m⊥α;
②若m∥β,β⊥α,则m⊥α;
③若m⊥β,n⊥β,n⊥α,则m⊥α;
④若m⊥n,n⊥β,β⊥α,则m⊥α.
上述命题中为真命题的是________(填序号).
12.如图,在正方形ABCD 中,E ,F 分别是BC ,CD 的中点,沿AE ,AF ,EF 把正方形折成一个四面体,使B ,
C ,
D 三点重合,重合后的点记为P ,P 点在△AEF 内的射影为O ,给出下列结论:
①O 是△AEF 的垂心;②O 是△AEF 的内心; ③O 是△AEF 的外心;④O 是△AEF 的重心. 其中结论正确的是________(填序号).
13.如图,已知六棱锥P -ABCDEF 的底面是正六边形,PA ⊥平面ABC ,PA =2AB ,则下列结论中:①PB ⊥AE ;②平面ABC ⊥平面PBC ;③直线BC ∥平面PAE ; ④∠PDA =45°.其中正确的有________(填序号).
14.如图,在四棱锥PABCD 中,PA ⊥CD ,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =1
2AD .
(1)在平面PAD 内找一点M ,使得直线CM ∥平面PAB ,并说明理由. (2)证明:平面PAB ⊥平面PBD .
1.
【答案】必要不充分
【解析】若m⊂α,l⊥m,则直线l与平面α垂直、相交、平行或直线l在平面α内都有可能,充分性不成立;若m⊂α,l⊥α,则l⊥m,必要性成立,所以“l⊥m”是“l⊥α”成立的必要不充分条件.2.【答案】②
3.【答案】4
【解析】∵PA⊥平面ABC,AB,AC,BC⊂平面ABC,
∴PA⊥AB,PA⊥AC,PA⊥BC,则△PAB,△PAC为直角三角形.由BC⊥AC,且AC∩PA=A,∴BC⊥平面PAC,从而BC⊥PC,因此△ABC,△PBC也是直角三角形.
4.【答案】①②
【解析】如图,
∵P-ABC为正三棱锥,∴PB⊥AC;又∵DE∥AC,
DE⊂平面PDE,AC⊄平面PDE,
∴AC∥平面PDE.故①②正确.
5..【答案】①④
6.【答案】DM⊥PC(或BM⊥PC等)
【解析】由定理可知,BD⊥PC.
∴当DM⊥PC(或BM⊥PC)时,有PC⊥平面MBD.
又PC⊂平面PCD,∴平面MBD⊥平面PCD.
7.【答案】①②③
【解析】由题意知,BD⊥平面ADC,且AC⊂平面ADC,故BD⊥AC,①正确;AD为等腰直角三角形斜边BC 上的高,平面ABD⊥平面ACD,所以AB=AC=BC,△BAC是等边三角形,②正确;易知DA=DB=DC,又由②知③正确;由①知④错.
8.【答案】②③④
9. (1)证明由已知得△ABC≌△DBC,
因此AC=DC.
又G为AD的中点,所以CG⊥AD.
同理BG⊥AD,又BG∩CG=G,因此AD⊥平面BCG.
又EF∥AD,所以EF⊥平面BCG.
(2)
10.证明(1)如图1,取PD的中点G,连接AG,FG. 因为F,G分别是PC,PD的中点,
所以GF∥DC,且GF=1
2 DC.
又E是AB的中点,所以AE∥DC,且AE=1
2 DC,
所以GF∥AE,且GF=AE,
所以四边形AEFG是平行四边形,故EF∥AG.
又AG⊂平面PAD,EF⊄平面PAD,
所以EF∥平面PAD.
图1
图2
11.【答案】③
【解析】①中,由m⊥n,n∥α可得m∥α或m与α相交或m⊂α,错误;②中,由m∥β,β⊥α可得m ∥α或m与α相交或m⊂α,错误;③中,由m⊥β,n⊥β可得m∥n,又n⊥α,所以m⊥α,正确;④中,由m⊥n,n⊥β,β⊥α可得m∥α或m与α相交或m⊂α,错误.
12.【答案】①
【解析】
由题意可知PA,PE,PF两两垂直,
所以PA⊥平面PEF,从而PA⊥EF,
而PO⊥平面AEF,则PO⊥EF,因为PO∩PA=P,所以EF⊥平面PAO,
∴EF⊥AO,同理可知AE⊥FO,AF⊥EO,
∴O为△AEF的垂心.
13.【答案】①④
14.
略。

相关文档
最新文档