数学模型-初等模型
姜启源数学模型第五版第二章

分析与建模
甲的无差别曲线
如果甲占有(x1,y1)与占有
y
(x2,y2)具有同样的满意程度, y0
即p1, p2对甲是无差别的.
y1
将所有与p1, p2无差别的点 连接起来, 得到一条无差别 y2
曲线MN.
O
.M
M1
p1
p3(x3,y3)
. .p2
N1
N
x1
x2
x0 x
线上各点的满意度相同, 线的形状反映对X,Y的偏爱程度.
参数估计 • 根据测试数据对模型作拟合.
• 调查交通工程学的相关资料:
司机反应时间c1约为0.7~1s, 系数c2约为0.01( mh2/km2)
城市通行能力模型
道路通行能力~单位时间内通过某断面的最大车辆数. 通行能力表示道路的容量,交通流量表示道路的负荷. 饱和度~流量与通行能力的比值, 表示道路的负荷程度.
3个参数之间的基本关系 q vk
交通流的主要参数及基本规律 q vk
速度v 与密度k 的关系 车流密度加大 司机被迫减速
数据分析、机理分析 线性模型 v v f (1 k / k j )
vf ~畅行车速(k=0时) kj~阻塞密度(v=0时)
流量q与密度k 的关系 q v f k(1 k / k j )
Ta~内层玻璃的外侧温度
内
Ta Tb
室 外
Tb~外层玻璃的内侧温度
T1 d l d T2
k1~玻璃的热传导系数
Q1
k2~空气的热传导系数
墙
Q1
k1
T1
Ta d
k2
Ta
Tb l
k1
初等模型_《数学模型》(第三版)电子课件姜启源、谢金星、叶__俊编制共69页文档

56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
60、人民的幸福是至高无个的法。— —西塞 罗
ห้องสมุดไป่ตู้
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
数学建模第一章初等方法建模--数学模型讲义课件绪论

模型 准备 模型 检验 模型 应用
模型 假设 模型 分析
模型 构成 模型 求解数学模型 Nhomakorabea王宏健 编
(内部使用 版权所有 翻印必究)
什么是数学建模?
数学建模就是对于现实世界的一个特定对象, 为了一个特定目的,根据特有的内在规律,做 出一些必要的简化假设,把一个现实问题转变 成一个数学问题,再通过求解该数学问题,从 而达到解决现实问题的目的。
数学模型的重要性
• 数学工具的应用范围近几十年来不断扩大,
已从传统的工程技术领域渗透到其他各领 域(如经济、管理、体育、医学、人文、 社会、生态、环境等)。 • 电子计算机的迅速发展使得数学的真正应 用成为可能。美国科学院院士A.Fridman 在一份报告中指出:“数学建模以及相关 的计算正在成为工程设计中的关键工具。”
建立数学模型的方法和步骤
• 在实验、观察和分析的基础上,对实际问题 的主要方面作出合理简化和假设; • 明确变量和参数,应用数学的语言和方法形 成一个明确的数学问题; • 用数学或计算的方法精确或近似地求解该问 题; • 分析、检验结果是否能说明实际问题的主要 现象。 • 这样的过程多次反复进行,直到能较好地解 决问题,这就是数学建模的全过程。
初等模型2-1专业知识

2、每个分组讨论会都应将在职董事均匀分配到各小组
中。
给出一份1-9号在职董事,10-29号董事,1-6号企 业资深高级职员旳分组搭配名单,阐明该名单在大多程 度上满足了前面提出旳多种要求和规则,因为有旳董事 可能在最终一分钟宣告不参加会议,也可能不在名单上 旳董事将出席会议。所以,一种能使秘书能在会前一小 时接到参会是否旳告知情况下来调整搭配分组旳算法定 会得到赏识。假如算法还能用于不同水平旳与会者与参 加背面会议中旳每一类与会者合理搭配旳话,那就更理 想了。
r=( t 2 E )1/5
(7)
上式表明,半径与大气压强P无关,而当E,一定时
r与t 2/5成正比。现检验这个关系,设
r atb
(8)
其中 a,b是待定系数,对(8)取对数后用线性最小
二乘拟合,根据表1中t和r旳数据得到
b 0.4052 量纲分析得到的结果 25 一致
为了由(7)和表1的数据估计E,Taylor对(8)两
若 bij 0则令Gi(1) {m j1}
不然,随机选择另一种 mj2 M ( j1 j2)
直到 bij2
0,并令
G (1) i
{m j2 }
(i 1,2,,6)。
这么,就位每一组分配了第一名董事会组员。
(2)假设已为每个组分配了k-1位董事即
G ( k 1) i
{m j1
, mj2
,, m jk1}
(2 k 5)已拟定。要分
配第k位董事会组员给Gi,即拟定
G(k) i
G ( k 1) i
{mjk }
(2 k 5) 。
6
任意随机选择一种
数学建模:初等分析建模法

3.写出量纲矩阵
(f) (l) (h) (v) (ρ) (μ) (g)
1 1 1 1 3 1 1 (L)
A37
1
00
0
1
1
0
(
M
)
2 0 0 1 0 1 2 (T )
4.求解齐次线性方程组 AY=0,因Rank (A)=r=3
方程有m-r=7-3=4个基本解, 可取为
Y1 (0 Y2 (0 Y3 (0
下面用量纲分析法确定阻力与这些物理量 之间的关系.
1.航船问题中涉及物理量满足的物理关系记为
Ф(f, l, h, v,ρ,μ, g)=0
(8)
2.这是力学问题,基本量纲选为L、M、T, 各物理量的量纲表示为
[ f ] LMT 2 , [t] L, h L v LT 1, L3M , L1MT 1, g LT 2 ,
2. 合理选择基本量纲 一般,在力学中选取L、M、T即可, 热学问题 加上温度量纲Θ,电学问题加上电量量纲Q).
3. 应根据特定的建模目的恰当地构造基本解.
量纲分析建模方法有如下优缺点:
1.不需要专门的物理知识和高深的数学方法, 可以得到用其他复杂方法难以得到的结果.
2. 可将无关的物理量去掉. 3.可由原始物理量组合成一些有用的无量纲量. 4. 方法有局限性,PI定理中的等价方程F(·)=0, 仍然包含着一些未定函数、参数或无量纲量.
L3M 1T 2
部分物理量是无量纲的,称之为纯数字,如
[角度]=LL—1=L0
尽管角度是无量纲量,但它有单位(弧度).
量纲独立于单位
三. 量纲齐次性(Dimensional Homogeneity)
量纲齐次原则: 任一有意义的物理方程必定是量 纲一致的,即有
165几个初等模型

§16.5几个初等模型[学习目标]1. 能表述导弹核武器竞赛的数学模型;2. 能表述市场平衡问题的数学模型;3. 会用奇偶校验法解决铺瓷砖问题;4. 了解工厂地址选择的数学模型;5. 能表述动物体形问题的数学模型。
一、导弹核武器竞赛美国和前苏联都深感自己需要一定数量的洲际弹道导弹,以对付对方的“核讹诈”,其基本想法是当自己在遭到对方的突然袭击后能有足够的导弹幸存下来,以便给予对方以“致命打击”.为此双方展开了一场竞争,方法有:(1)努力增加自己的核武器,从数量上压倒对方.但这样作下去双方都感到负担过重.(2)引进反弹道导弹和多弹头导弹.(3)加固导弹库或建造核潜艇来保护导弹,使之不易受到攻击.究竟用什么方法为好,在对方采取不同的策略时,自己又将如何对付?为此展开了一场激烈的军备竞赛.由于核武器种类繁多,性能各异,问题比较复杂,所知信息又少。
因此下面建立一个简单的图解模型,以便帮助阐明其中某些问题.把讨论的两国称为甲方和乙方.用x,y分别表示甲方和乙方拥有的导弹数.由于x,y很大,把x和y看作实数.假设两方拥有的导弹相同,而且具有同等的防护能力.甲方为了安全,其拥有的核弹头数x要随乙方的弹头数y的增长而增长。
可以假设存在增函数f,当x>f(y)时甲方才感到安全,x=f(y)称为甲方的安全线,同样y=g(x)是乙方的安全线,即当y>g(x)时乙方才感到安全.图16-10乙方安全区甲方安全区BCA由图16-10可知甲方的安全区和乙方的安全区.二者的公共部分双方都感到安全,即军备竞赛的稳定区域(图中阴影部分).两条安全线的交点为竞争的平衡点。
问题在于当第一次打击不可能摧毁对方的假设下,这样的稳定区域存在吗?换言之,两条单调增加的曲线x=f(y)和y=g(x)相交吗?这要求证明并进而讨论,当反导弹和多弹头导弹这类武器出现时,对于平衡点A()将产生什么影响?为了证明x=f(y)和y=g(x)相交,我们采用如下方法:证明从原点出发的任一直线y=rx(r>0)必与曲线x=f(y)相交,其中x=f(y)从(,0)开始,以递增到无穷的斜率向上弯曲.Y = rxx因为不论乙方拥有的核弹头数y是甲方的多少倍(如r倍,r可以充分大),都不能一次毁灭甲方,也就是说在乙方y=rx枚核弹头的袭Y击下,甲方一枚弹头保存下来的概率p(r)仍然大于零(尽管可以很小),那么甲方只需要拥有枚弹头,就可以感到安全.正是直线y=rx和曲线x=f(y)交点的横坐标.所以y=rx与甲方安全线x=f(y)相交.如图16-11所示.同理,y=rx必与曲线y=g(x)相交.y=g(x)从 图16-11 (0,y)开始,起斜率递减到零.这样曲线x=f(y)与y=g(x)相交于A()点,这是x和y的最小稳定值.下面我们要讨论,如果某一方使用加固导弹库,反弹道导弹或其他一些手段,两条安全曲线和稳定点A()将如何变化呢?如果甲方由于使用加固导弹库,反弹道导弹或其他一些手段,则它的导弹更不容易遭受突然袭击,这将使甲方任一枚导弹逃脱突然袭击的概率p(r)增大,所以曲线f(y)向左移动,在图16-10中用虚线表示.点不变,此时曲线的形状稍有改变.为了保持稳定,双方只需要更少的导弹,稳定点为B.如果甲方用某种设施,例如反弹道导弹来防护它的城市,这时乙方要对甲方进行致命的打击,就需要比更多的导弹,于是g(x)向上移动.在图16-10中用“ ”线表示.我们可以看出,要保持稳定,双方都需要更多的导弹,稳定点为C.图16-12BAyxx=f(y)如果使用多弹头导弹,此时情况将变得更加复杂.例如,甲方将它的每枚导弹的单弹头改装为N个弹头,那么它所需要的能逃脱偷袭的导弹数可以更少些(需要的数大约是).这样x=f(y)就向左移动。
第02章初等模型
用Q值方法分配 第20席和第21席
第20席
Q1
1032 1011
96.4,
Q2
632 67
94.5,
Q3
342 3 4
96.3
第21席
Q1最大,第20席给甲系
Q1
1032 1112
80.4,
Q2 ,
Q3 同上
Q3最大,第 21席给丙系
Q值方法 分配结果
甲系11席,乙系6席,丙系4
席
Machine Learning Center
p1/n1– p2/n2 ~ 对A的绝对不公平度
p1=150, n1=10, p1/n1=15 p1=1050, n1=10, p1/n1=105 p2=100, n2=10, p2/n2=10 p2=1000, n2=10, p2/n2=100
p1/n1– p2/n2=5
p1/n1– p2/n2=5
记qi=Npi /P, i=1,2, … , m, 若qi 均为整数,显然应 ni=qi
Machine Learning Center
进一步的讨论
qi=Npi /P不全为整数时,ni 应满足的准则: 记 [qi]– =floor(qi) ~ 向 qi方向取整;
[qi]+ =ceil(qi) ~ 向 qi方向取整. 1) [qi]– ni [qi]+ (i=1,2, … , m), 即ni 必取[qi]– , [qi]+ 之一
Machine Learning Center
问题分析
录像机计数器的工作原理
左轮盘
右轮盘 主动轮
0000 计数器
录像带 磁头
压轮
录像带运动
录像带运动方向 右轮盘半径增大 计数器读数增长变慢
实物交换、核军备竞赛—数学建模初等模型的应用
乙安全线
y0 0 x
y1 y0 0
y=f ( x)
y0 y f ( x) y0 x
x0
P(xm,ym)甲 安 x=g(y) 全 区 x1 x
P~平衡点(双方最少导弹数)
精细 模型
x<y x=y
乙方残存率 s ~甲方一枚导弹攻击乙方一个 基地,基地未被摧毁的概率。 甲方以 x攻击乙方 y个基地中的 x个, sx个基地未摧毁,y–x个基地未攻击。 y0=sx+y–x y0=sy y= y0+(1-s)x
xm , ym ym xm
0
x0
x
甲方的被动防御也会使双方军备竞赛升级。
模型解释
• 甲方将固定核导弹基地改进为可移动发射架 乙安全线y=f(x)不变
y
, ym ) P( xm
甲方残存率变大
威慑值x 0和交换比不变 x减小,甲安全线 x=g(y)向y轴靠近 PP´
y0 0
P(xm,ym)
.
D
B
p
0
A
.
C
xo x
设X单价a, Y单价b, 则等价交换下ax+by=s (s=ax0=by0)
2.7
背 景
核军备竞赛
• 冷战时期美苏声称为了保卫自己的安全,实行“核威 慑战略”,核军备竞赛不断升级。 • 随着前苏联的解体和冷战的结束,双方通过了一系列 的核裁军协议。 • 在什么情况下双方的核军备竞赛不会无限扩张,而存 在暂时的平衡状态。 • 估计平衡状态下双方拥有的最少的核武器数量,这个 数量受哪些因素影响。 • 当一方采取加强防御、提高武器精度、发展多弹头导 弹等措施时,平衡状态会发生什么变化。
模 型 假 设