随机过程读书笔记

随机过程读书笔记
随机过程读书笔记

随机过程读书笔记

《应用随机过程》读书笔记

早期的概率论和分析是两个截然不同的领域.1933年,Kolmogorov建立了概率论公理基础,这标志着概率论成为一个严密的分支.此后学者们更感兴趣于用概率方法来解决分析问题.于是上世纪40到50年代间,随机分析学迅速发展成为一门新的学科,被誉为“随机王国中的牛顿定律”.随机分析学的理论受到了众多领域专家、学者的研究和关注。它的发展是迅速的,也是巨大的,其应用领域越来越广泛,紧密联系着数学的各个分支,也是近代概率论中最活跃的分支之一。随着其内容的不断丰富,随机分析己被广泛应用于点过程、估计理论等理论分支。

在放假期间,我看了《应用随机过程》第六章---鞅的内容。鞅是一类特殊的随机过程,鞅的初始概念是源于公平竞争的思想,也就是在竞争中付出与所期望的收入相匹配。直观地讲,在公平竞争中我们无法凭空创造则富。鞅仅描述现在所拥有的价值,离散时间鞅仅仅是对过程有个大致的描述,而连续时间鞅则是对招个过程的一个综合把握,可以细致而紧凑地研究过程的走向。下面就简单介绍一下鞅的基本概念及其相关性质。

一定义1 随机过程Xn,n0称为关于Yn,n0的下鞅,如

果对

n0,Xn时(Y0,,Yn)的函数,EXn,并且E(Xn1|Y0,,Yn)Xn,这里

如果对Xnmax0,Xn。我们称过程Xn,n0为关于Yn,n0的上鞅,n0,Xn是(Y0,,Yn)的函数,EXn,并且E(Xn1|Y0,,Yn)Xn,这里

Xnmax0,Xn。若Xn,n0兼为关于Yn,n0的下鞅与上鞅,则称

之为关于Yn,n0的鞅。

根据鞅的定义,我们可以直接推出以下命题:

适应列Xn,Fn,n0是下鞅当且仅当Xn,Fn,n0是上鞅。如果Xn,Fn,Yn,Fn是两个下鞅,a,b是两个正常数,则aXnbYn,Fn是下鞅。

如果Xn,Fn,Yn,Fn是两个下鞅,则

。 max(Xn,Yn),Fn或min(Xn,Yn),Fn是下鞅

下面以一个例子加以说明:考虑一个公平博弈的问题,设X1,X2独立同分布,分布函数为PXi1PXi1,于是,可以将Xi(i1,2,)看做一个投硬币的游戏的结果:如果出现正面就赢1元。

12出现反面就输1元。假设我们按以下的规则来赌博,每次投掷硬币之前的赌注都比上一次翻一倍,直到赢了赌博即停。令Wn表示第n次赌博后所输的总钱数,W00,无论如

何,只要赢了就停止赌博,从而Wn从赢了之后起就不再变化,于是有PWn11|Wn11。假设前n次投出的硬币都出现了反面,按照规定,我们已经输了

1242n12n1,即Wn(2n1),假如下一次硬币出现的

是正面,按规定Wn12n(2n1)1,公平的前提知道

PWn11|Wn(2n1)11,PWn12n2n1|Wn(2n1),易证22E(Wn1|Fn)Wn,这里Fn(X1,,Xn),从而Wn是关于Fn的鞅。

二鞅的停时定理

1 设Xn,n0是一随机变量序列,称随机函数T是关于Xn,n0的停时,如果T在0,1,2,,中取值,而且对每个n0。

Tn(X0,X1,,Xn)。

2 设M0,M1,M2,是一个关于Fn(X0,X1,,Xn)的鞅,T是停时且满足:

PT1; E(MT);

E(MnITn)0; limn则有 EMTEM0

1939 年法国概率学家 Lévy 第一次提出鞅,并作了理论的奠基工作。随着对brown运动的随机积分理论的发展,30年代末至50年代初,Levy和美国概率学家Doob就创立了鞅论,并且Doob将其发扬光大.1953年,Doob在其名著Stochastic Processes中首次系统地介绍了鞅论及其应用成果,这部历史性专著促使鞅成为随机过程理论的一个独立分支.突飞猛进的研究成果使其在理论和应用上的重要性也日

益凸显.

Doob极大不等式

定理设Z0,Z1,,Zn是一个鞅,MnmaxZ0,,Zn。对0,PMnE(ZnIM1)nE(Zn);

如果E(Zn2),则对0。

PMn12E(ZIMn)2n2E(Zn)2。

并且E(Mn2)4E(Zn2)

三一致可积性

定义 1 假设有一列随机变量X1,X2,,称它们是一直可积的,如果对0,存在0,使得对任意A,当P(A)时,E(XnIA)对

n成立。

因为一致可积的条件比较难验证,下面给出两个一致可积的充分条件。

1 假设X1,X2,是一列随机变量,并且存在常数C,使得

2E(Xn)C对所有的n成立,则此序列是一致可积的。

2 设Mn是关于Fn的鞅。如果存在一个非负随机变量Y,满足

E(Y),且MnY,对n成立,则Mn是一致可积鞅。

四鞅收敛定理

定理设M0,M1,是关于X0,X1,的鞅,并且存在常数C使得E(Mn)C对任意n成立,则当n时,Mn收敛到一个随机变

量M

根据上面的定理,我们可以得出以下结论:如果Mn是关于

X0,X1,的一致可积鞅,则limMn存在,记为M,并且EMEM0.

n五生活举例

1 设Xn是一个赌徒n 次抛掷公平硬币后的财产,如果硬币正面朝上,则赌徒赢得1美元,硬币反面朝上,则赌徒输掉1美元。已知历史上所拥有的财产,且下一次试验后赌徒财产的条件期望与其现在的财产相等,故这一随机过程是鞅。这个例子称为赌徒谬误。令Yn = Xn

2 n ,其中Xn 是上例中赌徒的财产,则随机过

程{ Yn : n = 1, 2, 3, ... }是鞅。这一例子可以表明赌徒的全部收益或损失大致在抛掷次数的正负平方根之间变化。设抛掷的是有偏硬币,正面向上的概率为p ,反面向上的概率为q = 1 p 。令

正面情况用“+”,反面情况用。令

则{ Yn : n = 1, 2, 3, ... }是关於{ Xn : n = 1, 2, 3, ... }的鞅。证明如下:

服从正态分布

2一个罐子中最初装有r 个红球和b 个蓝球。某人随机取出一个球,然后将此球与另一个与此球颜色相同的球放回罐子中。令Xn为重复上述步骤n 次后罐子中的红球数,令

Yn = Xn/ (n + r + b)。这时随机过程{ Yn: n = 1, 2, 3, ... }是鞅。

3 某一总体可能是按照概率密度f 分布,也可能是按照概率密度g 分布。从总体中取出一个随机样本,数据为X1, ..., Xn 。令Yn为“似然比”:

若总体实际上是

按照概率密度f 而不是g 分布,则{ Yn : n = 1, 2, 3, ... }是关于{ Xn : n = 1, 2, 3, ... }的鞅。

4 设每一变形虫不是以概率p 分裂成两个变形虫,就是以概率1 p 最终死亡。令Xn为n 代后变形虫的存活数目。令r 为最终灭绝的概率。则

是关于{ Xn: n = 1, 2, 3, ... }的鞅。

当前靴论及随机积分理论己广泛应用于金融系统、随机微分方程、估计理论、随扫L控制等领域.随着靴论的迅速发展。如今它已成为各种较有深度的概率论及其相应著作的一个标准组成部分,所以对教论的进一步研究是非常必要也是有重要意义的.近年来.对鞅论在理论研究方面已取得了一定成果,但还远远不够,它的发展还处在初级阶段.现在我们考虑的靴论基本上是一个过程下的靴,这是不受外界干扰的一种理想状况.因此考虑多个过程下的不确定因素,才能更贴切、更准确地解决实际问题

《应用随机过程》读书笔记

早期的概率论和分析是两个截然不同的领域.1933年,Kolmogorov建立了概率论公理基础,这标志着概率论成为一个严密的分支.此后学者们更感兴趣于用概率方法来解决分析问题.于是上世纪40到50年代间,随机分析学迅速发展成为一门新的学科,被誉为“随机王国中的牛顿定律”.随机分析学的理论受到了众多领域专家、学者的研究和关注。它的发展是迅速的,也是巨大的,其应用领域越来越广泛,紧密联系着数学的各个分支,也是近代概率论中最活跃的分支之一。随着其内容的不断丰富,随机分析己被广泛应用于点过程、估计理论等理论分支。

在放假期间,我看了《应用随机过程》第六章---鞅的内容。鞅是一类特殊的随机过程,鞅的初始概念是源于公平竞争的思想,也就是在竞争中付出与所期望的收入相匹配。直观地讲,在公平竞争中我们无法凭空创造则富。鞅仅描述现在所拥有的价值,离散时间鞅仅仅是对过程有个大致的描述,而连续时间鞅则是对招个过程的一个综合把握,可以细致而紧凑地研究过程的走向。下面就简单介绍一下鞅的基本概念及其相关性质。

一定义1 随机过程Xn,n0称为关于Yn,n0的下鞅,如果对

n0,Xn时(Y0,,Yn)的函数,EXn,并且E(Xn1|Y0,,Yn)Xn,这里

如果对Xnmax0,Xn。我们称过程Xn,n0为关于Yn,n0的上鞅,n0,Xn是(Y0,,Yn)的函数,EXn,并且E(Xn1|Y0,,Yn)Xn,这里

Xnmax0,Xn。若Xn,n0兼为关于Yn,n0的下鞅与上鞅,则称

之为关于Yn,n0的鞅。

根据鞅的定义,我们可以直接推出以下命题:

适应列Xn,Fn,n0是下鞅当且仅当Xn,Fn,n0是上鞅。如果Xn,Fn,Yn,Fn是两个下鞅,a,b是两个正常数,则aXnbYn,Fn是下鞅。

如果Xn,Fn,Yn,Fn是两个下鞅,则

。 max(Xn,Yn),Fn或min(Xn,Yn),Fn是下鞅

下面以一个例子加以说明:考虑一个公平博弈的问题,设X1,X2独立同分布,分布函数为PXi1PXi1,于是,可以将Xi(i1,2,)看做一个投硬币的游戏的结果:如果出现正面就赢1元。

12出现反面就输1元。假设我们按以下的规则来赌博,每次投掷硬币之前的赌注都比上一次翻一倍,直到赢了赌博即停。令Wn表示第n次赌博后所输的总钱数,W00,无论如何,只要赢了就停止赌博,从而Wn从赢了之后起就不再变化,于是有PWn11|Wn11。假设前n次投出的硬币都出现了反面,按照规定,我们已经输了

1242n12n1,即Wn(2n1),假如下一次硬币出现的

是正面,按规定Wn12n(2n1)1,公平的前提知道

PWn11|Wn(2n1)11,PWn12n2n1|Wn(2n1),易证22E(Wn1|Fn)Wn,这里Fn(X1,,Xn),从而Wn是关于Fn的鞅。

二鞅的停时定理

1 设Xn,n0是一随机变量序列,称随机函数T是关于Xn,n0的停时,如果T在0,1,2,,中取值,而且对每个n0。

Tn(X0,X1,,Xn)。

2 设M0,M1,M2,是一个关于Fn(X0,X1,,Xn)的鞅,T是停时且满足:

PT1; E(MT);

E(MnITn)0; limn则有 EMTEM0

1939 年法国概率学家 Lévy 第一次提出鞅,并作了理论的奠基工作。随着对brown运动的随机积分理论的发展,30年代末至50年代初,Levy和美国概率学家Doob就创立了鞅论,并且Doob将其发扬光大.1953年,Doob在其名著Stochastic Processes中首次系统地介绍了鞅论及其应用成果,这部历史性专著促使鞅成为随机过程理论的一个独立分支.突飞猛进的研究成果使其在理论和应用上的重要性也日益凸显.

Doob极大不等式

定理设Z0,Z1,,Zn是一个鞅,MnmaxZ0,,Zn。对0,

PMnE(ZnIM1)nE(Zn);

如果E(Zn2),则对0。

PMn12E(ZIMn)2n2E(Zn)2。

并且E(Mn2)4E(Zn2)

三一致可积性

定义 1 假设有一列随机变量X1,X2,,称它们是一直可积的,如果对0,存在0,使得对任意A,当P(A)时,E(XnIA)对

n成立。

因为一致可积的条件比较难验证,下面给出两个一致可积的充分条件。

1 假设X1,X2,是一列随机变量,并且存在常数C,使得

2E(Xn)C对所有的n成立,则此序列是一致可积的。

2 设Mn是关于Fn的鞅。如果存在一个非负随机变量Y,满足

E(Y),且MnY,对n成立,则Mn是一致可积鞅。

四鞅收敛定理

定理设M0,M1,是关于X0,X1,的鞅,并且存在常数C使得E(Mn)C对任意n成立,则当n时,Mn收敛到一个随机变量M

根据上面的定理,我们可以得出以下结论:如果Mn是关于

X0,X1,的一致可积鞅,则limMn存在,记为M,并且EMEM0.

n五生活举例

1 设Xn是一个赌徒n 次抛掷公平硬币后的财产,如果硬币正面朝上,则赌徒赢得1美元,硬币反面朝上,则赌徒输掉1美元。已知历史上所拥有的财产,且下一次试验后赌徒财产的条件期望与其现在的财产相等,故这一随机过程是鞅。这个例子称为赌徒谬误。令Yn = Xn

2 n ,其中Xn 是上例中赌徒的财产,则随机过

程{ Yn : n = 1, 2, 3, ... }是鞅。这一例子可以表明赌徒的全部收益或损失大致在抛掷次数的正负平方根之间变化。设抛掷的是有偏硬币,正面向上的概率为p ,反面向上的概率为q = 1 p 。令

正面情况用“+”,反面情况用。令

则{ Yn : n = 1, 2, 3, ... }是关於{ Xn : n = 1, 2, 3, ... }的鞅。证明如下:

服从正态分布

2一个罐子中最初装有r 个红球和b 个蓝球。某人随机取出一个球,然后将此球与另一个与此球颜色相同的球放回罐子中。令Xn为重复上述步骤n 次后罐子中的红球数,令Yn = Xn/ (n + r + b)。这时随机过程{ Yn: n = 1, 2, 3, ... }是鞅。

3 某一总体可能是按照概率密度f 分布,也可能是按照

概率密度g 分布。从总体中取出一个随机样本,数据为X1, ..., Xn 。令Yn为“似然比”:

若总体实际上是

按照概率密度f 而不是g 分布,则{ Yn : n = 1, 2, 3, ... }是关于{ Xn : n = 1, 2, 3, ... }的鞅。

4 设每一变形虫不是以概率p 分裂成两个变形虫,就是以概率1 p 最终死亡。令Xn为n 代后变形虫的存活数目。令r 为最终灭绝的概率。则

是关于{ Xn: n = 1, 2, 3, ... }的鞅。

当前靴论及随机积分理论己广泛应用于金融系统、随机微分方程、估计理论、随扫L控制等领域.随着靴论的迅速发展。如今它已成为各种较有深度的概率论及其相应著作的一个标准组成部分,所以对教论的进一步研究是非常必要也是有重要意义的.近年来.对鞅论在理论研究方面已取得了一定成果,但还远远不够,它的发展还处在初级阶段.现在我们考虑的靴论基本上是一个过程下的靴,这是不受外界干扰的一种理想状况.因此考虑多个过程下的不确定因素,才能更贴切、更准确地解决实际问题

随机过程-答案

2012-2013学年第一学期统计10本 《随机过程》期中考试 一. 填空题 1.设马氏链的一步转移概率矩阵()ij P p =,n 步转移矩阵() ()n ij P p =,二者之间的关系为 (n) n P P = 2.状态i 常返的充要条件为( ) n i i n p ∞ ==∑∞。 3.在马氏链{},0n X n ≥中,记() n i j p ={}0,11,n P Xm j m n X j X i ≠≤≤-==,n ≥1. i j p =( ) 1n i j n p ∞ =∑,若i j p <1,称状态i 为 。 二. 判断题 1. S 是一个可数集,{:0n n X ≥}是取值于S 的一列随机变量,若 ( ) 1 01110011111 1,,...,(,...,)n n n n n n n n n n n n i i S P i X i X i X i P i i -+++--++-?≥?∈X =|====X =|X =并且满足,则{:0n n X ≥}是一个马氏链。 × 2. 任意状态都与它最终到达的状态是互通的,但不与它自己是互通的。 × 3. 一维与二维简单随机游动时常返的,则三维或更高维的简单随机游动也是常返的。× 4. 若状态i ?状态j ,则i 与j 具有相同的周期。 √ 5. 一个有限马尔科夫链中不可能所有的状态都是暂态。 √ 三. 简答题 1.什么是随机过程,随机序列? 答:设T 为[0,+∞)或(-∞,+∞),依赖于t(t ∈T)的一族随机变量(或随机向量){t ξ}通称为随机过程,t 称为时间。当T 为整数集或正整数集时,则一般称为随机序列。 2 .什么是时齐的独立增量过程?

第二章 平稳随机过程的谱分析

第二章平稳随机过程的谱分析 本章要解决的问题: ●随机信号是否也可以应用频域分析方法? ●傅里叶变换能否应用于随机信号? ●相关函数与功率谱的关系 ●功率谱的应用 ●采样定理 ●白噪声的定义 2.1 随机过程的谱分析 2.1.1 预备知识 1、付氏变换: 对于一个确定性时间信号x(t),设x(t)是时间t的非周期实函数,且x(t) 满足狄利赫利条件(有限个极值,有限个断点,断点为有限值)且绝对可积,能量有限,则x(t)傅里叶变换存在。即: 满足上述三个条件的x(t)的傅里叶变换为:

其反变换为: 2、帕赛瓦等式 由上面式子可以得到: ——称为非周期性时间函数的帕塞瓦(Parseval)等式。 物理意义:若x(t)表示的是电压(或电流),则上式左边代表x(t)在时间(-∞,∞)区间的总能量(单位阻抗)。因此,等式右边的被积函数 2 )(ωX X 表示了信号x(t)能量按频率分布的情况,故称2 )(ωX X 为 能量谱密度。 2.1.2、随机过程的功率谱密度 一个信号的付氏变换是否存在,需要满足三个条件,那么随机信号是否满足这三个条件从而存在付氏变换呢? 随机信号持续时间无限长,因此,对于非0的样本函数,它的能量

一般也是无限的,因此,其付氏变换不存在。 但是注意到它的平均功率是有限的,在特定的条件下,仍然可以利用博里叶变换这一工具。 为了将傅里叶变换方法应用于随机过程,必须对过程的样本函数做某些限制,最简单的一种方法是应用截取函数。 x(t): 截取函数T 图2.1 x(t)及其截取函数 x(t)满足绝对可积条件。因此,当x(t)为有限值时,裁取函数T x(t)的傅里叶变换存在,有 T x(t)也应满足帕塞瓦等式,即:(注意积分区间和表达很明显,T 式的变化)

随机过程试题带答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。 2.设随机过程X(t)=Acos( t+),-t t 则 {(5)6|(3)4}______P X X === 9.更新方程()()()()0t K t H t K t s dF s =+-?解的一般形式为 。 10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。 二、证明题(本大题共4道小题,每题8分,共32分) P(BC A)=P(B A)P(C AB)。 1.为it (e -1) e λ。2. 1(sin(t+1)-sin t)2ωω。3. 1 λ 4. Γ 5. 212t,t,;e,e 33?????? 。 6.(n)n P P =。 7.(n) j i ij i I p (n)p p ∈=?∑。 8.6 18e - 9。()()()()0 t K t H t K t s dM s =+-? 10. a μ 2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。 3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1

随机过程——马尔可夫过程的应用

随机过程——马尔可夫过程的应用 年级:2013级 专业:通信工程3班 姓名:李毓哲 学号:31

摘要:随机信号分析与处理是研究随机信号的特点及其处理方法的专业基础, 是目标检测、估计、滤波灯信号处理理论的基础,在通信、雷达、自动检测、随机振动、图像处理、气象预报、生物医学、地震信号处理等领域有着广泛的应用,随着信息技术的发展,随机信号分析与处理的理论讲日益广泛与深入。 随机过程是与时间相关的随机变量,在确定的时刻它是随机变量。随机过程的具体取值称作其样本函数,所有样本函数构成的集合称作随机过程的样本函数空间,所有样本函数空间及其统计特性即构成了随机过程。通信工程中存在大量的随机现象和随机问题。如:信源是随机过程;信道不仅对随机过程进行了变换,而且会叠加随机噪声等。 马尔可夫过程是一类非常重要的随机过程。随着现代科学技术的发展,很多在应用中出现的马氏过程模型的研究受到越来越多的重视。在现实世界中,有很多过程都是马尔可夫过程,马尔可夫过程在研究质点的随机运动、自动控制、通信技术、生物工程等领域中有着广泛的应用。我们可以通过对马尔可夫过程的研究来分析马尔可夫信源的特性。 关键词:随机过程,马尔可夫过程,通信工程,应用

目录 一、摘要 二、随机过程 、随机过程的基本概念及定义 、随机过程的数学描述 、基于MATLAB的随机过程分析方法三、马尔可夫过程 马尔可夫过程的概念 马尔可夫过程的数学描述 四、马尔可夫过程的应用 马尔可夫模型在通信系统中的应用 马尔可夫模型在语音处理的应用 马尔可夫模型的其他应用 五、结论 参考文献

二、随机过程 、随机过程的基本概念及定义 自然界变换的过程通常可以分为两大类——确定过程和随机过程。如果每次试验所得到的观测过程都相同,且都是时间t的一个确定函数,具有确定的变换规律,那么这样的过程就是确定过程。反之,如果每次试验所得到观测过程都不相同,是时间t的不同函数,没有为确定的变换规律,这样的过程称为随机过程。 、随机过程的数学描述 设随机试验E的样本空间Ω,T是一个数集(T∈(-∞,∞)),如果对于每一个t ∈T,都有一个定义在样本空间Ω上的随机变量 X(w,t),w∈Ω,则称依赖于t的一族随机变量{X(w,t),t∈T}为随机过程或随机函数,简记为{X(t),t∈T }或X(t),其中t称为参数,T称为参数集。当T={0,1,2,…},T={1,2,…},T={…,-2,-1,0,1,2,…}时,{X(w,t)t∈T}称为随机序列或时间序列。 、基于MATLAB的典型随机过程的仿真 信号处理仿真分析中都需要模拟产生各种随机序列,通常都是先产生白噪声序列,然后经过变换得到相关的随机序列,MATLAB有许多产生各种分布白噪声的函数。

随机过程知识点汇总

第一章随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量,分布函数 离散型随机变量的概率分布用分布列分布函数 连续型随机变量的概率分布用概率密度分布函数 2.n维随机变量 其联合分布函数 离散型联合分布列连续型联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量连续型随机变量 方差:反映随机变量取值的离散程度 协方差(两个随机变量): 相关系数(两个随机变量):若,则称不相关。 独立不相关 4.特征函数离散连续 重要性质:,,, 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 二项分布 泊松分布均匀分布略 正态分布 指数分布 6.N维正态随机变量的联合概率密度 ,,正定协方差阵 二.随机过程的基本概念 1.随机过程的一般定义 设是概率空间,是给定的参数集,若对每个,都有一个随机变量与之对应,则称随机变量族是上的随机过程。简记为。 含义:随机过程是随机现象的变化过程,用一族随机变量才能刻画出这种随机现象的全部统计规律性。另一方面,它是某种随机实验的结果,而实验出现的样本函数是随机的。 当固定时,是随机变量。当固定时,时普通函数,称为随机过程的一个样本函数或轨道。 分类:根据参数集和状态空间是否可列,分四类。也可以根据之间的概率关系分类,如独立增量过程,马尔可夫过程,平稳过程等。 2.随机过程的分布律和数字特征 用有限维分布函数族来刻划随机过程的统计规律性。随机过程的一维分布,二维分布,…,维分布的全体称为有限维分布函数族。随机过程的有限维分布函数族是随机过程概率特征的完整描述。在实际中,要知道随机过程的全部有限维分布函数族是不可能的,因此用某些统计特征来取代。(1)均值函数表示随机过程在时刻的平均值。 (2)方差函数表示随机过程在时刻对均值的偏离程度。 (3)协方差函数且有 (4)相关函数(3)和(4)表示随机过程在时刻,时的线性相关程度。

(完整版)北邮研究生概率论与随机过程2012-2013试题及答案

北京邮电大学2012——2013学年第1学期 《概率论与随机过程》期末考试试题答案 考试注意事项:学生必须将答题内容(包括填空题)做在试题答题纸上,做在试卷纸上一律无效。在答题纸上写上你的班号和选课单上的学号,班内序号! 一. 单项选择题和填空题:(每空3分,共30分) 1.设A 是定义在非空集合Ω上的集代数,则下面正确的是 .A (A )若A B ∈∈A,A ,则A B -∈A ; (B )若A A B ∈?A,,则B ∈A ; (C )若12n A n =∈?A,,,,则 1 n n A ∞=∈A ; (D )若12n A n =∈?A,,,,且123A A A ??? ,则 1 n n A ∞ =∈A . 2. 设(),ΩF 为一可测空间,P 为定义在其上的有限可加测度,则下面正确的是 .c (A )若A B ∈∈F,F ,则()()()P A B P A P B -=-; (B )若12n A n =∈?F,,,,,且123A A A ??? ,则1 li ( )()m n n n n P A A P ∞→∞ ==; (C )若A B C ∈∈∈F,F,F,,则()()()()P A B C P A P AB P A BC =++; (D )若12n A n =∈?F,,,,,且,i j A i j A =??=/,1 1 ( )()n n n n P P A A ∞ ∞===∑. 3.设f 为从概率空间(),P ΩF,到Borel 可测空间(),R B 上的实可测函数,表达式为100 0()k A k f kI ω==∑,其中1000 ,, i j n n i j A A A ==??=Ω/=,则fdP Ω=? ;

随机过程分析

随机过程分析 摘要随着科学的发展,数学在我们日常的通信体系中有着越来越重的地位,因为在科学研究中,只有借助于数学才能精确地描述一个现象的不同量之间的关系,从最简单的加减乘除,到复杂的建模思想等等。其中,随机过程作为数学的一个重要分支,更是在整个通信过程中发挥着不可小觑的作用。如何全面的对随机信号进行系统和理论的分析是现在通信的关键,也是今后通信业能否取得巨大进步的关键。 关键字通信系统随机过程噪声 通信中很多需要进行分析的信号都是随机信号。随机变量、随机过程是随机分析的两个基本概念。实际上很多通信中需要处理或者需要分析的信号都可以看成是一个随机变量,利用在系统中每次需要传送的信源数据流,就可以看成是一个随机变量。例如,在一定时间内电话交换台收到的呼叫次数是一个随机变量。也就是说把随某个参量而变化的随机变量统称为随机函数;把以时间t为参变量的随机函数称为随机过程。随机过程包括随机信号和随进噪声。如果信号的某个或某几个参数不能预知或不能完全预知,这种信号就称为随机信号;在通信系统中不能预测的噪声就称为随机噪声。下面对随机过程进行分析。 一、随机过程的统计特性 1、数学期望:表示随机过程的n个样本函数曲线的摆动中心, 即均值

?∞ ∞-==11);()]([)(dx t x xp t X E t a 2、方差:表示随机过程在时刻t 对于均值a(t)的偏离程度。 即均方值与均值平方之差。 {}?∞ ∞ --=-=-==112222);()]([)]()([))](()([)]([)(dx t x p t a x t a t X E t X E t X E t X D t δ 3、自协方差函数和相关函数: 衡量随机过程任意两个时刻上获得的随机变量的统计相关特性时,常用协方差函数和相关函数来表示。 (1)自协方差函数定义 {} )]()()][()([);(221121t a t X t a t X E t t C x --=??∞∞-∞ ∞---=2121212211),;,()]()][([dx dx t t x x p t a x t a x 式中t1与t2是任意的两个时刻;a (t1)与a(t2)为在t1及t2得到的数学期望; 用途:用协方差来判断同一随机过程的两个变量是否相关。 (2)自相关函数 ??∞∞-∞ ∞-==2121212212121),;,()]()([),(dx dx t t x x p x x t X t X E t t R X 用途:a 用来判断广义平稳; b 用来求解随机过程的功率谱密度及平均功率。 二、平稳随机过程 1、定义(广义与狭义): 则称X(t)是平稳随机过程。该平稳称为严格平稳,狭义平稳或严平稳。

随机过程习题及答案

第二章 随机过程分析 学习指导 1.1.1 要点 随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。 1. 随机过程的概念 随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。 2. 随机过程的分布函数和概率密度函数 如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。ξ(t 1)小于或等于某一数值x 1的概率为P [ ξ(t 1) ≤ x 1 ],随机过程ξ(t )的一维分布函数为 F 1(x 1, t 1) = P [ξ(t 1) ≤ x 1] (2-1) 如果F 1(x 1, t 1)的偏导数存在,则ξ(t )的一维概率密度函数为 1111111 (,) (, ) (2 - 2)?=?F x t f x t x 对于任意时刻t 1和t 2,把ξ(t 1) ≤ x 1和ξ(t 2) ≤ x 2同时成立的概率 {}212121122(, ; , )(), () (2 - 3)F x x t t P t x t x ξξ=≤≤ 称为随机过程 (t )的二维分布函数。如果 2212122121212 (,;,) (,;,) (2 - 4)F x x t t f x x t t x x ?=??? 存在,则称f 2(x 1, x 2; t 1, t 2)为随机过程 (t )的二维概率密度函数。 对于任意时刻t 1,t 2,…,t n ,把 {}n 12n 12n 1122n n ()(),(),,() (2 - 5) =≤≤≤L L L F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程 (t )的n 维分布函数。如果 n n 12n 12n n 12n 12n 12n (x )() (2 - 6)?=???L L L L L F x x t t t f x x x t t t x x x ,,,;,,,,,,;,,, 存在,则称f n (x 1, x 2, …, x n ; t 1, t 2, …, t n )为随机过程 (t )的n 维概率密度函数。 3. 随机过程的数字特征 随机过程的数字特征主要包括均值、方差、自相关函数、协方差函数和互相关函数。 随机过程 (t )在任意给定时刻t 的取值 (t )是一个随机变量,其均值为 []1()(, )d (2 - 7)E t xf x t x ξ∞ -∞ =?

应用随机过程试题及答案

应用随机过程试题及答案 一.概念简答题(每题5 分,共40 分) 1. 写出卡尔曼滤波的算法公式 2. 写出ARMA(p,q)模型的定义 3. 简述Poisson 过程的随机分流定理 4. 简述Markov 链与Markov 性质的概念 5. 简述Markov 状态分解定理 6.简述HMM 要解决的三个主要问题得分B 卷(共9 页)第2 页7. 什么是随机过程,随机序列?8.什么是时齐的独立增量过程?二.综合题(每题10 分,共60 分) 1 .一维对称流动随机过程n Y , 0 1 0, , n n k k Y Y X ? ? ? ? 1 ( 1) ( 1) , 2 k k k X p x p x ? ? ? ? ? 具有的概率分布为且1 2 , , ... X X 是相互独立的。试求1 Y 与2 Y 的概率分布及其联合概率分布。 2. 已知随机变量Y 的密度函数为其他而且,在给定Y=y 条件下,随机变量X 的条件密度函数为? ? 其他试求随机变量X 和Y 的联合分布密度函数( , ) f x y . 得分B 卷(共9 页)第3 页 3. 设二维随机变量( , ) X Y 的概率密度为( ,其他试求p{x<3y} 4.设随机过程( ) c o s 2 , ( , ) , X t X t t ? ? ? ? ? ? X 是标准正态分布的随机变量。试求数学期望( ) t E X ,方差( ) t D X ,相关函数1 2 ( , ) X R t t ,协方差1 2 ( , ) X C t t 。B 卷(共9 页)第4 页5 .设马尔科夫链的状态空间为I={0,1}, 一步转移概率矩阵为

期末随机过程试题及标准答案

《随机过程期末考试卷》 1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。 2.设随机过程X(t)=Acos( t+),-t t 则 {(5)6|(3)4}______P X X === 9.更新方程()()()()0t K t H t K t s dF s =+-?解的一般形式为 。 10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。 二、证明题(本大题共4道小题,每题8分,共32分) 1.设A,B,C 为三个随机事件,证明条件概率的乘法公式: P(BC A)=P(B A)P(C AB)。 2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。 3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1

学期数理统计与随机过程(研)试题(答案)

北京工业大学2009-20010学年第一学期期末 数理统计与随机过程(研) 课程试卷 学号 姓名 成绩 注意:试卷共七道大题,请写明详细解题过程。 考试方式:半开卷,考试时只允许看教材《概率论与数理统计》 浙江大学 盛 骤等编第三版(或第二版)高等教育出版社。可以看笔记、作业,但不允许看其它任何打印或复印的资料。考试时允许使用计算器。考试时间120分钟。考试日期:2009年12月31日 一、随机抽取某班28名学生的英语考试成绩,算得平均分数为80=x 分,样本标准差8=s 分,若全年级的英语成绩服从正态分布,且平均成绩为85分,问:能否认为该班的英语成绩与全年级学生的英语平均成绩有显著差异(取显著性水平050.=α)? 解:这是单个正态总体 ),(~2σμN X ,方差2σ未知时关于均值μ的假设检验问题,用T 检验法. 解 85:0=μH ,85:1≠μH 选统计量 n s x T /0 μ-= 已知80=x ,8=s ,n =28,850=μ, 计算得n s x T /0μ-= 31 .328/885 80=-= 查t 分布表,05.0=α,自由度27,临界值052.2)27(025.0=t . 由于052.2>T 2622.2>,故拒绝 0H ,即在显著水平05.0=α下不能认为 该班的英语成绩为85分.

050.= 解:由极大似然估计得.2?==x λ 在X 服从泊松分布的假设下,X 的所有可能的取值对应分成两两不相交的子集A 0, A 1,…, A 8。 则}{k X P =有估计 =i p ?ΛΛ,7,0, !2}{?2 ===-k k e k X P k =0?p

随机过程试题及解答

2016随机过程(A )解答 1、(15分)设随机过程V t U t X +?=)(,),0(∞∈t ,U ,V 是相互独立服从正态分布(2,9)N 的随机变量。 1) 求)(t X 的一维概率密度函数; 2) 求)(t X 的均值函数、相关函数和协方差函数。 3) 求)(t X 的二维概率密度函数; 解: 由于U ,V 是相互独立服从正态分布(2,9)N 的随机变量,所以V t U t X +?=)(也服从正态分布, 且: {}{}{}{}()()22m t E X t E U t V t E U E V t ==?+=?+=+ {}{}{}{}22()()99D t D X t D U t V t D U D V t ==?+=+=+ 故: (1) )(t X 的一维概率密度函数为:()2 22218(1) (),x t t t f x e x --- += -∞≤≤∞ (2) )(t X 的均值函数为:()22m t t =+;相关函数为: {}{} (,)()()()()R s t E X s X t E U s V U t V =?=?+??+ {}{}{} 22()13()413 st E U s t E U V E V st s t =?++??+=?++?+ 协方差函数为:(,)(,)()()99B s t R s t m s m t st =-?=+ (3)相关系数: (,)s t ρρ== == )(t X 的二维概率密度函数为: 2212222(22)(22)12(1)9(1)4(1),12(,)x s x t s t s t f x x e ρ????-----?? +????-++???????? = 2、(12分)某商店8时开始营业,在8时顾客平均到达率为每小时4人,在12时顾客的 平均到达率线性增长到最高峰每小时80人,从12时到15时顾客平均到达率维持不变为每小时80人。问在10:00—14:00之间无顾客到达商店的概率是多少?在10:00—14:00之间到达商店顾客数的数学期望和方差是多少? 解: 到达商店顾客数服从非齐次泊松过程。 将8时至15时平移到0—7时,则顾客的到达速率函数为: 419,04 ()80,47t t t t λ+≤≤?=? <≤? 在10:00—14:00之间到达商店顾客数(6)(2)X X -服从泊松分布,其均值: 6 4 6 2 2 4 (6)(2)()(419)80282m m t dt t dt dt λ-==++=???

马尔可夫过程的发展和应用

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计(论文) 课程名称:应用随机过程 设计题目:马尔可夫过程的发展与应用 院系:电子信息与工程学院 班级:通信一班 设计者: 学号: 指导教师:田波平 设计时间: 2009/12/17 马尔可夫链(过程)的发展与应用

1. 随机过程发展简述 在当代科学与社会的广阔天地里,人们都可以看到一种叫作随机过程的数学模型:从银河亮度的起伏到星系空间的物质分布、从分子的布朗运动到原子的蜕变过程,从化学反应动力学到电话通讯理论、从谣言的传播到传染病的流行、从市场预测到密码破译,随机过程理论及其应用几乎无所不在。 一些特殊的随机过程早已引起注意,例如1907年前后,Α.Α.马尔可夫研究过一列有特定相依性的随机变量,后人称之为马尔可夫链(见马尔可夫过程);又如1923年N.维纳给出了布朗运动的数学定义(后人也称数学上的布朗运动为维纳过程),这种过程至今仍是重要的研究对象。虽然如此,随机过程一般理论的研究通常认为开始于30年代。1931年,Α.Η.柯尔莫哥洛夫发表了《概率论的解析方法》;三年后,Α.Я.辛钦发表了《平稳过程的相关理论》。这两篇重要论文为马尔可夫过程与平稳过程奠定了理论基础。稍后,P.莱维出版了关于布朗运动与可加过程的两本书,其中蕴含着丰富的概率思想。1953年,J.L.杜布的名著《随机过程论》问世,它系统且严格地叙述了随机过程的基本理论。1951年伊藤清建立了关于布朗运动的随机微分方程的理论(见随机积分),为研究马尔可夫过程开辟了新的道路;近年来由于鞅论的进展,人们讨论了关于半鞅的随机微分方程;而流形上的随机微分方程的理论,正方兴未艾。60年代,法国学派基于马尔可夫过程和位势理论中的一些思想与结果,在相当大的程度上发展了随机过程的一般理论,包括截口定理与过程的投影理论等,中国学者在平稳过程、马尔可夫过程、鞅论、极限定理、随机微分方程等方面也做出了较好的工作。 2. 马尔可夫过程发展 2.1 马尔可夫过程简介 马尔科夫过程(MarKov Process)是一个典型的随机过程。设X(t)是一随机过程,当过程在时刻t0所处的状态为已知时,时刻t(t>t0)所处的状态与过程在t0时刻之前的状态无关,这个特性成为无后效性。无后效的随机过程称为马尔科夫过程。马尔科夫过程中的时同和状态既可以是连续的,又可以是离散的。我们称时间离散、状态离散的马尔科夫过程为马尔科夫链。马尔科夫链中,各个时刻的状态的转变由一个状态转移的概率矩阵控制。 2.2 马尔可夫过程的发展 20世纪50年代以前,研究马尔可夫过程的主要工具是微分方程和半群理论(即分析方法);1936年前后就开始探讨马尔可夫过程的轨道性质,直到把微分方程和半群理论的分析方法同研究轨道性质的概率方法结合运用,才使这方面的研究工作进一步深化,并形成了对轨道分析必不可少的强马尔可夫性概念。1942年,伊藤清用他创立的随机积分和随机微分方程理论来研究一类特殊而重要的马尔可夫过程──扩散过程,开辟了研究马尔可夫过程的又一重要途径。

随机过程作业题及参考答案(第一章)

! 第一章 随机过程基本概念 P39 1. 设随机过程()0cos X t X t ω=,t -∞<<+∞,其中0ω是正常数,而X 是标准正态变量。试求()X t 的一维概率分布。 解: 1 当0cos 0t ω=,02 t k π ωπ=+ ,即0112t k πω??= + ??? (k z ∈)时, ()0X t ≡,则(){}01P X t ==. 2 当0cos 0t ω≠,02 t k π ωπ≠+ ,即0112t k πω?? ≠ + ??? (k z ∈)时, ()~01X N ,,()0E X ∴=,()1D X =. ¥ ()[]()00cos cos 0E X t E X t E X t ωω===????. ()[]()22 000cos cos cos D X t D X t D X t t ωωω===????. ()()20~0cos X t N t ω∴,. 则( )2202cos x t f x t ω- = ;. 2. 利用投掷一枚硬币的试验,定义随机过程为 ()cos 2t X t t π?=??,出现正面,出现反面 假定“出现正面”和“出现反面”的概率各为 12。试确定()X t 的一维分布函数12F x ?? ???;和()1F x ;,以及二维分布函数12112 F x x ? ? ?? ? ,;, 。

】 解: 00 11101222 11

随机过程答案-西交大

【第一章】 1.1 证明: ∵1111,,,,,A F F F F ∈ΩΦ∈ΩΩ∈Φ∈Ω-Φ∈ΩΦ∈U 且∴1F 是事件域。 ∵222,,,,c A A F F A F A A ∈Ω∈Ω∈-Φ∈=Ω- ∴22222,,,,c c A F A F A F A F A F ∈-Φ∈-Φ∈Ω-∈Ω-∈ 且2,c c A A A A F ΦΩ=ΩΦΩ∈U U U U U U ∴2F 是事件域。且12F F ∈。∵2ΩΩ∈∴3F Ω∈ ∴3F 是事件域。且23F F ∈∴123,,F F F 皆为事件域且123F F F ∈∈。 1.2 一次投掷三颗均匀骰子可能出现的点数ω为 (),,,,,,,,16,6,6i j k i R j R k R j i k j i j k ∈∈∈≥≥≤≤≤≤ ∴样本空间()6 1= ,,n i j i k j i j k ==≥≥ΩU 事件(){} ,,|,,i j k A i j k ωω==,,,,,,6,16,6i R j R k R j i k j i j k ∈∈∈≥≥≤≤≤≤ 事件域2F Ω= 概率测度 ()()() ,,1P 677i j k A i j = --,,,,,,16,6,6i R j R k R j i k j i j k ∈∈∈≥≥≤≤≤≤

则(),,F P Ω为所求的概率空间。 1.3 证明: (1)由公理可知()0P Φ= (2)有概率测度的可列可加性可得 ()11 n n k k k k P A P A ==??= ???∑∑ (3)∵,,A B F A B ∈? ∴B A F -∈,()A B A -=Φ 由概率测度的可列可加性可得:()()()()P B P A B A P A P B A =+-=+- 即()()()P B A P B P A -=- 有概率测度的非负性可得()()()0P B P A P B A -=-≥,即()()P B P A ≥ (4)若B =Ω,由(3)则有() ()1P A P A =- (5) ∵()()()()121212P A A P A P A P A A +=+- 假设 ()()()()()1 121 1111m m m k k i j i j k m k i j m i j k m k P A P A P A A P A A A P A A A +=≤<≤≤<<≤=??=-+-+- ???∑∑∑K K U 成 立,则

应用随机过程学习汇总

应用随机过程学习汇总

————————————————————————————————作者:————————————————————————————————日期:

应用随机过程学习总结 一、预备知识:概率论 随机过程属于概率论的动态部分,即随机变量随时间不断发展变化的过程,它以概率论作为主要的基础知识。 1、概率空间方面,主要掌握sigma代数和可测空间,在随机过程中由总体样本空间所构成的集合族。符号解释: sup表示上确界, inf表示下确界。 本帖隐藏的内容 2、数字特征、矩母函数与特征函数:随机变量完全由其概率分布来描述。其中由于概率分布较难确定,因此通常计算随机变量的数字特征来估算分布总体,而矩母函数和特征函数便用于随机变量的N阶矩计算,同时唯一的决定概率分布。 3、独立性和条件期望:独立随机变量和的分布通常由卷积来表示,对于同为分布函数的两个函数,卷积可以交换顺序,同时满足结合律和分配率。条件期望中,最重要的是理解并记忆E(X) = E[E(X|Y)] = intergral(E(X|Y=y))dFY(y)。 二、随机过程基本概念和类型 随机过程是概率空间上的一族随机变量。因为研究随机过程主要是研究其统计规律性,由Kolmogorov定理可知,随机过程的有限维分布族是随机过程概率特征的完整描述。同样,随机过程的有限维分布也通过某些数值特征来描述。 1、平稳过程,通常研究宽平稳过程:如果X(t1)和X(t2)的自协方差函数 r(t1,t2)=r(0,t-s)均成立,即随机过程X(t)的协方差函数r(t,s)只与时间差 t-s有关,r(t) = r(-t)记为宽平稳随机过程。 因为一条随机序列仅仅是随机过程的一次观察,那么遍历性问题便是希望将随即过程的均值和自协方差从这一条样本路径中估计出来,因此宽平稳序列只需满足其均值遍历性原理和协方差遍历性原理即可。 2、独立增量过程:若X[Tn]– X[T(n-1)]对任意n均相互独立,则称X(t)是独立增量过程。若独立增量过程的特征函数具有可乘性,则其必为平稳增量过程。 兼有独立增量和平稳增量的过程称为平稳独立增量过程,其均值函数一定是时间t的线性函数。

《概率论与随机过程》第1章习题答案

《概率论与随机过程》第一章习题答案 1. 写出下列随机试验的样本空间。 (1) 记录一个小班一次数学考试的平均分数(设以百分制记分)。 解: ? ??????=n n n n S 100 , ,1,0 ,其中n 为小班人数。 (2) 同时掷三颗骰子,记录三颗骰子点数之和。 解:{}18,,4,3 =S 。 (3) 10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录 抽取的次数。 解: {}10,,4,3 =S 。 (4) 生产产品直到得到10件正品,记录生产产品的总件数。 解: { } ,11,10=S 。 (5) 一个小组有A ,B ,C ,D ,E5个人,要选正副小组长各一人(一个人不能兼二个职务),观察选 举的结果。 解: {}ED EC EB EA DE DC DB DA CE CD CB CA BE BD BC BA AE AD AC AB S ,,,,,,,,,,,,,,,,,,,=其中,AB 表示A 为正组长,B 为副组长,余类推。 (6) 甲乙二人下棋一局,观察棋赛的结果。 解: {}210,,e e e S =其中,0e 为和棋,1e 为甲胜,2e 为乙胜。 (7) 一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几种颜色。 解: {}rwb wb rb rw b w r S ,,,,,,=其中,,,,b w r 分别表示红色、白色、蓝色。 (8) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次 品就停止检查,或检查4个产品就停止检查,记录检查的结果。 解: {}1111,1110,1101,0111,1011,1010,1100,0110,0101,0100,100,00=S 其中,0为次品,1为正品。 (9) 有A ,B ,C 三只盒子,a ,b ,c 三只球,将三只球装入三只盒子中,使每只盒子装一只球,观察 装球的情况。 解: {}Ca Bb Ac Cc Ba Ab Cb Bc Aa Cb Ba Ac Ca Bc Ab Cc Bb Aa S ,,;,,;,,;,,;,,;,,=其中,Aa 表示球a 放 在盒子A 中,余者类推。 (10) 测量一汽车通过给定点的速度。 解:{}0>=v v S (11) 将一尺之棰折成三段,观察各段的长度。 解: (){}1,0,0,0,,=++>>>=z y x z y x z y x S 其中,z y x ,,分别表示第一段,第二段,第三段的 长度。# 2. 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1) A 发生,B 与C 不发生。 解:C A (2) A 与B 都发生,而C 不发生。 解: C AB (3) A ,B ,C 都发生。 解: ABC (4) A ,B ,C 中至少有一个发生。 解: C B A ?? (5) A ,B ,C 都不发生。 解: C B A (6) A ,B ,C 中至多于一个发生。 解: A C C A ?? (7) A ,B ,C 中至多于二个发生。 解: C B A ?? (8) A ,B ,C 中至少有二个发生。 解: CA BC AB ??. # 3. 设{ }10,2,1, =S ,{}4,3,2=A ,{}5,4,3=B ,{}7,6,5=C ,具体写出下列各等式 (1)B A 。 解: {}5=B A ; (2)B A ?。 解: { }10,9,8,7,6,5,4,3,1=?B A ; (3)B A 。 解:{}5,4,3,2=B A ;

应用随机过程 期末复习资料

第一章 随机过程的基本概念 一、随机过程的定义 例1:医院登记新生儿性别,0表示男,1表示女,X n 表示第n 次登记的数字,得到一个序列X 1 , X 2 , ·,记为{X n ,n=1,2, ·},则X n 是随机变量,而{X n ,n=1,2, ·}是随机过程。 例2:在地震预报中,若每半年统计一次发生在某区域的地震的最大震级。令X n 表示第n 次统计所得的值,则X n 是随机变量。为了预测该区域未来地震的强度,我们就要研究随机过程{X n ,n=1,2, ·}的统计规律性。 例3:一个醉汉在路上行走,以概率p 前进一步,以概率1-p 后退一步(假设步长相同)。以X(t)记他t 时刻在路上的位置,则{X(t), t ≥0}就是(直线上的)随机游动。 例4:乘客到火车站买票,当所有售票窗口都在忙碌时,来到的乘客就要排队等候。乘客的到来和每个乘客所需的服务时间都是随机的,所以如果用X(t)表示t 时刻的队长,用Y(t)表示t 时刻到来的顾客所需等待的时间,则{X(t), t ∈T}和{Y(t), t ∈T}都是随机过程。 定义:设给定参数集合T ,若对每个t ∈T, X(t)是概率空间),,(P ?Ω上的随机变量,则称{X(t), t ∈T}为随机过程,其中T 为指标集或参数集。 E X t →Ω:)(ω,E 称为状态空间,即X(t)的所有可能状态构成的集合。 例1:E 为{0,1} 例2:E 为[0, 10] 例3:E 为},2,2,1,1,0{ -- 例4:E 都为), 0[∞+

注:(1)根据状态空间E 的不同,过程可分为连续状态和离散状态,例1,例3为离散状态,其他为连续状态。 (2)参数集T 通常代表时间,当T 取R, R +, [a,b]时,称{X(t), t ∈T}为连续参数的随机过程;当T 取Z, Z +时,称{X(t), t ∈T}为离散参数的随机过程。 (3)例1为离散状态离散参数的随机过程,例2为连续状态离散参数的随机过程,例3为离散状态连续参数的随机过程,例4为连续状态连续参数的随机过程。 二、有限维分布与Kolmogorov 定理 随机过程的一维分布:})({),(x t X P x t F ≤= 随 机 过 程 的 二 维 分 布 : T t t x t X x t X P x x F t t ∈≤≤=21221121,,},)(,)({),(21 随机过程的n 维分布: T t t t x t X x t X x t X P x x x F n n n n t t t n ∈≤≤≤= ,,},)(,)(,)({),,(21221121,,21 1、有限维分布族:随机过程的所有一维分布,二维分布,…n 维分布等的全体 }1,,,),,,({2121,,21≥∈n T t t t x x x F n n t t t n 称为{X(t), t ∈T}的有限维分布族。 2、有限维分布族的性质: (1)对称性:对(1,2,…n )的任一排列),,(21n j j j ,有 ),,(),,(21,,,,21212 1 n t t t j j j t t t x x x F x x x F n n n j j j = (2)相容性:对于m

相关文档
最新文档