发动机控制器匹配简述

合集下载

动力系统设计与控制

动力系统设计与控制

动力系统设计与控制动力系统是指由发动机、变速器、传动轴以及车轮等组成的机械系统,它是汽车工程学中的一个非常重要的分支。

动力系统的设计与控制是汽车研发工作的核心之一,它直接关系到汽车的性能和安全。

本文将探讨动力系统设计与控制的相关内容。

一、动力系统设计1. 发动机设计发动机是动力系统的核心部件,它对汽车性能和油耗等方面都有着至关重要的影响。

发动机的设计应遵循以下原则:(1)功率和扭矩:发动机的最大功率和最大扭矩要能满足车辆使用的需求,同时还应具有良好的响应性和稳定性。

(2)燃油经济性:发动机应具有较佳的燃油经济性,对环境具有较小的污染。

(3)可靠性和耐久性:发动机应具有较高的可靠性和耐久性,以满足车辆使用的寿命要求。

2. 变速器设计变速器是动力系统中的重要部件,它主要实现发动机转速和车轮转速之间的调节,以满足车辆在不同路况下的要求。

变速器的设计应遵循以下原则:(1)齿轮匹配:变速器齿轮的制造精度和匹配程度应达到一定的要求,以保证变速器的可靠性和耐久性。

(2)换挡操作性:变速器的换挡应具备良好的操作性,驾驶人员能够顺利完成。

(3)换挡自动化:汽车的自动变速器正在成为一个趋势,自动变速器需要具有较高的换挡自动化程度。

3. 传动轴设计传动轴主要负责发动机和车轮之间的传动,将发动机输出的动力传递到车轮上。

传动轴的设计应遵循以下原则:(1)扭矩传递:传动轴的设计应能够稳定地传递发动机的扭矩到车轮上。

(2)减震强度:传动轴的减震强度要能够满足车辆的使用要求,以减少车辆的震动和噪音。

(3)尺寸和重量:传动轴的尺寸和重量应尽可能小,以减轻车重,提高汽车的燃油经济性。

二、动力系统控制动力系统控制主要是指发动机控制和变速器控制两个方面。

1. 发动机控制发动机控制是指通过控制发动机工作过程中吸进的混合气的量和燃料注入的时机,来控制发动机的运转。

发动机控制系统包括以下组成部分:(1)空气流量传感器:通过对吸入发动机中的空气流量进行测量,确定发动机需要燃料的量。

一汽-大众大众车型ODIS防盗匹配操作指南第一版

一汽-大众大众车型ODIS防盗匹配操作指南第一版

技术服务部
Technical Service
10
2.2、BORA车型控制单元列表及防盗匹配操作
四、组合仪表失效,更换组合仪表 ——1、首先打开17的引导型功能,选择“17-更换组合仪表”,按照里面的提示完成读取数据,更换仪表并编码的过程; ——2、操作完成后会在检测计划里面提示“匹配防盗防启动锁”,选中后点击“进行检测”,按提示完成操作,如下 图:
——选择25引导型功能中的“匹配钥匙” ,按提示完成操作;
2、遥控开/闭车门失效,可正常启动发动机
——选择09 引导型功能中“09-学习带无线电遥控器的钥匙”,按提示完成操作;
3、遥控开/闭车门失效,并且进入防盗模式无法启动发动机
——选择25引导型功能中的“匹配钥匙” 完成后继续选择09 引导型功能中“09-学习带无线电遥控器的钥匙”,按
技术服务部
Technical Service
7
2.2、BORA车型控制单元列表及防盗匹配操作
BORA
序号 1 15 18 20
控制单元名称 发动机控制单元 电子转向柱锁止装置控制单元-J764组合仪表中的控制单元-J285车身控制模块-J519-
遥控钥匙
备注 诊断地址01 诊断地址2B 诊断地址17 诊断地址09
技术服务部
Technical Service
4
2.1、JETTA车型控制单元列表及防盗匹配操作
技术服务部
Technical Service
5
2.1、JETTA车型控制单元列表及防盗匹配操作
首先,打开诊断仪,进入诊断界面:
一、遥控钥匙失效,匹配遥控钥匙
1、遥控开/闭车门正常,进入防盗模式无法启动发动机
GOLF A7

第三章 电控发动机怠速控制

第三章  电控发动机怠速控制

第三章电控发动机怠速控制第一节汽油机怠速控制系统的作用及组成第二节旁通空气式怠速控制执行机构第三节节气门直动式怠速控制执行机构第四节怠速控制执行机构检查小结1.汽油机怠速控制系统可使发动机在各种工况下能自动调节其怠速。

2.怠速控制执行机构通过对怠速空气量的控制来控制发动机的怠速转速。

3.怠速控制的方式有旁通空气式和节气门直动式两种。

4.汽油机怠速控制系统主要由发动机主控制器ECU、执行机构和各种传感器等组成。

5.旁通空气式怠速控制执行机构一般有5种类型,其中平动电磁阀式、旋转电磁阀式、步进电机式怠速控制执行机构现在最常见。

6.平动电磁阀式怠速控制执行机构主要由一比例电磁阀构成,其驱动信号为ECU送来的PWM(占空比)信号。

7.双绕组式旋转电磁阀怠速控制执行机构的电枢只能在0~99°的范围内转动,其转向和转角由11和12两组线圈的通电电流决定。

8.步进电机的正常工作范围为0~125个步级(日本车),0~255个步级(美国车)。

9.步进电机式怠速控制执行机构的控制内容有:起动初始位置设定、起动后控制、暖机控制、反馈控制、发动机转速变化的预控制、学习控制。

10.节气门直动式怠速控制执行机构通过控制节气门的开启程度来调节怠速时的空气流量,从而实现怠速的控制。

11.丰田车步进电机的四个控制线圈电阻都应在10Ω~30Ω范围内。

12.丰田车步进电机式怠速控制执行机构的步级数为0表示怠速控制阀全部伸出,125表示怠速控制阀,全部收回。

13.丰田车旋转电磁阀式怠速控制执行机构的线圈阻值为18.8Ω~22.8Ω之间。

14.利用V.A.G1552检测仪可检测怠速和节气门控制组件的数据,从而判断故障。

复习思考题一、简答题1.一般在哪些情况下需要提高发动机的怠速转速?2.汽油机怠速控制系统主要由哪些部件组成?3.旁通空气式怠速控制执行机构一般分为哪几类?4.简述平动电磁阀式怠速控制执行机构的工作原理。

5.简述旋转电磁阀式怠速控制执行机构的工作原理。

简述电控发动机故障诊断的基本原则

简述电控发动机故障诊断的基本原则

简述电控发动机故障诊断的基本原则电控发动机是现代车辆中的一种常见类型,其内部由多个系统组成,包括电子控制单元(ECU)、传感器、执行器等。

由于其复杂的构造,一旦出现故障,会给车辆的性能和安全带来严重影响。

因此,电控发动机故障诊断是维护车辆正常运行的重要环节。

本文将介绍电控发动机故障诊断的基本原则,以帮助读者更好的理解和应对这一问题。

1. 理解电控发动机的工作原理要想诊断电控发动机故障,首先需要了解其内部的工作原理。

电控发动机通过传感器收集车辆各部件的信息,通过ECU进行处理,最终控制车辆的运行状态。

如果在其中任何一个环节出现故障,都会影响车辆的性能,甚至导致车辆无法正常运行。

因此,理解其工作原理是诊断故障的基础。

2. 细致观察车辆的异常症状在进行故障诊断时,需要细致观察车辆的异常症状,如发动机启动困难、油耗增加、动力下降等。

这些症状可能是由于多个环节的问题引起的,因此需要进一步分析才能确定问题的具体原因。

3. 使用专业的诊断工具在进行故障诊断时,需要使用专业的诊断工具,如故障码读取器、多功能测试仪等。

这些工具可以帮助技师快速定位故障,并提供详细的故障信息,从而指导修理过程。

4. 根据故障码进行分析故障码是诊断工具读取到的数字代码,可以帮助技师快速定位故障。

根据故障码进行分析,可以确定具体的故障类型和位置。

然而,故障码并不一定完全准确,有时候也需要结合实际情况进行判断。

5. 逐步排除故障在确定故障的类型和位置后,需要逐步排除故障。

这个过程需要遵循一定的规律,从最简单的故障开始排查,逐步深入,直到发现问题的根源。

此外,在排除故障的过程中,还需要注意安全问题,避免因操作不当而引起新的故障。

6. 经验积累和更新电控发动机故障诊断需要经验积累和更新。

随着技术的不断发展,车辆系统也在不断更新,因此需要技师不断学习和更新知识。

同时,诊断过程中需要记录下每一个步骤和结果,以便在以后的排查中可以更加高效地定位故障。

整车控制器标定流程

整车控制器标定流程

纯电动汽车整车控制器标定流程目录1. 目的 (1)2. 主控制器的功能 (1)3. 在线监控及标定工具 (2)4. 主控制器匹配调试流程 (3)4.1. 传感器的校正 (3)4.2. 开关状态的确定 (3)4.3. 执行器状态的确定 (3)4.4. 整车附件控制参数的标定 (3)4.5. 电机及发动机控制器的指令接收 (3)4.6. 驱动工况试验 (3)4.7. 车辆滑行时的制动力矩控制策略的标定 (4)4.8. 制动工况策略及MAP的标定 (4)4.9. 故障与预警情况下控制策略参数标定 (4)1.目的此文档的目的是规范纯电动汽车主控制器的控制策略匹配调试规范。

2.主控制器的功能开发适用于纯电动汽车主控制器,建立以主控制器为主节点的、基于高速CAN总线的分布式动力系统控制网络,通过该网络,主控制器可以对纯电动轿车动力链的各个环节进行管理、协调。

a)汽车驱动控制根据司机的驾驶要求、车辆状态等状况,经分析和处理,合理控制动力复合装置、发动机(通过电控节气门实现)以及电机的工作状态,满足驾驶工况要求。

包括启动、加速、恒速、减速、制动等工况。

b)制动能量回馈控制根据制动踏板和加速踏板信息、车辆行驶状态信息、蓄电池状态信息,判断制动模式,计算制动力矩分配,向电机控制器发出制动指令,在不影响原车制动性能的前提下,考虑行驶状态和电池状态,回收部分能量c)整车能量优化管理通过对纯电动汽车的电机驱动系统、电池管理系统、传动系统以及其它车载耗能系统(如空调、电动泵等)的协调和管理,以获得最佳的能量利用率。

d)网络管理负责组织信息传输,网络状态监控,网络节点管理等功能。

C1003转速控制器使用说明书正文

C1003转速控制器使用说明书正文

前言本使用说明书主要介绍了电子调速系统的工作原理、组成、调节、操作、维护及简易故障的排除方法等,适用于对发动机及电子调速器有一定了解、日常进行安装、接线、使用及维修的工作人员。

建议将本说明书置于产品的工作场所,并严格遵循这里所提供的方法去操作。

警告●本电子调速系统中所使用到的转速传感器不得与其他系统共用,否则将有可能造成严重后果。

●您不能完全依靠本电子调速系统来防止发动机超速,而应在发动机系统上安装独立、有效的超速保护装置。

●发动机起动之前应确认喷油泵供油杆处于断油的位置,推拉供油齿杆应灵活无卡涩。

目录1工作原理.......................................................... 12系统组成.........................................................32.1转速控制器................................................... 3 2.2电磁执行器.....................................................82.3转速传感器.....................................................83安装与调试........................................................10 4故障判断与处理....................................................18 5 维护与使用注意事项...............................................231电子调速器的工作原理发动机电子调速器是将发动机控制在设定工作转速下稳定运行的精密控制装置。

电子调速器因其性能可靠、功能齐全、安装维护方便以及调速性能优异等有别于其它类型调速器的独特优势,正越来越广泛地应用于发动机调速系统、发电机组监控系统之中,成为行业应用的一种发展趋势。

汽车考试专用题库及答案

汽车考试专用题库及答案一、单项选择题1. 汽车发动机的工作原理是()。

A. 内燃机原理B. 外燃机原理C. 蒸汽机原理D. 电动机原理答案:A2. 汽车的转向系统主要负责()。

A. 驱动车辆B. 制动车辆C. 控制车辆方向D. 稳定车辆答案:C3. 汽车的制动系统的主要作用是()。

A. 提高车速B. 降低车速C. 保持车速D. 改变车速答案:B4. 汽车的悬挂系统的主要功能是()。

A. 提供动力B. 减少震动C. 增加摩擦D. 增加车辆重量答案:B5. 汽车的变速器的主要作用是()。

A. 改变车辆速度B. 改变车辆方向C. 改变车辆高度D. 改变车辆重量答案:A二、多项选择题6. 以下哪些是汽车发动机的组成部分?()A. 曲轴B. 凸轮轴C. 变速器D. 制动器答案:A, B7. 汽车的电气系统包括哪些部分?()A. 启动机B. 发电机C. 空调系统D. 燃油泵答案:A, B8. 汽车的底盘系统包括哪些部分?()A. 悬挂系统B. 转向系统C. 制动系统D. 发动机答案:A, B, C9. 以下哪些是汽车安全系统的一部分?()A. 安全气囊B. 座椅安全带C. 动力转向D. 电子稳定程序(ESP)答案:A, B, D10. 汽车的排放控制系统包括哪些部分?()A. 催化转化器B. 氧气传感器C. 燃油喷射器D. 点火系统答案:A, B三、判断题11. 汽车的发动机排量越大,其动力输出就越大。

()答案:正确12. 汽车的轮胎气压过高或过低都会影响行车安全。

()答案:正确13. 汽车的ABS系统可以在紧急制动时防止车轮抱死。

()答案:正确14. 汽车的四轮驱动系统可以在任何路面上提供最佳牵引力。

()答案:错误15. 汽车的自动变速器可以在不同的驾驶条件下自动切换挡位。

()答案:正确四、简答题16. 请简述汽车发动机的四冲程工作原理。

答案:汽车发动机的四冲程工作原理包括进气冲程、压缩冲程、功冲程和排气冲程。

柴油发电机组电子调速和机械调速区别,发电机组电子调速和机械调速哪个好?

/cn/index.aspx厦门奥斯福电力系统有限公司 柴油发电机组电子调速和机械调速区别发电机组电子调速和机械调速哪个好?柴油发电机组电子调速和机械调速不同之处随着柴油发电机技术的不断发展和环境保护的要求越来越高,对柴油发电机排气污染的控制将越来越严格。

这就对柴油机的燃油喷射系统提出了更高的要求。

电子调速器的应用,使得供油时间更加准确、供油量更加精确,调速率更加稳定(调速率可以为零)。

电子调速器与机械调速器主要差别:是用电流和电压取代了离心飞块和调速弹簧的作用力。

现有的电子调速系统都采用永磁单柱电磁感应式转速传感器(MPS )该传感器安装在发动机的曲轴齿轮旁,传感器触头与齿轮齿顶之间只有非常小的气隙。

当齿轮上的个齿经过传感器的触头时,转速传感器的磁场受到干扰,因而在传感器中就产生了与发动机转速相对的交流电压脉冲信号。

该交流电压信号被输送车载计算机控制系统(ECM )中,控制系统按预先设定的数值自动调整喷油量和较佳供油时间。

/cn/index.aspx厦门奥斯福电力系统有限公司 电压脉冲数等于齿轮齿数乘以发动机转速,在齿轮的齿数一定时,在不同的转速下单位时间内产生的电磁脉冲是不同的。

例如:齿轮的齿数为80个齿,发动机转速为2100r/min ,此时传感器在1min 内产生的电压脉冲数为个/min 或2800个/s ,用电学表示即为:电磁感应式传感器的信号频率为2800Hz 。

此数值被输入车载计算机控制系统中,并以此为基准信号来调节喷入发动机燃烧室的燃油量。

柴油发电机组机械调速详细讲解柴油机机械式调速器结构组成机械式调速器主要由飞重3、滑动套筒4及调速弹簧5组成。

如右图所示。

飞重3安装在飞重架2上通过转轴1由柴油机驱动高速回转。

由飞重3和弹簧5组成的转速感应元件按力平衡原理工作。

当柴 油机发出的功率与外界负荷刚好平衡时,其转速稳定,飞重产生的离心力与弹簧5的弹力平衡,油量调节杆8也停留在某一供油量位 置,如图中实线所示。

汽车电子控制技术知识点

一、名词解释1、怠速控制:怠速控制的实质就是进气量的控制。

2、可变进气道:5通过改变进气气流路径的方法控制进气量的大小。

3、点火提前角:火花塞点火时,活塞距离上止点的曲轴转角。

4、点火导通角:初级线圈通电时间对应的曲轴转角5、节气门设定:使节气门工作特性与发动机ECU匹配。

6. ABS:防抱死制动系统,在制动过程中防止车轮抱死,从而获得最佳的制动性能。

7.顺序喷射:在发动机运转期间,由电控单元ECU控制喷油器按进气行程的顺序轮流喷。

8、ECU:电子控制单元,又称“行车电脑”、“车载电脑”等,从用途上讲则是汽车专用微机控制器。

9、间歇喷射:在发动机运转期间,喷油器间歇喷射燃油。

10、A\D转换器:模拟数字转换器,将模拟量或连续变化的量离散化,转换为相应的数字量的电路11.怠速基本点火提前角:传感器有怠速信号输出时所对应的基本点火提前角。

12.空燃比:混合气中空气与燃料之间的质量的比例。

13.暖机修正:怠速工况ECU根据冷却液温度进行的点火提前角修正。

14.滚流:在进气过程中形成绕垂直于汽缸轴线方向旋转的有组织的空气旋流。

S:恒速行驶系统或定速控制系统,能自动调节节气门开度,使汽车按设定的速度行驶。

16缸内喷射:是将喷油器安装于缸盖上直接向缸内喷油。

17间隙脉冲喷射:每缸每次喷射都有一个限定的持续时间,用喷射持续时间来控制喷油量。

3.连续稳定喷射:指发动机在工作期间,燃油一直在连续喷射,其流量正比于进入汽缸的空气量。

18闭环控制:是通过对输出信号的检测并利用反馈信号,对输入进行调整,使输出满足要求。

5.驱动防滑转系统:驱动过程中防止驱动车轮发生滑转的控制系统。

19主动悬架:是根据行驶条件,随时对悬架系统的刚度、减振器的阻尼力以及车身高度和姿态进行调节,使汽车的有关性能始终处于最佳状态。

20变矩器的传动比:是指涡轮转速与泵轮转速之比。

21变矩器的转矩比:是指涡轮轴的转矩和泵轮轴转矩之比。

22变矩器的效率:是指输入功率和输出功率之比。

发动机控制系统的基本组成、原理和类型

一、控制系统的基本组成控制系统是指控制对象与控制器的总称。

(一)控制对象控制服务的对象,称控制对象。

发动机是发动机控制系统的控制对象,它受两种干扰量的作用:一种是外界条件(如P1*、T1*)的作用,这种作用量称干扰作用量;另一种是通过调准机构改变的控制量的作用,这种作用称控制作用量(如:油门转角α)。

(二)控制器用来完成控制的装置,称控制器。

例如控制发动机转速的装置,称为转速控制器。

控制器由多个元件组成。

不同的控制器有不同的元件,但都有敏感元件、放大随动装置和执行机构这三个基本部分。

1.敏感元件敏感元件又称测量元件,它感受被控参数或引起被控参数变化的干扰量的变化。

例如,感受被控参数转速变化的离心飞重,就是转速敏感元件;感受引起被控参数转速变化的干扰作用量P1*变化的膜盒,就是压力敏感元件。

2.放大随动装置放大随动装置由放大元件和随动装置两部分组成。

在控制器中,由于放大元件与随动装置是联合使用的,有着密切的联系,因此,通常把它们一起称为放大随动装置。

将敏感元件感受的变化信号加以放大的元件称为放大元件。

例如分油活门便是转速控制器的放大元件,它将离心飞重感受到的转速变化转变成位移而去控制油孔开度,使控制器进行工作。

利用外界能源,借放大元件的输出信号推动执行机构工作的元件,称为随动装置。

例如随动活塞便是转速控制器的随动装置,它是借分油活门的油孔开度变化,利用工作油液的压力去推动斜盘的。

3. 执行机构执行机构也称控制机构,用来改变控制量的大小。

发动机转速控制系统中的油门开关、柱塞式油泵的斜盘都是执行机构。

控制器除了具有上述三个基本元件外,还常常设有一些其它元件。

如比较元件、计算元件和校正元件等,在此不再叙述。

为了简单形象地表现控制系统的结构特点及相互关系,常用方块图表示控制系统的各组成部分,用带箭头的线段表示输入量或输出量,这祥组成的图形称为方块图。

又称结构简图,如图1-2所示。

有时,有两个或两个以上的输入量同时作用在某一元件上,为了用一个输入量就能等效地表示出这些输入量的作用,需用综合点对这些输入量进行综合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发动机控制器匹配简述 一.发动机匹配工作和发动机管理系统(EMS) 一.发动机匹配工作的目标 发动机匹配工作的目标: 1 通过发动机台架的匹配,使发动机具有良好的稳态性能,在保证发动机工作可靠性(无爆震,无过热)的情况下,达到发动机的设计功率,扭矩和油耗性能。 2 通过对发动机在车辆上的匹配,使发动机与车辆其他系统(各种电器负载,传动系统,制动系统,三元催化转化器等等)协调工作,保证发动机在各种环境和工作条件下,都具有良好的起动怠速性能,良好的驾驶舒适性和排放性能。同时还要进行完善的车载诊断系统(OBD)的匹配。 3 通过高温,高寒和高原等道路环境试验,对匹配好的各种性能进行全方位地验证,保证发动机和车辆在各种情况下都能达到既定的安全,环保和驾驶舒适性等严格的指标。 对于汽油机来说,技术上就是控制进气(合理的配气相位,节气门开度等)、喷油(最佳的空燃比)及点火(合适的点火提前角)三者的配合。 需要加以说明的是,发动机的动力性能和经济性能的最大潜力取决于发动机的本体设计,发动机匹配工作只不过是努力使这些潜力得到挖掘或协调。例如,汽油机通过改变进气量来改变输出的扭矩和功率,进排气系统的设计决定了发动机的充气效率,因此当发动机结构确定时,一定工况下发动机的最大充气量就已确定,发动机的动力性能也就确定;又如,发动机的工作效率,即燃油经济性,决定于燃烧效率及机械效率,通过改变喷油时间、喷油量以及点火提前角可以改善燃油经济性,但是不能突破由于发动机设计限定的燃油经济性极限。 二.发动机管理系统(EMS)和电子控制单元(ECU) 发动机管理系统(Engine Management System, 缩写为EMS):1979年,BOSCH公司将点火提前角电子控制与燃油定量电子控制融为一体,开发出Motronic,并引入爆震控制、排气再循环等,以满足更趋严格的性能和排放要求,其电子控制范围覆盖整个发动机,称为发动机电子管理系统,其核心是燃油定量和点火正时电子控制。 目前,各种发动机电子管理系统已经成为提高燃油经济性和满足更为严格的排放法规的决定性因素。 发动机管理系统以电子控制单元(Electronic Control Unit,以下简称ECU)为中心,ECU接受来自传感器的各种信息,经过处理、分析以后,发出控制信号给各种执行器。在发动机匹配工作中,就是通过各种匹配实验,对ECU各种参数进行设置,从而达到发动机匹配工作的目标。 三.发动机匹配工作 发动机匹配工作就是在某个确定的发动机管理系统(EMS)下,通过各种项目匹配,为发动机控制器(ECU)各类参数设置合适的值,以达到汽车的动力性、经济性、可靠性、安全性、排污性而确定的各工况最佳空燃比、最佳点火提前角的要求。 发动机匹配工作是为众多的匹配参数设置合适的值,匹配参数的数量随着系统的复杂程度、控制软件的先进程度的变化而变化的。这些匹配参数有些是特性值,有些是一条二维特性曲线,有些则是矩阵(三维特性图),匹配参数的确定需要通过大量的试验和数据分析而得。 四. 发动机匹配的标准流程 一般来说,在项目确定后,发动机匹配工作可以分为四个阶段,即:项目准备阶段、基本匹配阶段、精细匹配阶段和认可阶段,直至对最终匹配数据认可(SOP 阶段),一般需要18-24个月。

二.发动机匹配工作主要内容: 一.匹配准备 在台架上安装发动机及其相关附件。 匹配车匹配检查和准备 :为了使匹配数据能覆盖制造上的公差,每一种状态的车型必须有两辆以上的匹配车。 二.发动机台架基本匹配(约40工作日) 1.传感器信号检查 (约3 天) 确定所有传感器(水温传感器,空气温度传感器,HFM等)输入和输出信号准确。ECU通过A/D转换能正确接受信号,各执行器工作正常(炭罐电磁阀,喷油嘴,点火线圈等)。确保系统正常工作。 2.标定喷油结束时间 (约2天) 喷油结束时间决定了燃油的雾化即混合气形成的好坏,这将直接影响到发动机的燃烧情况。标定喷油结束时间主要以尾气中的HC排放含量为指标。确定最合适的喷油结束时间。 (a)空燃比脉谱图 (b)点火定时脉谱图 3.标定负荷模型(约15天) 精确地判断进入汽缸的新鲜空气量是发动机控制的基础,由于进气脉动和汽缸中残余废气的存在,以及如废气再循环,曲轴箱通风和油箱通风等导致的进气量变化,使得完全依靠传感器来精确判断进气量已不可能。负荷模型通过测量进气压力,燃油消耗量,原始排放和空燃比,以及各种环境和发动机参数,并通过一系列的数学模型和函数对各种工况下的进气特性进行计算和模拟,最终达到精确地判断进入汽缸的新鲜空气量的目的。 标定负荷模型所需的工作量随系统配置的复杂程度变化,如可变进气系统(进气长短管切换),可变气门正时系统,废气再循环系统废气涡轮增压系统等都会大大地增加负荷模型的匹配时间。 4.标定喷油量 (约2天) 在负荷模型匹配好以后,按照理论计算可以得到在各工况点让空燃比λ=1的喷油量,但是由于供油系统也存在偏差,导致在某些情况下空燃比偏离1,这需要在这里得到修正。 5.扭矩模型(约15 天) 发动机的扭矩是发动机控制系统的中心变量,因此首先要匹配发动机在各种转速和节气门开度下,在空燃比等于1以及各种点火提前角等条件下,发动机所能发出的最大扭矩,这是发动机扭矩控制的基础值(对应100%的空燃比效率和100%的点火角效率)。 然后通过测量在各种空燃比(一般从1.1到0.9)和各种点火角(从最大点火提前角一直推迟到失火)情况下的扭矩,可以得到关于空燃比的效率特性和关于点火角的效率特性。这样以后在发动机控制中,只需要提到发动机的扭矩以及实现该扭矩的空燃比和点火提前角效率,发动机控制系统就可以计算出相应的进气量(节气门开度),喷油量和点火提前角。 6.标定点火提前角(约4天) 在进行点火提前角标定前,一般应完成爆震控制的爆震识别部分的初步匹配(见三 爆震控制匹配)。 匹配原则:在不同的转速和负荷点,控制λ=1,在不发生爆震的前提下寻找使输出扭矩最大的点火提前角。 7.匹配数据校验(约2 天) 对试验数据进行分析,把相关的匹配数据填入模型,最后把数据模型的输出与实际发动机台架输出进行比较。校正偏差。 8.外特性(约2 天) 完成了爆震和三元催化器过热保护的匹配后,在节气门全开的条件下,在每个转速点通过调节λ(调节全负荷加浓系数),使发动机达到设计最大的功率和输出扭矩,同时尽可能地降低比油耗。 三.爆震控制匹配(约20工作日) 爆震是一种非正常燃烧,强烈爆震会损坏发动机,而现代高压缩比的发动机导致更多的爆震倾向,因此爆震匹配是发动机匹配过程中必不可少的一个工作环节,为此发动机控制器中有一块专用的芯片用于爆震传感器信号的分析和处理。爆震控制的匹配是一项非常复杂的工作,需要应用大量的专用工具和设备(如带燃烧压力传感器的火花塞,专用的爆震匹配控制器,爆震测量分析仪等等)。 1.爆震识别(约15 天) 在台架上测量汽缸内的燃烧压力并应用爆震测量分析仪,可以准确地识别和判断爆震是否发生。同时爆震传感器的信号输入到ECU,经过信号放大,带通滤波,整流,积分等一系列处理,最后的积分信号由ECU用来判断是否发生爆震,同时该信号还被用来确定信号放大倍数和带通滤波的中心频率。 2.动态爆震(约5 天) 动态爆震指加速爆震、高速爆震,其识别的复杂性在于发动机转速、负荷的变化产生的振动和噪音会使其不易被识别出。 匹配方法:在各种动态工况点,如Tip in,急加速情况等震动和噪音较大的情况下识别爆震,通过推迟点火提前角避免发生爆震。 3.爆震功能诊断(约2 天) 测试在故障状态和正常工作状态下传感器的输出,存储在控制器中用于诊断传感器的开路和短路 四.热车性能匹配(约40工作日) 1.氧传感器闭环控制(约10 天) 氧传感器用于测定废气中的过量空气系数λ。 λ表示实际混合气空燃比与理论值(14.7:1)的偏离程度。 λ =吸入空气量/化学当量燃烧所需空气量 λ =1:表示吸入空气量相当于理论要求量。 三元催化器在λ =1附近对HC,NOx和CO的转化效率最高。 氧传感器闭环控制的目标就是把λ精确控制在1±0.03,保证三元催化器有最高的催化转化效率 ,补偿λ预控偏差 ,补偿混合气浓度的动态偏移。 通过λ自学习,消除由于零件制造和燃油品质等造成的λ偏移。 若有下游传感器,其作用a)对KAT老化进行监测,b)提高氧传感器闭环控制的精度。匹配时间也相应增加约10天。 2.排气温度模型和三元催化器保护 (约10 天) 排气温度模型用于模拟氧传感器周围(催化器前后)和催化器内部的温度在不同环境和发动机工作条件下随发动机负荷和转速变化而变化的情况。通过实际测量,建立各工况点的排气系统温度模型。 高速大负荷,如发现三元催化器温度大于其温度限值,通过加浓混合气降低排气温度,保护三元催化器不受损坏。 同时与氧传感器加热控制结合,模拟排气系统露点阶段结束的条件,以保护氧传感器。 3.氧传感器加热控制 (约5天) 主要是为了防止氧传感器陶瓷体裂碎。发动机起动后,排气系统管壁和氧传感器护套上会有水珠形成,这些水珠有可能随着废气而飞溅到氧传感器的陶瓷体上,如果氧传感器陶瓷体温度过高,则容易发生裂碎。因此,此试验的要求是在排气管壁面温度达到60度时,氧传感器陶瓷体温度不能超过350度。

4.过渡工况 (约10天) 当节气门开度变动时,由于负荷测量和相应的喷油量计算与实际的喷油时刻不同步,导致实际的空燃比过浓或过稀,严重地影响了发动机的排放性能和驾驶性能。这种现象可以通过在不同负荷情况下在进气歧管上形成的不同燃油膜厚度来得到很好的解释,过渡工况匹配的目的就是要补偿这些变化,使得空燃比控制在一个合理的范围之内。匹配的基本原则:加速加浓,减速减稀。 先在转鼓台上用踏板位置模拟器改变负荷。模拟加速和减速的情况,增加和减少喷油以使得空燃比在一个合理的范围内(主要考虑排放和驾驶舒适性)。然后在实际道路上进行加减速试验,进行匹配数据修正。

5.炭罐控制 (10—30 天) 炭罐控制的匹配目的:为防止燃油蒸汽从油箱逸出造成污染,要使炭罐有足够的通风,同时维持λ的偏差在最小值。 在不同的工况点,设定炭罐开启时间(TEP),通过控制λ反馈控制,对喷油量进行修正。在炭罐工作时,λ自学习停止。 五.起动怠速匹配(约40工作日) 1.怠速控制 (约10 天) 匹配目的:控制λ=1,发动机转速稳定在怠速±20转。在突加电器负载,空调开关以及动力转向机工作时,不允许出现明显的转速震荡和发动机抖动。 通常在怠速情况下不把点火提前角调节到最大,为了有一定的扭矩储备。突加负载通过调节点火提前角(快速)和增加进气量(慢速)来维持怠速稳定。 2.冷起动 (-30度—40度) 冷起动是指当发动机和车辆经过较长时间的停放,给部件与所处的环境温度达到一致情况下进行的起动,其温度范围大约从-30度到+40度。 造成冷起动困难的原因主要有:1低温下燃油不易蒸发,雾化不良,导致不易点火;2 一部分喷油附着在进气管壁和阀门上;3 发动机的润滑尚未形成以及润滑油的粘度增加导致发动机阻力增大等等。 匹配目的:1确保安全起动,在各种燃油品质,温度及海拔情况下,确保发动机能够安全起动;2 舒适的起动,发动机能够快速安静地起动;3 低排放的起动,起动过程中HC和CO的排放需要得到优化,尤其是在20度和-7度附近。 试验温度:从-30度到10度,每5度进行一次试验。试验用油必须覆盖整个中国的汽油品质。(燃油蒸发压力40—80 kpa) 3.热起动(>95度) 匹配目的:由于高温汽油蒸汽出现在燃油管内,或由于喷油嘴温度过高,喷出的不是汽油是汽油蒸汽(气阻)而造成混合气过稀,必须进行加浓补偿。

相关文档
最新文档