Spectral sensitivity of the compound eyes of Anomala corpulenta motschulsky(Coleoptera
简述康普顿效应

简述康普顿效应康普顿效应,又称“动物认知效应”,是指动物经历两个不同教学步骤之后,在第一步中所获得的知识会影响第二步学习和应用的能力。
这种结果被用来反映动物认知能力的潜力和记忆系统的发展。
它的概念最早由美国心理学家许娜罗宾斯提出,后来经常被用来探究动物是如何解决问题的。
康普顿效应通常用一个实验来模拟,该实验由两个阶段组成。
在第一阶段,动物被灌输一些信息,然后在第二阶段,它们需要用这些信息来解决一个问题。
如果动物在第一阶段的表现有改善,它们在第二阶段就会有更好的表现,这种情况被称为康普顿效应。
康普顿效应可以帮助研究者了解动物的学习能力如何发展。
许多心理学家都建议使用实验来研究康普顿效应。
它们经常会使用一些抽象任务来测试康普顿效应,如隐藏物体或模仿动作,它们是考察动物认知能力和记忆能力的一种有效方法。
虽然康普顿效应主要被应用于动物,但也可以用于许多其他生物,如非洲象蝗虫、红胸蓝胸威尔逊啄木鸟、绿翅蜻蜓以及人类。
它可以帮助研究者理解动物的认知能力潜力,以及建立更有效的教育系统。
康普顿效应可以用不同类型的学习方式来测试,如反向学习和学习规则。
研究者也可以评估动物在记忆能力和解决复杂问题能力方面的表现。
此外,康普顿效应还可以用来探讨动物中智能的发展。
在某些情况下,研究者会发现动物经历了某个学习步骤后,它们的认知能力可以被提升。
所以,康普顿效应可以帮助人们理解动物智力发展的机制。
另外,康普顿效应也可以被用来比较不同物种之间的认知能力。
研究者可以利用实验来进行比较,帮助了解不同物种认知能力的发展,以及不同物种在解决问题上的贡献。
总之,康普顿效应是一个重要的心理研究概念,可以用来研究动物的认知能力和记忆能力,也可以用来比较不同物种之间的认知能力。
这种理论的有效性和重要性,为心理学和动物行为研究提供了重要的线索。
中国细足猎蝽亚科昆虫分类(异翅亚目:猎蝽科)

中国农业大学硕士学位论文中国细足猎蝽亚科昆虫分类(异翅亚目:猎蝽科)姓名:韩永林申请学位级别:硕士专业:农业昆虫与害虫防治指导教师:彩万志20040601摘要本文是关于中国细足猎蝽亚科(半翅目:异翅亚目:猪蝽科)的系统分类研究的硕士学位论文。
文中概述了细足猎蝽亚科国内外研究历史与现状及其研究意义;对细足猎蝽亚科昆虫的基本外部形态特征作出了描述:并对其在系统发育研究中常用的形态特征进行了分析。
本文还介绍了细足猎蝽距科的生物学特性和这些特性所具有的系统发育学研究意义。
作者整理和研究了中国农业大学收藏的细足猎蝽亚科昆虫标本,共鉴定和描述了中国细足猎蝽亚科11属36种,其中包括4个新种和1个新记录种:周氏刺胸猎蝽PygolampischouisD.nOV,、江城刺胸猎蝽PygolampiJjiangchengensissp.nOV.、粗角刺胸猎蝽Pygolampiscra.wiarllennasp.rlov.、云南突猎蝽Duriocorisyunnanensissp.nOV.、锯齿突猎蝽DuriocorisserratusMiller。
对于所有作者观察到标本的种类均给出了详细的外部形态描述、体躯各部分和附肢的量度以及所有种类的已知寄主和地理分布情况,并附有详细的形态特征图。
本文还编制了中国细足猎蝽亚科分属检索表以及包括2个种以上的属的分种检索表。
在讨论部分,作者总结了各属、种重要的分类学特征上的变化:对新舟猎蝽扁的分类地位进行了初步的讨论;并对中国细足猎蝽亚科的地理区系分布作出了分析。
同时,还提出了有待于进一步探讨的问题。
新种的模式标本保存在中国农业大学昆虫博物馆。
关键词:猎蝽科,细足猎蝽亚科,分类学,新种AbstractThepresentpaperisathesisforthedegreeofM~SwhichdealswiththetaxonomyofthesubfamilyStenopodainae(Heteroptefa:Reduviidae)fromChinaInthisthesis,generalmorphologicalandbiologicalcharactersofStenopodainaearegiven.36speciesbelongingto11generaa”described,including4newspecies,i.e.,Pygolampischouisp.nov..Pygolampisjiangchengensissp.nov,,Pygolampiscrassiantennaspnov.,Duriocorisyunnanensissp.nox/.,andanewrecordspecies,DuriocorisserratusMiller,fromchina.Thediagnosticfeatures,suchaspubescence,tuberclesandspines,andmeasurementsofbodyandappendagesaredescribedandfigured.Thegeographicaldistributionofallspeciesisalsogiven.Inthesectionofresultsanddiscussion.thecomparativestudyandtherelationshipamongrelatedgeneraarediscussed.Thefaunaanalysisisgiven.ThekeytothegeneraofChineseStenopodainaeandkeystospeciesofeachgenusaregiven.ThetypesofnewspeciesaredepositedintheEntomologicalMuseumofChinaAgriculturalUniversity.KcTwords:Reduviidae,Stenopodainae,taxonomy,newspeciesThespeciesresearchedinthisthesisareasfollows:SubfamilyStenopodainaeGenusPygolampisGermar1824GenusStachyotrophaStYl187020.PygolampisangustaHsiao19771.Stachyotrophapunctiferas£矗l187021.Pygolampisfoedas谯】1859GenusOncocephalusKlug183022PygolampisrufeseensHsiao19772.OncocephalusannulipesS埴l185523.PygolampissimulipesHsiao19773.OncocephalusbreviscutumTeuter188224.Pygolampisbidentata(Goeze)17784.Oncocephaluseonfl4sⅪHsiao197725PygolampisbrevipterusRen19815.OneocephalusimpudicusRanter188326PygolampislongipesHsiao19776.OncocephalusimpurusHsiao197727.Pygolampiscrasgi∞lem4口sp.nov.7.OncocephatuslineosusDistant190328.Pygolampischouisp.nov.8OncocephalusphilippinusLethierry198129Pygolampisjiangchengensissp,nov.9,OncocephatuspudieusHsiao1977GennsCaunusStitll97710OncocephaluspurusHsiao197730.CaunusnoctulusHsiao19771lOncoeephalusscutellarisReuter1881GenusCanthesaneusAmyot&ServilleGenusNeostaceiaMiller1940184312NeostacciaplebejaSt矗1186631Canthesancuslureostal1863Genu¥Staee/aSttI185932。
昆虫记中螳螂的三次实验过程及发现

昆虫记中螳螂的三次实验过程及发现螳螂是一种生活在地球上的昆虫,它们有着独特的外形和独特的捕食方式,因此吸引了许多科学家的研究兴趣。
在《昆虫记》一书中,作者弗朗茨·卡夫卡通过描写螳螂的实验过程和发现,展示了人类对自然界的探索和对生命的理解。
第一次实验在第一次实验中,科学家们观察到了螳螂的捕食行为。
他们将一只螳螂放在一个大玻璃罩里,然后在罩中放入一只苍蝇。
螳螂静静地等待着,当苍蝇靠近时,它突然一跃而起,用锋利的前爪抓住了苍蝇。
这个过程发生得非常迅速,几乎让人难以置信。
通过这次实验,科学家们发现,螳螂具有很强的捕食能力和准确的判断能力。
它们能够准确地判断猎物的位置和移动方向,并在适当的时机出击。
这种捕食方式使得螳螂成为了自然界中的顶级捕食者之一。
第二次实验在第二次实验中,科学家们对螳螂的视觉进行了研究。
他们发现,螳螂有一对复眼和三个简单眼,这使得它们能够同时看到前方和周围的环境。
此外,螳螂的复眼还具有很强的分辨能力,能够看到细微的变化和快速移动的物体。
通过这次实验,科学家们发现,螳螂的视觉系统非常灵敏且高效。
它们能够准确地感知周围的环境,并对猎物的位置和运动进行判断。
这种优秀的视觉能力是螳螂能够成功捕食的重要原因之一。
第三次实验在第三次实验中,科学家们对螳螂的身体结构进行了研究。
他们发现,螳螂的前爪非常强壮,具有锋利的爪子和强大的抓握力。
这使得螳螂能够迅速抓住猎物,并将其牢牢地固定在爪子中。
通过这次实验,科学家们发现,螳螂的前爪是其捕食行为的关键工具。
它们的强壮和灵活性让螳螂能够迅速抓住猎物,并将其控制住。
这种特殊的身体结构是螳螂能够成功捕食的重要因素之一。
总结通过以上三次实验,科学家们对螳螂的捕食行为、视觉系统和身体结构进行了深入的研究。
他们发现,螳螂具有很强的捕食能力和准确的判断能力,这得益于其优秀的视觉系统和特殊的身体结构。
这些发现不仅增加了我们对螳螂的了解,也为我们理解自然界中的生命提供了重要的参考。
昆虫的拟态阅读理解附答案

昆虫的拟态阅读理解附答案拟态是生物适应环境、占领环境和逃避天敌(鸟类等袭击、捕食)的一种手段,是生物进化过程中自然选择的结果。
那么关于昆虫的拟态阅读附答案是怎样呢?下面是店铺整理的昆虫的拟态阅读理解附答案,欢迎阅读。
《昆虫的拟态》阅读材料昆虫的拟态为了获得生存的机会,各种形态的昆虫伪装成自然界里的万物,隐蔽自己,吓跑敌人,或者方便自身取食,这就是昆虫的拟态。
所谓拟态则是某些动物在进化过程中其外表形状色泽等同其它生物或环境异常相似,其结果是一种保护。
当然这不是昆虫们自己随心所欲的结果,而是自然选择的结果。
自然界里昆虫的拟态类型很多,主要有贝茨氏拟态和米勒式拟态以及进攻性拟态等几种类型。
1862年,英国博物学家H•W•贝茨在研究蝴蝶时提出的可食性物种模拟有毒、有刺或味道不佳的不可食物种的拟态现象。
贝茨氏拟态中的被拟者分布广、数量众多、显眼并具有不可食性或其他保护方式。
拟者和被拟者经常生活在同一地区和时间,这样捕食者便难以将两者分清。
最典型的例子是北美一种适合捕食者口味的蝴蝶模仿另一种不适口或不可食的蝴蝶,鸟类不取食有毒的蝴蝶,从而也会避免去取食无毒但是花纹酷似有毒蝴蝶的无毒蝴蝶。
米勒氏拟态是两种具有警戒色的不可食物种互相模拟的拟态现象。
1878年,由德国动物学家弗里兹•米勒提出,故名。
比如,蜜蜂和黄蜂之间彼此相似。
米勒解释说,因鸟类必须通过亲身尝试才能得知某种昆虫不适口,几种均不适口的昆虫形色相似,这样鸟类一旦吃到一种不适口的昆虫,另一种具有类似形态的不适口昆虫也不会再遭到捕猎,从而有效地降低了死亡率。
进攻性拟态就是模仿其他生物以便于接近进攻对象的拟态。
例如螳螂会模拟兰花或者其他花朵的样子,待昆虫大摇大摆飞来采蜜或者停留的时候把它吃掉,而这个被吃掉的虫子到死也不知道自己究竟是怎么死的。
螳螂的模拟水平之高,可见一斑。
有一种雌性萤火虫能够模拟多达11种萤火虫的发光方式,利用这种光亮来吸引前来求偶的其他种类的雄性萤火虫上钩,然后大口吃掉。
C.parvum全基因组序列

DOI: 10.1126/science.1094786, 441 (2004);304Science et al.Mitchell S. Abrahamsen,Cryptosporidium parvum Complete Genome Sequence of the Apicomplexan, (this information is current as of October 7, 2009 ):The following resources related to this article are available online at/cgi/content/full/304/5669/441version of this article at:including high-resolution figures, can be found in the online Updated information and services,/cgi/content/full/1094786/DC1 can be found at:Supporting Online Material/cgi/content/full/304/5669/441#otherarticles , 9 of which can be accessed for free: cites 25 articles This article 239 article(s) on the ISI Web of Science. cited by This article has been /cgi/content/full/304/5669/441#otherarticles 53 articles hosted by HighWire Press; see: cited by This article has been/cgi/collection/genetics Genetics: subject collections This article appears in the following/about/permissions.dtl in whole or in part can be found at: this article permission to reproduce of this article or about obtaining reprints Information about obtaining registered trademark of AAAS.is a Science 2004 by the American Association for the Advancement of Science; all rights reserved. The title Copyright American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the Science o n O c t o b e r 7, 2009w w w .s c i e n c e m a g .o r g D o w n l o a d e d f r o m3.R.Jackendoff,Foundations of Language:Brain,Gram-mar,Evolution(Oxford Univ.Press,Oxford,2003).4.Although for Frege(1),reference was established rela-tive to objects in the world,here we follow Jackendoff’s suggestion(3)that this is done relative to objects and the state of affairs as mentally represented.5.S.Zola-Morgan,L.R.Squire,in The Development andNeural Bases of Higher Cognitive Functions(New York Academy of Sciences,New York,1990),pp.434–456.6.N.Chomsky,Reflections on Language(Pantheon,New York,1975).7.J.Katz,Semantic Theory(Harper&Row,New York,1972).8.D.Sperber,D.Wilson,Relevance(Harvard Univ.Press,Cambridge,MA,1986).9.K.I.Forster,in Sentence Processing,W.E.Cooper,C.T.Walker,Eds.(Erlbaum,Hillsdale,NJ,1989),pp.27–85.10.H.H.Clark,Using Language(Cambridge Univ.Press,Cambridge,1996).11.Often word meanings can only be fully determined byinvokingworld knowledg e.For instance,the meaningof “flat”in a“flat road”implies the absence of holes.However,in the expression“aflat tire,”it indicates the presence of a hole.The meaningof“finish”in the phrase “Billfinished the book”implies that Bill completed readingthe book.However,the phrase“the g oatfin-ished the book”can only be interpreted as the goat eatingor destroyingthe book.The examples illustrate that word meaningis often underdetermined and nec-essarily intertwined with general world knowledge.In such cases,it is hard to see how the integration of lexical meaning and general world knowledge could be strictly separated(3,31).12.W.Marslen-Wilson,C.M.Brown,L.K.Tyler,Lang.Cognit.Process.3,1(1988).13.ERPs for30subjects were averaged time-locked to theonset of the critical words,with40items per condition.Sentences were presented word by word on the centerof a computer screen,with a stimulus onset asynchronyof600ms.While subjects were readingthe sentences,their EEG was recorded and amplified with a high-cut-off frequency of70Hz,a time constant of8s,and asamplingfrequency of200Hz.14.Materials and methods are available as supportingmaterial on Science Online.15.M.Kutas,S.A.Hillyard,Science207,203(1980).16.C.Brown,P.Hagoort,J.Cognit.Neurosci.5,34(1993).17.C.M.Brown,P.Hagoort,in Architectures and Mech-anisms for Language Processing,M.W.Crocker,M.Pickering,C.Clifton Jr.,Eds.(Cambridge Univ.Press,Cambridge,1999),pp.213–237.18.F.Varela et al.,Nature Rev.Neurosci.2,229(2001).19.We obtained TFRs of the single-trial EEG data by con-volvingcomplex Morlet wavelets with the EEG data andcomputingthe squared norm for the result of theconvolution.We used wavelets with a7-cycle width,with frequencies ranging from1to70Hz,in1-Hz steps.Power values thus obtained were expressed as a per-centage change relative to the power in a baselineinterval,which was taken from150to0ms before theonset of the critical word.This was done in order tonormalize for individual differences in EEG power anddifferences in baseline power between different fre-quency bands.Two relevant time-frequency compo-nents were identified:(i)a theta component,rangingfrom4to7Hz and from300to800ms after wordonset,and(ii)a gamma component,ranging from35to45Hz and from400to600ms after word onset.20.C.Tallon-Baudry,O.Bertrand,Trends Cognit.Sci.3,151(1999).tner et al.,Nature397,434(1999).22.M.Bastiaansen,P.Hagoort,Cortex39(2003).23.O.Jensen,C.D.Tesche,Eur.J.Neurosci.15,1395(2002).24.Whole brain T2*-weighted echo planar imaging bloodoxygen level–dependent(EPI-BOLD)fMRI data wereacquired with a Siemens Sonata1.5-T magnetic reso-nance scanner with interleaved slice ordering,a volumerepetition time of2.48s,an echo time of40ms,a90°flip angle,31horizontal slices,a64ϫ64slice matrix,and isotropic voxel size of3.5ϫ3.5ϫ3.5mm.For thestructural magnetic resonance image,we used a high-resolution(isotropic voxels of1mm3)T1-weightedmagnetization-prepared rapid gradient-echo pulse se-quence.The fMRI data were preprocessed and analyzedby statistical parametric mappingwith SPM99software(http://www.fi/spm99).25.S.E.Petersen et al.,Nature331,585(1988).26.B.T.Gold,R.L.Buckner,Neuron35,803(2002).27.E.Halgren et al.,J.Psychophysiol.88,1(1994).28.E.Halgren et al.,Neuroimage17,1101(2002).29.M.K.Tanenhaus et al.,Science268,1632(1995).30.J.J.A.van Berkum et al.,J.Cognit.Neurosci.11,657(1999).31.P.A.M.Seuren,Discourse Semantics(Basil Blackwell,Oxford,1985).32.We thank P.Indefrey,P.Fries,P.A.M.Seuren,and M.van Turennout for helpful discussions.Supported bythe Netherlands Organization for Scientific Research,grant no.400-56-384(P.H.).Supporting Online Material/cgi/content/full/1095455/DC1Materials and MethodsFig.S1References and Notes8January2004;accepted9March2004Published online18March2004;10.1126/science.1095455Include this information when citingthis paper.Complete Genome Sequence ofthe Apicomplexan,Cryptosporidium parvumMitchell S.Abrahamsen,1,2*†Thomas J.Templeton,3†Shinichiro Enomoto,1Juan E.Abrahante,1Guan Zhu,4 Cheryl ncto,1Mingqi Deng,1Chang Liu,1‡Giovanni Widmer,5Saul Tzipori,5GregoryA.Buck,6Ping Xu,6 Alan T.Bankier,7Paul H.Dear,7Bernard A.Konfortov,7 Helen F.Spriggs,7Lakshminarayan Iyer,8Vivek Anantharaman,8L.Aravind,8Vivek Kapur2,9The apicomplexan Cryptosporidium parvum is an intestinal parasite that affects healthy humans and animals,and causes an unrelenting infection in immuno-compromised individuals such as AIDS patients.We report the complete ge-nome sequence of C.parvum,type II isolate.Genome analysis identifies ex-tremely streamlined metabolic pathways and a reliance on the host for nu-trients.In contrast to Plasmodium and Toxoplasma,the parasite lacks an api-coplast and its genome,and possesses a degenerate mitochondrion that has lost its genome.Several novel classes of cell-surface and secreted proteins with a potential role in host interactions and pathogenesis were also detected.Elu-cidation of the core metabolism,including enzymes with high similarities to bacterial and plant counterparts,opens new avenues for drug development.Cryptosporidium parvum is a globally impor-tant intracellular pathogen of humans and animals.The duration of infection and patho-genesis of cryptosporidiosis depends on host immune status,ranging from a severe but self-limiting diarrhea in immunocompetent individuals to a life-threatening,prolonged infection in immunocompromised patients.Asubstantial degree of morbidity and mortalityis associated with infections in AIDS pa-tients.Despite intensive efforts over the past20years,there is currently no effective ther-apy for treating or preventing C.parvuminfection in humans.Cryptosporidium belongs to the phylumApicomplexa,whose members share a com-mon apical secretory apparatus mediating lo-comotion and tissue or cellular invasion.Many apicomplexans are of medical or vet-erinary importance,including Plasmodium,Babesia,Toxoplasma,Neosprora,Sarcocys-tis,Cyclospora,and Eimeria.The life cycle ofC.parvum is similar to that of other cyst-forming apicomplexans(e.g.,Eimeria and Tox-oplasma),resulting in the formation of oocysts1Department of Veterinary and Biomedical Science,College of Veterinary Medicine,2Biomedical Genom-ics Center,University of Minnesota,St.Paul,MN55108,USA.3Department of Microbiology and Immu-nology,Weill Medical College and Program in Immu-nology,Weill Graduate School of Medical Sciences ofCornell University,New York,NY10021,USA.4De-partment of Veterinary Pathobiology,College of Vet-erinary Medicine,Texas A&M University,College Sta-tion,TX77843,USA.5Division of Infectious Diseases,Tufts University School of Veterinary Medicine,NorthGrafton,MA01536,USA.6Center for the Study ofBiological Complexity and Department of Microbiol-ogy and Immunology,Virginia Commonwealth Uni-versity,Richmond,VA23198,USA.7MRC Laboratoryof Molecular Biology,Hills Road,Cambridge CB22QH,UK.8National Center for Biotechnology Infor-mation,National Library of Medicine,National Insti-tutes of Health,Bethesda,MD20894,USA.9Depart-ment of Microbiology,University of Minnesota,Min-neapolis,MN55455,USA.*To whom correspondence should be addressed.E-mail:abe@†These authors contributed equally to this work.‡Present address:Bioinformatics Division,Genetic Re-search,GlaxoSmithKline Pharmaceuticals,5MooreDrive,Research Triangle Park,NC27009,USA.R E P O R T S SCIENCE VOL30416APRIL2004441o n O c t o b e r 7 , 2 0 0 9 w w w . s c i e n c e m a g . o r g D o w n l o a d e d f r o mthat are shed in the feces of infected hosts.C.parvum oocysts are highly resistant to environ-mental stresses,including chlorine treatment of community water supplies;hence,the parasite is an important water-and food-borne pathogen (1).The obligate intracellular nature of the par-asite ’s life cycle and the inability to culture the parasite continuously in vitro greatly impair researchers ’ability to obtain purified samples of the different developmental stages.The par-asite cannot be genetically manipulated,and transformation methodologies are currently un-available.To begin to address these limitations,we have obtained the complete C.parvum ge-nome sequence and its predicted protein com-plement.(This whole-genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the project accession AAEE00000000.The version described in this paper is the first version,AAEE01000000.)The random shotgun approach was used to obtain the complete DNA sequence (2)of the Iowa “type II ”isolate of C.parvum .This isolate readily transmits disease among numerous mammals,including humans.The resulting ge-nome sequence has roughly 13ϫgenome cov-erage containing five gaps and 9.1Mb of totalDNA sequence within eight chromosomes.The C.parvum genome is thus quite compact rela-tive to the 23-Mb,14-chromosome genome of Plasmodium falciparum (3);this size difference is predominantly the result of shorter intergenic regions,fewer introns,and a smaller number of genes (Table 1).Comparison of the assembled sequence of chromosome VI to that of the recently published sequence of chromosome VI (4)revealed that our assembly contains an ad-ditional 160kb of sequence and a single gap versus two,with the common sequences dis-playing a 99.993%sequence identity (2).The relative paucity of introns greatly simplified gene predictions and facilitated an-notation (2)of predicted open reading frames (ORFs).These analyses provided an estimate of 3807protein-encoding genes for the C.parvum genome,far fewer than the estimated 5300genes predicted for the Plasmodium genome (3).This difference is primarily due to the absence of an apicoplast and mitochondrial genome,as well as the pres-ence of fewer genes encoding metabolic functions and variant surface proteins,such as the P.falciparum var and rifin molecules (Table 2).An analysis of the encoded pro-tein sequences with the program SEG (5)shows that these protein-encoding genes are not enriched in low-complexity se-quences (34%)to the extent observed in the proteins from Plasmodium (70%).Our sequence analysis indicates that Cryptosporidium ,unlike Plasmodium and Toxoplasma ,lacks both mitochondrion and apicoplast genomes.The overall complete-ness of the genome sequence,together with the fact that similar DNA extraction proce-dures used to isolate total genomic DNA from C.parvum efficiently yielded mito-chondrion and apicoplast genomes from Ei-meria sp.and Toxoplasma (6,7),indicates that the absence of organellar genomes was unlikely to have been the result of method-ological error.These conclusions are con-sistent with the absence of nuclear genes for the DNA replication and translation machinery characteristic of mitochondria and apicoplasts,and with the lack of mito-chondrial or apicoplast targeting signals for tRNA synthetases.A number of putative mitochondrial pro-teins were identified,including components of a mitochondrial protein import apparatus,chaperones,uncoupling proteins,and solute translocators (table S1).However,the ge-nome does not encode any Krebs cycle en-zymes,nor the components constituting the mitochondrial complexes I to IV;this finding indicates that the parasite does not rely on complete oxidation and respiratory chains for synthesizing adenosine triphosphate (ATP).Similar to Plasmodium ,no orthologs for the ␥,␦,or εsubunits or the c subunit of the F 0proton channel were detected (whereas all subunits were found for a V-type ATPase).Cryptosporidium ,like Eimeria (8)and Plas-modium ,possesses a pyridine nucleotide tran-shydrogenase integral membrane protein that may couple reduced nicotinamide adenine dinucleotide (NADH)and reduced nico-tinamide adenine dinucleotide phosphate (NADPH)redox to proton translocation across the inner mitochondrial membrane.Unlike Plasmodium ,the parasite has two copies of the pyridine nucleotide transhydrogenase gene.Also present is a likely mitochondrial membrane –associated,cyanide-resistant alter-native oxidase (AOX )that catalyzes the reduction of molecular oxygen by ubiquinol to produce H 2O,but not superoxide or H 2O 2.Several genes were identified as involved in biogenesis of iron-sulfur [Fe-S]complexes with potential mitochondrial targeting signals (e.g.,nifS,nifU,frataxin,and ferredoxin),supporting the presence of a limited electron flux in the mitochondrial remnant (table S2).Our sequence analysis confirms the absence of a plastid genome (7)and,additionally,the loss of plastid-associated metabolic pathways including the type II fatty acid synthases (FASs)and isoprenoid synthetic enzymes thatTable 1.General features of the C.parvum genome and comparison with other single-celled eukaryotes.Values are derived from respective genome project summaries (3,26–28).ND,not determined.FeatureC.parvum P.falciparum S.pombe S.cerevisiae E.cuniculiSize (Mbp)9.122.912.512.5 2.5(G ϩC)content (%)3019.43638.347No.of genes 38075268492957701997Mean gene length (bp)excluding introns 1795228314261424ND Gene density (bp per gene)23824338252820881256Percent coding75.352.657.570.590Genes with introns (%)553.9435ND Intergenic regions (G ϩC)content %23.913.632.435.145Mean length (bp)5661694952515129RNAsNo.of tRNA genes 454317429944No.of 5S rRNA genes 6330100–2003No.of 5.8S ,18S ,and 28S rRNA units 57200–400100–20022Table parison between predicted C.parvum and P.falciparum proteins.FeatureC.parvum P.falciparum *Common †Total predicted proteins380752681883Mitochondrial targeted/encoded 17(0.45%)246(4.7%)15Apicoplast targeted/encoded 0581(11.0%)0var/rif/stevor ‡0236(4.5%)0Annotated as protease §50(1.3%)31(0.59%)27Annotated as transporter 69(1.8%)34(0.65%)34Assigned EC function ¶167(4.4%)389(7.4%)113Hypothetical proteins925(24.3%)3208(60.9%)126*Values indicated for P.falciparum are as reported (3)with the exception of those for proteins annotated as protease or transporter.†TBLASTN hits (e Ͻ–5)between C.parvum and P.falciparum .‡As reported in (3).§Pre-dicted proteins annotated as “protease or peptidase”for C.parvum (CryptoGenome database,)and P.falciparum (PlasmoDB database,).Predicted proteins annotated as “trans-porter,permease of P-type ATPase”for C.parvum (CryptoGenome)and P.falciparum (PlasmoDB).¶Bidirectional BLAST hit (e Ͻ–15)to orthologs with assigned Enzyme Commission (EC)numbers.Does not include EC assignment numbers for protein kinases or protein phosphatases (due to inconsistent annotation across genomes),or DNA polymerases or RNA polymerases,as a result of issues related to subunit inclusion.(For consistency,46proteins were excluded from the reported P.falciparum values.)R E P O R T S16APRIL 2004VOL 304SCIENCE 442 o n O c t o b e r 7, 2009w w w .s c i e n c e m a g .o r g D o w n l o a d e d f r o mare otherwise localized to the plastid in other apicomplexans.C.parvum fatty acid biosynthe-sis appears to be cytoplasmic,conducted by a large(8252amino acids)modular type I FAS (9)and possibly by another large enzyme that is related to the multidomain bacterial polyketide synthase(10).Comprehensive screening of the C.parvum genome sequence also did not detect orthologs of Plasmodium nuclear-encoded genes that contain apicoplast-targeting and transit sequences(11).C.parvum metabolism is greatly stream-lined relative to that of Plasmodium,and in certain ways it is reminiscent of that of another obligate eukaryotic parasite,the microsporidian Encephalitozoon.The degeneration of the mi-tochondrion and associated metabolic capabili-ties suggests that the parasite largely relies on glycolysis for energy production.The parasite is capable of uptake and catabolism of mono-sugars(e.g.,glucose and fructose)as well as synthesis,storage,and catabolism of polysac-charides such as trehalose and amylopectin. Like many anaerobic organisms,it economizes ATP through the use of pyrophosphate-dependent phosphofructokinases.The conver-sion of pyruvate to acetyl–coenzyme A(CoA) is catalyzed by an atypical pyruvate-NADPH oxidoreductase(Cp PNO)that contains an N-terminal pyruvate–ferredoxin oxidoreductase (PFO)domain fused with a C-terminal NADPH–cytochrome P450reductase domain (CPR).Such a PFO-CPR fusion has previously been observed only in the euglenozoan protist Euglena gracilis(12).Acetyl-CoA can be con-verted to malonyl-CoA,an important precursor for fatty acid and polyketide biosynthesis.Gly-colysis leads to several possible organic end products,including lactate,acetate,and ethanol. The production of acetate from acetyl-CoA may be economically beneficial to the parasite via coupling with ATP production.Ethanol is potentially produced via two in-dependent pathways:(i)from the combination of pyruvate decarboxylase and alcohol dehy-drogenase,or(ii)from acetyl-CoA by means of a bifunctional dehydrogenase(adhE)with ac-etaldehyde and alcohol dehydrogenase activi-ties;adhE first converts acetyl-CoA to acetal-dehyde and then reduces the latter to ethanol. AdhE predominantly occurs in bacteria but has recently been identified in several protozoans, including vertebrate gut parasites such as Enta-moeba and Giardia(13,14).Adjacent to the adhE gene resides a second gene encoding only the AdhE C-terminal Fe-dependent alcohol de-hydrogenase domain.This gene product may form a multisubunit complex with AdhE,or it may function as an alternative alcohol dehydro-genase that is specific to certain growth condi-tions.C.parvum has a glycerol3-phosphate dehydrogenase similar to those of plants,fungi, and the kinetoplastid Trypanosoma,but(unlike trypanosomes)the parasite lacks an ortholog of glycerol kinase and thus this pathway does not yield glycerol production.In addition to themodular fatty acid synthase(Cp FAS1)andpolyketide synthase homolog(Cp PKS1), C.parvum possesses several fatty acyl–CoA syn-thases and a fatty acyl elongase that may partici-pate in fatty acid metabolism.Further,enzymesfor the metabolism of complex lipids(e.g.,glyc-erolipid and inositol phosphate)were identified inthe genome.Fatty acids are apparently not anenergy source,because enzymes of the fatty acidoxidative pathway are absent,with the exceptionof a3-hydroxyacyl-CoA dehydrogenase.C.parvum purine metabolism is greatlysimplified,retaining only an adenosine ki-nase and enzymes catalyzing conversionsof adenosine5Ј-monophosphate(AMP)toinosine,xanthosine,and guanosine5Ј-monophosphates(IMP,XMP,and GMP).Among these enzymes,IMP dehydrogenase(IMPDH)is phylogenetically related toε-proteobacterial IMPDH and is strikinglydifferent from its counterparts in both thehost and other apicomplexans(15).In con-trast to other apicomplexans such as Toxo-plasma gondii and P.falciparum,no geneencoding hypoxanthine-xanthineguaninephosphoribosyltransferase(HXGPRT)is de-tected,in contrast to a previous report on theactivity of this enzyme in C.parvum sporo-zoites(16).The absence of HXGPRT sug-gests that the parasite may rely solely on asingle enzyme system including IMPDH toproduce GMP from AMP.In contrast to otherapicomplexans,the parasite appears to relyon adenosine for purine salvage,a modelsupported by the identification of an adeno-sine transporter.Unlike other apicomplexansand many parasitic protists that can synthe-size pyrimidines de novo,C.parvum relies onpyrimidine salvage and retains the ability forinterconversions among uridine and cytidine5Ј-monophosphates(UMP and CMP),theirdeoxy forms(dUMP and dCMP),and dAMP,as well as their corresponding di-and triphos-phonucleotides.The parasite has also largelyshed the ability to synthesize amino acids denovo,although it retains the ability to convertselect amino acids,and instead appears torely on amino acid uptake from the host bymeans of a set of at least11amino acidtransporters(table S2).Most of the Cryptosporidium core pro-cesses involved in DNA replication,repair,transcription,and translation conform to thebasic eukaryotic blueprint(2).The transcrip-tional apparatus resembles Plasmodium interms of basal transcription machinery.How-ever,a striking numerical difference is seenin the complements of two RNA bindingdomains,Sm and RRM,between P.falcipa-rum(17and71domains,respectively)and C.parvum(9and51domains).This reductionresults in part from the loss of conservedproteins belonging to the spliceosomal ma-chinery,including all genes encoding Smdomain proteins belonging to the U6spliceo-somal particle,which suggests that this par-ticle activity is degenerate or entirely lost.This reduction in spliceosomal machinery isconsistent with the reduced number of pre-dicted introns in Cryptosporidium(5%)rela-tive to Plasmodium(Ͼ50%).In addition,keycomponents of the small RNA–mediatedposttranscriptional gene silencing system aremissing,such as the RNA-dependent RNApolymerase,Argonaute,and Dicer orthologs;hence,RNA interference–related technolo-gies are unlikely to be of much value intargeted disruption of genes in C.parvum.Cryptosporidium invasion of columnarbrush border epithelial cells has been de-scribed as“intracellular,but extracytoplas-mic,”as the parasite resides on the surface ofthe intestinal epithelium but lies underneaththe host cell membrane.This niche may al-low the parasite to evade immune surveil-lance but take advantage of solute transportacross the host microvillus membrane or theextensively convoluted parasitophorous vac-uole.Indeed,Cryptosporidium has numerousgenes(table S2)encoding families of putativesugar transporters(up to9genes)and aminoacid transporters(11genes).This is in starkcontrast to Plasmodium,which has fewersugar transporters and only one putative ami-no acid transporter(GenBank identificationnumber23612372).As a first step toward identification ofmulti–drug-resistant pumps,the genome se-quence was analyzed for all occurrences ofgenes encoding multitransmembrane proteins.Notable are a set of four paralogous proteinsthat belong to the sbmA family(table S2)thatare involved in the transport of peptide antibi-otics in bacteria.A putative ortholog of thePlasmodium chloroquine resistance–linkedgene Pf CRT(17)was also identified,althoughthe parasite does not possess a food vacuole likethe one seen in Plasmodium.Unlike Plasmodium,C.parvum does notpossess extensive subtelomeric clusters of anti-genically variant proteins(exemplified by thelarge families of var and rif/stevor genes)thatare involved in immune evasion.In contrast,more than20genes were identified that encodemucin-like proteins(18,19)having hallmarksof extensive Thr or Ser stretches suggestive ofglycosylation and signal peptide sequences sug-gesting secretion(table S2).One notable exam-ple is an11,700–amino acid protein with anuninterrupted stretch of308Thr residues(cgd3_720).Although large families of secretedproteins analogous to the Plasmodium multi-gene families were not found,several smallermultigene clusters were observed that encodepredicted secreted proteins,with no detectablesimilarity to proteins from other organisms(Fig.1,A and B).Within this group,at leastfour distinct families appear to have emergedthrough gene expansions specific to the Cryp-R E P O R T S SCIENCE VOL30416APRIL2004443o n O c t o b e r 7 , 2 0 0 9 w w w . s c i e n c e m a g . o r g D o w n l o a d e d f r o mtosporidium clade.These families —SKSR,MEDLE,WYLE,FGLN,and GGC —were named after well-conserved sequence motifs (table S2).Reverse transcription polymerase chain reaction (RT-PCR)expression analysis (20)of one cluster,a locus of seven adjacent CpLSP genes (Fig.1B),shows coexpression during the course of in vitro development (Fig.1C).An additional eight genes were identified that encode proteins having a periodic cysteine structure similar to the Cryptosporidium oocyst wall protein;these eight genes are similarly expressed during the onset of oocyst formation and likely participate in the formation of the coccidian rigid oocyst wall in both Cryptospo-ridium and Toxoplasma (21).Whereas the extracellular proteins described above are of apparent apicomplexan or lineage-specific in-vention,Cryptosporidium possesses many genesencodingsecretedproteinshavinglineage-specific multidomain architectures composed of animal-and bacterial-like extracellular adhe-sive domains (fig.S1).Lineage-specific expansions were ob-served for several proteases (table S2),in-cluding an aspartyl protease (six genes),a subtilisin-like protease,a cryptopain-like cys-teine protease (five genes),and a Plas-modium falcilysin-like (insulin degrading enzyme –like)protease (19genes).Nine of the Cryptosporidium falcilysin genes lack the Zn-chelating “HXXEH ”active site motif and are likely to be catalytically inactive copies that may have been reused for specific protein-protein interactions on the cell sur-face.In contrast to the Plasmodium falcilysin,the Cryptosporidium genes possess signal peptide sequences and are likely trafficked to a secretory pathway.The expansion of this family suggests either that the proteins have distinct cleavage specificities or that their diversity may be related to evasion of a host immune response.Completion of the C.parvum genome se-quence has highlighted the lack of conven-tional drug targets currently pursued for the control and treatment of other parasitic protists.On the basis of molecular and bio-chemical studies and drug screening of other apicomplexans,several putative Cryptospo-ridium metabolic pathways or enzymes have been erroneously proposed to be potential drug targets (22),including the apicoplast and its associated metabolic pathways,the shikimate pathway,the mannitol cycle,the electron transport chain,and HXGPRT.Nonetheless,complete genome sequence analysis identifies a number of classic and novel molecular candidates for drug explora-tion,including numerous plant-like and bacterial-like enzymes (tables S3and S4).Although the C.parvum genome lacks HXGPRT,a potent drug target in other api-complexans,it has only the single pathway dependent on IMPDH to convert AMP to GMP.The bacterial-type IMPDH may be a promising target because it differs substan-tially from that of eukaryotic enzymes (15).Because of the lack of de novo biosynthetic capacity for purines,pyrimidines,and amino acids,C.parvum relies solely on scavenge from the host via a series of transporters,which may be exploited for chemotherapy.C.parvum possesses a bacterial-type thymidine kinase,and the role of this enzyme in pyrim-idine metabolism and its drug target candida-cy should be pursued.The presence of an alternative oxidase,likely targeted to the remnant mitochondrion,gives promise to the study of salicylhydroxamic acid (SHAM),as-cofuranone,and their analogs as inhibitors of energy metabolism in the parasite (23).Cryptosporidium possesses at least 15“plant-like ”enzymes that are either absent in or highly divergent from those typically found in mammals (table S3).Within the glycolytic pathway,the plant-like PPi-PFK has been shown to be a potential target in other parasites including T.gondii ,and PEPCL and PGI ap-pear to be plant-type enzymes in C.parvum .Another example is a trehalose-6-phosphate synthase/phosphatase catalyzing trehalose bio-synthesis from glucose-6-phosphate and uridine diphosphate –glucose.Trehalose may serve as a sugar storage source or may function as an antidesiccant,antioxidant,or protein stability agent in oocysts,playing a role similar to that of mannitol in Eimeria oocysts (24).Orthologs of putative Eimeria mannitol synthesis enzymes were not found.However,two oxidoreductases (table S2)were identified in C.parvum ,one of which belongs to the same families as the plant mannose dehydrogenases (25)and the other to the plant cinnamyl alcohol dehydrogenases.In principle,these enzymes could synthesize protective polyol compounds,and the former enzyme could use host-derived mannose to syn-thesize mannitol.References and Notes1.D.G.Korich et al .,Appl.Environ.Microbiol.56,1423(1990).2.See supportingdata on Science Online.3.M.J.Gardner et al .,Nature 419,498(2002).4.A.T.Bankier et al .,Genome Res.13,1787(2003).5.J.C.Wootton,Comput.Chem.18,269(1994).Fig.1.(A )Schematic showing the chromosomal locations of clusters of potentially secreted proteins.Numbers of adjacent genes are indicated in paren-theses.Arrows indicate direc-tion of clusters containinguni-directional genes (encoded on the same strand);squares indi-cate clusters containingg enes encoded on both strands.Non-paralogous genes are indicated by solid gray squares or direc-tional triangles;SKSR (green triangles),FGLN (red trian-gles),and MEDLE (blue trian-gles)indicate three C.parvum –specific families of paralogous genes predominantly located at telomeres.Insl (yellow tri-angles)indicates an insulinase/falcilysin-like paralogous gene family.Cp LSP (white square)indicates the location of a clus-ter of adjacent large secreted proteins (table S2)that are cotranscriptionally regulated.Identified anchored telomeric repeat sequences are indicated by circles.(B )Schematic show-inga select locus containinga cluster of coexpressed large secreted proteins (Cp LSP).Genes and intergenic regions (regions between identified genes)are drawn to scale at the nucleotide level.The length of the intergenic re-gions is indicated above or be-low the locus.(C )Relative ex-pression levels of CpLSP (red lines)and,as a control,C.parvum Hedgehog-type HINT domain gene (blue line)duringin vitro development,as determined by semiquantitative RT-PCR usingg ene-specific primers correspondingto the seven adjacent g enes within the CpLSP locus as shown in (B).Expression levels from three independent time-course experiments are represented as the ratio of the expression of each gene to that of C.parvum 18S rRNA present in each of the infected samples (20).R E P O R T S16APRIL 2004VOL 304SCIENCE 444 o n O c t o b e r 7, 2009w w w .s c i e n c e m a g .o r g D o w n l o a d e d f r o m。
蜘蛛对新入侵物种悬铃木方翅网蝽的捕食作用

蜘蛛对新入侵物种悬铃木方翅网蝽的捕食作用Predation of spiders on a ne w invasive lace bug Cory thucha ciliata (Say)全晓宇1夏文胜2刘凤想1陈 建1彭 宇1*(1.湖北大学生命科学学院,武汉430062;2.武汉市园林科学研究所,武汉430081)Quan X iaoyu 1X iaW ensheng 2Liu Fengx i a ng 1Chen Jian 1Peng Yu1*(1.Co llege of L ife Sciences ,H ube iU n i versity ,W uhan 430062,H ube i P rov i nce ,Ch i na ;2.H orti cultural Institute ofW uhan ,W uhan 430081,H ube i P rov i nce ,Chi na)悬铃木方翅网蝽Cory t h ucha ciliata (Say)是一种原产于北美地区以悬铃木为食的林业害虫。
该虫为世界性入侵害虫,具有很强的扩散能力。
2006年该虫入侵我国后,已在多个城市发生为害。
Tavella &A rzone [1]研究表明,许多天敌对悬铃木方翅网蝽具有捕食潜能,但有关蜘蛛对该虫的捕食作用尚未见报道。
本研究测定了4种蜘蛛对悬铃木方翅网蝽的捕食作用,以期全面评估蜘蛛的控害作用。
1材料与方法1.1材料悬铃木方翅网蝽由武汉市园林科学研究所提供。
在培养皿(直径9c m )中用新鲜悬铃木叶片饲养,以成虫为试验对象。
供试蜘蛛包括三突花蛛Ebrechtella tricus p i d ata 、星豹蛛Par dosa astri g era 、斜纹猫蛛Oxyopes sert a t u s 和黄褐狡蛛Do lo m edes s ulfu-reus ,均采自武汉市华中农业大学实验田。
219435043_欧巴宾海蝎
沃尔科特与同事在伯吉斯页岩寻找化石欧巴宾海蝎的化石景色壮丽的欧巴宾山口这种动物命名为欧巴宾海蝎,名字来自于距离化石发现地不远的欧巴宾山口。
在欧巴宾海蝎被命名之初,由于它的结构过于怪异,古生物学家甚至无法判断它到底属于哪个动物家族。
直到1990年之后,古生物学家重新研究了欧巴宾海蝎并对比同时代的其他动物,这才弄明白它原来属于叶足动物门之下的恐虾纲,与大名鼎鼎的奇虾是远亲。
除了在加拿大发现了欧巴宾海蝎的化石,在亚洲的俄罗斯和大洋洲的澳大利亚也发现了疑似属于欧巴宾海蝎的化石,不过都没有得到确认,所以它的化石目前仍然仅来自于加拿大的伯吉斯页岩。
五眼小怪虾欧巴宾海蝎的体长在4至7厘米之间,和今天常吃的白虾个头差不多,不过在寒武纪的海洋中已经算是体型比较大的动物了。
欧巴宾海蝎最特别的地方就是它的脑袋了,其圆圆的脑袋上长了5只眼睛,这些眼睛并不是直接长在脑袋上面的,而是通过长柄状的结构与脑袋相连,所以可以说是悬于脑袋之上的。
因为有5只眼睛,而且都有柄与脑袋相连,所以其视力也是相当好,除了下面有部分视野盲区,其他方向都能够看得一清二楚。
除了五只眼睛,在欧巴宾海蝎的脑袋前面还长出了一根附肢,这个附肢有灵活的管子和前端的爪子组成,管子能够灵活地移动,外侧有密集的条纹,爪子两缘择优成排的小刺,方便抓取。
许多人都将奇特的附肢当成了欧巴宾海蝎的嘴,其实只是捕食的工具,它真正的嘴巴长在脑袋的下面,所以当附肢夹住食物的时候会送到嘴中吃掉。
在欧巴宾海蝎的脑袋之后是多达15节的身体,但是整个身体并不是很灵活,外侧也缺乏坚硬的保护。
欧巴宾海蝎每一节身体的两侧都有桨状肢结构,在它的尾部则有几乎与身体垂直的尾叶,看似是用来在海洋中游泳的。
真实的欧巴宾海蝎游泳很慢,这是因为它的身体无法灵活快速地上下摆动,所以也就不能产生强大的推力。
欧巴宾海蝎大部分时间还是用身体在海底爬行,寻找食物的。
史前海底拾荒者欧巴宾海蝎生活在距今5.05亿年前的寒武纪时期,当时的地球与今天完全不同,陆地是一片毫无生欧巴宾海蝎的复原图寒武纪的海洋,可以看到海底的欧巴宾海蝎的存在。
广聚萤叶甲在北京市郊豚草发生区成功建立种群
环境昆虫学报 2020 , 42 ( 4): 1037 -1038Joyroot f ExvioomeoOt Entowologyhttp : 〃hjkcxb. alljournals. netdoi : 10. 3969/L. C w . 1674 -0858. 2020. 04. 31田镇齐,马超,崔少伟,周忠实.广聚萤叶甲在北京市郊豚草发生区成功建立种群[J ]-环境昆虫学报,2020, 42 (4): 1037 -1038-广聚萤叶甲在北京市郊豚草发生区成功建立种群田镇齐,马超,崔少伟,周忠实*基金项目:国家自然科学基金(31672089, 31972340)作者简介:田镇齐,男,1992年生,博士研究生,主要研究方向为入侵生物学,E-mCi : ******************通讯作者Author Ur correspondence :周忠实,男,博士,研究员,主要研究方向为入侵生物学,E - mail : zhouzhongshi@ caas. on收稿日期 Received : 2020 -06 -20;接受日期 Accepted : 2020 -06 -22(中国农业科学院植物保护研究所,植物病虫害生物学重点实验室,北京100193)Ophraella communa can establish population in the suburbs of Beijing , ChinaTIWN Zhen-Qi , MA Chav , CUI Shao-Wai , ZHOU Zhony-Shi * ( Stata Key Laborato — far BWCgy ofPeantDiseasesand InsectPests , InstituteoePeantPaotection , ChineseAcademyoeAgaicuetuaaeSciences , Beiking 100193, China )广聚萤叶甲Ophraella communo LVdya 属鞘翅 目ColeopCra 、叶甲科Ch —somVidav 、萤叶甲亚科 GaC —inav ,是恶性入侵杂草----豚草UmbrosiuorOmPfoPu 的专一性天敌(Guv st oC , 2011; Zhou et oO , 2014)o 广聚萤叶甲卵粒呈梨形,淡黄色至橘黄色,卵壳表面具多角形刻纹,聚集排列; 幼虫共3龄,初孵幼虫体色较暗,蜕皮后颜色较 淡,3龄幼虫体色偏淡褐色,幼虫在3龄末期开始结茧,茧淡褐色。
苍蝇复眼原理及发明
苍蝇复眼原理及发明
苍蝇的复眼是一种独特的视觉器官,由许多小型光感受器组成。
以下是关于苍蝇复眼原理及其相关发现的一些信息:
1. 复眼结构:苍蝇的复眼由数千个称为“ommatidia”的小单元组成。
每个ommatidium都包含光感受器细胞、色素细胞和神经元等。
这些ommatidia排列在复眼表面,形成了一个分割的、凸起的结构。
2. 视觉范围:每个ommatidium可以捕捉周围一定范围内的光信号。
由于复眼上的ommatidia 密集排列,苍蝇可以通过多个ommatidia同时感知来自不同方向的光线,从而形成广阔的视野。
3. 运动感知:苍蝇的复眼对运动非常敏感。
由于ommatidia之间的排列和连接方式,苍蝇可以通过比较不同ommatidia之间的运动差异,快速而准确地感知周围环境中物体的运动。
4. 空间分辨率:与人类的眼睛相比,苍蝇的复眼在空间分辨率上相对较低。
每个ommatidium 只能提供有限的像素信息,因此苍蝇在观察细节和清晰度方面相对有限。
关于苍蝇复眼的发现和研究有助于我们对昆虫视觉系统的理解,并且对于模仿其原理开发新型光学器件和图像传感技术具有启发意义。
有人受到苍蝇复眼的启发,提出了复合型摄像头技术,通过将多个摄像头以苍蝇复眼的方式排列来扩大视野,并在多个视角下捕捉物体的运动。
总之,苍蝇复眼是一种独特而复杂的视觉系统,通过其特殊的结构和工作原理,苍蝇能够感知周围的光线和物体运动。
对苍蝇复眼的研究有助于我们深入了解昆虫视觉和启发新的光学技术应用。
古北泥蛉幼虫触角感器超微结构观察
International Journal of Ecology 世界生态学, 2020, 9(1), 83-90Published Online February 2020 in Hans. /journal/ijehttps:///10.12677/ije.2020.91011Ultrastructural Observations on AntennalSensilla of Sialis sibirica LarvaJinwu Wang1, Xiangwu Kong1, Xingbo Cui1, Guangxin Wang1, Hongru Guo2, Quan Li3,Manhong Liu4*1Heilongjiang Naolihe Nature Reserve Administration, Shuangyashan Heilongjiang2School of Forestry, Northeast Forestry University, Harbin Heilongjiang3Gongzhuling Kalun Reservoir Irrigation Areas Management Office, Gongzhuling Jilin4College of Wildlife﹠Nature Protected Areas, Northeast Forestry University, Harbin HeilongjiangReceived: Jan. 17th, 2020; accepted: Feb. 3rd, 2020; published: Feb. 10th, 2020AbstractThe antennal sensilla of Sialis sibirica larva were observed by scanning electron microscopy (SEM).The results showed that four antennal sensilla of S. sibirica larva have been found, namely Sensilla chaetica (Ch), Sensilla basiconica (Ba), Sensilla trichodea (Th) and Sensilla coeloconica (Co). Images of Scanning electron microscopy showed that the density and quantity of the antennal sensilla for S. sibirica larva were much less than other terrestrial insects. Antennal sensillas of S. sibirica larva are mainly distributed in the stem section and whip joint as well as antenna tip, few distributed in other parts. Moreover, the function of the four kinds of sensilla was conjectured and analyzed in the paper according to the results of existing research. The study provided the basis research for the further study on the ultrastructure and physiological functions of aquatic insect sensilla.KeywordsAquatic Insect, Sialis sibirica Larva, Antennal Sensilla, Ultrastructure古北泥蛉幼虫触角感器超微结构观察王金武1,孔祥武1,崔兴波1,王广鑫1,郭鸿儒2,李全3,刘曼红4*1黑龙江挠力河自然保护区管理局,黑龙江双鸭山2东北林业大学林学院,黑龙江哈尔滨3公主岭市卡伦水库灌区管理所,吉林公主岭4东北林业大学野生动物与自然保护地学院,黑龙江哈尔滨*通讯作者。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
JIANG Yue-li et a1.I Journal of Integrative Agriculture 2015,14(4):706-713 707 link of host location phytophagous insects,for example,the butterfly Pieris rapae was found to respond strongly to blue and blue.green light over long distances to locate a suitable spawning host(Qin 1 987),female fruit females tend to move to traps with red spheres attached to the center of yellow panels(Cornelius et a1.1 999).In addition,many phytopha- gous insects prefer yellow as a cue to host Iocation fBernays and Chapman 1 994).However,Frisch(1 949)showed that the honeybee Apis melfifera detects polarized natural light and uses it for spatial navigation.Therefore.it is important to get a more comprehensive and clear understanding of the insect color vision. The scarab beetle,Anomala corpulenta Motschulsky fColeoptera:Scarabaeoidea)。is a widespread and de- structive pest in China(Wu 2001).The Iarvae feed on the underground portion of crops,with a preference for peanuts and soybeans。whereas the adults feed on the leaves of var- iOUS species of fruit and forest trees.The exocuticle of this beetle has a brilliant metallic appearance,and selectively reflects left circularly polarized light.as recorded f0r other iewel beetles(Sharma et a1.2009)。 Insects are sensitive to various characteristics of light, such as its intensity,color and polarization(Wernet et a1. 2003;Horv ̄th and Varj0 2004).1n addition.visuaI cues are importantin intraspecific communication and host Iocation by beetles.Many studies on vision in the iewel beetles have focused on polarization(Horv ̄th and VarjD 2004;Brady and Cummings 201 0:Blah6 et a1.201 2).However,few have studied the presence of color vision in,and impact of Iight intensity on。such beetles.Therefore,there is a need to further understand the physiological basis of the color vision of jewel beetles,particularly the spectral sensitivity, and effects of light intensity.Electrophysiological spectral sensitivity has been examined for many insect species, including the cabbage root fly,Delia radicum(L.)(Brown and Anderson 1 996),the cotton bollworm,Helicoverpa at- migera(Hebner)(Wei et a1.2002),the western flower thrip, Frankliniella occidentalis(Pergande)(Matteson et a1.1 992), Homopteran species--the glasshouse whitefly,Trialeurodes vaporariorum(Westwood)(Mellor et a1.1 997),and the green peach aphid,Myzus persicae(Sulz.)(Kirchner et a1.2005), the click beetles,Pyrophorus punctatissimus in Coleoptera (Lall et a1.2000).etc.Most insects have two kinds of vi— sual pigment.one detects light at approximately 550 nm (yellow—green)and the other detects blue-violet UV light, at Iess than 480 nm.However,there are no data available regarding the electrophysiological spectral sensitivity of the iewel beetles.1n addition,mechanisms of adaptation to Iight intensity in A.corpulenta are unclear. Therefore,to investigate the spectral sensitivities and mechanisms of adaptation to light intensity of A.corpulenta, the response ofA.corpulenta to diferent light wavelengths and intensities,and the effects of gender and circadian rhythm on them,were measured by means of electroretino- gram(ERG)technique.
2.Results 2.1.Form ofthe ERG The ERG waveform 0f A.corpulenta elicited by a white light stimulus is a monophasic negative change in poten- tiaI(Fig.1).As can be seen fr0m the waveform,the Iower interference signals existed during stimulation.The ERG value was recorded as the negative ERG component.The greatest ERG amplitude was 35 m
B Fig.1 A typical electroretinogram recording frOm Anomala corpulenta under white—light stimulus.A,negative sustained potentia1.B,off-response.
2.2.Spectral sensitivity The spectra of ERG changes by the eyes of male and female A.corpule门fa in response to light stimuli within the mono- chromatic 340-605 nm wavelength were recorded under certain dark and light adaptation times.The results showed that UV and most of the visible regions of the monochromatic light stimulus triggered an ERG response of A.corpulenta compound eyes with light and dark conditions adaptation. The spectral sensitivity response curves(Figs.2-4)were obtained according to the size of the ERG amplitude. The spectral sensitivity of the dark-adapted compound eye of both male and female A.corpulenta showed one maior distinct peak of sensitivity at 400 nm diurnally.The second distinct peak appeared at 524 am(yellow-green).No clear peak was found at other wavelengths(Fig.2).When the eyes were tested nocturnally,the spectral sensitivity curve showed three further peaks(Fig.3).The main peak position was unchanged,whereas the secondary peak po- sition moved fr0m 524 to 498 nm fyellow—green).The third peak occurred at 460 nm. When the compound eyes were tested in the presence of adaptation to light,the spectral sensitivity curve of the female eyes showed only one peak,at 400 am(Fig.4), whereas those of the males showed three peaks:a maior distinct peak at 400 nm。a second distinct peak at 498 nm (yellow—green)and the third peak at 460 nm.These peaks