坐标系与参数方程
坐标系与参数方程

选修4-4 坐标系与参数方程第一节坐标系1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x ,(λ>0),y ′=μ·y ,(μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系与极坐标 (1)极坐标系:如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标:设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对(ρ,θ)叫做点M 的极坐标,记为M (ρ,θ).一般地,不做特殊说明时,我们认为ρ≥0,θ可取任意实数. 3.极坐标与直角坐标的互化设M 是坐标系平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ)(ρ≥0),于是极坐标与直角坐标的互化公式如下表:4.1.在将直角坐标化为极坐标求极角θ时,易忽视判断点所在的象限(即角θ的终边的位置).2.在极坐标系下,点的极坐标不惟一性易忽视.注意极坐标(ρ,θ)(ρ,θ+2k π),(-ρ,π+θ+2k π)(k ∈Z )表示同一点的坐标. [试一试]1.点P 的直角坐标为(1,-3),则点P 的极坐标为________.解析:因为点P (1,-3)在第四象限,与原点的距离为2,且OP 与x 轴所成的角为-π3.答案:⎝⎛⎭⎫2,-π3 2.极坐标方程ρ=sin θ+2cos θ能表示的曲线的直角坐标方程为________. 解析:由ρ=sin θ+2cos θ,得ρ2=ρsin θ+2ρcos θ, ∴x 2+y 2-2x -y =0. 答案:x 2+y 2-2x -y =01.确定极坐标方程的四要素极点、极轴、长度单位、角度单位及其正方向,四者缺一不可. 2.直角坐标(x ,y )化为极坐标(ρ,θ)的步骤 (1)运用ρ=x 2+y 2,tan θ=yx(x ≠0)(2)在[0,2π)内由tan θ=yx (x ≠0)求θ时,由直角坐标的符号特征判断点所在的象限.[练一练]1.在极坐标系中,圆心在(2,π)且过极点的圆的方程为________. 解析:如图,O 为极点,OB 为直径,A (ρ,θ),则∠ABO =θ-90°,OB =22=ρsin (θ-90°),化简得ρ=-22cos θ. 答案:ρ=-22cos θ2.已知直线的极坐标方程为ρsin (θ+π4)=22,则极点到该直线的距离是________.解析:极点的直角坐标为O (0,0),ρsin(θ+π4)=ρ22sin θ+22cos θ=22,∴ρsin θ+ρcos θ=1,化为直角坐标方程为x +y -1=0. ∴点O (0,0)到直线x +y -1=0的距离为d =12=22, 即极点到直线ρsin ⎝⎛⎭⎫θ+π4=22的距离为22. 答案:22平面直角坐标系中的伸缩变换1.(2014·佛山模拟)设平面上的伸缩变换的坐标表达式为⎩⎪⎨⎪⎧x ′=12x ,y ′=3y ,则在这一坐标变换下正弦曲线y =sin x 的方程变为________.解析:∵⎩⎪⎨⎪⎧ x ′=12x ,y ′=3y ,∴⎩⎪⎨⎪⎧x =2x ′,y =13y ′.代入y =sin x 得y ′=3sin 2x ′. 答案:y ′=3sin 2x ′2.函数y =sin(2x +π4)经伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=12y 后的解析式为________.解析:由⎩⎪⎨⎪⎧ x ′=2x ,y ′=12y ,得⎩⎪⎨⎪⎧x =12x ′,y =2y ′.① 将①代入y =sin(2x +π4),得2y ′=sin(2·12x ′+π4),即y ′=12sin(x ′+π4).答案:y ′=12sin(x ′+π4)3.双曲线C :x 2-y 264=1经过φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y 变换后所得曲线C ′的焦点坐标为________.解析:设曲线C ′上任意一点P ′(x ′,y ′),由上述可知,将⎩⎪⎨⎪⎧x =13x ′,y =2y ′,代入x 2-y 264=1得x ′29-4y ′264=1,化简得x ′29-y ′216=1,即x 29-y 216=1为曲线C ′的方程,可见仍是双曲线,则焦点F 1(-5,0),F 2(5,0)为所求.答案:(-5,0)或(5,0) [类题通法]平面图形的伸缩变换可以用坐标伸缩变换来表示.在伸缩变换⎩⎪⎨⎪⎧x ′=λ·x ,(λ>0)y ′=μ·y ,(μ>0)下,直线仍然变成直线,抛物线仍然变成抛物线,双曲线仍然变成双曲线,圆可以变成椭圆,椭圆也可以变成圆.极坐标与直角坐标的互化[典例] 中,以坐标原点x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为3ρ2=12ρcos θ-10(ρ>0).(1)求曲线C 1的直角坐标方程;(2)曲线C 2的方程为x 216+y 24=1,设P ,Q 分别为曲线C 1与曲线C 2上的任意一点,求|PQ |的最小值.[解] (1)曲线C 1的方程可化为3(x 2+y 2)=12x -10, 即(x -2)2+y 2=23.(2)依题意可设Q (4cos θ,2sin θ),由(1)知圆C 1的圆心坐标为C 1(2,0). 故|QC 1|=(4cos θ-2)2+4sin 2θ =12cos 2θ-16cos θ+8=23⎝⎛⎭⎫cos θ-232+23, |QC 1|min =263,所以|PQ |min =63. [类题通法]直角坐标方程与极坐标方程的互化,关键要掌握好互化公式,研究极坐标系下图形的性质,可转化直角坐标系的情境进行.[针对训练](2013·安徽模拟)在极坐标系中,直线ρcos θ-ρsin θ+1=0与圆ρ=2sin θ的位置关系是________.解析:直线ρcos θ-ρsin θ+1=0可化成x -y +1=0,圆ρ=2sin θ可化为x 2+y 2=2y ,即x 2+(y -1)2=1.圆心(0,1)到直线x -y +1=0的距离d =|0-1+1|2=0<1.故直线与圆相交.答案:相交极坐标方程及应用[典例]xOy 中,曲线C ⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 的方程为ρsin(θ+π4)=2 2.(1)求曲线C 在极坐标系中的方程; (2)求直线l 被曲线C 截得的弦长.[解] (1)由已知得,曲线C 的普通方程为(x -2)2+y 2=4, 即x 2+y 2-4x =0,化为极坐标方程是ρ=4cos θ. (2)由题意知,直线l 的直角坐标方程为x +y -4=0,由⎩⎪⎨⎪⎧x 2+y 2-4x =0,x +y =4,得直线l 与曲线C 的交点坐标为(2,2),(4,0),所以所求弦长为2 2.解:由曲线C ,C 1极坐标方程联立 ∴cos 2θ=34,cos θ=±32,又ρ≥0,θ∈[0,π2).∴cos θ=32,θ=π6,ρ=23,故交点极坐标为⎝⎛⎭⎫23,π6. [类题通法]求曲线的极坐标方程的步骤(1)建立适当的极坐标系,设P (ρ,θ)是曲线上任意一点;(2)由曲线上的点所适合的条件,列出曲线上任意一点的极径ρ和极角θ之间的关系式; (3)将列出的关系式进行整理、化简,得出曲线的极坐标方程. [针对训练](2013·荆州模拟)在极坐标系中,过圆ρ=6cos θ的圆心,且垂直于极轴的直线的极坐标方程为________.解析:ρ=6cos θ在直角坐标系中表示圆心为(3,0),半径为3的圆.过圆心且垂直于x 轴的直线方程为x =3,其在极坐标系下的方程为ρcos θ=3.答案:ρcos θ=3第二节参数方程1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么,⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是曲线的参数方程.2.常见曲线的参数方程和普通方程1.不明确直线的参数方程中的几何意义导致错误,对于直线参数方程⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α.(t 为参数)注意:t 是参数,α则是直线的倾斜角.2.参数方程与普通方程互化时,易忽视互化前后的等价性. [练一练]1.若直线的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =2-3t (t 为参数),则直线的斜率为________.A.23 B .-23C.32D .-32解析:∵y -2x -1=-3t 2t =-32,∴tan α=-32.答案:-322.参数方程为⎩⎪⎨⎪⎧x =3t 2+2y =t 2-1(0≤t ≤5)的曲线为__________(填“线段”、“双曲线”、“圆弧”或“射线”).解析:化为普通方程为x =3(y +1)+2, 即x -3y -5=0,由于x =3t 2+2∈[2,77],故曲线为线段. 答案:线段1.化参数方程为普通方程的方法消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法.2.利用直线参数方程中参数的几何意义求解问题的方法经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).若A ,B 为直线l 上两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到:(1)t 0=t 1+t 22; (2)|PM |=|t 0|=t 1+t 22; (3)|AB |=|t 2-t 1|; (4)|P A |·|PB |=|t 1·t 2|. [练一练]1.已知P 1,P 2是直线⎩⎨⎧x =1+12t ,y =-2+32t (t 为参数)上的两点,它们所对应的参数分别为t 1,t 2,则线段P 1P 2的中点到点P (1,-2)的距离是________.解析:由t 的几何意义可知,线段P 1P 2的中点对应的参数为t 1+t 22,P 对应的参数为t =0,∴线段P 1P 2的中点到点P 的距离为|t 1+t 2|2.答案:|t 1+t 2|22.已知直线⎩⎨⎧x =2-12t ,y =-1+12t (t 为参数)与圆x 2+y 2=4相交于B ,C 两点,则|BC |的值为________.解析:∵⎩⎨⎧x =2-12t =2-22t ′,y =-1+12t =-1+22t ′,⎝⎛⎭⎫t ′=22t 代入x 2+y 2=4,得⎝⎛⎭⎫2-22t ′2+⎝⎛⎭⎫-1+22t ′2=4,t ′2-32t ′+1=0,∴|BC |=|t ′1-t ′2|=(t ′1+t ′2)2-4t ′1t ′2=(32)2-4×1=14. 答案:14参数方程与普通方程的互化1.曲线⎩⎨⎧x =23cos θy =32sin θ(θ为参数)中两焦点间的距离是________.解析:曲线化为普通方程为y 218+x 212=1,∴c =6,故焦距为2 6.答案:2 62.(2014·西安质检)若直线3x +4y +m =0与圆⎩⎪⎨⎪⎧x =1+cos θ,y =-2+sin θ(θ为参数)相切,则实数m的值是________.解析:圆⎩⎪⎨⎪⎧x =1+cos θ,y =-2+sin θ消去参数θ,化为普通方程是(x -1)2+(y +2)2=1.因为直线与圆相切,所以圆心(1,-2)到直线的距离等于半径,即|3+4×(-2)+m |5=1,解得m =0或m=10.答案:0或103.(2014·武汉调研)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线⎩⎨⎧x =-t ,y =3t(t 为参数,t ∈R )与曲线C 1:ρ=4sin θ异于点O 的交点为A ,与曲线C 2:ρ=2sin θ异于点O 的交点为B ,则|AB |=________.解析:由题意可得,直线y =-3x ,曲线C 1:x 2+(y -2)2=4,曲线C 2:x 2+(y -1)2=1, 画图可得,|AB |=4cos 30°×12= 3.答案: 3 [类题通法]参数方程是以参变量为中介来表示曲线上点的坐标的方程,是曲线在同一坐标系下的另一种表示形式,参数方程化为普通方程关键在于消参,消参时要注意参变量的范围.参数方程的应用[典例] (2013·郑州模拟)已知直线C 1:⎩⎪⎨⎪⎧ x =1+t cos α,y =t sin α(t 为参数),曲线C 2:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数).(1)当α=π3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点,当α变化时,求点P 轨迹的参数方程,并指出它是什么曲线.[解] (1)当α=π3时,C 1的普通方程为y =3(x -1),C 2的普通方程为x 2+y 2=1,联立方程⎩⎨⎧y =3(x -1),x 2+y 2=1,解得C 1与C 2的交点坐标分别为(1,0),⎝⎛⎭⎫12,-32.(2)依题意,C 1的普通方程为x sin α-y cos α-sin α=0,则A 点的坐标为(sin 2α,-sin αcosα),故当α变化时,P 点轨迹的参数方程为⎩⎨⎧x =12sin 2α,y =-12sin αcos α(α为参数),∴点P 轨迹的普通方程为(x -14)2+y 2=116.故点P 的轨迹是圆心为(14,0),半径为14的圆.a ×3=-1,故a =33. [类题通法]1.解决直线与圆的参数方程的应用问题时一般是先化为普通方程再根据直线与圆的位置关系来解决问题.2.对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数)当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题. [针对训练](2013·新课标卷Ⅱ)已知动点P ,Q 在曲线C :⎩⎪⎨⎪⎧x =2cos t ,y =2sin t(t 为参数)上,对应参数分别为t =α与t =2α为(0<α<2π),M 为PQ 的中点.(1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 解:(1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α), 因此M (cos α+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =cos α+cos 2α,y =sin α+sin 2α(α为参数,0<α<2π).(2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π). 当α=π时,d =0,故M 的轨迹过坐标原点.极坐标、参数方程的综合应用[在平面直角坐标系中,以坐标原点为极点,x 轴建立极坐标系.已知点A 的极坐标为⎝⎛⎭⎫2,π4,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π4=a ,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),试判断直线l 与圆C 的位置关系. [解] (1)由点A ⎝⎛⎭⎫2,π4在直线ρcos ⎝⎛⎭⎫θ-π4=a 上, 可得a = 2.所以直线l 的方程可化为ρcos θ+ρsin θ=2,从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1, 所以圆C 的圆心为(1,0),半径r =1,因为圆心C 到直线l 的距离d =12=22<1, 所以直线l 与圆C 相交.[类题通法]涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.[针对训练](2013·石家庄质检)已知P 为半圆C :⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与半圆C 的弧AP 的长度均为π3. (1)以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点M 的极坐标;(2)求直线AM 的参数方程.解:(1)由已知,点M 的极角为π3,且|OM |=π3,故点M 的极坐标为(π3,π3). (2)由(1)可得点M 的直角坐标为(π6,3π6),A (1,0),故直线AM 的参数方程为⎩⎨⎧ x =1+(π6-1)t ,y =3π6t (t 为参数).。
坐标系与参数方程

坐标系与参数方程直角坐标系是由X轴和Y轴组成的二维平面。
在直角坐标系中,一个点的位置可以通过它在X轴和Y轴上的坐标值来确定。
例如,点P的坐标为(x,y),其中x是点P在X轴上的位置,y是点P在Y轴上的位置。
直角坐标系可以方便地表示直线、抛物线、圆等曲线。
参数方程是一种描述曲线的数学表达方式,其中曲线上的每个点都是由参数变量的函数关系决定的。
参数方程中通常有两个参数变量,例如t和s,分别表示曲线上一些点的位置。
通过固定其中一个参数变量并对另一个参数变量进行取值,可以得到曲线上的一系列坐标点,从而描绘出整个曲线。
参数方程可以用于描述比较复杂的曲线,例如椭圆、双曲线等。
与直角坐标系不同,参数方程可以很方便地表示曲线上的点的倾斜和弯曲程度。
通过调整参数变量的取值范围,还可以对曲线进行调整和变形。
举一个简单的例子来说明直角坐标系和参数方程的区别和应用。
考虑一条直线y=2x+1、在直角坐标系中,我们可以通过给定的函数关系来确定直线上任意点的坐标。
例如,当x=0时,y=1,这表示直线过点(0,1)。
当x=2时,y=5,这表示直线过点(2,5)。
而在参数方程中,我们可以将直线表示为x=t,y=2t+1,其中t是参数变量。
通过对参数变量t进行取值,可以得到直线上的一系列坐标点。
例如,当t=0时,x=0,y=1,这表示直线过点(0,1);当t=1时,x=1,y=3,这表示直线过点(1,3)。
可以看出,直角坐标系和参数方程在表示曲线上的点的方式上有所不同。
直角坐标系通过给定的函数关系来确定曲线上的点的坐标,而参数方程通过参数变量的函数关系来确定曲线上的点的坐标。
在实际应用中,根据不同的需要和问题,我们可以选择使用直角坐标系或参数方程来描述曲线。
直角坐标系更适用于描述直线、抛物线和圆等简单的曲线,而参数方程更适用于描述复杂的曲线,例如椭圆、双曲线等。
通过选择适当的表示方式,我们可以更方便地理解和分析曲线的形状和特性。
总之,坐标系与参数方程是数学中常用的表示曲线的方式。
坐标系与参数方程知识点

坐标系与参数方程知识点在数学中,坐标系与参数方程是两个重要且密切相关的概念。
坐标系是我们描述点的位置和相互关系的工具,而参数方程则是一种表示曲线或曲面的常用方法。
让我们来深入了解这两个知识点,它们的应用领域和一些实际问题的解决方法。
一、坐标系在平面几何学和空间几何学中,坐标系用于表示点的位置。
常用的坐标系有直角坐标系和极坐标系。
1. 直角坐标系直角坐标系是最常见的坐标系之一,由两条相互垂直的直线组成。
通常,水平直线被称为x轴,垂直直线被称为y轴。
任何点P都可以通过其与这两条轴的交点来表示,用一个有序数对(x, y)表示。
其中,x 称为横坐标,y称为纵坐标。
这种表示方法可以简化许多几何问题的求解,如计算两点之间的距离、判断点是否在某一区域内等。
2. 极坐标系极坐标系是另一种常用的坐标系,用于描述平面上的点。
与直角坐标系不同,它使用极径和极角来表示点的位置。
极径表示点到坐标原点的距离,极角则表示点与正半轴的夹角。
在极坐标系下,点的坐标用一个有序数对(r, θ)表示。
这种坐标系在描述圆形运动、天文学等领域具有重要应用。
二、参数方程参数方程是一种常用的表示曲线或曲面的方法,它使用一个或多个参数来描述点的位置。
通常,参数方程将x和y(或x、y、z)用一个或多个参数t表示。
1. 二维参数方程对于二维参数方程,曲线上的点可以用参数t与x、y的关系表示。
例如,对于抛物线y = x^2,我们可以使用参数方程x = t和y = t^2来表示。
通过改变参数t的值,我们可以得到这条曲线上的各个点。
参数方程的优势在于它可以描述一些传统的直角坐标系难以表示的曲线,如椭圆、双曲线等。
此外,参数方程还可以用于描述运动轨迹、弹道轨迹等。
2. 三维参数方程三维参数方程与二维参数方程类似,不同之处在于曲面上的点需要用参数t与x、y、z的关系表示。
例如,对于球体的参数方程x = r *sinθ * cosφ,y = r * sinθ * sinφ,z = r * cosθ,其中r、θ和φ是参数,描述了点与球心的关系。
【高中数学】坐标系与参数方程

【高中数学】坐标系与参数方程1. 平面直角坐标系学习过程1. 到两个定点A (-1,0)与B (0,1)的距离相等的点的轨迹是什么?2. 在⊿ABC 中,已知|AB|=10,且{ EMBED Equation.3 |6=-BC AC ,求顶点C 的轨迹方程.例题讲解例1. 已知△ABC 的三边满足,BE,CF 分别为边A C, AB 上的中线,建立适当的平面直角坐标系探究BE 与CF 的位置关系。
例2. 求证:三角形的三条高线交于一点.巩固练习1. 两个定点的距离为6,点M 到这两个定点的距离的平方和为26,求点M 得轨迹2. 求直线与曲线的交点坐标.3. 已知A (-2,0),B (2,0),求以AB 为斜边的直角三角形的顶点C 的轨迹方程4. 已知A (-3,0),B (3,0),直线AM 、BM 相交于点M ,且它们的斜率之积为,求点M 的轨迹方程5. 已知B 村位于A 村的正西方向1公里处,原计划经过B 村沿着北偏东600的方向埋设一条地下管线m 但在A 村的西北方向400米处,发现一古代文物遗址W 。
根据初步勘察的结果,文物管理部门将遗址W 周围100米范围划为禁区。
试问:埋设地下管线m 的计划需要修改吗?2. 坐标变换1. 理解平面直角坐标系中的伸缩变换;2. 了解在平面直角坐标系伸缩变换作用下平面图形的变化情况;3. 会用坐标变换、伸缩变换解决实际问题。
学习过程设点P(x,y)是平面直角坐标系中的任意一点,在变换的作用下,点P(x,y)对应到点(,)称为坐标系中的伸缩变换. 例题讲解例1. 在平面直角坐标系下,求下列方程所对应的图形经过伸缩变换后的图形. (1)(2)例2. 在同一平面直角坐标系中,求满足下列图形变换的伸缩变换. (1)直线变换成直线 (2)曲线变成曲线例3. 在伸缩变换下,椭圆是否可以变成圆?抛物线、双曲线变成什么曲线?巩固练习1. 已知(的图象可以看作把的图象在其所在的坐标系中的横坐标压缩到原来的倍(纵坐标不变)而得到的,则为( )A.B .2C.3D.2. 在同一直角坐标系中,经过伸缩变换后,曲线C 变为曲线则曲线C 的方程为( )A.B.C.D.3. 在同一平面坐标系中,经过伸缩变换后,曲线C 变为曲线,求曲线C 的方程并画出图象。
坐标系与参数方程

φ, φ
(φ 为参数).
1.参数方程化为普通方程
基本思路是消去参数,常用的消参方法有:①代入消元法;②加减消元法;③恒等式(三
角的或代数的)消元法;④平方后再加减消元法等.其中代入消元法、加减消元法一般是利用
解方程的技巧,三角恒等式消元法常利用公式 sin2θ+cos2θ=1 等. 2.普通方程化为参数方程 (1)选择参数的一般原则:曲线上任意一点的坐标与参数的关系比较明显且关系相对简单;
离.
第 6 页 共 18 页
3.在极坐标系中,求直线 ρ( 3cos θ-sin θ)=2 与圆 ρ=4sin θ 的交点的极坐标.
4.(2017·山西质检)在极坐标系中,曲线 C 的方程为 ρ2=1+23sin2θ,点 R2 2,π4.
(1)以极点为原点,极轴为 x 轴的正半轴,建立平面直角坐标系,把曲线 C 的极坐标方程 化为直角坐标方程,R 点的极坐标化为直角坐标;
第 7 页 共 18 页
6.已知圆 C:x2+y2=4,直线 l:x+y=2.以 O 为极点,x 轴的正半轴为极轴,取相同
的单位长度建立极坐标系.
(1)将圆 C 和直线 l 方程化为极坐标方程;
(2)P 是 l 上的点,射线 OP 交圆 C 于点 R,又点 Q 在 OP 上,且满足|OQ|·|OP|=|OR|2,
在 C3 上,求 a.
第 5 页 共 18 页
2.(2015·新课标全国卷Ⅰ)在直角坐标系 xOy 中,直线 C1:x=-2,圆 C2:(x-1)2+(y- 2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.
(1)求 C1,C2 的极坐标方程; (2)若直线 C3 的极坐标方程为 θ=π4(ρ∈R),设 C2 与 C3 的交点为 M,N,求△C2MN 的面 积.
坐标系与参数方程

坐标系与参数方程坐标系是一种在数学和物理学中使用的图示工具,用于表示和分析平面或空间中的点和图形。
它使用坐标来确定每个点的位置,从而使我们可以准确地描述和研究空间关系和几何图形。
常见的坐标系包括笛卡尔坐标系、极坐标系和参数方程。
笛卡尔坐标系是最常用的坐标系之一、它是由法国哲学家和数学家笛卡尔于17世纪提出的,用于描述平面中的点。
这个坐标系是由两个垂直的轴线组成的,分别称为x轴和y轴。
x轴和y轴的交点称为坐标原点,用(0,0)表示。
通过在x轴和y轴上确定一个点的位置,我们可以使用有序对(x,y)来表示这个点的坐标。
与笛卡尔坐标系不同的是,极坐标系使用极径和极角来表示一个点的位置。
极径是从原点到点的距离,通常用r表示,而极角是从极轴(通常是x轴正方向)到线段的角度,通常用θ表示。
用有序对(r,θ)来表示一个点的极坐标。
参数方程也是一种描述平面中的点的方法,它是通过将x和y的坐标表示为关于一个参数t的函数来定义点的位置。
参数方程通常用来表示曲线和图形的轨迹。
例如,对于一个二维平面上的曲线,我们可以将其参数化为x=f(t)和y=g(t),其中f和g是关于t的函数。
通过改变参数t的值,我们可以获得曲线上的各个点。
参数方程可以提供更具灵活性的描述方法,而且可以轻松地表达一些复杂的图形。
在实际应用中,坐标系和参数方程都具有广泛的应用。
例如,在物理学中,我们可以使用坐标系来描述质点在空间中的位置和运动。
在工程学中,坐标系可以用来定位和设计结构物。
在计算机图形学中,坐标系和参数方程可以用来描述和生成图像。
此外,坐标系和参数方程还在统计学、经济学和生物学等领域中得到广泛应用。
总之,坐标系和参数方程是描述和分析平面和空间中点和图形的重要方法。
它们提供了灵活和精确的方式来表示和研究几何图形和物体的位置和运动。
通过了解和应用这些概念,我们能够更好地理解和解决与空间相关的问题。
2024高考数学坐标系与参数方程
2024高考数学坐标系与参数方程数学一直是高考中重要的一门科目,而在数学中,坐标系与参数方程是常见的概念与应用。
本文将围绕2024年高考数学坐标系与参数方程这一题目展开讨论,并通过几个例子来加深我们对这一知识点的理解。
一、坐标系的概念与应用坐标系是数学中表示点的位置的一种方法,常见的有直角坐标系和极坐标系。
直角坐标系由x轴和y轴组成,通过确定点与坐标轴的交点来确定点的位置;而极坐标系则通过半径和极角来表示点的位置。
在解决实际问题中,坐标系有着广泛的应用。
例如,在地图上,我们可以利用坐标系确定两个城市之间的距离;在物理学中,通过坐标系可以确定物体在空间中的位置等。
因此,对坐标系的理解与应用非常重要。
二、参数方程的概念与应用参数方程是一种描述曲线、曲面等几何对象的方法。
它通过一个或多个参数的变化来表示对象上的点的坐标。
常见的参数方程有二维参数方程和三维参数方程。
在数学中,参数方程的应用非常广泛。
例如,在物理学中,我们可以通过参数方程描述质点在空间中的运动轨迹;在计算机图形学中,参数方程可以用来描述各种曲线和曲面等。
因此,对参数方程的理解与应用也是非常重要的。
三、坐标系与参数方程的联系与区别虽然坐标系和参数方程都是描述几何对象的方法,但它们之间存在一定的联系与区别。
首先,坐标系可以通过确定坐标轴和交点来确定点的位置,而参数方程则通过参数的变化来表示点的位置。
其次,坐标系通常是直角坐标系或极坐标系,而参数方程可以是二维参数方程或三维参数方程。
此外,在解决问题时,选择使用坐标系还是参数方程,取决于问题的特点和需要。
对于某些问题,坐标系可能更直观、更方便,而对于另一些问题,参数方程则可能更简洁、更易于处理。
四、案例分析为了更好地理解坐标系与参数方程的应用,我们通过几个案例进行分析。
案例一:求解直线与圆的交点已知直线的方程为y = 2x + 1,圆的方程为x^2 + y^2 = 9。
我们可以将直线和圆的方程转化为参数方程,求解它们的交点。
12-2坐标系与参数方程教学课件
2020/6/24
(2)空间点 P 的直角坐标(x,y,z)与球坐标(r,φ,θ)之 x=rsinφcosθ
间的变换关系为y=rsinφsinθ . z=rcosφ
2020/6/24
二、参数方程 1.参数方程的概念 在平面直角坐标系中,如果曲线上任意一点的坐标 x、 y 都是某个变数 t 的函数xy==gftt (*),如果对于 t 的每一 个允许值,由方程组(*)所确定的点 M(x,y)都在这条曲线 上,则方程组(*)就叫做这条曲线的参数方程,变数 t 叫做 参数.
2020/6/24
解析:由条件知点12x,3y在方程 x2+y2=1 的曲线 上,∴12x2+(3y)2=1,即曲线 C 的方程为:x42+9y2=1.
答案:x42+9y2=1
2020/6/24
点评:在坐标变换式yx′′==μλxy 中,点(x′,y′)是变 换后点的坐标,应满足变换后的曲线方程 x2+y2=1(x,y) 是变换前点的坐标,应满足变换前曲线的方程x42+9y2=1.
答案:2 或-8
2020/6/24
• (文)(2010·广东理)在极坐标系(Ρ,Θ)(0≤Θ<2Π) 中,曲线Ρ=2SINΘ与ΡCOSΘ=-1的交点的 极坐标为________.
2020/6/24
解析:由 ρ=2sinθ 与 ρcosθ=-1 得 2sinθcosθ=-1, ∴sin2θ=-1,∵0≤θ<2π 且 sinθ>0,cosθ<0, ∴θ=34π,∴ρ=2sin34π= 2. 答案:( 2,34π)
x′=λxλ>0 y′=μyμ>0
的作用下,点 P(x,y)对应到点 P′(x′,
y′),称 φ 为平面直角坐标系中的伸缩变换.
坐标系与参数方程_知识点总结
坐标系与参数方程_知识点总结一、坐标系1.直角坐标系直角坐标系是最常见的坐标系,在平面上由两个垂直的坐标轴组成,分别为x轴和y轴。
一个点在直角坐标系中的位置可以用坐标(x,y)来表示,其中x为横坐标,y为纵坐标。
2.极坐标系3.球坐标系球坐标系是一种用于描述空间点位置的坐标系统,它由径向距离、极角和方位角组成。
一个点的位置可以用有序数组(r,θ,φ)来表示,其中r为点到原点的距离,θ为点与一些固定轴的夹角,φ为点的方位角。
二、参数方程1.一维参数方程一维参数方程是指由一个参数确定的直线或曲线的方程。
例如,一个点在直线上的一维参数方程可以表示为x=f(t),其中x为点在直线上的位置,t为参数,f(t)为关于参数t的函数。
2.二维参数方程二维参数方程是指由两个参数确定的平面曲线的方程。
一个点在平面上的位置可以表示为(x(t),y(t)),其中x(t)和y(t)分别为关于参数t的函数。
二维参数方程常用于描述曲线、圆、椭圆等几何图形。
3.三维参数方程三维参数方程是指由三个参数确定的空间曲线的方程。
一个点在空间中的位置可以表示为(x(t),y(t),z(t)),其中x(t)、y(t)和z(t)分别为关于参数t的函数。
三维参数方程常用于描述空间曲线、曲面等几何图形。
三、坐标系与参数方程的关系坐标系和参数方程之间存在着密切的关系。
在直角坐标系中,一个函数的参数方程可以通过将x和y用参数表示来得到,即将x=f(t)和y=g(t)的参数方程转化为直角坐标系中的函数y=f(x)的形式。
反之,一个函数的直角坐标系方程也可以通过将x和y用参数表示来得到参数方程。
参数方程在极坐标系和球坐标系中也可以通过类似的方式转化。
总结:坐标系是描述点的位置的系统,常见的坐标系有直角坐标系、极坐标系和球坐标系。
参数方程是用参数表示的函数方程,常用于描述直线、曲线、曲面等几何图形。
坐标系和参数方程之间存在密切的关系,可以通过转化将一个方程从坐标系表示转化为参数方程,反之亦然。
完整版坐标系与参数方程知识点
完整版坐标系与参数方程知识点一、坐标系的概念坐标系是为了方便描述平面或空间中点的位置而引入的一种系统。
常见的坐标系包括直角坐标系、极坐标系和参数方程坐标系。
二、直角坐标系直角坐标系是最常见的一种坐标系。
在二维空间中,直角坐标系由两个相互垂直的坐标轴构成,分别是x轴和y轴。
点在直角坐标系中的位置可以用有序数对(x,y)表示,分别代表点在x轴和y轴上的距离。
三、极坐标系极坐标系是一种以原点为中心,以角度和半径表示点的位置的坐标系。
在极坐标系中,点的位置由有序数对(r,θ)表示,其中r代表点到原点的距离,θ代表与正x轴的夹角。
四、参数方程与轨迹参数方程是一种用参数来表示曲线上的点的坐标的方法。
一般形式的参数方程为x=f(t),y=g(t),其中t是参数,f(t)和g(t)是定义在参数域上的函数。
通过改变参数t的取值范围,可以获得曲线上的一系列点,从而绘制出整条曲线。
五、参数方程与直角坐标系的转换将直角坐标系的点(x,y)转换为参数方程的形式,可以使用以下步骤:1.将x和y分别表示为t的函数:x=f(t),y=g(t)。
2.给定t的取值范围,求出对应的x和y的取值。
将参数方程的点(x,y)转换为直角坐标系的形式,可以使用以下步骤:1.通过解参数方程的两个方程,消去t,得到一个方程只包含x和y。
2.求解得到与x和y的关系式。
六、参数方程的性质参数方程可以表示各种各样的曲线,具有以下性质:1.参数方程可以用来表示直线、圆、椭圆、双曲线等曲线。
2.参数方程可以描述曲线的形状、方向、起点和终点等信息。
3.参数方程可以通过调整参数的取值范围来绘制出曲线的其中一部分或整条曲线。
七、应用场景参数方程在数学和物理学中有广泛的应用,例如:1.研究物体的运动轨迹,包括抛体运动、行星运动等。
2.描述动态系统的变化过程,如混沌系统、非线性振动等。
3.研究曲线的特殊性质,如曲率、曲线的长度等。
八、参数方程的解析与图像通过解析参数方程,可以得到曲线的方程,从而进一步研究曲线的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与名师对话
高考总复习 ·课标版 ·A
数学(理)
考纲要求 考情分析 4.了解柱坐标系、球坐标系中 预测:2013年仍会以直线、 表示空间中点的位置的方法, 并与空间直角坐标系中表示点 圆的极坐标参数方程为载体, 的位置的方法相比较,了解它 以极坐标参数方程与普通方程 们的区别. 的互化为主要形式,考查直线 5.了解参数方程,了解参数的 与曲线位置关系等,解析几何 意义. 知识注重基本运算及方程的应 6.能选择适当的参数写出直线、 用,难度不大. 圆和椭圆的参数方程.
与名师对话
高考总复习 ·课标版 ·A
数学(理)
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
考纲要求 1.了解坐标系的作 用.了解在平面直角坐标 系伸缩变换作用下平面图 形的变化情况. 2.了解极坐标的基本 概念.会在极坐标系中用 极坐标刻画点的位置,能 进行极坐标和直角坐标的 互化. 3.能在极坐标系中给 出简单图形(如过极点的直 线、过极点或圆心在极点 的圆)表示的极坐标方程.
y=x, (2)将射线与曲线的方程化为普通方程并联立得 y=x-22,
x1+x2 5 ∴x -5x+4=0,∴ = , 2 2
2
5 5 ∴AB中点的直角坐标为2,2.
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
答案:(1) 3x+y-2=0
②当圆心位于M(a,0),半径为a: ρ=2acosθ π ③当圆心位于M(a,2),半径为a: ρ=2asinθ
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
问题探究1:平面内的点与点的直角坐标的对应关系是什 么?与点的极坐标呢?
提示:平面内的点与点的直角坐标是一一对应关系,而 与点的极坐标不是一一对应关系,当规定ρ≥0,0≤θ<2π后点 的极坐标与平面内的点就一一对应了.
π 4
与曲线
(t为参数)相交于A,B两点,则线段AB的中点的
直角坐标为______.
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
π 解析:(1)由ρcosθ-6=1,化为
3 1 2 ρcosθ+2ρsinθ=1,
3 y 将ρcosθ=x,ρsinθ=y代入上式,得 x+ =1, 2 2 即 3x+y-2=0.
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
(2)圆 以 O′(a , b) 为 圆 心 , r 为 半 径 的 圆 的 参 数 方 程 是
x=a+rcosα y=b+rsinα
,其中 α 是参数.
x=rcosα, 当圆心在(0,0)时,方程为 y=rsinα.
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
设M是平面上任一点,极点O与点M的距离|OM|叫做点M 的 极径
ρ ,记为___ ;以极轴Ox为始边,射线OM为终边的
.有序数对(ρ,θ)称为点M
∠xOM叫做点M的 极角 ,记为 θ 的极坐标,记作 M(ρ,θ) .
课前自主回顾课前自主回顾课 Nhomakorabea互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
3.简单曲线的极坐标方程 (1)直线的极坐标方程 若直线过点M(ρ0,θ0),且极轴到此直线的角为α,则它的 方程为 ρsin(θ-α)=ρ0sin(θ0-α) .
几个特殊位置的直线的极坐标方程 ①直线过极点: θ=θ0 和 θ=π-θ
考情分析 从近三年的高考试题来看,极坐标 部分重点考查极坐标与直角坐标的互化, 尤其是涉及直线与圆的极坐标方程问题, 同时考查直线与圆的位置关系.如2012 年陕西卷15,安徽卷13,江苏卷21 等.参数方程部分多考查直线与圆的参 数方程及应用.如2012年广东卷14,北 京卷9等,属容易题. 单独考查参数方程和极坐标的题目, 一般为选择、填空题形式,分值4~5 分.若综合考查参数方程和极坐标的知 识,则通常以解答题形式出现,如2012 年课标卷23,辽宁卷23等,分值10分.
1 2 2ρsinθ- 2 ρsinθ=1 ∴x- 2y-2=0
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
【答案】 (1)x2+y2-4x-2y=0(答(x-2)2+(y-1)2=5 也对) 1 (2) ,x- 2y-2=0 π sin -θ 6
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
(对应学生用书P244)
极坐标与直角坐标的互化 (1)互化的前提条件: ①极点与原点重合; ②极轴与x轴正方向重合; ③取相同的单位长度.
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
(2)若把直角坐标化为极坐标,求极角θ时,应注意判断点 P所在的象限(即角θ的终边的位置),以便正确地求出角θ.利用 两种坐标的互化,可以把不熟悉的问题转化为熟悉的问题.
与名师对话
高考总复习 ·课标版 ·A
数学(理)
高考中该部分的试题是综合性的,题目中 既有极坐标的问题,也有参数方程的问题,考生既可以通过 极坐标解决,也可以通过直角坐标解决,但大多数情况下, 把极坐标问题转化为直角坐标问题,把参数方程转化为普通 方程更有利于在一个熟悉的环境下解决问题.要重视把极坐 标问题化为直角坐标问题,把参数方程化为普通方程的思想 意识的形成,这样可以减少由于对极坐标和参数方程理解不 到位造成的错误.
高考总复习 ·课标版 ·A
x=x +tcosα 0 y=y0+tsinα
数学(理)
问题探究2:在直线的参数方程
(t为参数)
中,t的几何意义是什么?如何利用t的几何意义求直线上任两 点P1、P2的距离?
提示:t 表示在直线上过定点 P0(x0,y0)与直线上的任一点 P(x,y)构成的有向线段 P0P 的数量. |P1P2 |=|t1-t2| = t1+t22-4t1t2.
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
3 (2)法一:由点斜式得直线的直角坐标方程为y= 3 (x-
x=ρcosθ, 2).由 y=ρsinθ 1 得ρ cosθ- 2 3 sinθ=1, 2
1 即ρ= . π sin -θ 6
课前自主回顾
课堂互动探究
课时作业
与名师对话
2.坐标系 (1)极坐标系的概念
高考总复习 ·课标版 ·A
数学(理)
在平面上取一个定点 O 叫做 极点 ;自点 O 引一条射线 Ox 叫做 极轴 ;再选定一个长度单位、角度单位(通常取弧 度)及其正方向(通常取逆时针方向为正方向), 这样就建立了一 个极坐标系.
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
5.几种常见曲线的参数方程 (1)直线 经过点 P0(x0,y0),倾斜角为 α 的直线的参数方程是
x=x +tcosα 0 y=y0+tsinα
(t 为参数).
课前自主回顾
课堂互动探究
课时作业
与名师对话
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
(1)(2011年江西)若曲线的极坐标方程为ρ=2sinθ +4cosθ,以极点为原点,极轴为x轴正半轴建立直角坐标 系,则该曲线的直角坐标方程为________.
(2)(2012年上海,改编)如图,在极坐标系中,过点M(2,0) π 的直线l与极轴的夹角α= .若将l的极坐标方程写成ρ=f(θ)的 6 形式,则f(θ)=________.在直角坐标系下的方程为________.
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
(对应学生用书 P244)
1.平面直角坐标系中的伸缩变换 设点P(x,y)是平面直角坐标系中的任意一点,在变换
x′=λxλ>0 φ: y′=μyμ>0
的作用下,
点P(x,y)对应到点P′(x′,y′),称φ为平面直角坐标 系中的坐标伸缩变换,简称伸缩变换.
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
x2 y2 问题探究3:对于椭圆 2 + 2 =1(a>b>0)的参数方程 a b
x=acosθ, y=bsinθ
(θ为参数),θ是椭圆上的点与原点连线的倾斜角
吗?
提示:不是,如图,θ 是离心角.
课前自主回顾
课堂互动探究
课时作业
5 5 (2)2,2
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(理)
(3)椭圆 中心在原点,坐标轴为对称轴的椭圆的参数方程有以下 两种情况:
x=acosφ x2 y2 椭圆 2 + 2 =1(a>b>0)的参数方程是 ,其中φ a b y=bsinφ
是参数.
课前自主回顾
课堂互动探究
课前自主回顾