分式方程应用题
分式方程应用题__及答案

分式应用题1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。
问:乙单独整理需多少分钟完工?2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。
已知这个人骑自行车的速度是步行速度的4倍。
求步行的速度和骑自行车的速度。
4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。
⑴求这种纪念品4月份的销售价格。
⑵若4月份销售这种纪念品获利800元,问:5月份销售这种纪念品获利多少元?6、王明和李刚各自加工15个零件,王明每小时比李刚多加工1个,结果比李刚少用半小时完成任务,问:两人每小时各加工多少个零件?7、某一项工程在招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队款1.5万元,乙工程队款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案一:甲队单独完成这项工程刚好如期完成;方案二:乙队单独完成这项工程要比规定日期多用5天;方案三:若甲、乙两队合做4天,余下的工程由乙队单独完成,也正好如期完成。
试问:在不耽误工期的情况下,你觉得哪一种施工方案最节省工程款?请说明理由。
8、一个分数的分母比分子大7,如果把此分数的分子加17,分母减4,所得新分数是原分数的倒数,求原分数。
分式方程应用题(答案)

分式应用题1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。
问:乙单独整理需多少分钟完工?2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。
已知这个人骑自行车的速度是步行速度的4倍。
求步行的速度和骑自行车的速度。
4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。
⑴求这种纪念品4月份的销售价格。
⑵若4月份销售这种纪念品获利800元,问:5月份销售这种纪念品获利多少元?6、王明和李刚各自加工15个零件,王明每小时比李刚多加工1个,结果比李刚少用半小时完成任务,问:两人每小时各加工多少个零件?7、某一项工程在招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队款1.5万元,乙工程队款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案一:甲队单独完成这项工程刚好如期完成;方案二:乙队单独完成这项工程要比规定日期多用5天;方案三:若甲、乙两队合做4天,余下的工程由乙队单独完成,也正好如期完成。
试问:在不耽误工期的情况下,你觉得哪一种施工方案最节省工程款?请说明理由。
8、一个分数的分母比分子大7,如果把此分数的分子加17,分母减4,所得新分数是原分数的倒数,求原分数。
分式方程应用题训练(有答案)

分式方程应用题训练(有答案)1.(2018•昆明)甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A. =B. =C. =D. =2.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()A.﹣=100 B.﹣=100C.﹣=100 D.﹣=1003.(2018•黑龙江)已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠24(2018•衡阳)衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()A.﹣=10 B.﹣=10C.﹣=10 D. +=105.若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为()A.﹣3 B.﹣2 C.1 D.26.(2018•临沂)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?设今年1﹣5月份每辆车的销售价格为x万元.根据题意,列方程正确的是()A. =B. =C. =D. =7.(2018•黔南州)施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.=2 B.=2C.=2 D.=28(2018•淄博)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.9.某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是元.10(2018•齐齐哈尔)若关于x的方程+=无解,则m的值为.11.(2018•嘉兴)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检测x个,则根据题意,可列出方程:1至11题答案:1A 2B 3.D 4A 5C 6A 7A 8C 9.410.﹣1或5或﹣11. =×(1﹣10%)行程12.(2018•徐州)从徐州到南京可乘列车A与列车B,已知徐州至南京里程约为350km,A与B车的平均速度之比为10:7,A车的行驶时间比B车的少1h,那么两车的平均速度分别为多少?解:设A车的平均速度为10xkm/h,则B车的平均速度为7xkm/h,根据题意得:﹣=1,解得:x=15,经检验,x=15是分式方程的根,∴10x=150,7x=105.答:A车的平均速度为150km/h,B车的平均速度为105km/h.行程13. (2018•东营)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.求两人的速度.13.解:设小明的速度为3x米/分,则小刚的速度为4x米/分,根据题意得:﹣=4,解得:x=25,经检验,x=25是分式方程的根,且符合题意,∴3x=75,4x=100.答:小明的速度是75米/分,小刚的速度是100米/行程14.某校组织学生去9km外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达.己知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少?14.解:设自行车的速度为xkm/h,则公共汽车的速度为3xkm/h,根据题意得:﹣=,解得:x=12,经检验,x=12是原分式方程的解,∴3x=36.答:自行车的速度是12km/h,公共汽车的速度是36km/h.行程15.(2018•山西)2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.15解:设“复兴号”G92次列车从太原南到北京西的行驶时间需要x小时,则“和谐号”列车的行驶时间需要x小时,根据题意得: =+40,解得:x=,经检验,x=是原分式方程的解,∴x+=.答:乘坐“复兴号”G92次列车从太原南到北京西需要小时.行程.16.“2017年张学友演唱会”于6月3日在我市观山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.解:(1)设小张跑步的平均速度为x米/分钟,则小张骑车的平均速度为1.5x米/分钟,根据题意得:﹣=4,解得:x=210,经检验,x=210是原方程组的解.答:小张跑步的平均速度为210米/分钟.(2)小张跑步到家所需时间为2520÷210=12(分钟),小张骑车所用时间为12﹣4=8(分钟),小张从开始跑步回家到赶回奥体中心所需时间为12+8+5=25(分钟),∵25>23,∴小张不能在演唱会开始前赶到奥体中心.17.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm,AC=5cm.点D在AC上,AD=1,点P 从点A出发,沿AB匀速运动;点Q从点C出发,沿C→B→A→C的路径匀速运动.两点同时出发,在B点处首次相遇后,点P的运动速度每秒提高了2cm,并沿B→C→A的路径匀速运动;点Q保持速度不变,并继续沿原路径匀速运动,两点在D点处再次相遇后停止运动,设点P原来的速度为xcm/s.(1)点Q的速度为x cm/s(用含x的代数式表示).(2)求点P原来的速度.解:(1)设点Q的速度为ycm/s,由题意得3÷x=4÷y,∴y=x,故答案为:x;CD=5﹣1=4,在B点处首次相遇后,点P的运动速度为(x+2)cm/s,由题意得=,解得:x=(cm/s),答:点P原来的速度为cm/s.任务.18. (2018•桂林)某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天解:(1)设二号施工队单独施工需要x天,根据题意得: +=1,解得:x=60,经检验,x=60是原分式方程的解.答:若由二号施工队单独施工,完成整个工期需要60天.(2)根据题意得:1÷(+)=24(天).答:若由一、二号施工队同时进场施工,完成整个工程需要24天.任务19.(2018•岳阳)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?解:设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据题意得:﹣=11,解得:x=500,经检验,x=500是原方程的解,∴1.2x=600.答:实际平均每天施工600平方米.任务20.(2018•威海)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,根据题意得:﹣=+,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴(1+)x=80.答:软件升级后每小时生产80个零件利润21.(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3•=,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m﹣8)+600(m﹣10)≥1200,解得:m≥11.答:销售单价至少为11元.利润.22.(2018•宁波)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?解:(1)设甲种商品的每件进价为x元,则乙种商品的每件进价为(x+8)元.根据题意,得, =,解得 x=40.经检验,x=40是原方程的解.答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;(2)甲乙两种商品的销售量为=50.设甲种商品按原销售单价销售a件,则(60﹣40)a+(60×0.7﹣40)(50﹣a)+(88﹣48)×50≥2460,解得 a≥20.答:甲种商品按原销售单价至少销售20件.与方程结合23.(2018•广东)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得: =,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.与不等式结合24.(2018•贵阳)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?解:(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,依题意=,解得:x=30.经检验,x=30是原方程的解,x+10=30+10=40.答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元.(2)设他们可购买y棵乙种树苗,依题意有30×(1﹣10%)(50﹣y)+40y≤1500,解得y≤11,∵y为整数,∴y最大为11.答:他们最多可购买11棵乙种树苗.。
分式方程的应用题

分式方程应用题(一)1、一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为解:设江水的流速为V千米/小时。
2、八年级学生去距学校10千米的博物馆参观,一部分同学骑自行车先走,过了20分后,其余同学乘汽车出发,结果他们同时到达,已知汽车的速度是骑车解:设骑车同学的速度为V千米/小时。
3、A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30kg,A型机器人搬运900kg所用时间与B型机器人搬运600kg所用4、甲、乙两人分别从距目的地6千米和10千米的两地同时出发,甲、乙的速度5、改良玉米品种后,迎春村玉米平均每公顷增加产量a吨,原来产m吨玉米的一块土地,现在的总产量增加了20吨。
原来和现在玉米的平均每公顷产量各6、两个小组同时开始攀登一座450米高的山,第一组的攀登速度是第二组的1.2倍,他们比第二组早15分到达顶峰。
两个小组的攀登速度各是多少?如果山高为h米,第一组的攀登速度是第二组的a倍,并比第二组早t分到达顶峰,分式方程应用题二1、甲从A到B地要走m小时,乙从B地到A地要走n小时,甲、乙两人同时从A、B两地相向而行,二人相遇所需时间为()甲每小时走乙每小时走二人相遇所需时间为2、一项工程要在限期内完成,如果第一组施工人员单独做,恰好按规定日期完成;如果第二组施工人员单独做,需要超过规定日期4天才能完成,如果两组合作3天后,剩下的工程由第二组单独做,正好在规定日期完成。
问:规定日期是解:设规定日期是X天3、甲、乙两个工程队共同完成一项工程,乙队先单独做1天后,再由两队合作2天就完成了全部工程,已知甲队单独完成工程所需的天数是乙队单独完成所需天数的23,求甲、乙两队单独完成各需多少天?4、两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,哪个队的5、张明4小时清点完一批图书的一半,李强加入清点另一半图书的工作,两人7、在社会主义新农村建设中,某乡镇决定对一段公路进行改造。
分式方程应用题总汇及答案

分式方程应用题总汇及答案1、A、B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,小汽车比公共汽车迟20分钟到达B地,求两车的速度。
【提示】设共交车速度为x,小汽车速度为3x,列方程得:80/(3x) +3=80/x +20/602、为加快西部大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程。
如果甲工程队单独施工,那么刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,那么刚好如期完成。
问原来规定修好这条公路需多长时间?【提示】设时间为x个月,列方程得:[1/x+1/(x+6)]*4+(x-4)/(x+6)=13、某工人原方案在规定时间恰好加工1500个零件,改良了工具和操作方法后,工作效率提高为原来的2倍,因此加工1500个零件时,比原方案提前了五小时,问原方案每小时加工多少个零件?【提示】设原方案每小时加工x个零件,列方程得:1500/2x +5=1500/x4、甲、乙两组学生去距学校4.5千米的敬老院清扫卫生,甲组学生步行出发半小时后,乙组学生骑自行车开场出发,结果两组学生同时到达敬老院,如果步行的速度是骑自行车的速度的1/3,求步行和骑自行车的速度各是多少?【提示】设步行的速度是每小时x千米,那么4.5/3x +0.5=4.5/x5、某质检部门抽取甲、乙两个一样数量的产品进展质量检测,结果甲厂有48件合格产品,乙厂有45件合格产品,甲厂合格率比乙厂高5%,求抽取检验的产品数量及甲厂的合格率。
【提示】设抽取检验的产品数量为x,那么(48/x -45/x)*100%=5%6、某车间加工1200个零件后,采用了新工艺,工效提高50%,这样加工同样多的零件就少用10小时,采用新工艺前后每小时分别加工多少个零件?7、A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,水流速度为4千米/时,假设设该轮船在静水中的速度为x 千米/时,那么可列方程求解。
分式方程应用题专题

分式方程应用题专题分式方程应用题专题专题一、营销类应用性问题1、某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料每千克少3元,比乙种原料每千克多1元。
求混合后的单价每千克是多少元?2、A、B两位采购员同去一家饲料公司购买同一种饲料两次,两次饲料的价格有变化,但两位采购员的购货方式不同。
其中,采购员A每次购买1000千克,采购员B每次用去800元,而不管购买饲料多少。
问选用谁的购货方式合算?3、某商场销售某种商品,一月份销售了若干件,共获得利润元;二月份把这种商品的单价降低了0.4元,但是销售量比一月份增加了5000件,从而获得利润比一月份多2000元。
调价前每件商品的利润是多少元?专题二、工程类应用性问题1、甲乙两个工程队合作一项工程,两队合作2天后,由乙队单独做1天就完成了全部工程。
已知乙队单独做所需天数是甲队单独做所需天数的倍数。
求甲乙单独做各需多少天?2、甲、乙两个学生分别向计算机输入1500个汉字,乙的速度是甲的3倍,因此比甲少用20分钟完成任务,他们平均每分钟输入汉字多少个?3、某农场原计划在若干天内收割小麦960公顷,但实际每天多收割40公顷,结果提前4天完成任务。
试求原计划一天的工作量及原计划的天数。
4、某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元;乙、丙两队合做10天完成,厂家需付乙、丙两队共9500元;甲、丙两队合做5天完成全部工程的需付甲、丙两队共5500元。
⑴求甲、乙、丙各队单独完成全部工程各需多少天?⑵若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由。
5、某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成。
现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成。
问规定日期是多少天?6、甲乙两人做某种机器零件。
已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等。
分式方程应用题及答案
分式方程应用题及答案分式方程应用题及答案一、A、B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程求解。
【提示】48/(x+4) +48/(x-4)=9二、一个分数的分子比分母小6,如果分子分母都加1,则这个分数等于,求这个分数.【提示】设分子为x,则(x+1)/(x+6+1)=1/4三、某工程,A工程队单独做40天完成,若B工程队单独做30天后,A、B两工程队再合作20天完成.(1)求B工程队单独做需要多少天完成?(2)将工程分两部分,A做其中一部分用了x天,B做另一部分用了y天,其中x、y均为正整数,且x<15,y<70,求x、y.【提示】(1)设乙工程队单独做需要x天完成,则(1/40 +1/x)*20+ 30/x=1 ,得x=100(2)依据题意得:x/40+y/100=1 并结合“x、y均为正整数,且x<15,y<70”建立不等式组试求x,y的值,其中x有14可取,得相应y值65。
四、小红、小明两组学生去距学校4.5千米的敬老院打扫卫生,小红组学生步行出发半小时后,小明组学生骑自行车开始出发,结果两组学生同时到达敬老院,如果步行的速度是骑自行车的速度的1/3,求步行和骑自行车的速度各是多少?【提示】设步行的速度是每小时x千米,则4.5/3x +0.5=4.5/x五、某质检部门抽取甲、乙两个相同数量的`产品进行质量检测,结果甲厂有48件合格产品,乙厂有45件合格产品,甲厂合格率比乙厂高5%,求抽取检验的产品数量及甲厂的合格率。
【提示】设抽取检验的产品数量为x,则(48/x -45/x)*100%=5%六、为加快西部大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程。
如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则刚好如期完成。
分式方程应用题专练(含答案)
分式方程应用题专题1、温(州)--福(州)铁路全长298千米•将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时•已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).2、某商店在端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要几天。
5、炎炎夏日,甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台•设乙队每天安装x台,可列方程:6、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.300本图书所用的时间相7、有两块面积相同的试验田,分别收获蔬菜900kg和1500kg,已知第一块试验田每亩收获蔬菜比第二块少300kg,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg,根据题意,可得方程&进入防汛期后,某地对河堤进行了加固•该地驻军在河堤加固的工程中出色完成了任务•这是记者与驻军工程指挥官的一段对话:丫你们是用9天完成4800 米I长的大坝加固任务的?一亠我们加固600米后,米用新的加固模式,这样每天加固长度是原来的2倍.通过这段对话,请你求出该地驻军原来每天加固的米数9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的£求甲、乙两个施工队单独5 完成此项工程各需多少天?10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m,则得方程为.11、某超级市场销售一种计算器,每个售价48元•后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5% •这种计算器原来每个进价是多少元?12、某市在旧城改造过程中,需要整修一段全长2400m的道路•为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度. 若设原计划每小时修x m, 则根据题意可得方程13、今年4月18 日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便. 例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用17小时.已知第六次提速后比第五次8提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?14、某书店老板去图书批发市场购买某种图书. 第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?15、甲、乙两火车站相距1280千米,采用和谐”号动车组提速后,列车行驶速度是原来速度的 3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?17、A、B两地相距18公里,甲工程队要在A、B两地间铺设一条输送天然气管道,乙工程队要在A、B两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是多少.分式方程应用题专题1、温(州)--福(州)铁路全长298千米•将于2009年6月通车,通车后,预计从福州直达温州的 火车行驶时间比目前高速公路上汽车的行驶时间缩短 2小时.已知福州至温州的高速公路长 331 千米,火车的设计时速是现行高速公路上汽车行驶时速的 2倍.求通车后火车从福州直达温州所 用的时间(结果精确到0.01小时).解:设通车后火车从福州直达温州所用的时间为 x 小时.解这个方程,得x =空. 91经检验x=空是原方程的解.91 912、某商店在 端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加 20%作为售价,售出了 50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共 盈利350元,求每盒粽子的进价.解:设每盒粽子的进价为x 元,由题意得240020%xX50 - ( 2400 -50) >5-350x化简得 x 2_10x — 1200=0解方程得X 1 =40, X 2二30 (不合题意舍去)经检验,X1=40,X2=-30都是原方程的解, 但X2 = _30不合题意,舍去.答:每盒粽子的进价为40元.4、 甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作 2天完成总量的三分之一,这时增加了乙队,两队又共同工作了 1天,总量全部完成.那么乙队单独完成总量需要( D )A. 6天B. 4天C. 3天D. 2天5、 炎炎夏日,甲安装队为 A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工 且恰好同时完工,甲队比乙队每天多安装 2台.设乙队每天安装x 台,根据题意,下面所列方程 中正确的是(D )A 66 _ 60B 66 _ 60 。
分式方程应用题专项练习50题
分式方程应用题专项练习1、老城街道改建工程指挥部,要对某路段工程进展招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的32;假设由甲队先做10天,剩下的工程再由甲、乙两队合作30天可以完成.;求甲、乙两队单独完成这项工程各需多少天?2.某工厂为了完成供货合同,决定在一定天数内生产原种零件400个,由于对原有设备进展了技术改良,提高了生产效率,每天比原方案增产25%,结果提前10天完成了任务.原方案每天生产多少个零件3、某项工程如果甲单独做,刚好在规定的日期内宛成,如果乙单独做,那么要超出规定日期3天,现在先由甲、乙两人合做两天后,剩下的任务由乙完成,也刚好能按做时完式,问规定的日期是几天?4、 某工程由甲、乙两队合做6天完成,厂家需会甲、乙两队共8700元;乙、丙两队合做10天完 成,厂家需付乙、丙队共9500元;甲、丙两队合做5天完成全部工程的32,厂家需付甲、丙两队共5500元。
(1) 求甲、乙、丙各队单独完成全部工程各需多少天?(2) 假设工期要求不超过15天完成全部工程,问:可由哪个单独承包此项工程花钱最少?请说明理由。
5.一个水池有甲乙两个进水管,甲管注满水池比乙管快4小时,如果单独放甲管5小时,再单独开放乙管6小时,就可以注满水池的一半,求单独开放一个水管,注满水池各需多长时间?6、轮船顺水航行80千米所需要的时间和逆水航行60千米所需要的时间一样,水流的速度是3千米/时,求轮船在静水中的速度。
7.一列客车长200米一列货车长280米,在平行轨道上相向而行,从车头相遇到车尾相离一共经过8秒钟.已知客车与货车的速度之比为5∶3.求两车的速度.8、如图,小明家、王教师家、学校在同一条路上,小明家到王教师家的路程为3km ,王教师家到学校的路程为0.5km ,由于小明的父母战斗在抗“非典〞第一线,为了使他能按时到校,王教师每天骑自行车接小明上学.王教师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20min ,问王教师的步行速度及骑自行车的速度各是多少9、一小船由A 港到B 顺流航行需6小时,由B 港到A 港逆流航行需8小时,小船从早晨6时由A 港到B 港时,发现一救生圈在途中掉落水中,立即返航,2小时后找到救生圈。
八年级分式方程应用专项训练(含答案)
1.(2021八上·巨野期中)中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.某茶店用4000元购进了A种茶叶若干盒,用8400元购进了B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍,A,B两种茶叶每盒进价分别为多少元?2.(2021八上·肥城期中)为了治理污水,需要铺设一段全长为3000米的污水排放管道,铺设1200米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?3.(2021八上·新化期中)轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速度为2千米/小时,求船在静水中的速度4.(2021八上·新化期中)A,B 两种型号机器人搬运原料. 已知A 型机器人比B 型机器人每小时多搬运10kg,且A 型机器人搬运100kg 所用时间与B 型机器人搬运80kg 所用时间相等,求这两种机器人每小时分别搬运多少原料5.(2021九上·吉林月考)某服装厂准备加工260套运动服,在加工了60套后,采用新技术,使每天的工作效率是原来的2倍,结果共用了8天完成,求该厂原来每天加工多少套运动服.6.(2021·徐州)某网店开展促销活动,其商品一律按8折销售,促销期间用400元在该网店购得某商品的数量较打折前多出2件.问:该商品打折前每件多少元?7.(2021·永州)永州市某村经济合作社在乡村振兴工作队的指导下,根据市场需求,计划在2022年将30亩土地全部用于种植A、B两种经济作物.预计B种经济作物亩产值比A种经济作物亩产值多2万元,为实现2022年A种经济作物年总产值20万元,B种经济作物年总产值30万元的目标,问:2022年A、B两种经济作物应各种植多少亩?8.(2021·常州)为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20吨水可以比原来多用5天,该景点在设施改造后平均每天用水多少吨?9.(2021八下·丹徒期末)列方程解应用题甲、乙两人加工同一种服装,乙每天比甲多加工一件,乙加工服装24件所用的时间与甲加工服装20件所用时间相同,求甲每天加工服装多少件.10.(2021八下·江都期末)八年级(1)班开展“诵读经典,光亮人生”读书活动,小智和小慧同学读了同一本480页的名著.小智每天读的页数是小慧每天读的页数的1.2倍,小慧读完这本书比小智多用4天.求小慧每天读这本名著的页数.11.(2021八下·姑苏期末)6月中下旬正是苏州东山特色水果——“乌紫杨梅”成熟的时候.某水果店第一次用1080元购进一批乌紫杨梅,由于销售情况良好,该店又用2400元购进一批乌紫杨梅,所购数量是第一次购进数量的2倍,但进货价每千克涨了4元.问:第一次所购乌紫杨梅的进货价是每千克多少元?12.(2021八下·鼓楼期末)某中学八年级学生去距学校10km的汤山园博园参观,一部分学生骑自行车先后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求走,过了13h骑车学生的速度.13.(2021八下·相城期末)历下区某学校组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90km,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,结果同时到达基地.求大巴车与小车的平均速度各是多少?14.(2021七下·当涂期末)某超市有线上和线下两种销售方式,经统计该超市苹果2021年5月份线上销售额为3000元,线下销售额为9000元,线下销售量比线上3倍少300千克,已知线下销售单价是线上销售单价的1.2倍,超市购入苹果单价为4元/千克,5月份该超市线上线下销售苹果的总利润为多少元?15.(2021八下·保山期末)计划对社区内的下水道进行升级改造,该工程若由甲工程队单独施工,则恰好在规定时间内完成;若由乙工程队单独施工,则完成的工程所需的天数是规定天数的1.5倍.该工程最后由甲、乙两个工程队先合作施工6天后,再由甲工程队单独施工4天后全部完成,这项工程的规定天数是多少天?16.(2021八下·双阳期末)某校八年二班手工制作小组成员小丽、小影两位同学同时为校文化艺术节制作彩旗,已知小丽比小影每小时多做2面彩旗,小丽做40面彩旗与小影做30面彩旗所用时间相等,问小影每小时做多少面彩旗?17.(2021八下·姜堰期末)在“慈善一日捐”活动中,甲、乙两校教师各捐款30000元,若乙校教师比甲校教师人均多捐20元,给出如下三个信息:①甲校教师的人数比乙校的教师人数多20%;②甲、乙两校教师人数之比为6:5;③乙校比甲校教师人均捐款多20%.请从以上三个信息中选择一个作为条件,求甲、乙两校教师的人数各有多少人?你选择的条件是▲(填序号),并根据你选择的条件给出求解过程.18.(2021八下·南京期末)为了改善生态环境,防止水土流失,某村计划在荒坡上种树1080棵.由于青年志愿者支援,实际每天种树的棵数比原计划每天多50%,结果提前6天完成任务.原计划每天种树多少棵?19.(2021八下·洪泽期末)某工程队准备修建一条长1200米的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%结果提前2天完成任务.原计划每天修建道路多少米?20.(2021八下·徐汇期末)为响应国家号召,全体公民接种疫苗,提高对“新冠”病毒的免疫功能.现某大型社区有6000人需要接种疫苗,为了尽快完成该项任务,防疫部门除固定接种点外还增加了一辆流动疫苗接种车,实际每日接种人数比原计划多了250人,结果提前了2天完成全部接种任务.求原计划每天接种人数是多少?答案解析部分一、解答题1.【答案】解:设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元.依题意得:84001.4x−4000x=10,解得:x=200,经检验,x=200是原方程的解,目符合题意.1.4x=280答:A种茶叶每盒进价为200元,B种茶叶每盒进价为280元.【解析】【分析】设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x 4000x=10求解即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式方程应用题(总9页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除分式方程应用题1.工程问题1.工作量=工作效率×工作时间,工作效率=工作量工作时间,工作时间=工作量工作效率2.完成某项任务的各工作量的和=总工作量=12.营销问题1.商品利润=商品售价一商品成本价2.商品利润率=商品利润商品成本价×100%3.商品销售额=商品销售价×商品销售量4.商品的销售利润=(销售价一成本价)×销售量3.行程问题1.路程=速度×时间,速度=路程时间,时间=路程速度;2.在航行问题中,其中数量关系是(同样适用于航空):顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度3.两车相遇问题,其中数量关系是:两车相向:车头车尾相错时间=甲车长+乙车长速度和两车同向:车头车尾相错时间=甲车长+乙车长速度差(速度差=较大车速减较小车速)【例】某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料每少3元,比乙种原料每多1元,问混合后的单价每是多少元?总结升华:营销类应用性问题,涉及进货价、售货价、利润率、单价、混合价、赢利、亏损等概念,要结合实际问题对它们表述的意义有所了解.同时,要掌握好基本公式,巧妙建立关系式.随着市场经济体制的建立,这类问题具有较强的时代气息,因而成为中考常考的热点问题.【例】某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成.现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成,问规定日期是多少天?【变式2】今年某大学在招生录取时,为了防止数据输入出错,2640名学生的成绩数据分别由两位教师向计算机输入一遍,然后让计算机比较两人的输入是否一致.已知教师甲的输入速度是教师乙的2倍,结果甲比乙少用2小时输完.问这两位教师每分钟各能输入多少名学生的成绩?【例】甲、乙两地相距828km,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的倍.直达快车比普通快车晚出发2h,比普通快车早4h到达乙地,求两车的平均速度.思路点拨:这是一道实际生活中的行程应用题,基本量是路程、速度和时间,基本关系是路程=速度×时间,应根据题意,找出追击问题中的等量关系.总结升华:列分式方程与列整式方程一样,注意找出应用题中数量间的相等关系,设好未知数,列出方程.不同之处是:所列方程是分式方程,最后进行检验,既要检验其是否为所列方程的解,还要检验是否符合题意,即满足实际意义.举一反三:【变式1】一队学生去校外参观.他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍.若骑车的速度是队伍行进速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?【变式2】农机厂职工到距工厂15千米的生产队检修农机,一部分人骑自行车先走,40分钟后,其余的人乘汽车出发,结果他们同时到达,已知汽车的速度是自行车的3倍,求两车的速度..【变式3】轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速度为2千米/时,求船在静水中的速度..实战练习1、某校学生进行急行军训练,预计行60千米的路程在下午5时到达。
后来由于把速度加快1/5,结果于下午4时到达。
求原计划行军速度。
2、甲、乙两人分别从距目的地6千米和10千米的两地同时出发,甲乙两人的速度比是3︰4,结果甲比乙提前20分钟到达目的地。
求甲、乙的速度。
3、某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑自行车行36千米所用的时间相等。
求他步行40千米用多少小时?4、甲乙两辆汽车同时分别从A、B两城沿同一条高速公路驶向C城.已知A、C两城的距离为450千米,B、C两城的距离为400千米,甲车比乙车的速度快10千米/时,结果两辆车同时到达C城.求两车的速度.5、某校招生时, 2640名学生的成绩数据分别由两位程序操作员各向计算机输入一遍,已知甲的输入速度是乙的2倍,结果甲比乙少用2小时输完.问这两个操作员每分钟各能输入多少名学生的成绩?6、某校学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,走了20分钟后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是汽车同学速度的2倍,求骑自行车同学的速度.7、两个工程队共同参与一项筑路工程,甲队单独施工1个月完成工程的三分之一这时增加乙队,两队又共同工作了半个月,总工程可以全部完成,哪个队的施工速度快?8、某班学生到距学校12千米的烈士陵园扫墓,一部分人骑自行车先行,经时后,其余的人乘汽车出发,结果他们同时到达。
已知汽车的速度是自行车的3倍,求自行车和汽车的速度.9、甲、乙二人同时从张庄出发,步行15千米到李庄。
甲比乙每小时多走1千米,结果比乙早到半小时。
二人每小时各走多少千米?10、甲、乙二人做某种机器零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,求甲乙每小时各做多少个11、行程问题:甲、乙二人乘不同的交通工具行进,甲每小行比乙每小时多行6千米,且甲走90千米的时间与乙走60千米所用的时间的相同,求甲乙二人的速度12、一般问题:商店里有甲、乙两中笔,甲笔的单价比乙贵6元,90元买甲种笔与60元买乙种笔的支数相等,求两种笔的单价。
13、面积问题:甲乙两个矩形的面积分别是90cm2和60cm2它们的宽相等,甲的长比乙的长6cm,分别求两个矩形的长和宽14、浓度问题:甲乙两种溶液,甲的浓度比乙的浓度高6%,若90克甲种溶液与60克乙种溶液所含溶液相同。
求甲乙两种溶液的浓度。
15、某超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了元,购进苹果数量是试销时的2倍.(1)试销时该品种苹果的进货价是每千克多少元?(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70﹪)售完,那么超市在这两次苹果销售中共盈利多少元?16、在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱还是由甲乙两队全程合作完成该工程省钱17、面对全球金融危机的挑战,我国政府毅然启动内需,改善民生。
国务院决定从2009年2月1日起,“家电下乡”在全国范围内实施,农民购买人选产品,政府按原价购买总额的13%给予补贴返还。
某村委会组织部分农民到商场购买人选的同一型号的冰箱、电视机两种家电,已知购买冰箱的数量是电视机的2倍,且按原价购买冰箱总额为40000元、电视机总额为15000元。
根据“家电下乡”优惠政策,每台冰箱补贴返还的金额比每台电视机补贴返还的金额多65元,求冰箱、电视机各购买多少台?x项目家电种类购买数量(台)原价购买总额(元)政府补贴返还比例补贴返还总金额(元)每台补贴返还金额(元)冰箱40 00013%电视机x15 00013%(2)列出方程(组)并解答.18、由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工程所需时间比是3︰2,两队合做6天可以完成.(1)求两队单独完成此项工程各需多少天?(2)此项工程由甲、乙两队合做6天完成任务后,学校付给他们20000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各得到多少元?19、一个工厂接了一个订单,加工生产720t产品,预计每天生产48t,就能按期交货,后来,由于市场行情变化,订货方要求提前5天完成,问:工厂应每天生产多少吨?20、近几年高速公路建设有较大的发展,有力地促进了经济建设.欲修建的某高速公路要招标.现有甲、乙两个工程队,若甲、乙两队合作,24天可以完成,费用为120万元;若甲单独做20天后剩下的工程由乙做,还需40天才能完成,这样所需费用110万元,问:(1)甲、乙两队单独完成此项工程,各需多少天(2)甲、乙两队单独完成此项工程,各需多少万元21、周末某班组织登山活动,同学们分甲、乙两组从山脚下沿着一条道路同时向山顶进发.设甲、乙两组行进同一路程所用时间之比为2︰3.(1)直接写出甲、乙两组行进速度之比.(2)当甲组到达山顶时,乙组行进到山腰A处,且A处离山顶的路程尚有,试求山脚到山顶的路程.(3)在第(2)题所述内容(除最后的问句外)的基础上,设乙组从A处继续登山,甲组到达山顶后休息片刻,再从原路下山,并且在山腰B处与乙组相遇,请你先根据以上情景提出一个相应的间题,再给予解答.(要求:①问题的提出不得再增添其他条件;②问题的解决必须利用上述情景提供的所有己知条件).22、一名同学计划步行30千米参观博物馆,因情况变化改骑自行车,且骑车的速度是步行速度的倍,才能按要求提前2小时到达,求这位同学骑自行车的速度。
列分式方程解应用题:1、某车间加工1200个零件后,采用了新工艺,功效是原来的倍,这样加工同样多就少用10小时。
采用新工艺前、后每时分别加工多少个零件?2、为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。
已知第一次捐款总款为4800元,第二次捐款人数为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。
如果设第一次捐款人数为x人,那么x满足怎样的方程?3、甲、乙两地相距360km,新修的高速公路开通后,在甲、乙两地间行驶的长途客运车平均车速提高了50%,而从甲地到乙地的时间缩短了2小时,试确定原来的平均车速。
4、某工程队承接了3000米的修路任务,在修好600米后,引进了新设备,工作效率是原来的2倍,一共用30天完成了任务,求引进新设备前平均每天修路多少米?5、某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?6、在课外活动跳绳时,相同时间内小林跳了90下,小群跳了120下.已知小群每分钟比小林多跳20下,求小林每分钟跳几下7、在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.乙队单独完成这项工程需要多少天?8、某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.今年三月份甲种电脑每台售价多少元?9、某工厂准备加工600个零件,在加工了100个零件后,采取了新技术,使每天的工作效率是原来的2倍,结果共用7天完成了任务,求该厂原来每天加工多少个零件?10、北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.该商场两次共购进这种运动服多少套?11.跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来..12、铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了元,购进苹果数量是试销时的2倍.(1)试销时该品种苹果的进货价是每千克多少元?(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70﹪)售完,那么超市在这两次苹果销售中共盈利多少元。