分式的乘除法练习题

合集下载

分式的乘除法练习题

分式的乘除法练习题

分式乘除法一、选择题1. 下列等式正确的是( )A. (-1)0=-1 B. (-1)-1=1 C. 2x -2=221xD. x -2y 2=22x y2. 下列变形错误的是( )A. 46323224y y x y x -=- B. 1)()(33-=--x y y x C. 9)(4)(27)(12323b a x b a b a x -=--D. y xa xy a y x 3)1(9)1(32222-=--3. cd ax cdab 4322-÷等于( ) A. -x b 322B. 23 b 2xC. x b 322D. -222283dc xb a 4. 若2a =3b ,则2232b a 等于( )A. 1B.32C.23 D. 69 5. 使分式22222)(y x ayax y a x a y x ++⋅--的值等于5的a 的值是( )A. 5B. -5C. 51D. -516. 已知分式)3)(1()3)(1(-++-x x x x 有意义,则x 的取值为( )A. x ≠-1B. x ≠3C. x ≠-1且x ≠3D. x ≠-1或x ≠37. 下列分式,对于任意的x 值总有意义的是( )A. 152--x xB. 112+-x xC. x x 812+ D. 232+x x8. 若分式m m m --21||的值为零,则m 取值为( )A. m =±1B. m =-1C. m =1D. m 的值不存在 9. 当x =2时,下列分式中,值为零的是( )A.2322+--x x x B. 942--x x C.21-x D.12++x x 10. 每千克m 元的糖果x 千克与每千克n 元的糖果y 千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为( )A.y x mynx ++元 B. yx ny mx ++元C.y x nm ++元 D. 21(ny m x +)元 11. 下列各式的约分正确的是( )A. 2()23()3a c a c -=+-B. 2232abc c a b cab=C. 2212a b ab a ba b=----D. 222142a c a c c a=+--+12. 在等式22211a a a a a M +++=+中,M 的值为 ( ) A. a B. 1a +C. a -D. 21a -13. 小马虎在下面的计算题中只做对了一道题,你认为他做对的题目是( )A.11326b a a ⨯= B.22()b a ba ab ÷=--C.111x y x y ÷=+-D.2211()()x y y x y x ⨯=---14. 下列式子:,,1,1,32,32πn m b a a b a x x --++ 中是分式的有( )个A 、5B 、4C 、3D 、215. 下列等式从左到右的变形正确的是( )A 、11++=a b a bB 、22a b a b =C 、b a b ab =2D 、am bma b =16. 下列分式中是最简分式的是( )A 、a 24B 、112+-m mC 、122+m D 、m m --1117. 下列计算正确的是( )A 、m n n m =∙÷1 B 、111=÷∙÷m m m m C 、1134=÷÷m m m D 、n n m n 1=∙÷18. 计算32)32()23(m n nm ∙-的结果是( ) A 、m n3B 、m n3-C 、m n32D 、m n 32-19. 计算y x yy x x ---的结果是( )A 、1B 、0C 、y x xy-D 、y x y x -+20. 化简n m m n m --+2的结果是( ) A 、n mB 、n m m --2 C 、n m n --2D 、m n -21. 下列计算正确的是( )A 、1)1(0-=-B 、1)1(1=-- C 、2233a a =- D 、235)()(a a a =-÷--22. 如果关于x 的方程8778=----x kx x 无解,那么k 的值应为( )A 、1B 、-1C 、1±D 、923. 甲、乙两人做某一工程,如果两人合作,6天可以完成,如果单独工作,甲比乙少用5天,两人单独工作各需多少天完成?设乙单独工作x 天完成,则根据题意列出的方程是( )A 、61511=++x xB 、61511=-+x xC 、61511=--x xD 、61511=+-x x二、填空题1. 计算:cb a a b 2242⋅=________. 2. 计算:abx 415÷(-18a x 3)=________.3. 若代数式4321++÷++x x x x 有意义,则x 的取值范围是________.4. 化简分式22yx abyabx -+得________. 5. 若ba =5,则ab b a 22+=________.6. 下列各式:π3,32,4,52,21222-++x x y x xy b a a 中,是分式的为________. 7. 当x ________时,分式812+-x x 有意义. 8. 当x =________时,分式121+-x x 的值为1. 9. 若分式yx yx --2=-1,则x 与y 的关系是________.10. 当a =8,b =11时,分式ba a 22++的值为________.11、分式aa-2,当a__ ___时,分式的值为0;当a___ ___时,分式无意义,当a__ ____时,分式有意义12、()22y x -x yx -=.13、96,91,39222+----a a aa a a 的最简公分母是_ _ ___________.14、=-÷-b a ab a 11_____________. 15、=-+-a b b b a a _____________. 16、=--2)21(_____________.18、一轮船在顺水中航行100千米与在逆水中航行60千米所用的时间相等,已知水流速度为3千米/时,求该轮船在静水中的速度?设该轮船在静水中的速度为x 千米/时,则所列方程为___________________19. 将分式22x x x +化简得1x x +,则x 满足的条件是_____________。

八年级数学分式的乘除法36题(含答案)

八年级数学分式的乘除法36题(含答案)

分式的乘除法(三)一、填空题:1、若n 为正整数,则化简=⎪⎪⎭⎫⎝⎛-+1223n x ab __________; 2、化简222222105x y ab a b x y +⋅-的结果是__________; 3、计算2221x xx x x +÷++的结果是__________; 4、化简()()142x y x y -÷-=__________; 5、计算()2xyxy x x y-⋅-=__________; 6、计算22212a a b a b ab a b-⋅⋅=+-__________; 7、化简()222a b ab b a b--÷+的结果是__________; 8、若m 等于它的倒数,则分式22244242m m m mm m +++÷--的值是__________; 9、若分式1324x x x x ++÷++有意义,则x 的取值范围是__________; 10、计算()4524m n m mn n n ⎛⎫⎛⎫-⋅-÷-= ⎪ ⎪⎝⎭⎝⎭__________; 11、已知72=y x ,则222273223y xy x y xy x +-+-的值是__________; 12、如果b a x -=,b a y +=,计算:()xyx y 2--的值为__________; 13、已知0≠-b a ,且032=-b a ,那么代数式ba ba -+2的值是__________; 14、d d c cb b a 1112⨯÷⨯÷⨯÷=__________;15、若将分式22x x x +化简得1xx +,则x 应满足的条件是__________; 二、选择题:16、下列运算正确的是 ( ) A 、632x x x = B 、0x y x y +=+ C 、1x y x y -+=-- D 、a x ab x b+=+17、下列计算错误的是 ( ) A 、33363422x y x y y -=- B 、()()()3233124279x x y x x y x y --=- C 、()()331x y y x -=-- D 、()()222231391x y a x yxy a -=-- 18、分式22444a a a -+-约分后的结果为 ( ) A 、22a a -+ B 、22a a --+ C 、22a a +- D 、22a a +-- 19、计算()1xb y a ⋅;()2x y y x ⋅;()362x x÷;()234a a b b ÷所得的结果中,是分式的有( )A 、1个B 、2个C 、3个D 、4个20、代数式211x xx x +÷--有意义,则x 的取值范围是 ( ) A 、1x ≠ B 、1x ≠且0x ≠C 、2x ≠-且1x ≠D 、1x ≠且2x ≠-且0x ≠21、计算22433842m m n m n n ⎛⎫⎛⎫⋅-÷- ⎪ ⎪⎝⎭⎝⎭的结果是 ( ) A 、3m - B 、3m C 、12m - D 、12m22、计算()2224424x x x x ++⋅--的结果是 ( ) A 、整式 B 、分式C 、可能是整式也可能是分式D 、既不是整式又不是分式23、下列分式运算结果正确的是 ( ) A 、4453m n m n m n ⋅= B 、a c adb d bc⋅=C 、222224a a a b a b ⎛⎫= ⎪--⎝⎭ D 、3333344x x y y ⎛⎫= ⎪⎝⎭24、化简()222x xy xyx y x xy y xy+-÷+÷--得结果是( ) A 、y x B 、1x - C 、1x D 、yx-三、计算下列各题:25、32242x y y y x x ⎡⎤⎛⎫-⎛⎫⎛⎫-⋅-÷-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ 26、222241x y xy x x xy x y x x y --÷⋅+--27、()226344x x x x +÷+-+ 28、2222216913921x x x x x x x ⎛⎫--+⎛⎫÷⋅ ⎪ ⎪---+⎝⎭⎝⎭29、2322003420034200320032200348+⨯++⨯-⨯-四、先化简,在求值:30、2211442x x x x x +-÷+++,其中12x =。

分式的乘除法练习题

分式的乘除法练习题

分式乘除法一、选择题1. 下列等式正确的是( )A. (-1)0=-1 B. (-1)-1=1 C. 2x -2=221xD. x -2y 2=22x y2. 下列变形错误的是( )A. 46323224y y x y x -=- B. 1)()(33-=--x y y x C. 9)(4)(27)(12323b a x b a b a x -=--D. y xa xy a y x 3)1(9)1(32222-=--3. cd ax cdab 4322-÷等于( ) A. -x b 322B. 23 b 2xC. x b 322D. -222283dc x b a 4. 若2a =3b ,则2232b a 等于( )A. 1B.32C.23D.69 5. 使分式22222)(y x ayax y a x a y x ++⋅--的值等于5的a 的值是( )A. 5B. -5C.51 D. -516. 已知分式)3)(1()3)(1(-++-x x x x 有意义,则x 的取值为( )A. x ≠-1B. x ≠3C. x ≠-1且x ≠3D. x ≠-1或x ≠3 7. 下列分式,对于任意的x 值总有意义的是( )A. 152--x xB. 112+-x xC. xx 812+D.232+x x8. 若分式m m m --21||的值为零,则m 取值为( )A. m =±1B. m =-1C. m =1D. m 的值不存在9. 当x =2时,下列分式中,值为零的是( )A.2322+--x x x B. 942--x xC.21-x D.12++x x 10. 每千克m 元的糖果x 千克与每千克n 元的糖果y 千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为( )A.yx mynx ++元B.yx nymx ++元C.y x nm ++元 D. 21(ny m x +)元 11. 下列各式的约分正确的是( )A. 2()23()3a c a c -=+-B.2232abc c a b cab=C.2212a b ab a ba b=---- D.222142a c a c c a=+--+12. 在等式22211a a a a a M +++=+中,M 的值为 ( ) A. a B. 1a +C. a -D. 21a -13. 小马虎在下面的计算题中只做对了一道题,你认为他做对的题目是( )A.11326b a a ⨯= B.22()b a ba ab ÷=--C.111x y x y ÷=+-D.2211()()x y y x y x ⨯=---14. 下列式子:,,1,1,32,32πn m b a a b a x x --++ 中是分式的有( )个A 、5B 、4C 、3D 、215. 下列等式从左到右的变形正确的是( )A 、11++=a b a bB 、22a b a b = C 、b a b ab =2D 、am bma b =16. 下列分式中是最简分式的是( )A 、a 24B 、112+-m mC 、122+mD 、m m --1117. 下列计算正确的是( )A 、m n n m =∙÷1 B 、111=÷∙÷m m m m C 、1134=÷÷m m m D 、n n m n 1=∙÷18. 计算32)32()23(m n nm ∙-的结果是( ) A 、m n3B 、m n3-C 、m n 32D 、m n 32-19. 计算y x yy x x ---的结果是( )A 、1B 、0C 、y x xy-D 、y x y x -+20. 化简n m m n m --+2的结果是( ) A 、n mB 、n m m --2 C 、n m n --2D 、m n -21. 下列计算正确的是( )A 、1)1(0-=-B 、1)1(1=-- C 、2233a a =- D 、235)()(a a a =-÷--22. 如果关于x 的方程8778=----x kx x 无解,那么k 的值应为( )A 、1B 、-1C 、1±D 、923. 甲、乙两人做某一工程,如果两人合作,6天可以完成,如果单独工作,甲比乙少用5天,两人单独工作各需多少天完成?设乙单独工作x 天完成,则根据题意列出的方程是( )A 、61511=++x xB 、61511=-+x xC 、61511=--x xD 、61511=+-x x二、填空题1. 计算:cb a a b 2242⋅=________. 2. 计算:abx 415÷(-18a x 3)=________.3. 若代数式4321++÷++x x x x 有意义,则x 的取值范围是________.4. 化简分式22yx abyabx -+得________. 5. 若ba =5,则ab b a 22+=________.6. 下列各式:π3,32,4,52,21222-++x x y x xy b a a 中,是分式的为________. 7. 当x ________时,分式812+-x x 有意义. 8. 当x =________时,分式121+-x x 的值为1. 9. 若分式yx yx --2=-1,则x 与y 的关系是________.10. 当a =8,b =11时,分式ba a 22++的值为________.11、分式aa-2,当a__ ___时,分式的值为0;当a___ ___时,分式无意义,当a__ ____时,分式有意义12、()22y x -x yx -=.13、96,91,39222+----a a aa a a 的最简公分母是_ _ ___________.14、=-÷-b a ab a 11_____________. 15、=-+-a b b b a a _____________. 16、=--2)21(_____________.18、一轮船在顺水中航行100千米与在逆水中航行60千米所用的时间相等,已知水流速度为3千米/时,求该轮船在静水中的速度?设该轮船在静水中的速度为x 千米/时,则所列方程为___________________19. 将分式22x x x +化简得1x x +,则x 满足的条件是_____________。

(完整版)分式的乘除测试题及答案,推荐文档

(完整版)分式的乘除测试题及答案,推荐文档

分式的乘除测试题满分100分 时间45分钟一、填空题。

3x10=30分1.计算:23b 3ab _________2a -÷=。

2.若代数式x 1x 2x 1x 2+-÷-+有意义,则x _______________。

3.计算:2n 13b ()_____________2a +⎡⎤=⎢⎥⎣⎦。

4.22m 3m 2__________m 2m 3-+=+-。

5.当a 3=时,22a 2a 1___________a a 2-+=--+。

6.计算:22x 2x 4__________x 3x 6x 9--÷=--+。

7、当13+=x 时,代数式()()13113-++•++x x x x x 的值等于 8、÷-)(2a a 1-a a = 。

9、若4y -3x=0 ,则(x+y):y=10、342y y ___________x x ⎛⎫-⎛⎫-÷= ⎪ ⎪⎝⎭⎝⎭二、选择题4x4=16分11、下列约分正确的是( )A 、326x x x =;B 、0=++y x y x ;C 、x xy x y x 12=++;D 、214222=y x xy 12、计算:)2()2()2(232x y x y yx -÷⋅-的结果是( ) A 、638yx - B 、638y x C 、5216y x - D 、5216y x 13、下列式子(1)y x y x y x -=--122;(2)c a b a a c a b --=--;(3)1-=--b a ab ;(4)yx y x y x y x +-=--+-中正确的是( ) A 、1个 B 、2 个 C 、 3 个 D 、 4 个14、下列分式中,最简分式是( )A 、)1(21+-x xB 、2242y x y x --C 、24212+++x x x D 、223x x x + 15、计算:6x5=30分(1)yx x x y xy x 22+⋅+ (2) 222)11(11-+⋅-÷--a a a a a a a(3)262--x x ÷ 4432+--x x x (4)⎪⎪⎭⎫ ⎝⎛-⋅⎪⎪⎭⎫ ⎝⎛-÷-223224)2(y x x y xy(5)232x 4(64a b)().24a x --⋅ (6)23224x 4xy+y (4x y ).2x-y --÷16、7分化简求值: 3222232b a ab 2a b b a ,a b b ab b +--⋅÷-+其中2a=,b 3.3=-17、7分计算:222x 2x 1x x 2x 1.2x 8x 8x+1+++-÷+⋅++()18、7分 若532z y x ==,且3x+2y -z=14,求x, y , z.19、观察下面一列有规律的数:3分31,82,153,244,355,486,…… 根据规律可知第n 个数应是 (n 为正整数)【答案】1、33; 2、(a-1)2;3、37; 4、A ;5、C ;6、D ;7、B ;8、(1)21y ,(2)aa -+11,(3)2(x-2),(4)25y x -; 9、)2(+n n n 10、解:令532z y x ===a 则有x=2a , y=3a , z=5a3x+2y -z=14即6a+6a-5a=14∴a=2∴x=4,y=6,z=10.一、1.(1)22a b - (2)2xy -2.解:要使x 1x 2x-1x 2+-÷+有意义,必须x 1≠,且x 2,x -2≠≠。

分式的乘除加减法练习题(打印版)

分式的乘除加减法练习题(打印版)

分式的乘除加减法练习题(打印版)### 分式的乘除加减法练习题#### 一、分式的乘法1. 计算以下分式的乘积:\[\frac{3}{4} \times \frac{5}{6}\]2. 计算以下分式的乘积:\[\frac{2}{3} \times \frac{7}{8}\]3. 计算以下分式的乘积:\[\frac{1}{2} \times \frac{4}{9}\]#### 二、分式的除法1. 计算以下分式的商:\[\frac{3}{5} \div \frac{2}{3}\]2. 计算以下分式的商:\frac{4}{7} \div \frac{1}{3} \]3. 计算以下分式的商:\[\frac{5}{8} \div \frac{5}{2} \]#### 三、分式的加法1. 计算以下分式的和:\[\frac{1}{3} + \frac{2}{3}\]2. 计算以下分式的和:\[\frac{3}{4} + \frac{1}{4}\]3. 计算以下分式的和:\[\frac{5}{6} + \frac{1}{6}\]#### 四、分式的减法1. 计算以下分式的差:\[\frac{4}{5} - \frac{1}{5}2. 计算以下分式的差:\frac{7}{8} - \frac{3}{8}3. 计算以下分式的差:\[\frac{9}{10} - \frac{2}{5}\]#### 五、混合运算1. 计算以下混合运算的结果:\[\left(\frac{2}{3} + \frac{1}{6}\right) \times \frac{3}{4} \]2. 计算以下混合运算的结果:\[\frac{5}{6} \div \left(\frac{2}{3} \times\frac{3}{4}\right)\]3. 计算以下混合运算的结果:\[\left(\frac{3}{5} - \frac{1}{10}\right) \div \frac{1}{2} \]通过以上练习题,可以有效地提高对分式运算的理解和计算能力。

分式的乘除练习题及答案

分式的乘除练习题及答案

分式的乘除练习题及答案问题1计算:(1)22238()4xy zz y-;(2)2226934x x xx x+-+--.名师指导(1)这道例题就是直接应用分式的乘法法则进行运算.值得注意的是运算结果应约分到不好约分为止,同时还应注意在计算时跟整式运算一样,先确定符号,再进行相关计算,求出结果.(2)这道例题中分式的分子、分母是多项式,应先把分子、分母中的多项式分解因式,再进行约分.解题示范解:(1)2222223824()644xy z xy zxy z y yz-=-=-;(2)22222692(3)(2)(3)3 343(2)(2)(3)(2)(2)2x x x x x x x xx x x x x x x x x+-++-+--===---+--+--.归纳提炼类比分数的乘法运算不难理解,分式的乘法运算就是根据分式乘法法则,将各式分子、分母分别相乘后再进行约分运算,值得注意的地方有三点:一是要确定好运算结果的符号;二是计算结果中分子和分母能约分则要约分;三是有时计算结果的分母不一定是单一的多项式,而是多个多项式相乘,这时也不必把它们展开.问题2计算:(1)2236a b axcd cd-÷;(2)2224369a aa a a--÷+++.名师指导分式除法运算,根据分式除法法则,将分式除法变为分式乘法运算,注意点同分式乘法.解题示范解:(1)22226636326a b ax a b cd a bcd ab cd cd cd ax acdx x -÷=-=-=-;(2)2222242(3)(2)(3)33693(2)(2)(3)(2)(2)2a a a a a a a a a a a a a a a a a ---+-++÷===+++++-++-+.问题3 已知:2a =2b =+322222222a b a b a ab a ab b a b+-÷++-的值. 名师指导完成这类求值题时,如果把已知条件直接代入,计算将会较为繁杂,容易导致错误产生.解决这种问题,一般应先将代数式进行化简运算,然后再把已知条件代入化简后的式子中进行计算,这样的处理方式可以使运算量少很多.解题示范解:化简代数式得,322222222a b a b a ab a ab b a b +-÷++- 22()()()()()a b a b a b a b a b a a b ++-=+- 222()()()()a b a b a b a a b a b +-=+- ab =.把2a =2b =ab ,所以原式22(222==-=.归纳提炼许多化简求值题,有的在题目中会明确要求先化简,再求值,这时必须按要求的步骤进行解题.但有的在题目中未必会给出明确的要求或指示,与整式中的求代数式值的问题一样,分式中的求值题一般也是先化简,然后再代入已知条件,这样可以简化运算过程.【自主检测】1.计算:2()xy x -·xy x y-=___ _____.2.计算:23233y xy x -÷____ ____.3.计算:3()9aab b -÷=____ ____.4.计算:233x yxya a ÷=____ ____.5.若m 等于它的倒数,则分式m m m m m 332422--÷--的值为( ) A .-1 B .3 C .-1或3 D .41-6.计算2()x yx xy x ++÷的结果是( ) A .2()x y + B .y x +2 C .2x D .x7.计算2(1)(2)3(1)(1)(2)a a a a a -++++的结果是( ) A .3a 2-1 B .3a 2-3 C .3a 2+6a +3 D .a 2+2a +18.已知x 等于它的倒数,则263x x x ---÷2356x x x --+的值是( )A .-3B .-2C .-1D .09.计算22121a a a -++÷21a aa -+.10.观察下列各式:2324325432(1)(1)1(1)(1)1(1)(1)1(1)(1)1x x x x x x x x x x x x x x x x x x -÷-=+-÷-=++-÷-=+++-÷-=++++(1)你能得到一般情况下(1)(1)n x x -÷-的结果吗?(2)根据这一结果计算:2320062007122222++++++.【自主评价】一、自主检测提示8.因为x 等于它的倒数,所以1x =±,2263356x x x x x x ---÷--+ (3)(2)(2)(3)33x x x x x x -+--=--(2)(2)x x =+-224(1)43x =-=±-=-. 10.根据所给一组式子可以归纳出:122(1)(1)1n n n x x x x x x ---÷-=+++++. 所以232006200720082008122222(21)(21)21++++++=--=-.二、自我反思1.错因分析2.矫正错误3.检测体会4.拓展延伸参考答案1.2x y - 2. 292x y - 3. 213b - 4.9x 5.C 6.C 7.B 8.A 9.1a 10.(1)121n n xx x --++++,(2)200821-。

分式乘除练习题

分式乘除练习题Ⅰ. 乘法练习题1. 计算下列分式的乘积:(答案需以最简形式给出)a) $\frac{4}{5} \times \frac{3}{7}$b) $\frac{2}{9} \times \frac{7}{15}$c) $\frac{9}{12} \times \frac{6}{10}$d) $\frac{5}{8} \times \frac{2}{5}$2. 简化下列分式乘法的结果:a) $\frac{2}{3} \times \frac{3}{4} \times \frac{5}{6}$b) $\frac{4}{7} \times \frac{7}{12} \times \frac{12}{5}$c) $\frac{8}{9} \times \frac{9}{10} \times \frac{10}{11}$d) $\frac{3}{5} \times \frac{5}{7} \times \frac{7}{8}$Ⅱ. 除法练习题1. 用倒数的方法计算下列分式的商:(答案需以最简形式给出)a) $\frac{3}{5} \div \frac{2}{3}$b) $\frac{4}{9} \div \frac{5}{8}$c) $\frac{6}{7} \div \frac{4}{9}$d) $\frac{2}{3} \div \frac{5}{6}$2. 在下列除法中,简化每个阶段的结果,最终以最简形式给出答案:a) $\frac{4}{5} \div \frac{3}{4} \div \frac{5}{6}$b) $\frac{5}{6} \div \frac{7}{8} \div \frac{4}{9}$c) $\frac{6}{7} \div \frac{8}{9} \div \frac{3}{5}$d) $\frac{2}{3} \div \frac{5}{6} \div \frac{7}{8}$Ⅲ. 综合运算练习题1. 计算下列综合运算的结果:(答案需以最简形式给出)a) $\frac{2}{3} \times \frac{3}{4} \div \frac{4}{5}$b) $\frac{5}{6} \times \frac{7}{8} \div \frac{8}{9}$c) $\frac{4}{5} \div \frac{3}{4} \times \frac{2}{3}$d) $\frac{7}{8} \div \frac{4}{3} \times \frac{6}{5}$2. 按正确的顺序计算下列综合运算,并简化最终结果:a) $\frac{3}{4} \times \frac{5}{6} \div \frac{7}{8} \div \frac{4}{9}$b) $\frac{6}{7} \times \frac{8}{9} \div \frac{9}{10} \div\frac{3}{5}$c) $\frac{2}{3} \times \frac{5}{6} \div \frac{7}{8} \times\frac{4}{5}$d) $\frac{4}{5} \times \frac{3}{4} \div \frac{15}{16} \times\frac{7}{9}$经过以上练习题的练习,相信你对于分式的乘除运算已经更加熟练了。

分式的乘除法练习及答案

分式的乘除法练习及答案分式的乘除法练及答案运算法则:1)分式乘法法则:$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$2)分式的除法法则:$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$3)分式的乘方法则:$\frac{a}{n} \cdot \frac{n}{b} = \frac{a}{b}$1.下列各式的约分正确的是()A。

$\frac{2}{2(a-c)^2} = \frac{1}{a-c}$B。

$\frac{abc}{233+(a-c)^3} = \frac{abc}{233+a^3-3a^2c+3ac^2-c^3}$C。

$\frac{2}{a-b} = \frac{2}{a-b}$D。

$\frac{2a-c}{1-4a+c^2+2a^2} = \frac{2a-c}{(1+2a)(1-c)}$2.在等式$\frac{a^2+aM}{a+1} = \frac{a^2-1}{a}$中,M的值为()A。

$a$B。

$a+1$C。

$-a$D。

$a-1$3.XXX在下面的计算题中只做对了一道题,你认为他做对的题目是()A。

$\frac{111b}{1bab} \div 2 = \frac{1}{b}$B。

$\frac{2}{2} \div \frac{2}{2} = 1$C。

$\frac{2}{2} \cdot \frac{2}{2} = 1$D。

$(x-y) \div \frac{1}{2} = 2(x-y)$4.将分式$\frac{2}{x+1}+\frac{x}{x+1}$化简得,$x$满足的条件是$x \neq -1$5.化简1)$\frac{-x^2}{2b} = -\frac{x^2}{2b}$2)$\frac{2y}{3a} \cdot \frac{a}{2} = \frac{y}{3}$6.计算frac{2b^2-3ab^2x^2}{2} \div \frac{-3ab}{1+3ax} =\frac{2b(1-3ax)}{9a}$frac{x^2-y^2}{x^2+xy-a-2} \div \frac{x+y}{2y-a} \cdot \frac{2a^2+2a}{2a^2+2a} = \frac{(x-y)(2a+y)}{(x+2y-a)(2a+2y)}$frac{4m^2-4m+1}{4m^2-1} \div \frac{2}{2} = \frac{2m-1}{2m+1}$frac{(4x-y)}{2x-ym+1} \cdot \frac{m-1}{m+1} \div \frac{-4}{(7n^2-4x^2)(-8x^2)} = \frac{(4x-y)(m-1)(7n^2-4x^2)}{2(m+1)x^2}$frac{2xy}{-ynm} \div \frac{5}{4x^2} = -\frac{8x^3}{5nymy}$frac{a^2-14}{a^2+4a-1} \div (a+1) \cdot \frac{2a-1}{a+4} = \frac{2a-1}{a^2+4a-1}$。

分式的乘除法(6类热点题型讲练)(原卷版) 八年级数学下册

第02讲分式的乘除法(6类热点题型讲练)
1.掌握分式的乘除运算法则;
2.能够进行分子、分母为多项式的分式乘除法运算.
知识点01分式的乘法
乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为:a c a c
b d b d
⋅⋅
=⋅.知识点02分式的除法
除法法则:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘.用式子表示为:
a c a d a d
b d b
c b c
⋅÷=⋅=⋅.知识点03分式的乘方
乘方法则:分式的乘方,把分子、分母分别乘方.用式子表示为:((n
n n a a n b b
=为正整数,0)b ≠.
题型01分式的乘法运算
【变式训练】
题型02分式的除法运算
【变式训练】
题型03分式乘除混合运算
【变式训练】
题型04分式的乘方运算
【变式训练】
题型05含乘方的分式乘除混合运算
【变式训练】
题型06分式乘除混合运算中化简求值
【变式训练】
则第4次运算的结果4y=.三、解答题。

分式的乘除法习题练习

17.2.1分式的乘除 (一)一、判断正误(对的打“√”,错的打“×”)(每小题3分,共15分) 1. yx y x ++22 =x+y ( ) 2. (p -q )2÷(q -p )2=1( ) 3. =48x x x 2( ) 4. )(3)(2)(9)(422n m n m n m n m -+=-+( ) 5.ba mb m a =++(m ≠0)( ) 二、请你填一填(每小题4分,共32分) 1. 把一个分式的分子与分母的 约去,叫做分式的约分;在分式222x y xy xy +中,分子与分母的公因式是 .2. 将下列分式约分:(1)258x x = ; (2)22357mn n m -= ;(3)22)()(a b b a --= . 3. 计算2223362c ab b c b a ÷= . 4. 计算42222ab a a ab ab a b a --÷+-= . 5. 计算(-y x )2·(-32yx )3÷(-y x )4= . 6. 已知x -y=xy,则x1-y 1=________. 7. 若a 1∶b 1∶c1=2∶3∶4,则a ∶b ∶c=_____________.8. 若4x =4y =5z ,则z y x y x 32+-+=_____________.三、细心算一算:(每小题10分,共40分)1. 计算:(1) ab b a 22-÷(a -b )2 (2)(y x 32)2·(x y 43)3÷(41xy )2. 先化简,再求值:222693b ab a ab a +--,其中a =-8,b =21.3. 若x1-y 1=3, 求y xy x y xy x ---+2232的值.四、用数学眼光看世界(10分)甲队在n 天内挖水渠a 米,乙队在m 天内挖水渠b 米,如果两队同时挖水渠,要挖x 米,需要多少天才能完成?(用代数式表示)答案:一、判断正误1.×2.√3.×4.×5.×二、请你填一填1.公因式; xy2.(1)83x (2)-n m 5 (3)13.c b a 3234.a -b5.-74yx 6.-1 7.6∶4∶3 8.107 三、细心算一算 1.(1))(b a ab b a -+ (2)243x 2. 当a =-8, b=21时,原式=b a a -3=491621)8(38=--⨯-3. 解法一:当yx 11-=3时xy x y -=3 ∴x -y=-3xy 则原式=5323362)(3)(2=--+-=--+-xy xy xy xy xy y x xy y x 解法二:当yx 11-=3时 原式=53233)3(22113)11(2121232=--+-⨯=--+-=---+xy x y x y x y 四、用数学眼光看世界 甲、乙两队每天分别挖n a 米,mb 米,若两队合挖,每天挖(n a +m b )米, 所以要挖x 米,需要mb n ax+天才能完成.17.2.1 分式的乘除 (二)一、选择题(每小题5分,共25分)1.下列等式正确的是( )A.(-1)0=-1B.(-1)-1=1C.2x -2=221xD.x -2y 2=22x y 2. 下列变形错误的是( ) A.46323224y y x y x -=- B.1)()(33-=--x y y x C.9)(4)(27)(12323b a x b a b a x -=-- D.y x a xy a y x 3)1(9)1(32222-=-- 3. cdax cd ab 4322-÷等于( ) A.-x b 322B.23b 2xC.x b 322D.-222283dc x b a 4. 若2a=3b ,则2232ba 等于( ) A.1 B.32 C.23 D.69 5. 使分式22222)(y x ay ax y a x a y x ++⋅--的值等于5的a 的值是( ) A.5 B.-5 C.51 D.-51 二、填空题(每小题5分,共25分)1. 计算:cb a a b 2242⋅=________. 2. 计算:abx 415÷(-18a x 3)=________.3. 若代数式4321++÷++x x x x 有意义,则x 的取值范围是________. 4. 化简分式22y x aby abx -+得________. 5. 若ba =5,则ab b a 22+=________. 三、解答题:(共50分)1. (5×4=20)计算:(1)423223423b a d c cd ab ⋅ (2 )m m m m m --⋅-+-3249622(3) (xy -x 2)÷xy y x - (4 )24244422223-+-÷+-+-x x x x x x x x2. (2×10=20)先化简,再求值: (1)x x x x x x x 39396922322-+⋅++-,其中x=-31.(2)22441yx y x y x +÷-+,其中x=8,y=11.3. (10分)某厂每天能生产甲种零件a 个或乙种零件b 个,且a ∶b=2∶3.甲、乙两种零件各一个配成一套产品,30天内能生产的产品的最多套数为多少?答案:一、选择题1.D2.D3.A4.C5.C二、填空题1.bc a 22.-ba x 265 3.x ≠-2且x ≠-3且x ≠-4 4.y x ab - 5.526 三、解答题1.(1)222ab cd - (2)-23+-m m (3)-x 2y (4)2-x x 2.(1)-1 (2)-31 3.18a。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式的乘除法练习题
(1) 223a2y4y3a
(2) 22122aaaa
(3) 2263yxyx
(4) 3432xyyx
(5) 2222324ababccd
(6) 2233yxyx (7) 32293baab (8) 24xx (9) 231649abba (10) 21285xyxya (11) 3232226ababcbc (12) 243384aabb (13) 422232481535ababmm (14) 2222335010abababab (15) 22432abababab (16) 22211444aaaaa (17) 22224ababaaababa (18) 2226631xxxxxx (19) 2()xyxyxxy (20) 222244(4)2xxyyxyxy (21) 22222axbxaaxxax (22) 2222369xxxxxx
(23) 232(2)1aaaa
(24) 2223()xyxxxy
(25) 332222xyxxyyxyxy
(26) 22()xyxyxy
(27) 2233()xxyyxyxy
(28) 222434332aaaaaa
(29) 22543()512yxyxxy
(30) 32226()yxxyxxy
(31)
2225
22223
111212()()()6189abayaycxcxbx



(32) 222132(1)441xxxxxxx
(33) 222612414463xxxxxxx
(34) 2322248144364xxxxxxx
(35) 2222565431644aaaaaaaa
(36) 22266(3)443xxxxxxx
(37) 22233abaababab
(38) 22222()2aabaababbabba
(39) 2222x2xyyxy()xyxxyx-+-
(40) 2322233()()91xxxxx
(41) 32322243()()()323abbbaa
(42) 22343()()()xxxyyy
(43) 若234xyz,求222xyyzzxxyz的
值。
(44)

相关文档
最新文档